151
|
Williams GP, Schonhoff AM, Jurkuvenaite A, Gallups NJ, Standaert DG, Harms AS. CD4 T cells mediate brain inflammation and neurodegeneration in a mouse model of Parkinson's disease. Brain 2021; 144:2047-2059. [PMID: 33704423 PMCID: PMC8370411 DOI: 10.1093/brain/awab103] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/27/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
α-Synuclein, a key pathological component of Parkinson's disease, has been implicated in the activation of the innate and adaptive immune system. This immune activation includes microgliosis, increased inflammatory cytokines, and the infiltration of T cells into the CNS. More recently, peripherally circulating CD4 and CD8 T cells derived from individuals with Parkinson's disease have been shown to produce Th1/Th2 cytokines in response to α-synuclein, suggesting there may be a chronic memory T cell response present in Parkinson's disease. To understand the potential effects of these α-syn associated T cell responses we used an α-synuclein overexpression mouse model, T cell-deficient mice, and a combination of immunohistochemistry and flow cytometry. In this study, we found that α-synuclein overexpression in the midbrain of mice leads to the upregulation of the major histocompatibility complex II (MHCII) protein on CNS myeloid cells as well as the infiltration of IFNγ producing CD4 and CD8 T cells into the CNS. Interestingly, genetic deletion of TCRβ or CD4, as well as the use of the immunosuppressive drug fingolimod, were able to reduce the CNS myeloid MHCII response to α-synuclein. Furthermore, we observed that CD4-deficient mice were protected from the dopaminergic cell loss observed due to α-syn overexpression. These results suggest that T cell responses associated with α-synuclein pathology may be damaging to key areas of the CNS in Parkinson's disease and that targeting these T cell responses could be an avenue for disease modifying treatments.
Collapse
Affiliation(s)
- Gregory P Williams
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aubrey M Schonhoff
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Asta Jurkuvenaite
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nicole J Gallups
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David G Standaert
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ashley S Harms
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
152
|
Mitsdoerffer M, Di Liberto G, Dötsch S, Sie C, Wagner I, Pfaller M, Kreutzfeldt M, Fräßle S, Aly L, Knier B, Busch DH, Merkler D, Korn T. Formation and immunomodulatory function of meningeal B cell aggregates in progressive CNS autoimmunity. Brain 2021; 144:1697-1710. [PMID: 33693558 DOI: 10.1093/brain/awab093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/25/2022] Open
Abstract
Meningeal B lymphocyte aggregates have been described in autopsy material of patients with chronic multiple sclerosis. The presence of meningeal B cell aggregates has been correlated with worse disease. However, the functional role of these meningeal B cell aggregates is not understood. Here, we use a mouse model of multiple sclerosis, the spontaneous opticospinal encephalomyelitis model, which is built on the double transgenic expression of myelin oligodendrocyte glycoprotein-specific T-cell and B-cell receptors, to show that the formation of meningeal B cell aggregates is dependent on the expression of α4 integrins by antigen-specific T cells. T cell-conditional genetic ablation of α4 integrins in opticospinal encephalomyelitis mice impaired the formation of meningeal B cell aggregates, and surprisingly, led to a higher disease incidence as compared to opticospinal encephalomyelitis mice with α4 integrin-sufficient T cells. B cell-conditional ablation of α4 integrins in opticospinal encephalomyelitis mice resulted in the entire abrogation of the formation of meningeal B cell aggregates, and opticospinal encephalomyelitis mice with α4 integrin-deficient B cells suffered from a higher disease burden than regular opticospinal encephalomyelitis mice. While anti-CD20 antibody-mediated systemic depletion of B cells in opticospinal encephalomyelitis mice after onset of disease failed to efficiently decrease meningeal B cell aggregates without significantly modulating disease progression, treatment with anti-CD19 chimeric antigen receptor-T cells eliminated meningeal B cell aggregates and exacerbated clinical disease in opticospinal encephalomyelitis mice. Since about 20% of B cells in organized meningeal B cell aggregates produced either IL-10 or IL-35, we propose that meningeal B cell aggregates might also have an immunoregulatory function as to the immunopathology in adjacent spinal cord white matter. The immunoregulatory function of meningeal B cell aggregates needs to be considered when designing highly efficient therapies directed against meningeal B cell aggregates for clinical application in multiple sclerosis.
Collapse
Affiliation(s)
- Meike Mitsdoerffer
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, 81675 Munich, Germany.,Klinikum rechts der Isar, Institute for Experimental Neuroimmunology, Technical University of Munich, 81675 Munich, Germany
| | - Giovanni Di Liberto
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Centre Médical Universitaire, 1211 Geneva, Switzerland
| | - Sarah Dötsch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, 81675 Munich, Germany
| | - Christopher Sie
- Klinikum rechts der Isar, Institute for Experimental Neuroimmunology, Technical University of Munich, 81675 Munich, Germany
| | - Ingrid Wagner
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Centre Médical Universitaire, 1211 Geneva, Switzerland
| | - Monika Pfaller
- Klinikum rechts der Isar, Institute for Experimental Neuroimmunology, Technical University of Munich, 81675 Munich, Germany
| | - Mario Kreutzfeldt
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Centre Médical Universitaire, 1211 Geneva, Switzerland
| | - Simon Fräßle
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, 81675 Munich, Germany
| | - Lilian Aly
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, 81675 Munich, Germany
| | - Benjamin Knier
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, 81675 Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology, and Hygiene, Technical University of Munich, 81675 Munich, Germany.,National Center for Infection Research (DZIF), Technical University of Munich, 81675 Munich, Germany
| | - Doron Merkler
- Division of Clinical Pathology, Department of Pathology and Immunology, Geneva Faculty of Medicine, Centre Médical Universitaire, 1211 Geneva, Switzerland
| | - Thomas Korn
- Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, 81675 Munich, Germany.,Klinikum rechts der Isar, Institute for Experimental Neuroimmunology, Technical University of Munich, 81675 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), DZNE site Munich, 81377 Munich, Germany
| |
Collapse
|
153
|
Krishnan S, O’Boyle C, Smith CJ, Hulme S, Allan SM, Grainger JR, Lawrence CB. A hyperacute immune map of ischaemic stroke patients reveals alterations to circulating innate and adaptive cells. Clin Exp Immunol 2021; 203:458-471. [PMID: 33205448 PMCID: PMC7874838 DOI: 10.1111/cei.13551] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Systemic immune changes following ischaemic stroke are associated with increased susceptibility to infection and poor patient outcome due to their role in exacerbating the ischaemic injury and long-term disability. Alterations to the abundance or function of almost all components of the immune system post-stroke have been identified, including lymphocytes, monocytes and granulocytes. However, subsequent infections have often confounded the identification of stroke-specific effects. Global understanding of very early changes to systemic immunity is critical to identify immune targets to improve clinical outcome. To this end, we performed a small, prospective, observational study in stroke patients with immunophenotyping at a hyperacute time point (< 3 h) to explore early changes to circulating immune cells. We report, for the first time, decreased frequencies of type 1 conventional dendritic cells (cDC1), haematopoietic stem and progenitor cells (HSPCs), unswitched memory B cells and terminally differentiated effector memory T cells re-expressing CD45RA (TEMRA). We also observed concomitant alterations to human leucocyte antigen D-related (HLA-DR), CD64 and CD14 expression in distinct myeloid subsets and a rapid activation of CD4+ T cells based on CD69 expression. The CD69+ CD4+ T cell phenotype inversely correlated with stroke severity and was associated with naive and central memory T (TCM) cells. Our findings highlight early changes in both the innate and adaptive immune compartments for further investigation as they could have implications the development of post-stroke infection and poorer patient outcomes.
Collapse
Affiliation(s)
- S. Krishnan
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Infection, Immunity and Respiratory MedicineSchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - C. O’Boyle
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - C. J. Smith
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Cardiovascular SciencesUniversity of ManchesterManchester Academic Health Science CentreSalford Royal NHS Foundation TrustSalfordUK
- Manchester Centre for Clinical NeurosciencesSalford Royal NHS Foundation TrustSalfordUK
| | - S. Hulme
- Division of Cardiovascular SciencesUniversity of ManchesterManchester Academic Health Science CentreSalford Royal NHS Foundation TrustSalfordUK
- Manchester Centre for Clinical NeurosciencesSalford Royal NHS Foundation TrustSalfordUK
| | - S. M. Allan
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - J. R. Grainger
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Infection, Immunity and Respiratory MedicineSchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - C. B. Lawrence
- Geoffrey Jefferson Brain Research CentreFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and InflammationFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
- Division of Neuroscience and Experimental PsychologySchool of Biological SciencesFaculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
154
|
Rossi B, Santos-Lima B, Terrabuio E, Zenaro E, Constantin G. Common Peripheral Immunity Mechanisms in Multiple Sclerosis and Alzheimer's Disease. Front Immunol 2021; 12:639369. [PMID: 33679799 PMCID: PMC7933037 DOI: 10.3389/fimmu.2021.639369] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are closely related to inflammatory and autoimmune events, suggesting that the dysregulation of the immune system is a key pathological factor. Both multiple sclerosis (MS) and Alzheimer's disease (AD) are characterized by infiltrating immune cells, activated microglia, astrocyte proliferation, and neuronal damage. Moreover, MS and AD share a common pro-inflammatory signature, characterized by peripheral leukocyte activation and transmigration to the central nervous system (CNS). MS and AD are both characterized by the accumulation of activated neutrophils in the blood, leading to progressive impairment of the blood–brain barrier. Having migrated to the CNS during the early phases of MS and AD, neutrophils promote local inflammation that contributes to pathogenesis and clinical progression. The role of circulating T cells in MS is well-established, whereas the contribution of adaptive immunity to AD pathogenesis and progression is a more recent discovery. Even so, blocking the transmigration of T cells to the CNS can benefit both MS and AD patients, suggesting that common adaptive immunity mechanisms play a detrimental role in each disease. There is also growing evidence that regulatory T cells are beneficial during the initial stages of MS and AD, supporting the link between the modulatory immune compartments and these neurodegenerative disorders. The number of resting regulatory T cells declines in both diseases, indicating a common pathogenic mechanism involving the dysregulation of these cells, although their precise role in the control of neuroinflammation remains unclear. The modulation of leukocyte functions can benefit MS patients, so more insight into the role of peripheral immune cells may reveal new targets for pharmacological intervention in other neuroinflammatory and neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Barbara Rossi
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Bruno Santos-Lima
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Eleonora Terrabuio
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Elena Zenaro
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy.,The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| |
Collapse
|
155
|
Filippini G, Kruja J, He D, Del Giovane C. Rituximab for people with multiple sclerosis. Hippokratia 2021. [DOI: 10.1002/14651858.cd013874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Graziella Filippini
- Scientific Director’s Office; Carlo Besta Foundation and Neurological Institute; Milan Italy
| | - Jera Kruja
- Neurology; UHC Mother Theresa; Tirana Albania
| | - Dian He
- Department of Neurology; Affiliated Hospital of Guizhou Medical University; Guiyang China
| | - Cinzia Del Giovane
- Institute of Primary Health Care (BIHAM); University of Bern; Bern Switzerland
| |
Collapse
|
156
|
Si Z, Wang X. Stem Cell Therapies in Alzheimer's Disease: Applications for Disease Modeling. J Pharmacol Exp Ther 2021; 377:207-217. [PMID: 33558427 DOI: 10.1124/jpet.120.000324] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with complex pathologic and biologic characteristics. Extracellular β-amyloid deposits, such as senile plaques, and intracellular aggregation of hyperphosphorylated tau, such as neurofibrillary tangles, remain the main neuropathological criteria for the diagnosis of AD. There is currently no effective treatment of the disease, and many clinical trials have failed to prove any benefits of new therapeutics. More recently, there has been increasing interest in harnessing the potential of stem cell technologies for drug discovery, disease modeling, and cell therapies, which have been used to study an array of human conditions, including AD. The recently developed and optimized induced pluripotent stem cell (iPSC) technology is a critical platform for screening anti-AD drugs and understanding mutations that modify AD. Neural stem cell (NSC) transplantation has been investigated as a new therapeutic approach to treat neurodegenerative diseases. Mesenchymal stem cells (MSCs) also exhibit considerable potential to treat neurodegenerative diseases by secreting growth factors and exosomes, attenuating neuroinflammation. This review highlights recent progress in stem cell research and the translational applications and challenges of iPSCs, NSCs, and MSCs as treatment strategies for AD. Even though these treatments are still in relative infancy, these developing stem cell technologies hold considerable promise to combat AD and other neurodegenerative disorders. SIGNIFICANCE STATEMENT: Alzheimer's disease (AD) is a neurodegenerative disease that results in learning and memory defects. Although some drugs have been approved for AD treatment, fewer than 20% of patients with AD benefit from these drugs. Therapies based on stem cells, including induced pluripotent stem cells, neural stem cells, and mesenchymal stem cells, provide promising therapeutic strategies for AD.
Collapse
Affiliation(s)
- Zizhen Si
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Ningbo, China (Z.S.) and Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China (X.W.)
| | - Xidi Wang
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Ningbo, China (Z.S.) and Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China (X.W.)
| |
Collapse
|
157
|
Webendörfer M, Reinhard L, Stahl RAK, Wiech T, Mittrücker HW, Harendza S, Hoxha E. Rituximab Induces Complete Remission of Proteinuria in a Patient With Minimal Change Disease and No Detectable B Cells. Front Immunol 2021; 11:586012. [PMID: 33628202 PMCID: PMC7897659 DOI: 10.3389/fimmu.2020.586012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
Minimal change disease (MCD) is a common cause of nephrotic syndrome. Treatment with steroids is usually effective, but frequent relapses are therapeutic challenges. The anti-CD20 antibody rituximab has shown promising results for treatment of steroid-sensitive nephrotic syndrome. Since predictive biomarkers for treatment efficacy and the accurate rituximab dosage for effective induction of remission are unknown, measurement of CD19+ B cells in blood is often used as marker of successful B cell depletion and treatment efficacy. A male patient with relapsing MCD was successfully treated with rituximab, but developed relapse of proteinuria 1 year later, although no B cells were detectable in his blood. B and T cell populations in the patient's blood were analyzed before and after treatment with rituximab using FACS analysis. Rituximab binding to B and T cells were measured using Alexa Fluor 647 conjugated rituximab. We identified a population of CD20+ CD19- cells in the patient's blood, which consisted mostly of CD20+ CD3+ T cells. Despite the absence of B cells in the blood, the patient was again treated with rituximab. He developed complete remission of proteinuria and depletion of CD20+ T cells. In a control patient with relapsing MCD initial treatment with rituximab led to depletion of both CD20+ B and T cells. Rituximab induces remission of proteinuria in patients with MCD even if circulating B cells are absent. CD20+ T cells may play a role in the pathogenesis of MCD and might be a promising treatment target in patients with MCD.
Collapse
Affiliation(s)
- Maximilian Webendörfer
- III. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linda Reinhard
- III. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rolf A. K. Stahl
- III. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sigrid Harendza
- III. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elion Hoxha
- III. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
158
|
B Cell Aberrance in Lupus: the Ringleader and the Solution. Clin Rev Allergy Immunol 2021; 62:301-323. [PMID: 33534064 DOI: 10.1007/s12016-020-08820-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease with high heterogeneity but the common characterization of numerous autoantibodies and systemic inflammation which lead to the damage of multiple organs. Aberrance of B cells plays a pivotal role in the immunopathogenesis of SLE via both antibody-dependent and antibody-independent manners. Escape of autoreactive B cells from the central and peripheral tolerance checkpoints, over-activation of B cells and their excessive cytokines release which drive T cells and dendritic cells stimulation, and dysregulated surface molecules, as well as intracellular signal pathways involved in B cell biology, are all contributing to B cell aberrance and participating in the pathogenesis of SLE. Based on that rationale, targeting aberrance of B cells and relevant molecules and pathways is expected to be a promising strategy for lupus control. Multiple approaches targeting B cells through different mechanisms have been attempted, including B-cell depletion via monoclonal antibodies against B-cell-specific molecules, blockade of B-cell survival and activation factors, suppressing T-B crosstalk by interrupting costimulatory molecules and inhibiting intracellular activation signaling cascade by targeting pathway molecules in B cells. Though most attempts ended in failure, the efficacy of B-cell targeting has been encouraged by the FDA approval of belimumab that blocks B cell-activating factor (BAFF) and the recommended use of anti-CD20 as a remedial therapy in refractory lupus. Still, quantities of clinical trials targeting B cells or relevant molecules are ongoing and some of them have displayed promising preliminary results. Additionally, advances in multi-omics studies help deepen our understandings of B cell biology in lupus and may promote the discovery of novel potential therapeutic targets. The combination of real-world data with basic research achievements may pave the road to conquering lupus.
Collapse
|
159
|
Zou A, Ramanathan S, Dale RC, Brilot F. Single-cell approaches to investigate B cells and antibodies in autoimmune neurological disorders. Cell Mol Immunol 2021; 18:294-306. [PMID: 32728203 PMCID: PMC8027387 DOI: 10.1038/s41423-020-0510-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Autoimmune neurological disorders, including neuromyelitis optica spectrum disorder, anti-N-methyl-D-aspartate receptor encephalitis, anti-MOG antibody-associated disorders, and myasthenia gravis, are clearly defined by the presence of autoantibodies against neurological antigens. Although these autoantibodies have been heavily studied for their biological activities, given the heterogeneity of polyclonal patient samples, the characteristics of a single antibody cannot be definitively assigned. This review details the findings of polyclonal serum and CSF studies and then explores the advances made by single-cell technologies to the field of antibody-mediated neurological disorders. High-resolution single-cell methods have revealed abnormalities in the tolerance mechanisms of several disorders and provided further insight into the B cells responsible for autoantibody production. Ultimately, several factors, including epitope specificity and binding affinity, finely regulate the pathogenic potential of an autoantibody, and a deeper appreciation of these factors may progress the development of targeted immunotherapies for patients.
Collapse
Affiliation(s)
- Alicia Zou
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sudarshini Ramanathan
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Russell C Dale
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia.
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, Discipline of Applied Medical Science, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
160
|
Abstract
Neuromyelitis optica (NMO) is a central nervous system (CNS) inflammatory autoimmune disease caused by antibodies against aquaporin-4 (AQP4) expressed on astrocytes. Binding of AQP4-specific antibodies (NMO-IgG) triggers activation of the complement cascade, which is responsible for astrocyte loss and secondary demyelination. Although the role for the cytolytic complement proteins in astrocyte destruction in NMO is well established, little is known regarding the initial phase of astrocyte injury. In this issue of the JCI, Chen and colleagues evaluated the precytolytic phase when NMO-IgG binds astrocytes in vivo in the absence of exogenous complement. NMO-IgG alone caused astrocyte activation and AQP4 loss. Surprisingly, microglia, CNS-resident innate immune cells that produce endogenous complement, were required for clinical manifestations of disease, a finding that suggests microglia may serve as a therapeutic target in NMO.
Collapse
|
161
|
Seery N, Sharmin S, Li V, Nguyen AL, Meaton C, Atvars R, Taylor N, Tunnell K, Carey J, Marriott MP, Buzzard KA, Roos I, Dwyer C, Baker J, Taylor L, Spriggs K, Kilpatrick TJ, Kalincik T, Monif M. Predicting Infection Risk in Multiple Sclerosis Patients Treated with Ocrelizumab: A Retrospective Cohort Study. CNS Drugs 2021; 35:907-918. [PMID: 33847902 PMCID: PMC8042832 DOI: 10.1007/s40263-021-00810-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ocrelizumab safety outcomes have been well evaluated in clinical trials and open-label extension (OLE) studies. However, risk factors for infection in patients with multiple sclerosis (MS) receiving ocrelizumab have not been extensively studied in the real-world setting. OBJECTIVE The aim of this study was to examine factors determining risk of self-reported infections and antimicrobial use in patients receiving ocrelizumab for MS. METHODS A retrospective, observational cohort study was conducted in patients receiving ocrelizumab at the Royal Melbourne Hospital. Infection type and number were reported by patients, and the associations of potential clinical and laboratory risk factors with self-reported infection and antimicrobial use were estimated using univariate and multivariable logistic regression models. RESULTS A total of 185 patients were included in the study; a total of 176 infections were reported in 89 patients (46.1%), and antimicrobial use was identified in 47 patients (25.3%). In univariate analyses, a higher serum IgA was associated with reduced odds of infection (OR 0.44, 95% CI 0.25-0.76). In multivariable analyses, older age (OR 0.94, 95% CI 0.88-0.99), higher serum IgA (OR 0.37, 95% CI 0.17-0.80) and higher serum IgG (OR 0.81, 95% CI 0.67-0.99) were associated with reduced odds of infection. Older age (OR 0.85, 95% CI 0.75-0.96) and higher serum IgA (OR 0.23, 95% CI 0.07-0.79) were associated with reduced odds of antimicrobial use, whilst longer MS disease duration (OR 1.22, 95% CI 1.06-1.41) and higher Expanded Disability Status Scale (EDSS) score (OR 1.99, 95% CI 1.02-3.86) were associated with increased odds of antimicrobial use. CONCLUSIONS Higher serum IgA and IgG and older age were associated with reduced odds of infection. Our findings highlight that infection risk is not uniform in patients with MS receiving ocrelizumab and substantiate the need to monitor immunoglobulin levels pre-treatment and whilst on therapy.
Collapse
Affiliation(s)
- Nabil Seery
- grid.416153.40000 0004 0624 1200Department of Neurology, Melbourne MS Centre, Royal Melbourne Hospital, Parkville, VIC 3050 Australia
| | - Sifat Sharmin
- grid.1008.90000 0001 2179 088XClinical Outcomes Research Unit, University of Melbourne, Melbourne, VIC 3010 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Vivien Li
- grid.416153.40000 0004 0624 1200Department of Neurology, Melbourne MS Centre, Royal Melbourne Hospital, Parkville, VIC 3050 Australia ,grid.1008.90000 0001 2179 088XFlorey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052 Australia
| | - Ai-Lan Nguyen
- grid.416153.40000 0004 0624 1200Department of Neurology, Melbourne MS Centre, Royal Melbourne Hospital, Parkville, VIC 3050 Australia ,grid.1008.90000 0001 2179 088XClinical Outcomes Research Unit, University of Melbourne, Melbourne, VIC 3010 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Claire Meaton
- grid.416153.40000 0004 0624 1200Department of Neurology, Melbourne MS Centre, Royal Melbourne Hospital, Parkville, VIC 3050 Australia
| | - Roberts Atvars
- grid.416153.40000 0004 0624 1200Department of Neurology, Melbourne MS Centre, Royal Melbourne Hospital, Parkville, VIC 3050 Australia
| | - Nicola Taylor
- grid.416153.40000 0004 0624 1200Day Medical Centre, Royal Melbourne Hospital, Parkville, VIC 3050 Australia
| | - Kelsey Tunnell
- grid.416153.40000 0004 0624 1200Day Medical Centre, Royal Melbourne Hospital, Parkville, VIC 3050 Australia
| | - John Carey
- grid.416153.40000 0004 0624 1200Day Medical Centre, Royal Melbourne Hospital, Parkville, VIC 3050 Australia
| | - Mark P. Marriott
- grid.416153.40000 0004 0624 1200Department of Neurology, Melbourne MS Centre, Royal Melbourne Hospital, Parkville, VIC 3050 Australia ,grid.414366.20000 0004 0379 3501Department of Neuroscience, Eastern Health Clinical School, Eastern Health, Box Hill, VIC 3128 Australia
| | - Katherine A. Buzzard
- grid.416153.40000 0004 0624 1200Department of Neurology, Melbourne MS Centre, Royal Melbourne Hospital, Parkville, VIC 3050 Australia ,grid.414366.20000 0004 0379 3501Department of Neuroscience, Eastern Health Clinical School, Eastern Health, Box Hill, VIC 3128 Australia
| | - Izanne Roos
- grid.416153.40000 0004 0624 1200Department of Neurology, Melbourne MS Centre, Royal Melbourne Hospital, Parkville, VIC 3050 Australia ,grid.1008.90000 0001 2179 088XClinical Outcomes Research Unit, University of Melbourne, Melbourne, VIC 3010 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Chris Dwyer
- grid.416153.40000 0004 0624 1200Department of Neurology, Melbourne MS Centre, Royal Melbourne Hospital, Parkville, VIC 3050 Australia ,grid.1008.90000 0001 2179 088XFlorey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052 Australia
| | - Josephine Baker
- grid.416153.40000 0004 0624 1200Department of Neurology, Melbourne MS Centre, Royal Melbourne Hospital, Parkville, VIC 3050 Australia
| | - Lisa Taylor
- grid.416153.40000 0004 0624 1200Department of Neurology, Melbourne MS Centre, Royal Melbourne Hospital, Parkville, VIC 3050 Australia
| | - Kymble Spriggs
- grid.1008.90000 0001 2179 088XDepartment of Medicine, University of Melbourne, Melbourne, VIC 3010 Australia ,grid.416153.40000 0004 0624 1200Department of Immunology, The Royal Melbourne Hospital, Parkville, VIC 3050 Australia
| | - Trevor J. Kilpatrick
- grid.416153.40000 0004 0624 1200Department of Neurology, Melbourne MS Centre, Royal Melbourne Hospital, Parkville, VIC 3050 Australia ,grid.1008.90000 0001 2179 088XFlorey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052 Australia
| | - Tomas Kalincik
- grid.416153.40000 0004 0624 1200Department of Neurology, Melbourne MS Centre, Royal Melbourne Hospital, Parkville, VIC 3050 Australia ,grid.1008.90000 0001 2179 088XClinical Outcomes Research Unit, University of Melbourne, Melbourne, VIC 3010 Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Mastura Monif
- Department of Neurology, Melbourne MS Centre, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia. .,Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia. .,MS and Neuroimmunology Department, Alfred Hospital, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
162
|
Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat Rev Drug Discov 2021; 20:179-199. [PMID: 33324003 PMCID: PMC7737718 DOI: 10.1038/s41573-020-00092-2] [Citation(s) in RCA: 316] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/30/2023]
Abstract
In the past 15 years, B cells have been rediscovered to be not merely bystanders but rather active participants in autoimmune aetiology. This has been fuelled in part by the clinical success of B cell depletion therapies (BCDTs). Originally conceived as a method of eliminating cancerous B cells, BCDTs such as those targeting CD20, CD19 and BAFF are now used to treat autoimmune diseases, including systemic lupus erythematosus and multiple sclerosis. The use of BCDTs in autoimmune disease has led to some surprises. For example, although antibody-secreting plasma cells are thought to have a negative pathogenic role in autoimmune disease, BCDT, even when it controls the disease, has limited impact on these cells and on antibody levels. In this Review, we update our understanding of B cell biology, review the results of clinical trials using BCDT in autoimmune indications, discuss hypotheses for the mechanism of action of BCDT and speculate on evolving strategies for targeting B cells beyond depletion.
Collapse
Affiliation(s)
- Dennis S. W. Lee
- grid.17063.330000 0001 2157 2938Department of Immunology, University of Toronto, Toronto, ON Canada
| | - Olga L. Rojas
- grid.17063.330000 0001 2157 2938Department of Immunology, University of Toronto, Toronto, ON Canada
| | - Jennifer L. Gommerman
- grid.17063.330000 0001 2157 2938Department of Immunology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
163
|
Karshikoff B, Martucci KT, Mackey S. Relationship Between Blood Cytokine Levels, Psychological Comorbidity, and Widespreadness of Pain in Chronic Pelvic Pain. Front Psychiatry 2021; 12:651083. [PMID: 34248700 PMCID: PMC8267576 DOI: 10.3389/fpsyt.2021.651083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/14/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Low-grade inflammation has been implicated in the etiology of depression, long-term fatigue and chronic pain. TNFα and IL-6 are perhaps the most studied pro-inflammatory cytokines in the field of psychoneuroimmunology. The purpose of our study was to further investigate these relationships in patients with chronic pelvic pain specifically. Using plasma samples from a large, well-described cohort of patients with pelvic pain and healthy controls via the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network, we examined the relationship between TNFα and IL-6 and comorbid psychological symptoms. We also investigated the relationship between IL-8 and GM-CSF, and widespreadness of pain. Methods: We included baseline blood samples in the analyses, 261 patients (148 women) and 110 healthy controls (74 women). Fourteen pro- and anti-inflammatory or regulatory cytokines were analyzed in a Luminex® xMAP® high-sensitivity assay. We used regression models that accounted for known factors associated with the outcome variables to determine the relationship between cytokine levels and clinical measures. Results: There were no statistical differences in cytokine levels between patients and healthy controls when controlling for age. In patients, TNFα was significantly associated with levels of fatigue (p = 0.026), but not with pain intensity or depression. IL-6 was not significantly related to any of the outcome variables. Women with pelvic pain showed a negative relationship between IL-8 and widespreadness of pain, while men did not (p = 0.003). For both sexes, GM-CSF was positively related to widespreadness of pain (p = 0.039). Conclusion: Our results do not suggest low-grade systemic inflammation in chronic pelvic pain. Higher TNFα blood levels were related to higher fatigue ratings, while higher systemic GM-CSF levels predicted more widespread pain. Our study further suggests a potentially protective role of IL-8 with regard to with regard to the widepreadness of pain in the body, at least for women.
Collapse
Affiliation(s)
- Bianka Karshikoff
- Department of Clinical Neuroscience, Karolinska Institute, Solna, Sweden
| | - Katherine T Martucci
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, United States
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
164
|
Graf J, Mares J, Barnett M, Aktas O, Albrecht P, Zamvil SS, Hartung HP. Targeting B Cells to Modify MS, NMOSD, and MOGAD: Part 1. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:e918. [PMID: 33406479 PMCID: PMC8063619 DOI: 10.1212/nxi.0000000000000918] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/11/2020] [Indexed: 01/16/2023]
Abstract
Ocrelizumab, rituximab, ofatumumab, ublituximab, inebilizumab, and evobrutinib are immunotherapies that target various B cell-related proteins. Most of these treatments have proven efficacy in relapsing and progressive forms of MS and neuromyelitis optica spectrum disease (NMOSD), or are in advanced stages of clinical development. Currently, ocrelizumab, ofatumumab, and inebilizumab are licensed for treatment of MS and NMOSD, respectively. This review focuses on the current state of knowledge about the role of B lymphocytes in immune-mediated pathophysiology and its implications for the mode of action. To understand the significance of this breakthrough in the context of the current MS therapeutic armamentarium, this review more closely examines the clinical development of CD20 depletion and the pioneering contribution of rituximab. Phase 3 and the recently published postmarketing studies will be highlighted to better understand the relevant efficacy data and safety aspects of long-term B-cell depletion.
Collapse
Affiliation(s)
- Jonas Graf
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology (M.B., H.-P.H.), Brain and Mind Centre, Department of Neurology, University of Sydney, New South Wales, Australia; and UCSF Weill Institute of Neurosciences (S.S.Z.), Department of Neurology, University of California at San Francisco
| | - Jan Mares
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology (M.B., H.-P.H.), Brain and Mind Centre, Department of Neurology, University of Sydney, New South Wales, Australia; and UCSF Weill Institute of Neurosciences (S.S.Z.), Department of Neurology, University of California at San Francisco
| | - Michael Barnett
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology (M.B., H.-P.H.), Brain and Mind Centre, Department of Neurology, University of Sydney, New South Wales, Australia; and UCSF Weill Institute of Neurosciences (S.S.Z.), Department of Neurology, University of California at San Francisco
| | - Orhan Aktas
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology (M.B., H.-P.H.), Brain and Mind Centre, Department of Neurology, University of Sydney, New South Wales, Australia; and UCSF Weill Institute of Neurosciences (S.S.Z.), Department of Neurology, University of California at San Francisco
| | - Philipp Albrecht
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology (M.B., H.-P.H.), Brain and Mind Centre, Department of Neurology, University of Sydney, New South Wales, Australia; and UCSF Weill Institute of Neurosciences (S.S.Z.), Department of Neurology, University of California at San Francisco
| | - Scott S Zamvil
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology (M.B., H.-P.H.), Brain and Mind Centre, Department of Neurology, University of Sydney, New South Wales, Australia; and UCSF Weill Institute of Neurosciences (S.S.Z.), Department of Neurology, University of California at San Francisco
| | - Hans-Peter Hartung
- From the Department of Neurology (J.G., O.A., P.A., H.-P.H.), University Hospital, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany; Department of Neurology (J.M.), Palacky University, Olomouc, Czech Republic; Department of Neurology (M.B., H.-P.H.), Brain and Mind Centre, Department of Neurology, University of Sydney, New South Wales, Australia; and UCSF Weill Institute of Neurosciences (S.S.Z.), Department of Neurology, University of California at San Francisco.
| |
Collapse
|
165
|
Evidence of Oligoclonal Bands Does Not Exclude Non-Inflammatory Neurological Diseases. Diagnostics (Basel) 2020; 11:diagnostics11010037. [PMID: 33379245 PMCID: PMC7824674 DOI: 10.3390/diagnostics11010037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Cerebrospinal fluid analysis is an essential part of the diagnostic workup in various neurological disorders. Evidence of an intrathecal immunoglobulin synthesis, as demonstrated by Reiber’s diagram or the more sensitive oligoclonal bands (OCB), are typical for neuroinflammatory diseases, and normally not expected in non-inflammatory neurological diseases. Therefore, patients with non-inflammatory neurological diseases are often used in control groups in studies investigating autoimmune diseases of the central nervous system. However, data about the frequency of intrathecal immunoglobulin synthesis in non-inflammatory neurological disease are scarce. The cerebrospinal fluid (CSF) records of a total of 3622 patients were screened and 2114 patients included with presumably non-inflammatory neurological diseases like dementia, idiopathic peripheral neuropathy, motoneuron disease, stroke, and epileptic seizures. Evidence of an intrathecal immunoglobulin synthesis can be found with low frequency also in non-inflammatory neurological diseases. A much higher rate of patients showed intrathecal immunoglobulin synthesis as demonstrated by OCB than by Reiber’s diagram. In patients with disorders of the peripheral nervous system the frequency of OCB was much lower than in patients presenting with central nervous system manifestations. Evidence of an intrathecal immunoglobulin synthesis should not automatically lead to exclusion of non-inflammatory neurological diseases but should rather prompt the way to investigate for the origin of the intrathecal immunoglobulin synthesis.
Collapse
|
166
|
Correa-Díaz EP, Torres-Herrán GE, Miño Zambrano JE, Paredes-Gonzalez V, Caiza-Zambrano FJ. Impact of Rituximab on relapse rate and disability in an Ecuadorian cohort of patients with neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2020; 48:102683. [PMID: 33338945 DOI: 10.1016/j.msard.2020.102683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/29/2020] [Accepted: 12/06/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neuromyelitis Optica Spectrum Disorder (NMOSD) is a severe inflammatory demyelinating disease of the central nervous system that often causes disability. Based on evidence from prospective and retrospective studies, Rituximab (RTX) has been used as the first-line of therapy in NMOSD. Nevertheless, evidence of the impact of RTX on relapse rate and disability in Ecuadorian patients with NMOSD is lacking. OBJECTIVE To evaluate the impact of RTX in an Ecuadorian cohort of patients with NMOSD. MATERIALS AND METHODS A retrospective study was conducted in a cohort of patients with NMOSD who received treatment with RTX in a third-level hospital in Quito, Ecuador. Digital medical records of NMOSD patients were reviewed to attain sociodemographic data, disease characteristics, and treatment with RTX. The annualized relapse rate ARR, as well as the degree of disability measured through the expanded disability scale (EDSS), was established before and after treatment. RESULTS Twenty-three patients with NMOSD treated with RTX were included, the mean age of onset of the disease was 37.2 years (range, 13-64.5). The average duration of disease was 8.5 years (range, 1.3-34.4). Positivity for antibodies against aquaporin-4 (AQP4-IgG) was identified in 78% of the patients. The mean duration of the treatment with RTX was 40 months (range, 12-61). After the RTX therapy, the number of relapses was reduced in 91% (21/23) of cases. The annualized relapsed rate (ARR) was reduced with RTX from 1.89 to 0.12 (p <0.001). The mean EDSS was also reduced from 4.8 to 3.9 (p = 0.014). In all patients, the mean EDSS was reduced or stabilized with RTX. Overall, the drug was well tolerated, the most frequent adverse events were infections which were present in 65.2% of cases. CONCLUSIONS Though with the limitations of and observational study, our data support RTX effectiveness and safety in an Ecuadorian cohort of patients with NMOSD.
Collapse
|
167
|
Campolo M, Filippone A, Biondo C, Mancuso G, Casili G, Lanza M, Cuzzocrea S, Esposito E, Paterniti I. TLR7/8 in the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21249384. [PMID: 33317145 PMCID: PMC7763162 DOI: 10.3390/ijms21249384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Neuroinflammation and autoimmune mechanisms have a key part in the pathogenesis of Parkinson’s disease (PD). Therefore, we evaluated the role of Toll-like receptors (TLRs) as a link between inflammation and autoimmunity in PD. An in vivo model of PD was performed by administration of 1-metil 4-fenil 1,2,3,6-tetraidro-piridina (MPTP) at the dose of 20 mg/kg every 2 h for a total administration of 80/kg, both in single Knock Out (KO) mice for TLR7, TLR 8, and TLR9 and in double KO mice for TLR 7/8-/-. All animals were compared with WT animals used as a control group. All animals were sacrificed after 7 days form the first administration of MPTP. The genetic absence of TLR 7 and 8 modified the PD pathway, increasing the immunoreactivity for TH and DAT compared to PD groups and decreasing microglia and astrocytes activation. Moreover, the deletion of TLR7 and TLR8 significantly reduced T-cell infiltration in the substantia nigra and lymph nodes, suggesting a reduction of T-cell activation. Therefore, our result highlights a possibility that an immunotherapy approach, by using a dual antagonist of TLR 7 and 8, could be considered as a possible target to develop new therapies for Parkinson diseases.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
| | - Carmelo Biondo
- Metchnikoff Laboratory, Department of Human Pathology and Medicine, University of Messina, 31-98166 Messina, Italy; (C.B.); (G.M.)
| | - Giuseppe Mancuso
- Metchnikoff Laboratory, Department of Human Pathology and Medicine, University of Messina, 31-98166 Messina, Italy; (C.B.); (G.M.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
| | - Marika Lanza
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
- Correspondence: ; Tel.: +39-090-676-5208
| |
Collapse
|
168
|
Negron A, Stüve O, Forsthuber TG. Ectopic Lymphoid Follicles in Multiple Sclerosis: Centers for Disease Control? Front Neurol 2020; 11:607766. [PMID: 33363512 PMCID: PMC7753025 DOI: 10.3389/fneur.2020.607766] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
While the contribution of autoreactive CD4+ T cells to the pathogenesis of Multiple Sclerosis (MS) is widely accepted, the advent of B cell-depleting monoclonal antibody (mAb) therapies has shed new light on the complex cellular mechanisms underlying MS pathogenesis. Evidence supports the involvement of B cells in both antibody-dependent and -independent capacities. T cell-dependent B cell responses originate and take shape in germinal centers (GCs), specialized microenvironments that regulate B cell activation and subsequent differentiation into antibody-secreting cells (ASCs) or memory B cells, a process for which CD4+ T cells, namely follicular T helper (TFH) cells, are indispensable. ASCs carry out their effector function primarily via secreted Ig but also through the secretion of both pro- and anti-inflammatory cytokines. Memory B cells, in addition to being capable of rapidly differentiating into ASCs, can function as potent antigen-presenting cells (APCs) to cognate memory CD4+ T cells. Aberrant B cell responses are prevented, at least in part, by follicular regulatory T (TFR) cells, which are key suppressors of GC-derived autoreactive B cell responses through the expression of inhibitory receptors and cytokines, such as CTLA4 and IL-10, respectively. Therefore, GCs represent a critical site of peripheral B cell tolerance, and their dysregulation has been implicated in the pathogenesis of several autoimmune diseases. In MS patients, the presence of GC-like leptomeningeal ectopic lymphoid follicles (eLFs) has prompted their investigation as potential sources of pathogenic B and T cell responses. This hypothesis is supported by elevated levels of CXCL13 and circulating TFH cells in the cerebrospinal fluid (CSF) of MS patients, both of which are required to initiate and maintain GC reactions. Additionally, eLFs in post-mortem MS patient samples are notably devoid of TFR cells. The ability of GCs to generate and perpetuate, but also regulate autoreactive B and T cell responses driving MS pathology makes them an attractive target for therapeutic intervention. In this review, we will summarize the evidence from both humans and animal models supporting B cells as drivers of MS, the role of GC-like eLFs in the pathogenesis of MS, and mechanisms controlling GC-derived autoreactive B cell responses in MS.
Collapse
Affiliation(s)
- Austin Negron
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Olaf Stüve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Neurology Section, Veterans Affairs North Texas Health Care System, Medical Service, Dallas, TX, United States
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
169
|
Ruffini N, Klingenberg S, Schweiger S, Gerber S. Common Factors in Neurodegeneration: A Meta-Study Revealing Shared Patterns on a Multi-Omics Scale. Cells 2020; 9:E2642. [PMID: 33302607 PMCID: PMC7764447 DOI: 10.3390/cells9122642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are heterogeneous, progressive diseases with frequently overlapping symptoms characterized by a loss of neurons. Studies have suggested relations between neurodegenerative diseases for many years (e.g., regarding the aggregation of toxic proteins or triggering endogenous cell death pathways). We gathered publicly available genomic, transcriptomic, and proteomic data from 177 studies and more than one million patients to detect shared genetic patterns between the neurodegenerative diseases on three analyzed omics-layers. The results show a remarkably high number of shared differentially expressed genes between the transcriptomic and proteomic levels for all conditions, while showing a significant relation between genomic and proteomic data between AD and PD and AD and ALS. We identified a set of 139 genes being differentially expressed in several transcriptomic experiments of all four diseases. These 139 genes showed overrepresented gene ontology (GO) Terms involved in the development of neurodegeneration, such as response to heat and hypoxia, positive regulation of cytokines and angiogenesis, and RNA catabolic process. Furthermore, the four analyzed neurodegenerative diseases (NDDs) were clustered by their mean direction of regulation throughout all transcriptomic studies for this set of 139 genes, with the closest relation regarding this common gene set seen between AD and HD. GO-Term and pathway analysis of the proteomic overlap led to biological processes (BPs), related to protein folding and humoral immune response. Taken together, we could confirm the existence of many relations between Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis on transcriptomic and proteomic levels by analyzing the pathways and GO-Terms arising in these intersections. The significance of the connection and the striking relation of the results to processes leading to neurodegeneration between the transcriptomic and proteomic data for all four analyzed neurodegenerative diseases showed that exploring many studies simultaneously, including multiple omics-layers of different neurodegenerative diseases simultaneously, holds new relevant insights that do not emerge from analyzing these data separately. Furthermore, the results shed light on processes like the humoral immune response that have previously been described only for certain diseases. Our data therefore suggest human patients with neurodegenerative diseases should be addressed as complex biological systems by integrating multiple underlying data sources.
Collapse
Affiliation(s)
- Nicolas Ruffini
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
- Leibniz Institute for Resilience Research, Leibniz Association, Wallstraße 7, 55122 Mainz, Germany
| | - Susanne Klingenberg
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
| | - Susann Schweiger
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
| | - Susanne Gerber
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
| |
Collapse
|
170
|
Hauser SL, Cree BAC. Treatment of Multiple Sclerosis: A Review. Am J Med 2020; 133:1380-1390.e2. [PMID: 32682869 PMCID: PMC7704606 DOI: 10.1016/j.amjmed.2020.05.049] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating and neurodegenerative disease of the central nervous system, and the leading cause of nontraumatic neurological disability in young adults. Effective management requires a multifaceted approach to control acute attacks, manage progressive worsening, and remediate bothersome or disabling symptoms associated with this illness. Remarkable advances in treatment of all forms of MS, and especially for relapsing disease, have favorably changed the long-term outlook for many patients. There also has been a conceptual shift in understanding the immune pathology of MS, away from a purely T-cell-mediated model to recognition that B cells have a key role in pathogenesis. The emergence of higher-efficacy drugs requiring less frequent administration have made these preferred options in terms of tolerability and adherence. Many experts now recommend use of these as first-line treatment for many patients with early disease, before permanent disability is evident.
Collapse
Affiliation(s)
- Stephen L Hauser
- UCSF Weill Institute for Neurosciences and Department of Neurology, University of California, San Francisco.
| | - Bruce A C Cree
- UCSF Weill Institute for Neurosciences and Department of Neurology, University of California, San Francisco
| |
Collapse
|
171
|
Gerhards R, Pfeffer LK, Lorenz J, Starost L, Nowack L, Thaler FS, Schlüter M, Rübsamen H, Macrini C, Winklmeier S, Mader S, Bronge M, Grönlund H, Feederle R, Hsia HE, Lichtenthaler SF, Merl-Pham J, Hauck SM, Kuhlmann T, Bauer IJ, Beltran E, Gerdes LA, Mezydlo A, Bar-Or A, Banwell B, Khademi M, Olsson T, Hohlfeld R, Lassmann H, Kümpfel T, Kawakami N, Meinl E. Oligodendrocyte myelin glycoprotein as a novel target for pathogenic autoimmunity in the CNS. Acta Neuropathol Commun 2020; 8:207. [PMID: 33256847 PMCID: PMC7706210 DOI: 10.1186/s40478-020-01086-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Autoimmune disorders of the central nervous system (CNS) comprise a broad spectrum of clinical entities. The stratification of patients based on the recognized autoantigen is of great importance for therapy optimization and for concepts of pathogenicity, but for most of these patients, the actual target of their autoimmune response is unknown. Here we investigated oligodendrocyte myelin glycoprotein (OMGP) as autoimmune target, because OMGP is expressed specifically in the CNS and there on oligodendrocytes and neurons. Using a stringent cell-based assay, we detected autoantibodies to OMGP in serum of 8/352 patients with multiple sclerosis, 1/28 children with acute disseminated encephalomyelitis and unexpectedly, also in one patient with psychosis, but in none of 114 healthy controls. Since OMGP is GPI-anchored, we validated its recognition also in GPI-anchored form. The autoantibodies to OMGP were largely IgG1 with a contribution of IgG4, indicating cognate T cell help. We found high levels of soluble OMGP in human spinal fluid, presumably due to shedding of the GPI-linked OMGP. Analyzing the pathogenic relevance of autoimmunity to OMGP in an animal model, we found that OMGP-specific T cells induce a novel type of experimental autoimmune encephalomyelitis dominated by meningitis above the cortical convexities. This unusual localization may be directed by intrathecal uptake and presentation of OMGP by meningeal phagocytes. Together, OMGP-directed autoimmunity provides a new element of heterogeneity, helping to improve the stratification of patients for diagnostic and therapeutic purposes.
Collapse
|
172
|
Robinson T, Abdelhak A, Bose T, Meinl E, Otto M, Zettl UK, Dersch R, Tumani H, Rauer S, Huss A. Cerebrospinal Fluid Biomarkers in Relation to MRZ Reaction Status in Primary Progressive Multiple Sclerosis. Cells 2020; 9:cells9122543. [PMID: 33255854 PMCID: PMC7761295 DOI: 10.3390/cells9122543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
The MRZ reaction (MRZR) comprises the three antibody indices (AIs) against measles, rubella, and varicella zoster virus, reflecting an intrathecal polyspecific B cell response highly specific for multiple sclerosis (MS). Thus, MRZR can be used to confirm a diagnosis of primary progressive MS (PPMS) but its pathophysiological and wider clinical relevance is unclear. This study aimed to investigate whether PPMS patients with a positive MRZR (MRZR+) differ from those with a negative MRZR (MRZR-) according to cerebrospinal fluid (CSF) biomarkers of B cell activity, neuroaxonal damage or glial activity, and clinical features. (1) Methods: In a multicenter PPMS cohort (n = 81) with known MRZR status, we measured B cell-activating factor (BAFF), chemokine CXC ligand 13 (CXCL-13), soluble B cell maturation antigen (sBCMA), soluble transmembrane activator and CAML interactor (sTACI), and chitinase-3-like protein 1 (CHI3L1) in the CSF with enzyme-linked immunosorbent assays (ELISAs). Glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) were detected in serum and CSF using single molecule array (SIMOA) technology. (2) Results: MRZR+ patients (45.7% of all PPMS patients) revealed higher levels of NfL in CSF compared to MRZR- patients (54.3%). There were positive correlations between each of sBCMA, sTACI, and intrathecal immunoglobin G (IgG) synthesis. Additionally, NfL concentrations in serum positively correlated with those in CSF and those of GFAP in serum. However, MRZR+ and MRZR- patients did not differ concerning clinical features (e.g., age, disease duration, Expanded Disability Status Scale (EDSS) at diagnosis and follow-up); CSF routine parameters; CSF concentrations of BAFF, CXCL-13, sBCMA, sTACI, CHI3L1, and GFAP; or serum concentrations of GFAP and NfL. (3) Conclusions: In PPMS patients, MRZR positivity might indicate a more pronounced axonal damage. Higher levels of the soluble B cell receptors BCMA and transmembrane activator and CAML interactor (TACI) in CSF are associated with a stronger intrathecal IgG synthesis in PPMS.
Collapse
Affiliation(s)
- Tilman Robinson
- Clinic of Neurology and Neurophysiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany; (T.R.); (R.D.); (S.R.)
| | - Ahmed Abdelhak
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (A.A.); (M.O.); (A.H.)
| | - Tanima Bose
- Biomedical Center and Klinikum Grosshadern, Institute of Clinical Neuroimmunology, Ludwig Maximilian University, 81377 Munich, Germany; (T.B.); (E.M.)
| | - Edgar Meinl
- Biomedical Center and Klinikum Grosshadern, Institute of Clinical Neuroimmunology, Ludwig Maximilian University, 81377 Munich, Germany; (T.B.); (E.M.)
| | - Markus Otto
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (A.A.); (M.O.); (A.H.)
| | - Uwe K. Zettl
- Neuroimmunological Section, Department of Neurology, Medical Center of the University of Rostock, 18051 Rostock, Germany;
| | - Rick Dersch
- Clinic of Neurology and Neurophysiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany; (T.R.); (R.D.); (S.R.)
| | - Hayrettin Tumani
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (A.A.); (M.O.); (A.H.)
- Specialty Hospital Dietenbronn, 88477 Schwendi, Germany
- Correspondence:
| | - Sebastian Rauer
- Clinic of Neurology and Neurophysiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany; (T.R.); (R.D.); (S.R.)
| | - André Huss
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany; (A.A.); (M.O.); (A.H.)
| |
Collapse
|
173
|
Pröbstel AK, Zhou X, Baumann R, Wischnewski S, Kutza M, Rojas OL, Sellrie K, Bischof A, Kim K, Ramesh A, Dandekar R, Greenfield AL, Schubert RD, Bisanz JE, Vistnes S, Khaleghi K, Landefeld J, Kirkish G, Liesche-Starnecker F, Ramaglia V, Singh S, Tran EB, Barba P, Zorn K, Oechtering J, Forsberg K, Shiow LR, Henry RG, Graves J, Cree BAC, Hauser SL, Kuhle J, Gelfand JM, Andersen PM, Schlegel J, Turnbaugh PJ, Seeberger PH, Gommerman JL, Wilson MR, Schirmer L, Baranzini SE. Gut microbiota-specific IgA + B cells traffic to the CNS in active multiple sclerosis. Sci Immunol 2020; 5:5/53/eabc7191. [PMID: 33219152 DOI: 10.1126/sciimmunol.abc7191] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/29/2020] [Indexed: 01/04/2023]
Abstract
Changes in gut microbiota composition and a diverse role of B cells have recently been implicated in multiple sclerosis (MS), a central nervous system (CNS) autoimmune disease. Immunoglobulin A (IgA) is a key regulator at the mucosal interface. However, whether gut microbiota shape IgA responses and what role IgA+ cells have in neuroinflammation are unknown. Here, we identify IgA-bound taxa in MS and show that IgA-producing cells specific for MS-associated taxa traffic to the inflamed CNS, resulting in a strong, compartmentalized IgA enrichment in active MS and other neuroinflammatory diseases. Unlike previously characterized polyreactive anti-commensal IgA responses, CNS IgA cross-reacts with surface structures on specific bacterial strains but not with brain tissue. These findings establish gut microbiota-specific IgA+ cells as a systemic mediator in MS and suggest a critical role of mucosal B cells during active neuroinflammation with broad implications for IgA as an informative biomarker and IgA-producing cells as an immune subset to harness for therapeutic interventions.
Collapse
Affiliation(s)
- Anne-Katrin Pröbstel
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA. .,Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland
| | - Xiaoyuan Zhou
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ryan Baumann
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sven Wischnewski
- Department of Neurology and Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Michael Kutza
- Department of Neurology and Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Olga L Rojas
- Department of Immunology, University of Toronto, Toronto, ON M5S 18A, Canada
| | - Katrin Sellrie
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| | - Antje Bischof
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kicheol Kim
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Akshaya Ramesh
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ravi Dandekar
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ariele L Greenfield
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ryan D Schubert
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jordan E Bisanz
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Stephanie Vistnes
- Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Khashayar Khaleghi
- Department of Immunology, University of Toronto, Toronto, ON M5S 18A, Canada
| | - James Landefeld
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gina Kirkish
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Friederike Liesche-Starnecker
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, 81675 Munich, Germany
| | - Valeria Ramaglia
- Department of Neurology and Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Sneha Singh
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Edwina B Tran
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Patrick Barba
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kelsey Zorn
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Johanna Oechtering
- Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland
| | - Karin Forsberg
- Department of Clinical Science, Neurosciences, Umeå University, 90185 Umeå, Sweden
| | - Lawrence R Shiow
- Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Roland G Henry
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer Graves
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bruce A C Cree
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephen L Hauser
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jens Kuhle
- Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland
| | - Jeffrey M Gelfand
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, 90185 Umeå, Sweden
| | - Jürgen Schlegel
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, 81675 Munich, Germany
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| | | | - Michael R Wilson
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lucas Schirmer
- Department of Neurology and Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany.,Interdisciplinary Center for Neurosciences, University of Heidelberg, 69117 Heidelberg, Germany
| | - Sergio E Baranzini
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA. .,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.,Graduate Program in Bioinformatics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
174
|
Sun W, Khare P, Wang X, Challa DK, Greenberg BM, Ober RJ, Ward ES. Selective Depletion of Antigen-Specific Antibodies for the Treatment of Demyelinating Disease. Mol Ther 2020; 29:1312-1323. [PMID: 33212299 PMCID: PMC7934575 DOI: 10.1016/j.ymthe.2020.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/09/2020] [Accepted: 11/11/2020] [Indexed: 11/19/2022] Open
Abstract
Current treatments for antibody-mediated autoimmunity are associated with lack of specificity, leading to immunosuppressive effects. To overcome this limitation, we have developed a class of antibody-based therapeutics for the treatment of autoimmunity involving antibodies that recognize the autoantigen, myelin oligodendrocyte glycoprotein (MOG). These agents ("Seldegs," for selective degradation) selectively eliminate antigen (MOG)-specific antibodies without affecting the levels of antibodies of other specificities. Seldeg treatment of mice during antibody-mediated exacerbation of experimental autoimmune encephalomyelitis by patient-derived MOG-specific antibodies results in disease amelioration. Consistent with their therapeutic effects, Seldegs deliver their targeted antibodies to Kupffer and liver sinusoidal endothelial cells that are known to have tolerogenic effects. Our results show that Seldegs can ameliorate disease mediated by MOG-specific antibodies and indicate that this approach also has the potential to treat other autoimmune diseases where the specific clearance of antibodies is required.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Autoantibodies/immunology
- Autoantigens/immunology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Female
- Humans
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Multiple Sclerosis/immunology
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Receptors, IgG/metabolism
Collapse
Affiliation(s)
- Wei Sun
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, 469 Joe H. Reynolds Medical Sciences Building, 1114 TAMU, College Station, TX 77843, USA
| | - Priyanka Khare
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, 469 Joe H. Reynolds Medical Sciences Building, 1114 TAMU, College Station, TX 77843, USA
| | - Xiaoli Wang
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, 469 Joe H. Reynolds Medical Sciences Building, 1114 TAMU, College Station, TX 77843, USA
| | - Dilip K Challa
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, 469 Joe H. Reynolds Medical Sciences Building, 1114 TAMU, College Station, TX 77843, USA
| | - Benjamin M Greenberg
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Raimund J Ober
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, 469 Joe H. Reynolds Medical Sciences Building, 1114 TAMU, College Station, TX 77843, USA; Department of Biomedical Engineering, Texas A&M University, 5045 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843, USA; Cancer Sciences Unit, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
| | - E Sally Ward
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, 469 Joe H. Reynolds Medical Sciences Building, 1114 TAMU, College Station, TX 77843, USA; Cancer Sciences Unit, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, 3107 Medical Research & Education Building, 8447 State Highway 47, Bryan, TX 77807, USA.
| |
Collapse
|
175
|
Janssen M, Bruijstens AL, van Langelaar J, Wong Y, Wierenga-Wolf AF, Melief MJ, Rijvers L, van Pelt ED, Smolders J, Wokke BH, van Luijn MM. Naive B cells in neuromyelitis optica spectrum disorders: impact of steroid use and relapses. Brain Commun 2020; 2:fcaa197. [PMID: 33305266 PMCID: PMC7714275 DOI: 10.1093/braincomms/fcaa197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Neuromyelitis optica spectrum disorders are a group of rare, but severe autoimmune diseases characterized by inflammation of the optic nerve(s) and/or spinal cord. Although naive B cells are considered key players by escaping central tolerance checkpoints, it remains unclear how their composition and outgrowth differ in patients with neuromyelitis optica spectrum disorders. Under complete treatment-naive circumstances, we found that naive mature/transitional B-cell ratios were reduced in the blood of 10 patients with aquaporin-4 immunoglobulin G-positive disease (neuromyelitis optica spectrum disorders) as compared to 11 both age- and gender-matched healthy controls, eight patients with myelin oligodendrocyte glycoprotein-immunoglobulin G-associated disorders and 10 patients with multiple sclerosis. This was the result of increased proportions of transitional B cells, which were the highest in patients with neuromyelitis optica spectrum disorders with relapses and strongly diminished in a separate group of nine patients with neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein-immunoglobulin G-associated disorders who received corticosteroid treatment. These findings need to be confirmed in longitudinal studies. For purified naive mature B cells of seven patients with neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein-immunoglobulin G-associated disorders with relapses, Toll-like receptor 9 ligand synergized with interferon-γ to enhance plasmablast formation during germinal centre-like cultures. This was not seen for 11 patients without relapses and nine healthy controls. In the neuromyelitis optica spectrum disorders group, in vitro plasmablast formation corresponded to total and anti-aquaporin-4 immunoglobulin G secretion, of which the latter was found only for relapsing cases. These data indicate that naive B-cell homoeostasis is different and selectively targeted by corticosteroids in patients with neuromyelitis optica spectrum disorders. This also supports further exploration of naive B cells for their use in Toll-like receptor 9-dependent in vitro platforms in order to predict the activity of neuromyelitis optica spectrum disorders.
Collapse
Affiliation(s)
- Malou Janssen
- Department of Immunology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GE, The Netherlands.,Department of Neurology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GD, The Netherlands
| | - Arlette L Bruijstens
- Department of Neurology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GD, The Netherlands
| | - Jamie van Langelaar
- Department of Immunology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - YuYi Wong
- Department of Neurology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GD, The Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Marie-José Melief
- Department of Immunology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Liza Rijvers
- Department of Immunology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - E Daniëlle van Pelt
- Department of Neurology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GD, The Netherlands
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GE, The Netherlands.,Department of Neurology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GD, The Netherlands
| | - Beatrijs H Wokke
- Department of Neurology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GD, The Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| |
Collapse
|
176
|
Boziki M, Sintila SA, Ioannidis P, Grigoriadis N. Biomarkers in Rare Demyelinating Disease of the Central Nervous System. Int J Mol Sci 2020; 21:ijms21218409. [PMID: 33182495 PMCID: PMC7665127 DOI: 10.3390/ijms21218409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/29/2022] Open
Abstract
Rare neurological diseases are a heterogeneous group corresponding approximately to 50% of all rare diseases. Neurologists are among the main specialists involved in their diagnostic investigation. At the moment, a consensus guideline on which neurologists may base clinical suspicion is not available. Moreover, neurologists need guidance with respect to screening investigations that may be performed. In this respect, biomarker research has emerged as a particularly active field due to its potential applications in clinical practice. With respect to autoimmune demyelinating diseases of the Central Nervous System (CNS), although these diseases occur in the frame of organ-specific autoimmunity, pathology of the disease itself is orchestrated among several anatomical and functional compartments. The differential diagnosis is broad and includes, but is not limited to, rare neurological diseases. Multiple Sclerosis (MS) needs to be differentially diagnosed from rare MS variants, Acute Disseminated Encephalomyelitis (ADEM), the range of Neuromyelitis Optica Spectrum Disorders (NMOSDs), Myelin Oligodendrocyte Glycoprotein (MOG) antibody disease and other systemic inflammatory diseases. Diagnostic biomarkers may facilitate timely diagnosis and proper disease management, preventing disease exacerbation due to misdiagnosis and false treatment. In this review, we will describe advances in biomarker research with respect to rare neuroinflammatory disease of the CNS.
Collapse
|
177
|
Beutel T, Dzimiera J, Kapell H, Engelhardt M, Gass A, Schirmer L. Cortical projection neurons as a therapeutic target in multiple sclerosis. Expert Opin Ther Targets 2020; 24:1211-1224. [PMID: 33103501 DOI: 10.1080/14728222.2020.1842358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory-demyelinating disease of the central nervous system associated with lesions of the cortical gray matter and subcortical white matter. Recently, cortical lesions have become a major focus of research because cortical pathology and neuronal damage are critical determinants of irreversible clinical progression. Recent transcriptomic studies point toward cell type-specific changes in cortical neurons in MS with a selective vulnerability of excitatory projection neuron subtypes. AREAS COVERED We discuss the cortical mapping and the molecular properties of excitatory projection neurons and their role in MS lesion pathology while placing an emphasis on their subtype-specific transcriptomic changes and levels of vulnerability. We also examine the latest magnetic resonance imaging techniques to study cortical MS pathology as a key tool for monitoring disease progression and treatment efficacy. Finally, we consider possible therapeutic avenues and novel strategies to protect excitatory cortical projection neurons. Literature search methodology: PubMed articles from 2000-2020. EXPERT OPINION Excitatory cortical projection neurons are an emerging therapeutic target in the treatment of progressive MS. Understanding neuron subtype-specific molecular pathologies and their exact spatial mapping will help establish starting points for the development of novel cell type-specific therapies and biomarkers in MS.
Collapse
Affiliation(s)
- Tatjana Beutel
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Julia Dzimiera
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Hannah Kapell
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Maren Engelhardt
- Institute of Neuroanatomy, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University , Heidelberg, Germany
| | - Achim Gass
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University , Heidelberg, Germany
| |
Collapse
|
178
|
Chunder R, Schropp V, Kuerten S. B Cells in Multiple Sclerosis and Virus-Induced Neuroinflammation. Front Neurol 2020; 11:591894. [PMID: 33224101 PMCID: PMC7670072 DOI: 10.3389/fneur.2020.591894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 01/02/2023] Open
Abstract
Neuroinflammation can be defined as an inflammatory response within the central nervous system (CNS) mediated by a complex crosstalk between CNS-resident and infiltrating immune cells from the periphery. Triggers for neuroinflammation not only include pathogens, trauma and toxic metabolites, but also autoimmune diseases such as neuromyelitis optica spectrum disorders and multiple sclerosis (MS) where the inflammatory response is recognized as a disease-escalating factor. B cells are not considered as the first responders of neuroinflammation, yet they have recently gained focus as a key component involved in the disease pathogenesis of several neuroinflammatory disorders like MS. Traditionally, the prime focus of the role of B cells in any disease, including neuroinflammatory diseases, was their ability to produce antibodies. While that may indeed be an important contribution of B cells in mediating disease pathogenesis, several lines of recent evidence indicate that B cells are multifunctional players during an inflammatory response, including their ability to present antigens and produce an array of cytokines. Moreover, interaction between B cells and other cellular components of the immune system or nervous system can either promote or dampen neuroinflammation depending on the disease. Given that the interest in B cells in neuroinflammation is relatively new, the precise roles that they play in the pathophysiology and progression of different neuroinflammatory disorders have not yet been well-elucidated. Furthermore, the possibility that they might change their function during the course of neuroinflammation adds another level of complexity and the puzzle remains incomplete. Indeed, advancing our knowledge on the role of B cells in neuroinflammation would also allow us to tackle these disorders better. Here, we review the available literature to explore the relationship between autoimmune and infectious neuroinflammation with a focus on the involvement of B cells in MS and viral infections of the CNS.
Collapse
Affiliation(s)
- Rittika Chunder
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Verena Schropp
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
179
|
Bonam SR, Muller S. Parkinson's disease is an autoimmune disease: A reappraisal. Autoimmun Rev 2020; 19:102684. [PMID: 33131704 DOI: 10.1016/j.autrev.2020.102684] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 02/03/2023]
Abstract
Parkinson's disease (PD) is a common, age-related, neurodegenerative disorder characterized by motor deficits and a cognitive decline. In the large majority of cases, it is associated with cytoplasmic aggregation of α-synuclein/SNCA and the formation of Lewy bodies in the dopamine neurons in the substantia nigra pars compacta. The etiopathogenesis of PD remains poorly understood. The disease results from an interplay of genetic and environmental factors, including pharmacological molecules, which destroy dopaminergic neurons. Recently, several notable data have highlighted various immune alterations underlying that PD is associated to autoimmune features and could be considered as an autoimmune disease. In this short article, we briefly review key elements participating to this emerging viewpoint.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- CNRS, Biotechnology and Cell Signaling, Ecole Supérieure de Biotechnologie de Strasbourg, Strasbourg University/Laboratory of Excellence Medalis, Strasbourg, France; Institut national de la santé et de la recherche médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.
| | - Sylviane Muller
- CNRS, Biotechnology and Cell Signaling, Ecole Supérieure de Biotechnologie de Strasbourg, Strasbourg University/Laboratory of Excellence Medalis, Strasbourg, France; Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, Strasbourg, France; University of Strasbourg Institute for Advanced Study, Strasbourg, France.
| |
Collapse
|
180
|
Wang J, Jelcic I, Mühlenbruch L, Haunerdinger V, Toussaint NC, Zhao Y, Cruciani C, Faigle W, Naghavian R, Foege M, Binder TMC, Eiermann T, Opitz L, Fuentes-Font L, Reynolds R, Kwok WW, Nguyen JT, Lee JH, Lutterotti A, Münz C, Rammensee HG, Hauri-Hohl M, Sospedra M, Stevanovic S, Martin R. HLA-DR15 Molecules Jointly Shape an Autoreactive T Cell Repertoire in Multiple Sclerosis. Cell 2020; 183:1264-1281.e20. [PMID: 33091337 PMCID: PMC7707104 DOI: 10.1016/j.cell.2020.09.054] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/04/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
The HLA-DR15 haplotype is the strongest genetic risk factor for multiple sclerosis (MS), but our understanding of how it contributes to MS is limited. Because autoreactive CD4+ T cells and B cells as antigen-presenting cells are involved in MS pathogenesis, we characterized the immunopeptidomes of the two HLA-DR15 allomorphs DR2a and DR2b of human primary B cells and monocytes, thymus, and MS brain tissue. Self-peptides from HLA-DR molecules, particularly from DR2a and DR2b themselves, are abundant on B cells and thymic antigen-presenting cells. Furthermore, we identified autoreactive CD4+ T cell clones that can cross-react with HLA-DR-derived self-peptides (HLA-DR-SPs), peptides from MS-associated foreign agents (Epstein-Barr virus and Akkermansia muciniphila), and autoantigens presented by DR2a and DR2b. Thus, both HLA-DR15 allomorphs jointly shape an autoreactive T cell repertoire by serving as antigen-presenting structures and epitope sources and by presenting the same foreign peptides and autoantigens to autoreactive CD4+ T cells in MS. HLA-DR15 present abundant HLA-DR-derived self-peptides on B cells Autoreactive T cells in MS recognize HLA-DR-derived self-peptides/DR15 complexes Foreign peptides/DR15 complexes trigger potential autoreactive T cells in MS HLA-DR15 shape an autoreactive T cell repertoire by cross-reactivity/restriction
Collapse
Affiliation(s)
- Jian Wang
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Ivan Jelcic
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Lena Mühlenbruch
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen 72076, Germany; German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen 72076, Germany
| | - Veronika Haunerdinger
- Pediatric Stem Cell Transplantation, University Children's Hospital Zurich, Zurich 8032, Switzerland
| | - Nora C Toussaint
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich 8093, Switzerland; Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, NCI, NIH, Rockville, MD 20850, USA
| | - Carolina Cruciani
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Wolfgang Faigle
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Reza Naghavian
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Magdalena Foege
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Thomas M C Binder
- HLA Laboratory of the Stefan Morsch Foundation (SMS), Birkenfeld 55765, Germany
| | - Thomas Eiermann
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Lennart Opitz
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology and University of Zurich, Zurich 8057, Switzerland
| | - Laura Fuentes-Font
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Julie T Nguyen
- One Lambda, Inc., a part of Transplant Diagnostics Thermo Fisher Scientific, 22801 Roscoe Blvd., West Hills, CA 91304, USA
| | - Jar-How Lee
- One Lambda, Inc., a part of Transplant Diagnostics Thermo Fisher Scientific, 22801 Roscoe Blvd., West Hills, CA 91304, USA
| | - Andreas Lutterotti
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Hans-Georg Rammensee
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen 72076, Germany; German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen 72076, Germany
| | - Mathias Hauri-Hohl
- Pediatric Stem Cell Transplantation, University Children's Hospital Zurich, Zurich 8032, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Stefan Stevanovic
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen 72076, Germany; German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen 72076, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen 72076, Germany
| | - Roland Martin
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland.
| |
Collapse
|
181
|
Belarbi K, Cuvelier E, Bonte MA, Desplanque M, Gressier B, Devos D, Chartier-Harlin MC. Glycosphingolipids and neuroinflammation in Parkinson's disease. Mol Neurodegener 2020; 15:59. [PMID: 33069254 PMCID: PMC7568394 DOI: 10.1186/s13024-020-00408-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons of the nigrostriatal pathway and the formation of neuronal inclusions known as Lewy bodies. Chronic neuroinflammation, another hallmark of the disease, is thought to play an important role in the neurodegenerative process. Glycosphingolipids are a well-defined subclass of lipids that regulate crucial aspects of the brain function and recently emerged as potent regulators of the inflammatory process. Deregulation in glycosphingolipid metabolism has been reported in Parkinson's disease. However, the interrelationship between glycosphingolipids and neuroinflammation in Parkinson's disease is not well known. This review provides a thorough overview of the links between glycosphingolipid metabolism and immune-mediated mechanisms involved in neuroinflammation in Parkinson's disease. After a brief presentation of the metabolism and function of glycosphingolipids in the brain, it summarizes the evidences supporting that glycosphingolipids (i.e. glucosylceramides or specific gangliosides) are deregulated in Parkinson's disease. Then, the implications of these deregulations for neuroinflammation, based on data from human inherited lysosomal glycosphingolipid storage disorders and gene-engineered animal studies are outlined. Finally, the key molecular mechanisms by which glycosphingolipids could control neuroinflammation in Parkinson's disease are highlighted. These include inflammasome activation and secretion of pro-inflammatory cytokines, altered calcium homeostasis, changes in the blood-brain barrier permeability, recruitment of peripheral immune cells or production of autoantibodies.
Collapse
Affiliation(s)
- Karim Belarbi
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Elodie Cuvelier
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Marie-Amandine Bonte
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
| | - Mazarine Desplanque
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Bernard Gressier
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - David Devos
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie Médicale, I-SITE ULNE, LiCEND, Lille, France
| | | |
Collapse
|
182
|
Magliozzi R, Mazziotti V, Montibeller L, Pisani AI, Marastoni D, Tamanti A, Rossi S, Crescenzo F, Calabrese M. Cerebrospinal Fluid IgM Levels in Association With Inflammatory Pathways in Multiple Sclerosis Patients. Front Cell Neurosci 2020; 14:569827. [PMID: 33192314 PMCID: PMC7596330 DOI: 10.3389/fncel.2020.569827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 11/23/2022] Open
Abstract
Background Intrathecal immunoglobulin M (IgM) synthesis has been demonstrated in the early disease stages of multiple sclerosis (MS) as a predictor factor of a worsening disease course. Similarly, increased cerebrospinal fluid (CSF) molecules related to B-cell intrathecal activity have been associated with a more severe MS progression. However, whether CSF levels of IgM are linked to specific inflammatory and clinical profile in MS patients at the time of diagnosis remains to be elucidated. Methods Using customized Bio-Plex assay, the protein levels of IgG, IgA, IgM, and of 34 other inflammatory molecules, related to B-cell, T-cell, and monocyte/macrophage activity, were analyzed in the CSF of 103 newly diagnosed relapsing–remitting MS patients and 36 patients with other neurological disorders. CSF IgM levels were also correlated with clinical and neuroradiological measures [advanced 3-T magnetic resonance imaging (MRI) parameters], at diagnosis and after 2 years of follow-up. Results A 45.6% increase in CSF IgM levels was found in MS patients compared to controls (p = 0.013). CSF IgM levels correlated with higher CSF levels of CXCL13 (p = 0.039), CCL21 (p = 0.023), interleukin 10 (IL-10) (p = 0.025), IL-12p70 (p = 0.020), CX3CL1 (p = 0.036), and CHI3L1 (p = 0.048) and were associated with earlier age of patients at diagnosis (p = 0.008), white matter lesion (WML) number (p = 0.039) and disease activity (p = 0.033) after 2 years of follow-up. Conclusion IgMs are the immunoglobulins mostly expressed in the CSF of naive MS patients compared to other neurological conditions at the time of diagnosis. The association between increased CSF IgM levels and molecules related to both B-cell immunity (IL-10) and recruitment (CXCL13 and CCL21) and to macrophage/microglia activity (IL-12p70, CX3CL1, and CHI3L1) suggests possible correlation between humoral and innate intrathecal immunity in early disease stage. Furthermore, the association of IgM levels with WMLs and MS clinical and MRI activity after 2 years supports the idea of key role of IgM in the disease course.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Neurology Section of Department of Neurological and Movement Sciences, University of Verona, Verona, Italy.,Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Valentina Mazziotti
- Neurology Section of Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Luigi Montibeller
- Neurology Section of Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Anna I Pisani
- Neurology Section of Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Damiano Marastoni
- Neurology Section of Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Agnese Tamanti
- Neurology Section of Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, National Institute of Health, Rome, Italy
| | - Francesco Crescenzo
- Neurology Section of Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Massimiliano Calabrese
- Neurology Section of Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
183
|
Martinez GP, Zabaleta ME, Di Giulio C, Charris JE, Mijares MR. The Role of Chloroquine and Hydroxychloroquine in Immune Regulation and Diseases. Curr Pharm Des 2020; 26:4467-4485. [DOI: 10.2174/1381612826666200707132920] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) are derivatives of the heterocyclic aromatic compound
quinoline. These economical compounds have been used as antimalarial agents for many years. Currently,
they are used as monotherapy or in conjunction with other therapies for the treatment of autoimmune diseases
such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren's syndrome (SS) and antiphospholipid
antibody syndrome (APS). Based on its effects on the modulation of the autophagy process, various
clinical studies suggest that CQ and HCQ could be used in combination with other chemotherapeutics for the
treatment of various types of cancer. Furthermore, the antiviral effects showed against Zika, Chikungunya, and
HIV are due to the annulation of endosomal/lysosomal acidification. Recently, CQ and HCQ were approved for
the U.S. Food and Drug Administration (FDA) for the treatment of infected patients with the coronavirus SARSCoV-
2, causing the disease originated in December 2019, namely COVID-2019. Several mechanisms have been
proposed to explain the pharmacological effects of these drugs: 1) disruption of lysosomal and endosomal pH, 2)
inhibition of protein secretion/expression, 3) inhibition of antigen presentation, 4) decrease of proinflammatory
cytokines, 5) inhibition of autophagy, 6) induction of apoptosis and 7) inhibition of ion channels activation. Thus,
evidence has shown that these structures are leading molecules that can be modified or combined with other
therapeutic agents. In this review, we will discuss the most recent findings in the mechanisms of action of CQ and
HCQ in the immune system, and the use of these antimalarial drugs on diseases.
Collapse
Affiliation(s)
- Gricelis P. Martinez
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| | - Mercedes E. Zabaleta
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| | - Camilo Di Giulio
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| | - Jaime E. Charris
- Organic Synthesis Laboratory, Faculty of Pharmacy, Central University of Venezuela, 47206, Los Chaguaramos 1041-A, Caracas, Venezuela
| | - Michael R. Mijares
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| |
Collapse
|
184
|
Yang Q, Wang G, Zhang F. Role of Peripheral Immune Cells-Mediated Inflammation on the Process of Neurodegenerative Diseases. Front Immunol 2020; 11:582825. [PMID: 33178212 PMCID: PMC7593572 DOI: 10.3389/fimmu.2020.582825] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are characterized by progressive loss of selectively vulnerable neuronal populations, which contrasts with selectively static loss of neurons due to toxic or metabolic disorders. The mechanisms underlying their progressive nature remain unknown. To date, a timely and well-controlled peripheral inflammatory reaction is verified to be essential for neurodegenerative diseases remission. The influence of peripheral inflammation on the central nervous system is closely related to immune cells activation in peripheral blood. The immune cells activation participated in the uncontrolled and prolonged inflammation that drives the chronic progression of neurodegenerative diseases. Thus, the dynamic modulation of this peripheral inflammatory reaction by interrupting the vicious cycle might become a disease-modifying therapeutic strategy for neurodegenerative diseases. This review focused on the role of peripheral immune cells on the pathological progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Qiuyu Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Laboratory Animal Center and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Guoqing Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Laboratory Animal Center and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Laboratory Animal Center and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
185
|
Vezzani B, Carinci M, Patergnani S, Pasquin MP, Guarino A, Aziz N, Pinton P, Simonato M, Giorgi C. The Dichotomous Role of Inflammation in the CNS: A Mitochondrial Point of View. Biomolecules 2020; 10:E1437. [PMID: 33066071 PMCID: PMC7600410 DOI: 10.3390/biom10101437] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Innate immune response is one of our primary defenses against pathogens infection, although, if dysregulated, it represents the leading cause of chronic tissue inflammation. This dualism is even more present in the central nervous system, where neuroinflammation is both important for the activation of reparatory mechanisms and, at the same time, leads to the release of detrimental factors that induce neurons loss. Key players in modulating the neuroinflammatory response are mitochondria. Indeed, they are responsible for a variety of cell mechanisms that control tissue homeostasis, such as autophagy, apoptosis, energy production, and also inflammation. Accordingly, it is widely recognized that mitochondria exert a pivotal role in the development of neurodegenerative diseases, such as multiple sclerosis, Parkinson's and Alzheimer's diseases, as well as in acute brain damage, such in ischemic stroke and epileptic seizures. In this review, we will describe the role of mitochondria molecular signaling in regulating neuroinflammation in central nervous system (CNS) diseases, by focusing on pattern recognition receptors (PRRs) signaling, reactive oxygen species (ROS) production, and mitophagy, giving a hint on the possible therapeutic approaches targeting mitochondrial pathways involved in inflammation.
Collapse
Affiliation(s)
- Bianca Vezzani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Marianna Carinci
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Matteo P. Pasquin
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| | - Annunziata Guarino
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Nimra Aziz
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy
| | - Michele Simonato
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
- Department of BioMedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy
- School of Medicine, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (B.V.); (M.C.); (S.P.); (M.P.P.); (P.P.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy; (A.G.); (N.A.); (M.S.)
| |
Collapse
|
186
|
Si Z, Wang X. The Neuroprotective and Neurodegeneration Effects of Heme Oxygenase-1 in Alzheimer's Disease. J Alzheimers Dis 2020; 78:1259-1272. [PMID: 33016915 DOI: 10.3233/jad-200720] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by complex pathological and biological features. Notably, extracellular amyloid-β deposits as senile plaques and intracellular aggregation of hyperphosphorylated tau as neurofibrillary tangles remain the primary premortem criterion for the diagnosis of AD. Currently, there exist no disease-modifying therapies for AD, and many clinical trials have failed to show its benefits for patients. Heme oxygenase 1 (HO-1) is a 32 kDa enzyme, which catalyzes the degradation of cellular heme to free ferrous iron, biliverdin, and carbon monoxide under stressful conditions. Several studies highlight the crucial pathological roles of HO-1 in the molecular processes of AD. The beneficial roles of HO-1 overexpression in AD brains are widely accepted due to its ability to convert pro-oxidant heme to biliverdin and bilirubin (antioxidants), which promote restoration of a suitable tissue redox microenvironment. However, the intracellular oxidative stress might be amplified by metabolites of HO-1 and exacerbate the progression of AD under certain circumstances. Several lines of evidence have demonstrated that upregulated HO-1 is linked to tauopathies, neuronal damage, and synapse aberrations in AD. Here, we review the aspects of the molecular mechanisms by which HO-1 regulates AD and the latest information on the pathobiology of AD. We further highlight the neuroprotective and neurodystrophic actions of HO-1 and the feasibility of HO-1 as a therapeutic target for AD.
Collapse
Affiliation(s)
- Zizhen Si
- Department of Physiology and Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Xidi Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| |
Collapse
|
187
|
Holmøy T, Høglund RA, Illes Z, Myhr KM, Torkildsen Ø. Recent progress in maintenance treatment of neuromyelitis optica spectrum disorder. J Neurol 2020; 268:4522-4536. [PMID: 33011853 PMCID: PMC8563615 DOI: 10.1007/s00415-020-10235-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
Background Treatment of neuromyelitis optica spectrum disorder (NMOSD) has so far been based on retrospective case series. The results of six randomized clinical trials including five different monoclonal antibodies targeting four molecules and three distinct pathophysiological pathways have recently been published. Methods Literature search on clinical trials and case studies in NMOSD up to July 10. 2020. Results We review mechanism of action, efficacy and side effects, and consequences for reproductive health from traditional immunosuppressants and monoclonal antibodies including rituximab, inebilizumab, eculizumab, tocilizumab and satralizumab. Conclusion In NMOSD patients with antibodies against aquaporin 4, monoclonal antibodies that deplete B cells (rituximab and inebilizumab) or interfere with interleukin 6 signaling (tocilizumab and satralizumab) or complement activation (eculizumab) have superior efficacy compared to placebo. Tocilizumab and rituximab were also superior to azathioprine in head-to-head studies. Rituximab, tocilizumab and to some extent eculizumab have well-known safety profiles for other inflammatory diseases, and rituximab and azathioprine may be safe during pregnancy.
Collapse
Affiliation(s)
- Trygve Holmøy
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Rune Alexander Høglund
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Kjell-Morten Myhr
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Øivind Torkildsen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
188
|
Zhong M, van der Walt A, Campagna MP, Stankovich J, Butzkueven H, Jokubaitis V. The Pharmacogenetics of Rituximab: Potential Implications for Anti-CD20 Therapies in Multiple Sclerosis. Neurotherapeutics 2020; 17:1768-1784. [PMID: 33058021 PMCID: PMC7851267 DOI: 10.1007/s13311-020-00950-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
There are a broad range of disease-modifying therapies (DMTs) available in relapsing-remitting multiple sclerosis (RRMS), but limited biomarkers exist to personalise DMT choice. All DMTs, including monoclonal antibodies such as rituximab and ocrelizumab, are effective in preventing relapses and preserving neurological function in MS. However, each agent harbours its own risk of therapeutic failure or adverse events. Pharmacogenetics, the study of the effects of genetic variation on therapeutic response or adverse events, could improve the precision of DMT selection. Pharmacogenetic studies of rituximab in MS patients are lacking, but pharmacogenetic markers in other rituximab-treated autoimmune conditions have been identified. This review will outline the wider implications of pharmacogenetics and the mechanisms of anti-CD20 agents in MS. We explore the non-MS rituximab literature to characterise pharmacogenetic variants that could be of prognostic relevance in those receiving rituximab, ocrelizumab or other monoclonal antibodies for MS.
Collapse
Affiliation(s)
- Michael Zhong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia.
- Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Maria Pia Campagna
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Jim Stankovich
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Neurology, Alfred Health, Level 6, Alfred Centre, 99 Commercial Road, Melbourne, Victoria, 3004, Australia
| |
Collapse
|
189
|
Runtsch MC, Ferrara G, Angiari S. Metabolic determinants of leukocyte pathogenicity in neurological diseases. J Neurochem 2020; 158:36-58. [PMID: 32880969 DOI: 10.1111/jnc.15169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Neuroinflammatory and neurodegenerative diseases are characterized by the recruitment of circulating blood-borne innate and adaptive immune cells into the central nervous system (CNS). These leukocytes sustain the detrimental response in the CNS by releasing pro-inflammatory mediators that induce activation of local glial cells, blood-brain barrier (BBB) dysfunction, and neural cell death. However, infiltrating peripheral immune cells could also dampen CNS inflammation and support tissue repair. Recent advances in the field of immunometabolism demonstrate the importance of metabolic reprogramming for the activation and functionality of such innate and adaptive immune cell populations. In particular, an increasing body of evidence suggests that the activity of metabolites and metabolic enzymes could influence the pathogenic potential of immune cells during neuroinflammatory and neurodegenerative disorders. In this review, we discuss the role of intracellular metabolic cues in regulating leukocyte-mediated CNS damage in Alzheimer's and Parkinson's disease, multiple sclerosis and stroke, highlighting the therapeutic potential of drugs targeting metabolic pathways for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Marah C Runtsch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | - Stefano Angiari
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
190
|
Ochi S, Iga JI, Funahashi Y, Yoshino Y, Yamazaki K, Kumon H, Mori H, Ozaki Y, Mori T, Ueno SI. Identifying Blood Transcriptome Biomarkers of Alzheimer's Disease Using Transgenic Mice. Mol Neurobiol 2020; 57:4941-4951. [PMID: 32816243 PMCID: PMC7541363 DOI: 10.1007/s12035-020-02058-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/07/2020] [Indexed: 12/23/2022]
Abstract
The testing of pathological biomarkers of Alzheimer's disease (AD), such as amyloid beta and tau, is time-consuming, expensive, and invasive. Here, we used 3xTg-AD mice to identify and validate putative novel blood transcriptome biomarkers of AD that can potentially be identified in the blood of patients. mRNA was extracted from the blood and hippocampus of 3xTg-AD and control mice at different ages and used for microarray analysis. Network and functional analyses revealed that the differentially expressed genes between AD and control mice modulated the immune and neuroinflammation systems. Five novel gene transcripts (Cdkn2a, Apobec3, Magi2, Parp3, and Cass4) showed significant increases with age, and their expression in the blood was collated with that in the hippocampus only in AD mice. We further assessed previously identified candidate biomarker genes. The expression of Trem1 and Trem2 in both the blood and brain was significantly increased with age. Decreased Tomm40 and increased Pink1 mRNA levels were observed in the mouse blood. The changes in the expression of Snca and Apoe mRNA in the mouse blood and brain were similar to those found in human AD blood. Our results demonstrated that the immune and neuroinflammatory system is involved in the pathophysiologies of aging and AD and that the blood transcriptome might be useful as a biomarker of AD.
Collapse
Affiliation(s)
- Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kiyohiro Yamazaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hiroshi Kumon
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hiroaki Mori
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yuki Ozaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takaaki Mori
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
191
|
Sim KY, Im KC, Park SG. The Functional Roles and Applications of Immunoglobulins in Neurodegenerative Disease. Int J Mol Sci 2020; 21:E5295. [PMID: 32722559 PMCID: PMC7432158 DOI: 10.3390/ijms21155295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Natural autoantibodies, immunoglobulins (Igs) that target self-proteins, are common in the plasma of healthy individuals; some of the autoantibodies play pathogenic roles in systemic or tissue-specific autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus. Recently, the field of autoantibody-associated diseases has expanded to encompass neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), with related studies examining the functions of Igs in the central nervous system (CNS). Recent evidence suggests that Igs have various effects in the CNS; these effects are associated with the prevention of neurodegeneration, as well as induction. Here, we summarize the functional roles of Igs with respect to neurodegenerative disease (AD and PD), focusing on the target antigens and effector cell types. In addition, we review the current knowledge about the roles of these antibodies as diagnostic markers and immunotherapies.
Collapse
Affiliation(s)
| | | | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea; (K.-Y.S.); (K.C.I.)
| |
Collapse
|
192
|
Arinuma Y, Yamaoka K. Developmental process in diffuse psychological/neuropsychiatric manifestations of neuropsychiatric systemic lupus erythematosus. Immunol Med 2020; 44:16-22. [PMID: 32649846 DOI: 10.1080/25785826.2020.1791401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Systemic lupus erythematosus (SLE) involves excessive autoimmune reactions, with pathogenesis characterized by autoantibody production. Although the specific mechanism underlying the development of neuropsychiatric syndromes in SLE (NPSLE) is still unclear, recent studies indicate the involvement of autoimmune pathophysiology. We previously identified the presence of anti-N-methyl-d-aspartate receptor subunit GluN2 antibody (anti-GluN2) as a functional autoantibody which is able to impair neurons and is essential for the diagnosis of diffuse psychiatric/neuropsychological syndromes in NPSLE (dNPSLE). Other autoantibodies like anti-Sm antibodies and anti-glucose-regulated protein 78 antibodies are known to compromise blood brain barrier (BBB) integrity. We demonstrated that high mobility group box-1 protein (HMGB1) decorates synapses on neurons damaged by anti-neuron antibodies, including anti-GluN2, where it behaves as a linker to enhance C1q binding to synapses in a dNPSLE model mouse. This C1q binding via HMGB1 is a critical step for remodeling by activated microglia, which leads to reductions in neuronal complexity and long-term behavioral abnormalities. Suppression of activated microglia can significantly reduce central nervous system (CNS) dysfunction. In this review, we describe the critical steps in the development of dNPSLE in particular, including the phases of BBB breakdown, acute neuronal damage by autoantibodies and neuronal remodeling due to activated microglia.
Collapse
Affiliation(s)
- Yoshiyuki Arinuma
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kunihiro Yamaoka
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
193
|
Kurata I, Matsumoto I, Sumida T. T follicular helper cell subsets: a potential key player in autoimmunity. Immunol Med 2020; 44:1-9. [PMID: 32546108 DOI: 10.1080/25785826.2020.1776079] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Follicular helper T (Tfh) cells are one of CD4+ helper T subsets which promote B cell maturation, activation and antigen-specific antibody production. Autoantibodies are hallmarks of autoimmune diseases, and crucial contributions of Tfh cells in development of these diseases are now evident. Deregulation of Tfh activities can contribute to a pathogenic autoantibody production and can play an important role in the promotion of autoimmune diseases. These days multiple researchers reported three subpopulations which has distinct effector functions in Tfh cells: Tfh1, Tfh2 and Tfh17 cells. In this review, we summarize the observed alterations in whole Tfh cells and subset distribution during autoimmune diseases.
Collapse
Affiliation(s)
- Izumi Kurata
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
194
|
Rocca MA, Cacciaguerra L, Filippi M. Moving beyond anti-aquaporin-4 antibodies: emerging biomarkers in the spectrum of neuromyelitis optica. Expert Rev Neurother 2020; 20:601-618. [DOI: 10.1080/14737175.2020.1764352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Maria A. Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Cacciaguerra
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
195
|
da Silva APB, Silva RBM, Goi LDS, Molina RD, Machado DC, Sato DK. Experimental Models of Neuroimmunological Disorders: A Review. Front Neurol 2020; 11:389. [PMID: 32477252 PMCID: PMC7235321 DOI: 10.3389/fneur.2020.00389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated inflammatory diseases of the central nervous system (CNS) are a group of neurological disorders in which inflammation and/or demyelination are induced by cellular and humoral immune responses specific to CNS antigens. They include diseases such as multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), acute disseminated encephalomyelitis (ADEM) and anti-NMDA receptor encephalitis (NMDAR encephalitis). Over the years, many in vivo and in vitro models were used to study clinical, pathological, physiological and immunological features of these neuroimmunological disorders. Nevertheless, there are important aspects of human diseases that are not fully reproduced in the experimental models due to their technical limitations. In this review, we describe the preclinical models of neuroimmune disorders, and how they contributed to the understanding of these disorders and explore potential treatments. We also describe the purpose and limitation of each one, as well as the recent advances in this field.
Collapse
Affiliation(s)
- Ana Paula Bornes da Silva
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Braccini Madeira Silva
- Research Center in Toxicology and Pharmacology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Leise Daniele Sckenal Goi
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Rachel Dias Molina
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Denise Cantarelli Machado
- School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Molecular and Cellular Biology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Douglas Kazutoshi Sato
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
196
|
Rodríguez-Lorenzo S, Konings J, van der Pol S, Kamermans A, Amor S, van Horssen J, Witte ME, Kooij G, de Vries HE. Inflammation of the choroid plexus in progressive multiple sclerosis: accumulation of granulocytes and T cells. Acta Neuropathol Commun 2020; 8:9. [PMID: 32014066 PMCID: PMC6998074 DOI: 10.1186/s40478-020-0885-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/24/2020] [Indexed: 01/08/2023] Open
Abstract
The choroid plexus (CP) is strategically located between the peripheral blood and the cerebrospinal fluid, and is involved in the regulation of central nervous system (CNS) homeostasis. In multiple sclerosis (MS), demyelination and inflammation occur in the CNS. While experimental animal models of MS pointed to the CP as a key route for immune cell invasion of the CNS, little is known about the distribution of immune cells in the human CP during progressive phases of MS. Here, we use immunohistochemistry and confocal microscopy to explore the main immune cell populations in the CP of progressive MS patients and non-neuroinflammatory controls, in terms of abundance and location within the distinct CP compartments. We show for the first time that the CP stromal density of granulocytes and CD8+ T cells is higher in progressive MS patients compared to controls. In line with previous studies, the CP of both controls and progressive MS patients contains relatively high numbers of macrophages and dendritic cells. Moreover, we found virtually no B cells or plasma cells in the CP. MHCII+ antigen-presenting cells were often found in close proximity to T cells, suggesting constitutive CNS immune monitoring functions of the CP. Together, our data highlights the role of the CP in immune homeostasis and indicates the occurrence of mild inflammatory processes in the CP of progressive MS patients. However, our findings suggest that the CP is only marginally involved in immune cell migration into the CNS in chronic MS.
Collapse
|
197
|
Mayne K, White JA, McMurran CE, Rivera FJ, de la Fuente AG. Aging and Neurodegenerative Disease: Is the Adaptive Immune System a Friend or Foe? Front Aging Neurosci 2020; 12:572090. [PMID: 33173502 PMCID: PMC7538701 DOI: 10.3389/fnagi.2020.572090] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases of the central nervous system (CNS) are characterized by progressive neuronal death and neurological dysfunction, leading to increased disability and a loss of cognitive or motor functions. Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis have neurodegeneration as a primary feature. However, in other CNS diseases such as multiple sclerosis, stroke, traumatic brain injury, and spinal cord injury, neurodegeneration follows another insult, such as demyelination or ischaemia. Although there are different primary causes to these diseases, they all share a hallmark of neuroinflammation. Neuroinflammation can occur through the activation of resident immune cells such as microglia, cells of the innate and adaptive peripheral immune system, meningeal inflammation and autoantibodies directed toward components of the CNS. Despite chronic inflammation being pathogenic in these diseases, local inflammation after insult can also promote endogenous regenerative processes in the CNS, which are key to slowing disease progression. The normal aging process in the healthy brain is associated with a decline in physiological function, a steady increase in levels of neuroinflammation, brain shrinkage, and memory deficits. Likewise, aging is also a key contributor to the progression and exacerbation of neurodegenerative diseases. As there are associated co-morbidities within an aging population, pinpointing the precise relationship between aging and neurodegenerative disease progression can be a challenge. The CNS has historically been considered an isolated, "immune privileged" site, however, there is mounting evidence that adaptive immune cells are present in the CNS of both healthy individuals and diseased patients. Adaptive immune cells have also been implicated in both the degeneration and regeneration of the CNS. In this review, we will discuss the key role of the adaptive immune system in CNS degeneration and regeneration, with a focus on how aging influences this crosstalk.
Collapse
Affiliation(s)
- Katie Mayne
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | - Jessica A. White
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
| | | | - Francisco J. Rivera
- Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Alerie G. de la Fuente
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast, United Kingdom
- *Correspondence: Alerie G. de la Fuente,
| |
Collapse
|