151
|
Mills WA, Coburn MA, Eyo UB. The emergence of the calvarial hematopoietic niche in health and disease. Immunol Rev 2022; 311:26-38. [PMID: 35880587 PMCID: PMC9489662 DOI: 10.1111/imr.13120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diploë region of skull has recently been discovered to act as a myeloid cell reservoir to the underlying meninges. The presence of ossified vascular channels traversing the inner skull of cortex provides a passageway for the cells to traffic from the niche, and CNS-derived antigens traveling through cerebrospinal fluid in a perivascular manner reaches the niche to signal myeloid cell egress. This review will highlight the recent findings establishing this burgeoning field along with the known role this niche plays in CNS aging and disease. It will further highlight the anatomical routes and physiological properties of the vascular structures these cells use for trafficking, spanning from skull to brain parenchyma.
Collapse
Affiliation(s)
- William A. Mills
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Morgan A Coburn
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Ukpong B. Eyo
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
152
|
Choi J, Choi E, Choi D. The ambivalent nature of the relationship between lymphatics and cancer. Front Cell Dev Biol 2022; 10:931335. [PMID: 36158182 PMCID: PMC9489845 DOI: 10.3389/fcell.2022.931335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Do lymphatic vessels support cancer cells? Or are they vessels that help suppress cancer development? It is known that the lymphatic system is a vehicle for tumor metastasis and that the lymphangiogenic regulator VEGF-C supports the tumor. One such role of VEGF-C is the suppression of the immune response to cancer. The lymphatic system has also been correlated with an increase in interstitial fluid pressure of the tumor microenvironment. On the other hand, lymphatic vessels facilitate immune surveillance to mount an immune response against tumors with the support of VEGF-C. Furthermore, the activation of lymphatic fluid drainage may prove to filter and decrease tumor interstitial fluid pressure. In this review, we provide an overview of the dynamic between lymphatics, cancer, and tumor fluid pressure to suggest that lymphatic vessels may be used as an antitumor therapy due to their capabilities of immune surveillance and fluid pressure drainage. The application of this potential may help to prevent tumor proliferation or increase the efficacy of drugs that target cancer.
Collapse
|
153
|
Lund AW. Immune Potential Untapped: Leveraging the Lymphatic System for Cancer Immunotherapy. Cancer Immunol Res 2022; 10:1042-1046. [PMID: 35895021 PMCID: PMC9673990 DOI: 10.1158/2326-6066.cir-22-0266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Over the past decade, our understanding of the role of the lymphatic vasculature in tumor progression has evolved from it being a passive participant, as a first step along Halsted's path of sequential metastasis, to a potentially active regulator of antitumor immune surveillance. These new data, however, seemingly support paradoxical predictions for cancer immunotherapy; on one hand that enhanced lymphatic involvement augments antitumor immune surveillance and on the other, drives immune evasion and metastasis. The potential to leverage lymphatic biology for the benefit of clinical immunotherapy, therefore, requires a mechanistic understanding of how the lymphatic vasculature interacts with functional immune responses during disease progression and in the context of relevant immunotherapy regimes. In this review, I dissect the promise and challenge of engaging the lymphatic system for therapy and suggest important avenues for future investigation and potential application. See related article, p. 1041.
Collapse
Affiliation(s)
- Amanda W. Lund
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York.,Department of Pathology, NYU Grossman School of Medicine, New York, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
154
|
Cao M, Ong MTY, Yung PSH, Tuan RS, Jiang Y. Role of synovial lymphatic function in osteoarthritis. Osteoarthritis Cartilage 2022; 30:1186-1197. [PMID: 35487439 DOI: 10.1016/j.joca.2022.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/01/2022] [Accepted: 04/20/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Osteoarthritis (OA) affects the entire joint, initially with a low degree of inflammation. Synovitis is correlated with the severity of OA clinical symptoms and cartilage degradation. The synovial lymphatic system (SLS) plays a prominent role in clearing macromolecules within the joint, including the pro-inflammatory cytokines in arthritic status. Scattered evidence shows that impaired SLS drainage function leads to the accumulation of inflammatory factors in the joint and aggravates the progression of OA, and the role of SLS function in OA is less studied. DESIGN This review summarizes the current understanding of synovial lymphatic function in OA progression and potential regulatory pathways and aims to provide a framework of knowledge for the development of OA treatments targeting lymphatic structure and functions. RESULTS SLS locates in the subintima layer of the synovium and consists of lymphatic capillaries and lymphatic collecting vessels. Vascular endothelial growth factor C (VEGF-C) is the most critical regulating factor of lymphatic endothelial cells (LECs) and SLS. Nitric oxide production-induced impairment of lymphatic muscle cells (LMCs) and contractile function may attribute to drainage dysfunction. Preclinical evidence suggests that promoting lymphatic drainage may help restore intra-articular homeostasis to attenuate the progression of OA. CONCLUSION SLS is actively involved in the homeostatic maintenance of the joint. Understanding the drainage function of the SLS at different stages of OA development is essential for further design of therapies targeting the function of these vessels.
Collapse
Affiliation(s)
- M Cao
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - M T Y Ong
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - P S H Yung
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - R S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Y Jiang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
155
|
Marx S, Godicelj A, Wucherpfennig KW. A Conceptual Framework for Inducing T Cell-Mediated Immunity Against Glioblastoma. Semin Immunopathol 2022; 44:697-707. [PMID: 35505129 PMCID: PMC9942346 DOI: 10.1007/s00281-022-00945-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/20/2022] [Indexed: 12/12/2022]
Abstract
Glioblastoma is a highly aggressive brain tumor with limited treatment options. Several major challenges have limited the development of novel therapeutics, including the extensive heterogeneity of tumor cell states within each glioblastoma and the ability of glioma cells to diffusely infiltrate into neighboring healthy brain tissue, including the contralateral hemisphere. A T cell-mediated immune response could deal with these challenges based on the ability of polyclonal T cell populations to recognize diverse tumor antigens and perform surveillance throughout tissues. Here we will discuss the major pathways that inhibit T cell-mediated immunity against glioblastoma, with an emphasis on receptor-ligand systems by which glioma cells and recruited myeloid cells inhibit T cell function. A related challenge is that glioblastomas tend to be poorly infiltrated by T cells, which is not only caused by inhibitory molecular pathways but also currently utilized drugs, in particular high-dose corticosteroids that kill activated, proliferating T cells. We will discuss innovative approaches to induce glioblastoma-directed T cell responses, including neoantigen-based vaccines and sophisticated CAR T cell approaches that can target heterogeneous glioblastoma cell populations. Finally, we will propose a conceptual framework for the future development of T cell-based immunotherapies for glioblastoma.
Collapse
Affiliation(s)
- Sascha Marx
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Anze Godicelj
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Kai W. Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Immunology, Harvard Medical School, Boston, MA 02115, USA,Program in Immunology, Harvard Medical School, Boston, MA 02115, USA,Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02215, USA
| |
Collapse
|
156
|
Shen K, Duan Q, Duan W, Xu S, An N, Ke Y, Wang L, Liu S, Yang H, Zhang C. Vascular endothelial growth factor-C modulates cortical NMDA receptor activity in cortical lesions of young patients and rat model with focal cortical dysplasia. Brain Pathol 2022; 32:e13065. [PMID: 35259773 PMCID: PMC9425019 DOI: 10.1111/bpa.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 12/01/2022] Open
Abstract
Emergence of dysmorphic neurons is the primary pathology in focal cortical dysplasia (FCD) associated pediatric intractable epilepsy; however, the etiologies related to the development and function of dysmorphic neurons are not fully understood. Our previous studies revealed that the expression of vascular endothelial growth factor-C (VEGF-C) and corresponding receptors VEGFR-2, VEGFR-3 was increased in the epileptic lesions of patients with tuberous sclerosis complex or mesial temporal lobe epilepsy. Here, we showed that the expression of VEGF-C, VEGFR-2, and VEGFR-3 was increased at both mRNA and protein levels in patients with cortical lesions of type I, IIa, and IIb FCD. The immunoreactivity of VEGF-C, VEGFR-2 and VEGFR-3 was located in the micro-columnar neurons in FCD type I lesions, dysplastic neurons (DNs) in FCD type IIa lesions, balloon cells (BCs) and astrocytes in FCD type IIb lesions. Additionally, the amplitude of evoked-EPSCs (eEPSC) mediated by NMDA receptor, the ratio of NMDA receptor- and AMPA receptor-mediated eEPSC were increased in the dysmorphic neurons of FCD rats established by prenatal X-ray radiation. Furthermore, NMDA receptor mediated current in dysmorphic neurons was further potentiated by exogenous administration of VEGF-C, however, could be antagonized by ki8751, the blocker of VEGFR-2. These results suggest that VEGF-C system participate in the pathogenesis of cortical lesions in patients with FCD in association with modulating NMDA receptor-mediated currents.
Collapse
Affiliation(s)
- Kai‐Feng Shen
- Department of NeurosurgeryEpilepsy Research Center of PLAXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Qing‐Tian Duan
- Department of NeurosurgeryEpilepsy Research Center of PLAXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Wei Duan
- Department of NeurologyXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Sen‐Lin Xu
- Institute of PathologySouthwest HospitalArmy Medical UniversityChongqingChina
| | - Ning An
- Department of NeurosurgeryEpilepsy Research Center of PLAXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Yan‐Yan Ke
- Department of NeurosurgeryEpilepsy Research Center of PLAXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Li‐Ting Wang
- Biomedical Analysis CenterArmy Medical UniversityChongqingChina
| | - Shi‐Yong Liu
- Department of NeurosurgeryEpilepsy Research Center of PLAXinqiao HospitalArmy Medical UniversityChongqingChina
| | - Hui Yang
- Department of NeurosurgeryEpilepsy Research Center of PLAXinqiao HospitalArmy Medical UniversityChongqingChina
- Guangyang Bay LaboratoryChongqing Institute for Brain and IntelligenceChongqingChina
| | - Chun‐Qing Zhang
- Department of NeurosurgeryEpilepsy Research Center of PLAXinqiao HospitalArmy Medical UniversityChongqingChina
- Guangyang Bay LaboratoryChongqing Institute for Brain and IntelligenceChongqingChina
| |
Collapse
|
157
|
Abstract
The central nervous system (CNS) has been viewed as an immunologically privileged site, but emerging works are uncovering a large array of neuroimmune interactions primarily occurring at its borders. CNS barriers sites host diverse population of both innate and adaptive immune cells capable of, directly and indirectly, influence the function of the residing cells of the brain parenchyma. These structures are only starting to reveal their role in controlling brain function under normal and pathological conditions and represent an underexplored therapeutic target for the treatment of brain disorders. This review will highlight the development of the CNS barriers to host neuro-immune interactions and emphasize their newly described roles in neurodevelopmental, neurological, and neurodegenerative disorders, particularly for the meninges.
Collapse
Affiliation(s)
- Natalie M Frederick
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gabriel A Tavares
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Antoine Louveau
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Kent University, Neurosciences, School of Biomedical Sciences, Cleveland, Ohio, USA
| |
Collapse
|
158
|
Dai W, Yang M, Xia P, Xiao C, Huang S, Zhang Z, Cheng X, Li W, Jin J, Zhang J, Wu B, Zhang Y, Wu PH, Lin Y, Wu W, Zhao H, Zhang Y, Lin WJ, Ye X. A functional role of meningeal lymphatics in sex difference of stress susceptibility in mice. Nat Commun 2022; 13:4825. [PMID: 35974004 PMCID: PMC9381547 DOI: 10.1038/s41467-022-32556-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Major depressive disorder is one of the most common mental health conditions. Meningeal lymphatics are essential for drainage of molecules in the cerebrospinal fluid to the peripheral immune system. Their potential role in depression-like behaviour has not been investigated. Here, we show in mice, sub-chronic variable stress as a model of depression-like behaviour impairs meningeal lymphatics in females but not in males. Manipulations of meningeal lymphatics regulate the sex difference in the susceptibility to stress-induced depression- and anxiety-like behaviors in mice, as well as alterations of the medial prefrontal cortex and the ventral tegmental area, brain regions critical for emotional regulation. Together, our findings suggest meningeal lymphatic impairment contributes to susceptibility to stress in mice, and that restoration of the meningeal lymphatics might have potential for modulation of depression-like behaviour.
Collapse
Affiliation(s)
- Weiping Dai
- Brain Research Center, Sun Yat-sen Memorial Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengqian Yang
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pei Xia
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chuan Xiao
- Brain Research Center, Sun Yat-sen Memorial Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuying Huang
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhan Zhang
- Brain Research Center, Sun Yat-sen Memorial Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Cheng
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenchang Li
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Jin
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyun Zhang
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Binghuo Wu
- Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Yingying Zhang
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pei-Hui Wu
- Department of Joint Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yangyang Lin
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Rehabilitation Medicine, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hu Zhao
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-sen Memorial Hospital and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
159
|
Goldman DH, Dykstra T, Smirnov I, Blackburn SM, Da Mesquita S, Kipnis J, Herz J. Age-associated suppression of exploratory activity during sickness is linked to meningeal lymphatic dysfunction and microglia activation. NATURE AGING 2022; 2:704-713. [PMID: 37065770 PMCID: PMC10103743 DOI: 10.1038/s43587-022-00268-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peripheral inflammation triggers a transient, well-defined set of behavioral changes known as sickness behavior1-3, but the mechanisms by which inflammatory signals originating in the periphery alter activity in the brain remain obscure. Emerging evidence has established meningeal lymphatic vasculature as an important interface between the central nervous system (CNS) and the immune system, responsible for facilitating brain solute clearance and perfusion by cerebrospinal fluid (CSF)4,5. Here, we demonstrate that meningeal lymphatics both assist microglial activation and support the behavioral response to peripheral inflammation. Ablation of meningeal lymphatics results in a heightened behavioral response to IL-1β-induced inflammation and a dampened transcriptional and morphological microglial phenotype. Moreover, our findings support a role for microglia in tempering the severity of sickness behavior with specific relevance to aging-related meningeal lymphatic dysfunction. Transcriptional profiling of brain myeloid cells shed light on the impact of meningeal lymphatic dysfunction on microglial activation. Furthermore, we demonstrate that experimental enhancement of meningeal lymphatic function in aged mice is sufficient to reduce the severity of exploratory abnormalities but not pleasurable consummatory behavior. Finally, we identify dysregulated genes and biological pathways, common to both experimental meningeal lymphatic ablation and aging, in microglia responding to peripheral inflammation that may result from age-related meningeal lymphatic dysfunction.
Collapse
|
160
|
Giotta Lucifero A, Luzzi S. Emerging immune-based technologies for high-grade gliomas. Expert Rev Anticancer Ther 2022; 22:957-980. [PMID: 35924820 DOI: 10.1080/14737140.2022.2110072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The selection of a tailored and successful strategy for high-grade gliomas (HGGs) treatment is still a concern. The abundance of aberrant mutations within the heterogenic genetic landscape of glioblastoma strongly influences cell expansion, proliferation, and therapeutic resistance. Identification of immune evasion pathways opens the way to novel immune-based strategies. This review intends to explore the emerging immunotherapies for HGGs. The immunosuppressive mechanisms related to the tumor microenvironment and future perspectives to overcome glioma immunity barriers are also debated. AREAS COVERED An extensive literature review was performed on the PubMed/Medline and ClinicalTrials.gov databases. Only highly relevant articles in English and published in the last 20 years were selected. Data about immunotherapies coming from preclinical and clinical trials were summarized. EXPERT OPINION The overall level of evidence about the efficacy and safety of immunotherapies for HGGs is noteworthy. Monoclonal antibodies have been approved as second-line treatment, while peptide vaccines, viral gene strategies, and adoptive technologies proved to boost a vivid antitumor immunization. Malignant brain tumor-treating fields are ever-changing in the upcoming years. Constant refinements and development of new routes of drug administration will permit to design of novel immune-based treatment algorithms thus improving the overall survival.
Collapse
Affiliation(s)
- Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
161
|
Li G, Cao Y, Tang X, Huang J, Cai L, Zhou L. The meningeal lymphatic vessels and the glymphatic system: Potential therapeutic targets in neurological disorders. J Cereb Blood Flow Metab 2022; 42:1364-1382. [PMID: 35484910 PMCID: PMC9274866 DOI: 10.1177/0271678x221098145] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 02/05/2023]
Abstract
The recent discovery of the meningeal lymphatic vessels (mLVs) and glymphatic pathways has challenged the long-lasting dogma that the central nervous system (CNS) lacks a lymphatic system and therefore does not interact with peripheral immunity. This discovery has reshaped our understanding of mechanisms underlying CNS drainage. Under normal conditions, a close connection between mLVs and the glymphatic system enables metabolic waste removal, immune cell trafficking, and CNS immune surveillance. Dysfunction of the glymphatic-mLV system can lead to toxic protein accumulation in the brain, and it contributes to the development of a series of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. The identification of precise cerebral transport routes is based mainly on indirect, invasive imaging of animals, and the results cannot always be applied to humans. Here we review the functions of the glymphatic-mLV system and evidence for its involvement in some CNS diseases. We focus on emerging noninvasive imaging techniques to evaluate the human glymphatic-mLV system and their potential for preclinical diagnosis and prevention of neurodegenerative diseases. Potential strategies that target the glymphatic-mLV system in order to treat and prevent neurological disorders are also discussed.
Collapse
Affiliation(s)
- Gaowei Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Cao
- Department of Neurosurgery, Chengdu Second People's hospital, Chengdu, China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianhan Huang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Linjun Cai
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
162
|
Jacob L, de Brito Neto J, Lenck S, Corcy C, Benbelkacem F, Geraldo LH, Xu Y, Thomas JM, El Kamouh MR, Spajer M, Potier MC, Haik S, Kalamarides M, Stankoff B, Lehericy S, Eichmann A, Thomas JL. Conserved meningeal lymphatic drainage circuits in mice and humans. J Exp Med 2022; 219:e20220035. [PMID: 35776089 PMCID: PMC9253621 DOI: 10.1084/jem.20220035] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/07/2022] [Accepted: 06/08/2022] [Indexed: 12/19/2022] Open
Abstract
Meningeal lymphatic vessels (MLVs) were identified in the dorsal and caudobasal regions of the dura mater, where they ensure waste product elimination and immune surveillance of brain tissues. Whether MLVs exist in the anterior part of the murine and human skull and how they connect with the glymphatic system and extracranial lymphatics remained unclear. Here, we used light-sheet fluorescence microscopy (LSFM) imaging of mouse whole-head preparations after OVA-A555 tracer injection into the cerebrospinal fluid (CSF) and performed real-time vessel-wall (VW) magnetic resonance imaging (VW-MRI) after systemic injection of gadobutrol in patients with neurological pathologies. We observed a conserved three-dimensional anatomy of MLVs in mice and humans that aligned with dural venous sinuses but not with nasal CSF outflow, and we discovered an extended anterior MLV network around the cavernous sinus, with exit routes through the foramina of emissary veins. VW-MRI may provide a diagnostic tool for patients with CSF drainage defects and neurological diseases.
Collapse
Affiliation(s)
- Laurent Jacob
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
- Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Paris, France
| | - Jose de Brito Neto
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephanie Lenck
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
- Department of Neuroradiology, Pitie-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Celine Corcy
- Department of Neuroradiology, Pitie-Salpêtrière Hospital, Sorbonne University, Paris, France
| | | | - Luiz Henrique Geraldo
- Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Paris, France
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
| | - Yunling Xu
- Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Paris, France
| | - Jean-Mickael Thomas
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Marie-Renee El Kamouh
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Myriam Spajer
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Marie-Claude Potier
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Stephane Haik
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Michel Kalamarides
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
- Department of Neurosurgery, Pitie-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Bruno Stankoff
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
- Department of Neurology, St Antoine Hospital, Assistance Publique Hôpitaux de Paris – Sorbonne, Paris, France
| | - Stephane Lehericy
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
- Department of Neuroradiology, Pitie-Salpêtrière Hospital, Sorbonne University, Paris, France
- Centre for NeuroImaging Research, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Anne Eichmann
- Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale, Université de Paris, Paris, France
- Department of Internal Medicine, Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
| | - Jean-Leon Thomas
- Institut du Cerveau, Pitié-Salpêtrière Hospital, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
163
|
Virenque A, Koivisto H, Antila S, Zub E, Rooney EJ, Miszczuk D, Müller A, Stoka E, Marchi N, Alitalo K, Tanila H, Noe FM. Significance of developmental meningeal lymphatic dysfunction in experimental post-traumatic injury. Brain Behav Immun Health 2022; 23:100466. [PMID: 35694175 PMCID: PMC9184565 DOI: 10.1016/j.bbih.2022.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 12/01/2022] Open
Abstract
Understanding the pathological mechanisms unfolding after chronic traumatic brain injury (TBI) could reveal new therapeutic entry points. During the post-TBI sequel, the involvement of cerebrospinal fluid drainage through the meningeal lymphatic vessels was proposed. Here, we used K14-VEGFR3-Ig transgenic mice to analyze whether a developmental dysfunction of meningeal lymphatic vessels modifies post-TBI pathology. To this end, a moderate TBI was delivered by controlled cortical injury over the temporal lobe in male transgenic mice or their littermate controls. We performed MRI and a battery of behavioral tests over time to define the post-TBI trajectories. In vivo analyses were integrated by ex-vivo quantitative and morphometric examinations of the cortical lesion and glial cells. In post-TBI K14-VEGFR3-Ig mice, the recovery from motor deficits was protracted compared to littermates. This outcome is coherent with the observed slower hematoma clearance in transgenic mice during the first two weeks post-TBI. No other genotype-related behavioral differences were observed, and the volume of cortical lesions imaged by MRI in vivo, and confirmed by histology ex-vivo, were comparable in both groups. However, at the cellular level, post-TBI K14-VEGFR3-Ig mice exhibited an increased percentage of activated Iba1 microglia in the hippocampus and auditory cortex, areas that are proximal to the lesion. Although not impacting or modifying the structural brain damage and post-TBI behavior, a pre-existing dysfunction of meningeal lymphatic vessels is associated with morphological microglial activation over time, possibly representing a sub-clinical pathological imprint or a vulnerability factor. Our findings suggest that pre-existing mLV deficits could represent a possible risk factor for the overall outcome of TBI pathology. Developmental deficit in the meningeal lymphatic vessels contributes to sustain the chronic neuroinflammation and represent a susceptibility factor in TBI, despite the lack of a functional phenotype. Development and progression of TBI-related cortical lesion is not exacerbated by developmental deficit in meningeal lymphatics. Meningeal lymphatic developmental deficits result in increased neuroinflammation, suggesting a sub-clinical pathological imprint or a vulnerability factor. Congenital mLV deficit affects the interstitial fluid dynamics and the post-TBI hematoma resolution.
Collapse
Affiliation(s)
- Anaïs Virenque
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00290, Helsinki, Finland
| | - Hennariikka Koivisto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Salli Antila
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Emma Zub
- Cerebrovascular and Glia Research, Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Erin Jane Rooney
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00290, Helsinki, Finland
| | - Diana Miszczuk
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Adrian Müller
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Enija Stoka
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00290, Helsinki, Finland
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Francesco Mattia Noe
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00290, Helsinki, Finland
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
- Corresponding author. HiLIFE, Neuroscience Center, Helsinki University, Helsinki, Finland.
| |
Collapse
|
164
|
Fu Z, Yuan Y. The role of tumor neogenesis pipelines in tumor progression and their therapeutic potential. Cancer Med 2022; 12:1558-1571. [PMID: 35832030 PMCID: PMC9883577 DOI: 10.1002/cam4.4979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 02/02/2023] Open
Abstract
Pipeline formation between tumor cells and the tumor microenvironment (TME) is a key event leading to tumor progression. These pipelines include blood vessels, lymphatics, and membranous vessels (the former two can be collectively referred to as vasculature). Pipeline regeneration is a feature of all solid tumors; it delivers nutrients to tumors and promotes tumor invasion and metastasis such that cancer cells grow rapidly, escape unfavorable TME, spread to secondary sites, generate tumor drug resistance, and promote postoperative tumor recurrence. Novel tumor therapy strategies must exploit the molecular mechanisms underpinning these pipelines to facilitate more targeted drug therapies. In this review, pipeline generation, influencing factors, pipeline functions during tumor progression, and pipeline potential as drug targets are systematically summarized.
Collapse
Affiliation(s)
- Zhanqi Fu
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryThe First Hospital of China Medical UniversityShenyangChina,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangChina,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General SurgeryThe First Hospital of China Medical UniversityShenyangChina,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education DepartmentThe First Hospital of China Medical UniversityShenyangChina,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning ProvinceThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
165
|
The Role of PROX1 in Neoplasia: A Key Player Often Overlooked. Diagnostics (Basel) 2022; 12:diagnostics12071624. [PMID: 35885529 PMCID: PMC9320018 DOI: 10.3390/diagnostics12071624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/02/2022] Open
Abstract
The human PROX1 gene (Prospero homeobox gene 1) is a member of the homeobox transcription factor family. PROX1 plays a key role in the development of the lymphatic system and is primarily used as a lymphatic vessel marker. However, as the accumulating evidence indicates that PROX1 is also implicated in the tumorigenesis of various cancer types, the scientific community has attempted to elucidate its complicated function in neoplasia pathogenesis, as well as its utility in cancer diagnosis, prognosis, and therapy. PROX1 has been shown to participate in the complex molecular mechanisms affecting tumorigenesis and has been associated with a plethora of clinicopathological parameters, including tumor stage and patients’ overall survival. Depending on the specific organ affected, PROX1 has exhibited both tumor-promoting and tumor-suppressing properties, with its inhibition and reactivation representing possible novel therapeutic interventions, respectively. Moreover, researchers have reported PROX1 as a useful tool in the fields of diagnosis and prognosis assessment. The current study aims to summarize and present the existing data that render PROX1 a novel and useful diagnostic and prognostic biomarker, as well as a possible therapeutic target.
Collapse
|
166
|
Lauko A, Lo A, Ahluwalia MS, Lathia JD. Cancer cell heterogeneity & plasticity in glioblastoma and brain tumors. Semin Cancer Biol 2022; 82:162-175. [PMID: 33640445 PMCID: PMC9618157 DOI: 10.1016/j.semcancer.2021.02.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/22/2021] [Indexed: 12/25/2022]
Abstract
Brain tumors remain one of the most difficult tumors to treat and, depending on the diagnosis, have a poor prognosis. Of brain tumors, glioblastoma (GBM) is the most common malignant glioma and has a dismal prognosis, with only about 5% of patients alive five years after diagnosis. While advances in targeted therapies and immunotherapies are rapidly improving outcomes in a variety of other cancers, the standard of care for GBM has largely remained unaltered since 2005. There are many well-studied challenges that are either unique to brain tumors (i.e., blood-brain barrier and immunosuppressive environment) or amplified within GBM (i.e., tumor heterogeneity at the cellular and molecular levels, plasticity, and cancer stem cells) that make this disease particularly difficult to treat. While we touch on all these concepts, the focus of this review is to discuss the immense inter- and intra-tumoral heterogeneity and advances in our understanding of tumor cell plasticity and epigenetics in GBM. With each improvement in technology, our understanding of the complexity of tumoral heterogeneity and plasticity improves and we gain more clarity on the causes underlying previous therapeutic failures. However, these advances are unlocking new therapeutic opportunities that scientists and physicians are currently exploiting and have the potential for new breakthroughs.
Collapse
Affiliation(s)
- Adam Lauko
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Alice Lo
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Manmeet S Ahluwalia
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States
| | - Justin D Lathia
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, United States; Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States.
| |
Collapse
|
167
|
Hovd MH, Mariussen E, Uggerud H, Lashkarivand A, Christensen H, Ringstad G, Eide PK. Population pharmacokinetic modeling of CSF to blood clearance: prospective tracer study of 161 patients under work-up for CSF disorders. Fluids Barriers CNS 2022; 19:55. [PMID: 35778719 PMCID: PMC9250213 DOI: 10.1186/s12987-022-00352-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Background Quantitative measurements of cerebrospinal fluid to blood clearance has previously not been established for neurological diseases. Possibly, variability in cerebrospinal fluid clearance may affect the underlying disease process and may possibly be a source of under- or over-dosage of intrathecally administered drugs. The aim of this study was to characterize the cerebrospinal fluid to blood clearance of the intrathecally administered magnetic resonance imaging contrast agent gadobutrol (Gadovist, Bayer Pharma AG, GE). For this, we established a population pharmacokinetic model, hypothesizing that cerebrospinal fluid to blood clearance differs between cerebrospinal fluid diseases. Methods Gadobutrol served as a surrogate tracer for extra-vascular pathways taken by several brain metabolites and drugs in cerebrospinal fluid. We estimated cerebrospinal fluid to blood clearance in patients with different cerebrospinal fluid disorders, i.e. symptomatic pineal and arachnoid cysts, as well as tentative spontaneous intracranial hypotension due to cerebrospinal fluid leakage, idiopathic intracranial hypertension, or different types of hydrocephalus (idiopathic normal pressure hydrocephalus, communicating- and non-communicating hydrocephalus). Individuals with no verified cerebrospinal fluid disturbance at clinical work-up were denoted references. Results Population pharmacokinetic modelling based on 1,140 blood samples from 161 individuals revealed marked inter-individual variability in pharmacokinetic profiles, including differences in absorption half-life (time to 50% of tracer absorbed from cerebrospinal fluid to blood), time to maximum concentration in blood and the maximum concentration in blood as well as the area under the plasma concentration time curve from zero to infinity. In addition, the different disease categories of cerebrospinal fluid diseases demonstrated different profiles. Conclusions The present observations of considerable variation in cerebrospinal fluid to blood clearance between individuals in general and across neurological diseases, may suggest that defining cerebrospinal fluid to blood clearance can become a useful diagnostic adjunct for work-up of cerebrospinal fluid disorders. We also suggest that it may become useful for assessing clearance capacity of endogenous brain metabolites from cerebrospinal fluid, as well as measuring individual cerebrospinal fluid to blood clearance of intrathecal drugs.
Collapse
Affiliation(s)
- Markus Herberg Hovd
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Espen Mariussen
- Norwegian Institute for Air Research, Kjeller, Norway.,Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Hilde Uggerud
- Norwegian Institute for Air Research, Kjeller, Norway
| | - Aslan Lashkarivand
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Pb 4950 Nydalen, 0424, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hege Christensen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- Division of Radiology and Nuclear Medicine, Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Pb 4950 Nydalen, 0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
168
|
Barkaway A, Attwell D, Korte N. Immune-vascular mural cell interactions: consequences for immune cell trafficking, cerebral blood flow, and the blood-brain barrier. NEUROPHOTONICS 2022; 9:031914. [PMID: 35581998 PMCID: PMC9107322 DOI: 10.1117/1.nph.9.3.031914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Brain barriers are crucial sites for cerebral energy supply, waste removal, immune cell migration, and solute exchange, all of which maintain an appropriate environment for neuronal activity. At the capillary level, where the largest area of brain-vascular interface occurs, pericytes adjust cerebral blood flow (CBF) by regulating capillary diameter and maintain the blood-brain barrier (BBB) by suppressing endothelial cell (EC) transcytosis and inducing tight junction expression between ECs. Pericytes also limit the infiltration of circulating leukocytes into the brain where resident microglia confine brain injury and provide the first line of defence against invading pathogens. Brain "waste" is cleared across the BBB into the blood, phagocytosed by microglia and astrocytes, or removed by the flow of cerebrospinal fluid (CSF) through perivascular routes-a process driven by respiratory motion and the pulsation of the heart, arteriolar smooth muscle, and possibly pericytes. "Dirty" CSF exits the brain and is probably drained around olfactory nerve rootlets and via the dural meningeal lymphatic vessels and possibly the skull bone marrow. The brain is widely regarded as an immune-privileged organ because it is accessible to few antigen-primed leukocytes. Leukocytes enter the brain via the meninges, the BBB, and the blood-CSF barrier. Advances in genetic and imaging tools have revealed that neurological diseases significantly alter immune-brain barrier interactions in at least three ways: (1) the brain's immune-privileged status is compromised when pericytes are lost or lymphatic vessels are dysregulated; (2) immune cells release vasoactive molecules to regulate CBF, modulate arteriole stiffness, and can plug and eliminate capillaries which impairs CBF and possibly waste clearance; and (3) immune-vascular interactions can make the BBB leaky via multiple mechanisms, thus aggravating the influx of undesirable substances and cells. Here, we review developments in these three areas and briefly discuss potential therapeutic avenues for restoring brain barrier functions.
Collapse
Affiliation(s)
- Anna Barkaway
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - David Attwell
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Nils Korte
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| |
Collapse
|
169
|
Early life adversity drives sex-specific anhedonia and meningeal immune gene expression through mast cell activation. Brain Behav Immun 2022; 103:73-84. [PMID: 35339629 PMCID: PMC9149134 DOI: 10.1016/j.bbi.2022.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/25/2022] [Accepted: 03/16/2022] [Indexed: 01/06/2023] Open
Abstract
Exposure to early life adversity (ELA) in the form of physical and/or psychological abuse or neglect increases the risk of developing psychiatric and inflammatory disorders later in life. It has been hypothesized that exposure to ELA results in persistent, low grade inflammation that leads to increased disease susceptibility by amplifying the crosstalk between stress-processing brain networks and the immune system, but the mechanisms remain largely unexplored. The meninges, a layer of three overlapping membranes that surround the central nervous system (CNS)- dura mater, arachnoid, and piamater - possess unique features that allow them to play a key role in coordinating immune trafficking between the brain and the peripheral immune system. These include a network of lymphatic vessels that carry cerebrospinal fluid from the brain to the deep cervical lymph nodes, fenestrated blood vessels that allow the passage of molecules from blood to the CNS, and a rich population of resident mast cells, master regulators of the immune system. Using a mouse model of ELA consisting of neonatal maternal separation plus early weaning (NMSEW), we sought to explore the effects of ELA on sucrose preference behavior, dura mater expression of inflammatory markers and mast cell histology in adult male and female C57Bl/6 mice. We found that NMSEW alone does not affect sucrose preference behavior in males or females, but it increases the dura mater expression of the genes coding for mast cell protease CMA1 (cma1) and the inflammatory cytokine TNF alpha (tnf alpha) in females. When NMSEW is combined with an adult mild stress (that does not affect behavior or gene expression in NH animals) females show reduced sucrose preference and even greater increases in meningeal cma1 levels. Interestingly, systemic administration of the mast cell stabilizer Ketotifen before exposure to adult stress prevents both, reduction in sucrose preference an increases in cma1 expression in NMSEW females, but facilitates stress-induced sucrose anhedonia in NMSEW males and NH females. Finally, histological analyses showed that, compared to males, females have increased baseline activation levels of mast cells located in the transverse sinus of the dura mater, where the meningeal lymphatics run along, and that, in males and females exposed to adult stress, NMSEW increases the number of mast cells in the interparietal region of the dura mater and the levels of mast cell activation in the sagittal sinus regions of the dura mater. Together, our results indicate that ELA induces long-term meningeal immune gene changes and heightened sensitivity to adult stress-induced behavioral and meningeal immune responses and that these effects could mediated via mast cells.
Collapse
|
170
|
Li Q, Chen Y, Feng W, Cai J, Gao J, Ge F, Zhou T, Wang Z, Ding F, Marshall C, Sheng C, Zhang Y, Sun M, Shi J, Xiao M. Drainage of senescent astrocytes from brain via meningeal lymphatic routes. Brain Behav Immun 2022; 103:85-96. [PMID: 35427759 DOI: 10.1016/j.bbi.2022.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/16/2022] [Accepted: 04/10/2022] [Indexed: 12/30/2022] Open
Abstract
Recent progress on the central lymphatic system has greatly increased our understanding of how the brain maintains its own waste homeostasis. Here, we showed that perivascular spaces and meningeal lymphatic vessels form a functional route for clearance of senescent astrocytes from the aging brain. Blocking meningeal lymphatic drainage by ligation of the deep cervical lymph nodes impaired clearance of senescent astrocytes from brain parenchyma, subsequently increasing neuroinflammation in aged mice. By contrast, enhancing meningeal lymphatic vessel diameter by a recombinant adeno-associated virus encoding mouse vascular endothelial growth factor-C (VEGF-C) improved clearance of senescent astrocytes and mitigated neuroinflammation. Mechanistically, VEGF-C was highly expressed in senescent astrocytes, contributing themselves to migrate across lymphatic vessels along C-C motif chemokine ligand 21 (CCL21) gradient by interacting with VEGF receptor 3. Moreover, intra-cisternal injection of antibody against CCL21 hampered senescent astrocytes into the lymphatic vessels and exacerbated short memory defects of aged mice. Together, these findings reveal a new perspective for the meningeal lymphatics in the removal of senescent astrocytes, thus offering a valuable target for therapeutic intervention.
Collapse
Affiliation(s)
- Qian Li
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China; Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yan Chen
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China; Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Weixi Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China; Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jiachen Cai
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Junying Gao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China; Department of Anatomy, Nanjing Medical University, Nanjing, 211166, China
| | - Feifei Ge
- Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tiantian Zhou
- Department of Anesthesia, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210028, China
| | - Ze Wang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Fengfei Ding
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - Charles Marshall
- Department of Physical Therapy, University of Kentucky Center of Excellence in Rural Health, Hazard, KY, 41701, USA
| | - Chengyu Sheng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China
| | - Yongjie Zhang
- Department of Anatomy, Nanjing Medical University, Nanjing, 211166, China
| | - Mingkuan Sun
- Department of Toxicology, Nanjing Medical University, Nanjing, 211166, China
| | - Jingping Shi
- Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, 211166, China; Department of Neurology, the Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Center for Global Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
171
|
Khang M, Bindra RS, Mark Saltzman W. Intrathecal delivery and its applications in leptomeningeal disease. Adv Drug Deliv Rev 2022; 186:114338. [PMID: 35561835 DOI: 10.1016/j.addr.2022.114338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 12/22/2022]
Abstract
Intrathecal delivery (IT) of opiates into the cerebrospinal fluid (CSF) for anesthesia and pain relief has been used clinically for decades, but this relatively straightforward approach of bypassing the blood-brain barrier has been underutilized for other indications because of its lack of utility in delivering small lipid-soluble drugs. However, emerging evidence suggests that IT drug delivery be an efficacious strategy for the treatment of cancers in which there is leptomeningeal spread of disease. In this review, we discuss CSF flow dynamics and CSF clearance pathways in the context of intrathecal delivery. We discuss human and animal studies of several new classes of therapeutic agents-cellular, protein, nucleic acid, and nanoparticle-based small molecules-that may benefit from IT delivery. The complexity of the CSF compartment presents several key challenges in predicting biodistribution of IT-delivered drugs. New approaches and strategies are needed that can overcome the high rates of turnover in the CSF to reach specific tissues or cellular targets.
Collapse
|
172
|
Bei Y, Huang Z, Feng X, Li L, Wei M, Zhu Y, Liu S, Chen C, Yin M, Jiang H, Xiao J. Lymphangiogenesis contributes to exercise-induced physiological cardiac growth. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:466-478. [PMID: 35218948 PMCID: PMC9338339 DOI: 10.1016/j.jshs.2022.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Promoting cardiac lymphangiogenesis exerts beneficial effects for the heart. Exercise can induce physiological cardiac growth with cardiomyocyte hypertrophy and increased proliferation markers in cardiomyocytes. However, it remains unclear whether and how lymphangiogenesis contributes to exercise-induced physiological cardiac growth. We aimed to investigate the role and mechanism of lymphangiogenesis in exercise-induced physiological cardiac growth. METHODS Adult C57BL6/J mice were subjected to 3 weeks of swimming exercise to induce physiological cardiac growth. Oral treatment with vascular endothelial growth factor receptor 3 (VEGFR3) inhibitor SAR131675 was used to investigate whether cardiac lymphangiogenesis was required for exercise-induced physiological cardiac growth by VEGFR3 activation. Furthermore, human dermal lymphatic endothelial cell (LEC)-conditioned medium was collected to culture isolated neonatal rat cardiomyocytes to determine whether and how LECs could influence cardiomyocyte proliferation and hypertrophy. RESULTS Swimming exercise induced physiological cardiac growth accompanied by a remarkable increase of cardiac lymphangiogenesis as evidenced by increased density of lymphatic vessel endothelial hyaluronic acid receptor 1-positive lymphatic vessels in the heart and upregulated LYVE-1 and Podoplanin expressions levels. VEGFR3 was upregulated in the exercised heart, while VEGFR3 inhibitor SAR131675 attenuated exercise-induced physiological cardiac growth as evidenced by blunted myocardial hypertrophy and reduced proliferation marker Ki67 in cardiomyocytes, which was correlated with reduced lymphatic vessel density and downregulated LYVE-1 and Podoplanin in the heart upon exercise. Furthermore, LEC-conditioned medium promoted both hypertrophy and proliferation of cardiomyocytes and contained higher levels of insulin-like growth factor-1 and the extracellular protein Reelin, while LEC-conditioned medium from LECs treated with SAR131675 blocked these effects. Functional rescue assays further demonstrated that protein kinase B (AKT) activation, as well as reduced CCAAT enhancer-binding protein beta (C/EBPβ) and increased CBP/p300-interacting transactivators with E (glutamic acid)/D (aspartic acid)-rich-carboxylterminal domain 4 (CITED4), contributed to the promotive effect of LEC-conditioned medium on cardiomyocyte hypertrophy and proliferation. CONCLUSION Our findings reveal that cardiac lymphangiogenesis is required for exercise-induced physiological cardiac growth by VEGFR3 activation, and they indicate that LEC-conditioned medium promotes both physiological hypertrophy and proliferation of cardiomyocytes through AKT activation and the C/EBPβ-CITED4 axis. These results highlight the essential roles of cardiac lymphangiogenesis in exercise-induced physiological cardiac growth.
Collapse
Affiliation(s)
- Yihua Bei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Zhenzhen Huang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xing Feng
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Lin Li
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Meng Wei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Shuqin Liu
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Chen Chen
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Mingming Yin
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Huimin Jiang
- Clinical Laboratory Center, Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
173
|
Chen Z, Liu P, Xia X, Wang L, Li X. Living on the border of the CNS: Dural immune cells in health and disease. Cell Immunol 2022; 377:104545. [DOI: 10.1016/j.cellimm.2022.104545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 12/31/2022]
|
174
|
Jeong J, Tanaka M, Iwakiri Y. Hepatic lymphatic vascular system in health and disease. J Hepatol 2022; 77:206-218. [PMID: 35157960 PMCID: PMC9870070 DOI: 10.1016/j.jhep.2022.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/13/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023]
Abstract
In recent years, significant advances have been made in the study of lymphatic vessels with the identification of their specific markers and the development of research tools that have accelerated our understanding of their role in tissue homeostasis and disease pathogenesis in many organs. Compared to other organs, the lymphatic system in the liver is understudied despite its obvious importance for hepatic physiology and pathophysiology. In this review, we describe fundamental aspects of the hepatic lymphatic system and its role in a range of liver-related pathological conditions such as portal hypertension, ascites formation, malignant tumours, liver transplantation, congenital liver diseases, non-alcoholic fatty liver disease, and hepatic encephalopathy. The article concludes with a discussion regarding the modulation of lymphangiogenesis as a potential therapeutic strategy for liver diseases.
Collapse
Affiliation(s)
- Jain Jeong
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Masatake Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
175
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
176
|
Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors. Int J Mol Sci 2022; 23:ijms23137325. [PMID: 35806328 PMCID: PMC9266676 DOI: 10.3390/ijms23137325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells mediate innate and adaptive immune responses and are directly involved in the activation of cytotoxic T lymphocytes that kill tumor cells. Dendritic cell-based cancer immunotherapy has clinical benefits. Dendritic cell subsets are diverse, and tumors can be hot or cold, depending on their immunogenicity; this heterogeneity affects the success of dendritic cell-based immunotherapy. Here, we review the ontogeny of dendritic cells and dendritic cell subsets. We also review the characteristics of hot and cold tumors and briefly introduce therapeutic trials related to hot and cold tumors. Lastly, we discuss dendritic cell-based cancer immunotherapy in hot and cold tumors.
Collapse
|
177
|
Korhonen EA, Murtomäki A, Jha SK, Anisimov A, Pink A, Zhang Y, Stritt S, Liaqat I, Stanczuk L, Alderfer L, Sun Z, Kapiainen E, Singh A, Sultan I, Lantta A, Leppänen VM, Eklund L, He Y, Augustin HG, Vaahtomeri K, Saharinen P, Mäkinen T, Alitalo K. Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell surface expression. J Clin Invest 2022; 132:155478. [PMID: 35763346 PMCID: PMC9337826 DOI: 10.1172/jci155478] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular endothelial growth factor C (VEGF-C) induces lymphangiogenesis via VEGF receptor 3 (VEGFR3), which is encoded by the most frequently mutated gene in human primary lymphedema. Angiopoietins (Angs) and their Tie receptors regulate lymphatic vessel development, and mutations of the ANGPT2 gene were recently found in human primary lymphedema. However, the mechanistic basis of Ang2 activity in lymphangiogenesis is not fully understood. Here, we used gene deletion, blocking Abs, transgene induction, and gene transfer to study how Ang2, its Tie2 receptor, and Tie1 regulate lymphatic vessels. We discovered that VEGF-C–induced Ang2 secretion from lymphatic endothelial cells (LECs) was involved in full Akt activation downstream of phosphoinositide 3 kinase (PI3K). Neonatal deletion of genes encoding the Tie receptors or Ang2 in LECs, or administration of an Ang2-blocking Ab decreased VEGFR3 presentation on LECs and inhibited lymphangiogenesis. A similar effect was observed in LECs upon deletion of the PI3K catalytic p110α subunit or with small-molecule inhibition of a constitutively active PI3K located downstream of Ang2. Deletion of Tie receptors or blockade of Ang2 decreased VEGF-C–induced lymphangiogenesis also in adult mice. Our results reveal an important crosstalk between the VEGF-C and Ang signaling pathways and suggest new avenues for therapeutic manipulation of lymphangiogenesis by targeting Ang2/Tie/PI3K signaling.
Collapse
Affiliation(s)
- Emilia A Korhonen
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Aino Murtomäki
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Sawan Kumar Jha
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Andrey Anisimov
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Anne Pink
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Yan Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Inam Liaqat
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Lukas Stanczuk
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Laura Alderfer
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Zhiliang Sun
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Emmi Kapiainen
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular, University of Oulu, Oulu, Finland
| | - Abhishek Singh
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular, University of Oulu, Oulu, Finland
| | - Ibrahim Sultan
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| | - Anni Lantta
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Veli-Matti Leppänen
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Lauri Eklund
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular, University of Oulu, Oulu, Finland
| | - Yulong He
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg, Germany
| | - Kari Vaahtomeri
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Pipsa Saharinen
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
178
|
Gao YF, Lu YY, Fan XZ, Wang YH, Tian JH, Saed YA, Li RS, Zhou XS. Blockage of TIM-3 relieves lupus nephritis by expanding Treg cells and promoting their suppressive capacity in MRL/lpr mice. Int Immunopharmacol 2022; 110:108971. [PMID: 35777268 DOI: 10.1016/j.intimp.2022.108971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
T Cell Immunoglobulin and Mucin Containing Protein-3 (TIM-3) is an important immune checkpoint protein that is expressed in Tregs and affects their function. However, the expression and role of TIM-3 in modulating regulatory T cells (Tregs) in lupus nephritis (LN) are still unknown. In this study, we found that the percentage of TIM-3+ cells among spleen lymphocytes, CD4+ T cells and Tregs was higher in MRL/lpr mice than in MpJ mice. TIM-3high CD4+ T cells and TIM-3high Tregs were mainly responsible for the increase. The percentage of Tregs in TIM-3high CD4+ T cells was lower than that in TIM-3low CD4+ T cells, and the expression of CTLA-4 and IL-10 was lower in TIM-3high Tregs than in the TIM-3low Tregs in MRL/lpr mice. Blockade of TIM-3 in vivo significantly increased the Treg population and the expression of CTLA-4 and IL-10 in Tregs, thus relieving the LN symptoms and pathology in MRL/lpr mice. Additionally, bioinformatics analysis indicated that TIM-3 regulates Treg cells in LN mainly through cytokine-cytokine receptor interactions, the PI3K-Akt signaling pathway, the T cell receptor signaling pathway, Th17 cell differentiation and the FoxO signaling pathway. Together, our study has demonstrated that TIM-3 regulates Tregs in LN and that overexpression of TIM-3 in CD4+ T cells and Tregs leads to Treg quantity and quality deficiency in MRL/lpr mice. Blockade of TIM-3 protects against LN by expanding Tregs and enhancing their suppressive capacity. Finally, TIM-3 might be a potential therapeutic target for the treatment of LN.
Collapse
Affiliation(s)
- Yan-Fang Gao
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuan-Yue Lu
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiu-Zhao Fan
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China; Department of Nephrology, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China
| | - Yan-Hong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ji-Hua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yasin-Abdi Saed
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rong-Shan Li
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China; Department of Nephrology, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China.
| | - Xiao-Shuang Zhou
- Department of Nephrology, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China; Department of Nephrology, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China.
| |
Collapse
|
179
|
Garnier L, Pick R, Montorfani J, Sun M, Brighouse D, Liaudet N, Kammertoens T, Blankenstein T, Page N, Bernier-Latamani J, Tran NL, Petrova TV, Merkler D, Scheiermann C, Hugues S. IFN-γ-dependent tumor-antigen cross-presentation by lymphatic endothelial cells promotes their killing by T cells and inhibits metastasis. SCIENCE ADVANCES 2022; 8:eabl5162. [PMID: 35675399 PMCID: PMC9176743 DOI: 10.1126/sciadv.abl5162] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tumor-associated lymphatic vessels promote metastasis and regulate antitumor immune responses. Here, we assessed the impact of cytotoxic T cells on the local lymphatic vasculature and concomitant tumor dissemination during an antitumor response. Interferon-γ (IFN-γ) released by effector T cells enhanced the expression of immunosuppressive markers by tumor-associated lymphatic endothelial cells (LECs). However, at higher effector T cell densities within the tumor, T cell-based immunotherapies induced LEC apoptosis and decreased tumor lymphatic vessel density. As a consequence, lymphatic flow was impaired, and lymph node metastasis was reduced. Mechanistically, T cell-mediated tumor cell death induced the release of tumor antigens and cross-presentation by tumor LECs, resulting in antigen-specific LEC killing by T cells. When LECs lacked the IFN-γ receptor expression, LEC killing was abrogated, indicating that IFN-γ is indispensable for reducing tumor-associated lymphatic vessel density and drainage. This study provides insight into how cytotoxic T cells modulate tumor lymphatic vessels and may help to improve immunotherapeutic protocols.
Collapse
Affiliation(s)
- Laure Garnier
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
- Corresponding author. (S.H.); (L.G.)
| | - Robert Pick
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Julien Montorfani
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Mengzhu Sun
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Dale Brighouse
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Nicolas Liaudet
- Bioimaging Core Facility, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thomas Kammertoens
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas Blankenstein
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
| | - Nicolas Page
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
- Department of Pathology and Immunology, Division of Clinical Pathology, University of Geneva and University Hospital of Geneva, Geneva, Switzerland
| | - Jeremiah Bernier-Latamani
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research and Division of Experimental Pathology, University of Lausanne and University of Lausanne Hospital, 1066 Lausanne, Switzerland
| | - Ngoc Lan Tran
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Tatiana V. Petrova
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research and Division of Experimental Pathology, University of Lausanne and University of Lausanne Hospital, 1066 Lausanne, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
- Department of Pathology and Immunology, Division of Clinical Pathology, University of Geneva and University Hospital of Geneva, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
| | - Christoph Scheiermann
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
- Walter-Brendel-Centre of Experimental Medicine, BioMedical Centre, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Stéphanie Hugues
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Geneva, Switzerland
- Corresponding author. (S.H.); (L.G.)
| |
Collapse
|
180
|
Chen X, Song E. The theory of tumor ecosystem. Cancer Commun (Lond) 2022; 42:587-608. [PMID: 35642770 PMCID: PMC9257988 DOI: 10.1002/cac2.12316] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer cells can be conceived as “living organisms” interacting with cellular or non‐cellular components in the host internal environment, not only the local tumor microenvironment but also the distant organ niches, as well as the immune, nervous and endocrine systems, to construct a self‐sustainable tumor ecosystem. With increasing evidence for the systemic tumor‐host interplay, we predict that a new era of cancer therapy targeting the ecosystemic vulnerability of human malignancies has come. Revolving around the tumor ecosystem scoped as different hierarchies of primary, regional, distal and systemic onco‐spheres, we comprehensively review the tumor‐host interaction among cancer cells and their local microenvironment, distant organ niches, immune, nervous and endocrine systems, highlighting material and energy flow with tumor ecological homeostasis as an internal driving force. We also substantiate the knowledge of visualizing, modelling and subtyping this dynamically intertwined network with recent technological advances, and discuss ecologically rational strategies for more effective cancer therapies.
Collapse
Affiliation(s)
- Xueman Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| |
Collapse
|
181
|
Mosteiro A, Pedrosa L, Ferrés A, Diao D, Sierra À, González JJ. The Vascular Microenvironment in Glioblastoma: A Comprehensive Review. Biomedicines 2022; 10:biomedicines10061285. [PMID: 35740307 PMCID: PMC9219822 DOI: 10.3390/biomedicines10061285] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme, the deadliest primary brain tumor, is characterized by an excessive and aberrant neovascularization. The initial expectations raised by anti-angiogenic drugs were soon tempered due to their limited efficacy in improving the overall survival. Intrinsic resistance and escape mechanisms against anti-VEGF therapies evidenced that tumor angiogenesis is an intricate multifaceted phenomenon and that vessels not only support the tumor but exert indispensable interactions for resistance and spreading. This holistic review covers the essentials of the vascular microenvironment of glioblastoma, including the perivascular niche components, the vascular generation patterns and the implicated signaling pathways, the endothelial–tumor interrelation, and the interconnection between vessel aberrancies and immune disarrangement. The revised concepts provide novel insights into the preclinical models and the potential explanations for the failure of conventional anti-angiogenic therapies, leading to an era of new and combined anti-angiogenic-based approaches.
Collapse
Affiliation(s)
- Alejandra Mosteiro
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
- Correspondence:
| | - Leire Pedrosa
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| | - Abel Ferrés
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
| | - Diouldé Diao
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| | - Àngels Sierra
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - José Juan González
- Department of Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (A.F.); (J.J.G.)
- Laboratory of Experimental Oncological Neurosurgery, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (L.P.); (D.D.); (À.S.)
| |
Collapse
|
182
|
Singla B, Aithabathula RV, Kiran S, Kapil S, Kumar S, Singh UP. Reactive Oxygen Species in Regulating Lymphangiogenesis and Lymphatic Function. Cells 2022; 11:1750. [PMID: 35681445 PMCID: PMC9179518 DOI: 10.3390/cells11111750] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
The lymphatic system is pivotal for immunosurveillance and the maintenance of tissue homeostasis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing vessels, has both physiological and pathological roles. Recent advances in the molecular mechanisms regulating lymphangiogenesis have opened a new area of research on reparative lymphangiogenesis for the treatment of various pathological disorders comprising neurological disorders, cardiac repair, autoimmune disease, obesity, atherosclerosis, etc. Reactive oxygen species (ROS) produced by the various cell types serve as signaling molecules in several cellular mechanisms and regulate various aspects of growth-factor-mediated responses, including lymphangiogenesis. The ROS, including superoxide anion, hydrogen peroxide, and nitric oxide, play both beneficial and detrimental roles depending upon their levels and cellular microenvironment. Low ROS levels are essential for lymphangiogenesis. On the contrary, oxidative stress due to enhanced ROS generation and/or reduced levels of antioxidants suppresses lymphangiogenesis via promoting lymphatic endothelial cell apoptosis and death. In this review article, we provide an overview of types and sources of ROS, discuss the role of ROS in governing lymphangiogenesis and lymphatic function, and summarize the role of lymphatics in various diseases.
Collapse
Affiliation(s)
- Bhupesh Singla
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Ravi Varma Aithabathula
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Shweta Kapil
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children′s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38017, USA; (R.V.A.); (S.K.); (S.K.); (U.P.S.)
| |
Collapse
|
183
|
The Underlying Role of the Glymphatic System and Meningeal Lymphatic Vessels in Cerebral Small Vessel Disease. Biomolecules 2022; 12:biom12060748. [PMID: 35740873 PMCID: PMC9221030 DOI: 10.3390/biom12060748] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
There is a growing prevalence of vascular cognitive impairment (VCI) worldwide, and most research has suggested that cerebral small vessel disease (CSVD) is the main contributor to VCI. Several potential physiopathologic mechanisms have been proven to be involved in the process of CSVD, such as blood-brain barrier damage, small vessels stiffening, venous collagenosis, cerebral blood flow reduction, white matter rarefaction, chronic ischaemia, neuroinflammation, myelin damage, and subsequent neurodegeneration. However, there still is a limited overall understanding of the sequence and the relative importance of these mechanisms. The glymphatic system (GS) and meningeal lymphatic vessels (mLVs) are the analogs of the lymphatic system in the central nervous system (CNS). As such, these systems play critical roles in regulating cerebrospinal fluid (CSF) and interstitial fluid (ISF) transport, waste clearance, and, potentially, neuroinflammation. Accumulating evidence has suggested that the glymphatic and meningeal lymphatic vessels played vital roles in animal models of CSVD and patients with CSVD. Given the complexity of CSVD, it was significant to understand the underlying interaction between glymphatic and meningeal lymphatic transport with CSVD. Here, we provide a novel framework based on new advances in main four aspects, including vascular risk factors, potential mechanisms, clinical subtypes, and cognition, which aims to explain how the glymphatic system and meningeal lymphatic vessels contribute to the progression of CSVD and proposes a comprehensive insight into the novel therapeutic strategy of CSVD.
Collapse
|
184
|
Role of Transcriptional and Epigenetic Regulation in Lymphatic Endothelial Cell Development. Cells 2022; 11:cells11101692. [PMID: 35626729 PMCID: PMC9139870 DOI: 10.3390/cells11101692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
The lymphatic system is critical for maintaining the homeostasis of lipids and interstitial fluid and regulating the immune cell development and functions. Developmental anomaly-induced lymphatic dysfunction is associated with various pathological conditions, including lymphedema, inflammation, and cancer. Most lymphatic endothelial cells (LECs) are derived from a subset of endothelial cells in the cardinal vein. However, recent studies have reported that the developmental origin of LECs is heterogeneous. Multiple regulatory mechanisms, including those mediated by signaling pathways, transcription factors, and epigenetic pathways, are involved in lymphatic development and functions. Recent studies have demonstrated that the epigenetic regulation of transcription is critical for embryonic LEC development and functions. In addition to the chromatin structures, epigenetic modifications may modulate transcriptional signatures during the development or differentiation of LECs. Therefore, the understanding of the epigenetic mechanisms involved in the development and function of the lymphatic system can aid in the management of various congenital or acquired lymphatic disorders. Future studies must determine the role of other epigenetic factors and changes in mammalian lymphatic development and function. Here, the recent findings on key factors involved in the development of the lymphatic system and their epigenetic regulation, LEC origins from different organs, and lymphatic diseases are reviewed.
Collapse
|
185
|
Sudmeier LJ, Hoang KB, Nduom EK, Wieland A, Neill SG, Schniederjan MJ, Ramalingam SS, Olson JJ, Ahmed R, Hudson WH. Distinct phenotypic states and spatial distribution of CD8 + T cell clonotypes in human brain metastases. Cell Rep Med 2022; 3:100620. [PMID: 35584630 PMCID: PMC9133402 DOI: 10.1016/j.xcrm.2022.100620] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/07/2022] [Accepted: 04/01/2022] [Indexed: 12/30/2022]
Abstract
Metastatic disease in the brain is difficult to control and predicts poor prognosis. Here, we analyze human brain metastases and demonstrate their robust infiltration by CD8+ T cell subsets with distinct antigen specificities, phenotypic states, and spatial localization within the tumor microenvironment. Brain metastases are densely infiltrated by T cells; the majority of infiltrating CD8+ T cells express PD-1. Single-cell RNA sequencing shows significant clonal overlap between proliferating and exhausted CD8+ T cells, but these subsets have minimal clonal overlap with circulating and other tumor-infiltrating CD8+ T cells, including bystander CD8+ T cells specific for microbial antigens. Using spatial transcriptomics and spatial T cell receptor (TCR) sequencing, we show these clonally unrelated, phenotypically distinct CD8+ T cell populations occupy discrete niches within the brain metastasis tumor microenvironment. Together, our work identifies signaling pathways within CD8+ T cells and in their surrounding environment that may be targeted for immunotherapy of brain metastases.
Collapse
Affiliation(s)
- Lisa J Sudmeier
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Kimberly B Hoang
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Edjah K Nduom
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Andreas Wieland
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Stewart G Neill
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew J Schniederjan
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Suresh S Ramalingam
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey J Olson
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Rafi Ahmed
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| | - William H Hudson
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
186
|
Wang AZ, Bowman-Kirigin JA, Desai R, Kang LI, Patel PR, Patel B, Khan SM, Bender D, Marlin MC, Liu J, Osbun JW, Leuthardt EC, Chicoine MR, Dacey RG, Zipfel GJ, Kim AH, DeNardo DG, Petti AA, Dunn GP. Single-cell profiling of human dura and meningioma reveals cellular meningeal landscape and insights into meningioma immune response. Genome Med 2022; 14:49. [PMID: 35534852 PMCID: PMC9088131 DOI: 10.1186/s13073-022-01051-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 04/21/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Recent investigations of the meninges have highlighted the importance of the dura layer in central nervous system immune surveillance beyond a purely structural role. However, our understanding of the meninges largely stems from the use of pre-clinical models rather than human samples. METHODS Single-cell RNA sequencing of seven non-tumor-associated human dura samples and six primary meningioma tumor samples (4 matched and 2 non-matched) was performed. Cell type identities, gene expression profiles, and T cell receptor expression were analyzed. Copy number variant (CNV) analysis was performed to identify putative tumor cells and analyze intratumoral CNV heterogeneity. Immunohistochemistry and imaging mass cytometry was performed on selected samples to validate protein expression and reveal spatial localization of select protein markers. RESULTS In this study, we use single-cell RNA sequencing to perform the first characterization of both non-tumor-associated human dura and primary meningioma samples. First, we reveal a complex immune microenvironment in human dura that is transcriptionally distinct from that of meningioma. In addition, we characterize a functionally diverse and heterogenous landscape of non-immune cells including endothelial cells and fibroblasts. Through imaging mass cytometry, we highlight the spatial relationship among immune cell types and vasculature in non-tumor-associated dura. Utilizing T cell receptor sequencing, we show significant TCR overlap between matched dura and meningioma samples. Finally, we report copy number variant heterogeneity within our meningioma samples. CONCLUSIONS Our comprehensive investigation of both the immune and non-immune cellular landscapes of human dura and meningioma at single-cell resolution builds upon previously published data in murine models and provides new insight into previously uncharacterized roles of human dura.
Collapse
Affiliation(s)
- Anthony Z Wang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Jay A Bowman-Kirigin
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, USA
| | - Rupen Desai
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, USA
| | - Liang-I Kang
- Division of Anatomic and Molecular Pathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pujan R Patel
- Washington University School of Medicine, St. Louis, MO, USA
| | - Bhuvic Patel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, USA
| | - Saad M Khan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, USA
| | - Diane Bender
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - M Caleb Marlin
- Arthritis & Clinical Immunology Human Phenotyping Core, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jingxian Liu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua W Osbun
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, USA
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, USA
| | - Michael R Chicoine
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, USA
| | - Ralph G Dacey
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, USA
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, USA
| | - David G DeNardo
- Division of Oncology-Molecular Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Allegra A Petti
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
187
|
Strickland MR, Alvarez-Breckenridge C, Gainor JF, Brastianos PK. Tumor Immune Microenvironment of Brain Metastases: Toward Unlocking Antitumor Immunity. Cancer Discov 2022; 12:1199-1216. [PMID: 35394521 PMCID: PMC11440428 DOI: 10.1158/2159-8290.cd-21-0976] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/19/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Brain metastasis (BrM) is a devastating complication of solid tumors associated with poor outcomes. Immune-checkpoint inhibitors (ICI) have revolutionized the treatment of cancer, but determinants of response are incompletely understood. Given the rising incidence of BrM, improved understanding of immunobiologic principles unique to the central nervous system (CNS) and dissection of those that govern the activity of ICIs are paramount toward unlocking BrM-specific antitumor immunity. In this review, we seek to discuss the current clinical landscape of ICI activity in the CNS and CNS immunobiology, and we focus, in particular, on the role of glial cells in the CNS immune response to BrM. SIGNIFICANCE There is an urgent need to improve patient selection for and clinical activity of ICIs in patients with cancer with concomitant BrM. Increased understanding of the unique immunobiologic principles that govern response to ICIs in the CNS is critical toward identifying targets in the tumor microenvironment that may potentiate antitumor immunity.
Collapse
Affiliation(s)
| | | | - Justin F Gainor
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
188
|
Melatonin in ventricular and subarachnoid cerebrospinal fluid: Its function in the neural glymphatic network and biological significance for neurocognitive health. Biochem Biophys Res Commun 2022; 605:70-81. [DOI: 10.1016/j.bbrc.2022.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
|
189
|
Li X, Qi L, Yang D, Hao S, Zhang F, Zhu X, Sun Y, Chen C, Ye J, Yang J, Zhao L, Altmann DM, Cao S, Wang H, Wei B. Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system. Nat Neurosci 2022; 25:577-587. [PMID: 35524140 DOI: 10.1038/s41593-022-01063-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 03/24/2022] [Indexed: 01/13/2023]
Abstract
Recent studies have demonstrated that brain meningeal lymphatic vessels (MLVs) act as a drainage path directly into the cervical lymph nodes (CLNs) for macromolecules contained in the cerebrospinal fluid (CSF). However, the role of MLVs during CNS viral infection remains unexplored. Here, we found that infection with several neurotropic viruses in mice promotes MLV expansion but also causes impaired MLV-mediated drainage of macromolecules. Notably, MLVs could drain virus from the CNS to CLNs. Surgical ligation of the lymph vessels or photodynamic ablation of dorsal MLVs increased neurological damage and mortality of virus-infected mice. By contrast, pretreatment with vascular endothelial growth factor C promoted expansion of functional MLVs and alleviated the effects of viral infection. Together, these data indicate that functional MLVs facilitate virus clearance, and MLVs represent a critical path for virus spreading from the CNS to the CLNs. MLV-based therapeutic strategies may thus be useful for alleviating infection-induced neurological damage.
Collapse
Affiliation(s)
- Xiaojing Li
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China.,Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China.,Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Linlin Qi
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China.,Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Dan Yang
- Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - ShuJie Hao
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China.,Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Fang Zhang
- Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China.,Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China
| | - Xingguo Zhu
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China.,Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yue Sun
- School of Life Sciences, Peking University, Beijing, China
| | - Chen Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jing Yang
- School of Life Sciences, Peking University, Beijing, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Imperial College, Faculty of Medicine, Hammersmith Hospital, London, UK
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. .,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Bin Wei
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China. .,Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China. .,Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China. .,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
190
|
Omuro A. Immune-checkpoint inhibitors for glioblastoma: what have we learned? ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:266-269. [PMID: 35976319 PMCID: PMC9491432 DOI: 10.1590/0004-282x-anp-2022-s129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Glioblastoma, the most common malignant primary brain tumor, remains a lethal disease with few therapeutic options. Immunotherapies, particularly immune checkpoint inhibitors (ICPi), have revolutionized cancer treatment, but their role in glioblastoma is uncertain. OBJECTIVE To review the state of immunotherapies in glioblastoma, with an emphasis on recently published ICPi clinical trials. METHODS In this editorial/opinion article, we critically review results of the first generation of trials of ipilimumab, nivolumab and pembrolizumab in glioblastoma, as well as future directions. RESULTS Expression of PD-L1 is frequent in glioblastoma, ranging from 60-70% of patients. Phase 1 studies of nivolumab with and without ipilimumab, as well as pembrolizumab, showed no new safety concerns in brain tumors, and no neurotoxicity. However, randomized phase 3 trials of nivolumab showed no survival improvements over bevacizumab in recurrent glioblastoma; no role in newly diagnosed disease as a replacement for temozolomide in unmethylated MGMT promoter tumors; and no benefit as an addition to temozolomide in methylated MGMT tumors. However, studies examining post treatment tumor samples have shown signs of increased immunologic response, and occasional long lasting radiographic responses have been seen. A small study of pembrolizumab suggested a potential role as a "neoadjuvant" treatment in resectable recurrent glioblastoma, while other studies are investigating selection of patients with higher mutational burden and novel agents and combinatorial strategies. CONCLUSION Despite initial negative trials, immunotherapy remains of high interest in glioblastoma, and many trials are still ongoing. Improving our mechanistic understanding of the immunosuppression and T cell dysfunction induced by both tumor and the CNS microenvironment remains however crucial for the development of successful immunotherapeutic approaches in this disease.
Collapse
Affiliation(s)
- Antonio Omuro
- Yale University, Yale School of Medicine, New Haven, USA
| |
Collapse
|
191
|
Tang Y, Yu Z, Lu X, Fan Q, Huang W. Overcoming Vascular Barriers to Improve the Theranostic Outcomes of Nanomedicines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103148. [PMID: 35246962 PMCID: PMC9069202 DOI: 10.1002/advs.202103148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/16/2022] [Indexed: 05/04/2023]
Abstract
Nanotheranostics aims to utilize nanomaterials to prevent, diagnose, and treat diseases to improve the quality of patients' lives. Blood vessels are responsible to deliver nutrients and oxygen to the whole body, eliminate waste, and provide access for patrolling immune cells for healthy tissues. Meanwhile, they can also nourish disease tissues, spread disease factors or cells into other healthy tissues, and deliver nanotheranostic agents to cover all the regions of a disease tissue. Thus, blood vessels are the first and the most important barrier for highly efficient nanotheranostics. Here, the structure and function of blood vessels are explored and how these characteristics affect nanotheranostics is discussed. Moreover, new mechanisms and related strategies about overcoming vascular obstacles for improved nanotheranostic outcomes are critically summarized, and their merits and demerits of each strategy are analyzed. Moreover, the present challenges to completely exhibit the potential of overcoming vascular barriers to improve the theranostic outcomes of nanomedicines in life science are also discussed. Finally, the future perspective is further discussed.
Collapse
Affiliation(s)
- Yufu Tang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
| | - Zhongzheng Yu
- School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingapore637459Singapore
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi'an710072China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211800P. R. China
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
- Shaanxi Institute of Flexible Electronics (SIFE)Northwestern Polytechnical University (NPU)Xi'an710072China
| |
Collapse
|
192
|
Wei J, Wu D, Zhao S, Shao Y, Xia Y, Ni D, Qiu X, Zhang J, Chen J, Meng F, Zhong Z. Immunotherapy of Malignant Glioma by Noninvasive Administration of TLR9 Agonist CpG Nano-Immunoadjuvant. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103689. [PMID: 35253404 PMCID: PMC9069387 DOI: 10.1002/advs.202103689] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/19/2022] [Indexed: 05/11/2023]
Abstract
Immunotherapy with toll like receptor 9 (TLR9) agonist CpG ODN offers an emergent strategy to treat life-threatening malignant glioma. CpG is typically applied invasively by intracranial and intrathecal administration which induces not only poor compliance and lessened potency but also possibly strong adverse effects and immunotoxicity. Here, it is reported that immunotherapy of murine LCPN glioma is greatly boosted by polymersome-steered intravenous and intranasal brain delivery of CpG. CpG is efficiently loaded in apolipoprotein E peptide-directed polymersomes to give blood-brain barrier permeable and glioma and cervical lymph node-homing CpG nano-immunoadjuvant (t-NanoCpG) which strongly stimulates the maturation of dendritic cells, antigen cross-presentation, and production of proinflammatory cytokines in vivo. Intriguingly, both intravenous and intranasal administration of t-NanoCpG brings about significant survival benefits in murine LCPN glioma-bearing mice while free CpG and nontargeted CpG nano-immunoadjuvant (NanoCpG) afford modest therapeutic effects. Moreover, combination of t-NanoCpG with radiotherapy further boosts the immunotherapeutic effects leading to more improved survival rate of mice. This intelligent brain-permeable nano-immunoadjuvant provides a new, minimally invasive and highly potent strategy for immunotherapy of glioma.
Collapse
Affiliation(s)
- Jingjing Wei
- Biomedical Polymers LaboratoryCollege of Chemistry, Chemical Engineering and Materials ScienceCollege of Pharmaceutical Sciencesand State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123P. R. China
| | - Di Wu
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhou215123P. R. China
| | - Songsong Zhao
- Biomedical Polymers LaboratoryCollege of Chemistry, Chemical Engineering and Materials ScienceCollege of Pharmaceutical Sciencesand State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123P. R. China
| | - Yu Shao
- Institutes of Biology and Medical Sciences (IBMS)Soochow UniversitySuzhou215123P. R. China
| | - Yifeng Xia
- Biomedical Polymers LaboratoryCollege of Chemistry, Chemical Engineering and Materials ScienceCollege of Pharmaceutical Sciencesand State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123P. R. China
| | - Dawei Ni
- Biomedical Polymers LaboratoryCollege of Chemistry, Chemical Engineering and Materials ScienceCollege of Pharmaceutical Sciencesand State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123P. R. China
| | - Xinyun Qiu
- Biomedical Polymers LaboratoryCollege of Chemistry, Chemical Engineering and Materials ScienceCollege of Pharmaceutical Sciencesand State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123P. R. China
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences (IBMS)Soochow UniversitySuzhou215123P. R. China
| | - Jian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhou215123P. R. China
- Chinese Institute for Brain Research, BeijingResearch Unit of Medical NeurobiologyChinese Academy of Medical Sciences (No. 2019RU003)Beijing102206P. R. China
| | - Fenghua Meng
- Biomedical Polymers LaboratoryCollege of Chemistry, Chemical Engineering and Materials ScienceCollege of Pharmaceutical Sciencesand State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers LaboratoryCollege of Chemistry, Chemical Engineering and Materials ScienceCollege of Pharmaceutical Sciencesand State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
193
|
Eisemann T, Wechsler-Reya RJ. Coming in from the cold: overcoming the hostile immune microenvironment of medulloblastoma. Genes Dev 2022; 36:514-532. [PMID: 35680424 PMCID: PMC9186392 DOI: 10.1101/gad.349538.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Medulloblastoma is an aggressive brain tumor that occurs predominantly in children. Despite intensive therapy, many patients die of the disease, and novel therapies are desperately needed. Although immunotherapy has shown promise in many cancers, the low mutational burden, limited infiltration of immune effector cells, and immune-suppressive microenvironment of medulloblastoma have led to the assumption that it is unlikely to respond to immunotherapy. However, emerging evidence is challenging this view. Here we review recent preclinical and clinical studies that have identified mechanisms of immune evasion in medulloblastoma, and highlight possible therapeutic interventions that may give new hope to medulloblastoma patients and their families.
Collapse
Affiliation(s)
- Tanja Eisemann
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA.,Department of Pediatrics, University of California at San Diego, La Jolla, California 92161, USA
| |
Collapse
|
194
|
Tabet A, Apra C, Stranahan AM, Anikeeva P. Changes in Brain Neuroimmunology Following Injury and Disease. Front Integr Neurosci 2022; 16:894500. [PMID: 35573444 PMCID: PMC9093707 DOI: 10.3389/fnint.2022.894500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/04/2022] [Indexed: 01/21/2023] Open
Abstract
The nervous and immune systems are intimately related in the brain and in the periphery, where changes to one affect the other and vice-versa. Immune cells are responsible for sculpting and pruning neuronal synapses, and play key roles in neuro-development and neurological disease pathology. The immune composition of the brain is tightly regulated from the periphery through the blood-brain barrier (BBB), whose maintenance is driven to a significant extent by extracellular matrix (ECM) components. After a brain insult, the BBB can become disrupted and the composition of the ECM can change. These changes, and the resulting immune infiltration, can have detrimental effects on neurophysiology and are the hallmarks of several diseases. In this review, we discuss some processes that may occur after insult, and potential consequences to brain neuroimmunology and disease progression. We then highlight future research directions and opportunities for further tool development to probe the neuro-immune interface.
Collapse
Affiliation(s)
- Anthony Tabet
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- *Correspondence: Anthony Tabet
| | - Caroline Apra
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, United States
- Sorbonne Universite, Paris, France
| | - Alexis M. Stranahan
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Polina Anikeeva
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
- Polina Anikeeva
| |
Collapse
|
195
|
Chen F, Xie X, Wang L. Research Progress on Intracranial Lymphatic Circulation and Its Involvement in Disorders. Front Neurol 2022; 13:865714. [PMID: 35359624 PMCID: PMC8963982 DOI: 10.3389/fneur.2022.865714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
The lymphatic system is an important part of the circulatory system, as an auxiliary system of the vein, which has the functions of immune defense, maintaining the stability of the internal environment, and regulating the pressure of the tissue. It has long been thought that there are no typical lymphatic vessels consisting of endothelial cells in the central nervous system (CNS). In recent years, studies have confirmed the presence of lymphatic vessels lined with endothelial cells in the meninges. The periventricular meninges of the CNS host different populations of immune cells that affect the immune response associated with the CNS, and the continuous drainage of interstitial and cerebrospinal fluid produced in the CNS also proceeds mainly by the lymphatic system. This fluid process mobilizes to a large extent the transfer of antigens produced by the CNS to the meningeal immune cells and subsequently to the peripheral immune system through the lymphatic network, with clinically important implications for infectious diseases, autoimmunity, and tumor immunology. In our review, we discussed recent research advances in intracranial lymphatic circulation and the pathogenesis of its associated diseases, especially the discovery of meningeal lymphatic vessels, which has led to new therapeutic targets for the treatment of diseases associated with the intracranial lymphatic system.
Collapse
Affiliation(s)
- Fan Chen
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, China
| | - Xuan Xie
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital of Fourth Military Medical University, Xi'an, China
| |
Collapse
|
196
|
Hsu M, Laaker C, Madrid A, Herbath M, Choi YH, Sandor M, Fabry Z. Neuroinflammation creates an immune regulatory niche at the meningeal lymphatic vasculature near the cribriform plate. Nat Immunol 2022; 23:581-593. [PMID: 35347285 PMCID: PMC8989656 DOI: 10.1038/s41590-022-01158-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 02/12/2022] [Indexed: 12/29/2022]
Abstract
Meningeal lymphatics near the cribriform plate undergo lymphangiogenesis during neuroinflammation to drain excess fluid. Here, we hypothesized that lymphangiogenic vessels may acquire an altered phenotype to regulate immunity. Using single-cell RNA sequencing of meningeal lymphatics near the cribriform plate from healthy and experimental autoimmune encephalomyelitis in the C57BL/6 model, we report that neuroinflammation induces the upregulation of genes involved in antigen presentation such as major histocompatibility complex class II, adhesion molecules including vascular cell adhesion protein 1 and immunoregulatory molecules such as programmed cell death 1 ligand 1, where many of these changes are mediated by interferon-γ. The inflamed lymphatics retain CD11c+ cells and CD4 T cells where they capture and present antigen, creating an immunoregulatory niche that represents an underappreciated interface in the regulation of neuroinflammation. We also found discontinuity of the arachnoid membrane near the cribriform plate, which provides unrestricted access to the cerebrospinal fluid. These findings highlight a previously unknown function of local meningeal lymphatics in regulating immunity that has only previously been characterized in draining lymph nodes.
Collapse
Affiliation(s)
- Martin Hsu
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Collin Laaker
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Andy Madrid
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Melinda Herbath
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Yun Hwa Choi
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
197
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
198
|
Olate-Briones A, Escalona E, Salazar C, Herrada MJ, Liu C, Herrada AA, Escobedo N. The meningeal lymphatic vasculature in neuroinflammation. FASEB J 2022; 36:e22276. [PMID: 35344212 DOI: 10.1096/fj.202101574rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
The lymphatic vasculature is a unidirectional network of lymphatic endothelial cells, whose main role is to maintain fluid homeostasis along with the absorption of dietary fat in the gastrointestinal organs and management and coordination of immune cell trafficking into lymph nodes during homeostasis and under inflammatory conditions. In homeostatic conditions, immune cells, such as dendritic cells, macrophages, or T cells can enter into the lymphatic vasculature and move easily through the lymph reaching secondary lymph nodes where immune cell activation or peripheral tolerance can be modulated. However, under inflammatory conditions such as pathogen infection, increased permeabilization of lymphatic vessels allows faster immune cell migration into inflamed tissues following a chemokine gradient, facilitating pathogen clearance and the resolution of inflammation. Interestingly, since the re-discovery of lymphatic vasculature in the central nervous system, known as the meningeal lymphatic vasculature, the role of these lymphatics as a key player in several neurological disorders has been described, with emphasis on the neurodegenerative process. Alternatively, less has been discussed about meningeal lymphatics and its role in neuroinflammation. In this review, we discuss current knowledge about the anatomy and function of the meningeal lymphatic vasculature and specifically analyze its contribution to different neuroinflammatory processes, highlighting the potential therapeutic target of meningeal lymphatic vasculature in these pathological conditions.
Collapse
Affiliation(s)
- Alexandra Olate-Briones
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Emilia Escalona
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Celia Salazar
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | | | - Chaohong Liu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andrés A Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Noelia Escobedo
- Lymphatic Vasculature and Inflammation Research Laboratory, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
199
|
Bonini F, Mosser S, Mor FM, Boutabla A, Burch P, Béduer A, Roux A, Braschler T. The Role of Interstitial Fluid Pressure in Cerebral Porous Biomaterial Integration. Brain Sci 2022; 12:417. [PMID: 35447953 PMCID: PMC9040716 DOI: 10.3390/brainsci12040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/05/2023] Open
Abstract
Recent advances in biomaterials offer new possibilities for brain tissue reconstruction. Biocompatibility, provision of cell adhesion motives and mechanical properties are among the present main design criteria. We here propose a radically new and potentially major element determining biointegration of porous biomaterials: the favorable effect of interstitial fluid pressure (IFP). The force applied by the lymphatic system through the interstitial fluid pressure on biomaterial integration has mostly been neglected so far. We hypothesize it has the potential to force 3D biointegration of porous biomaterials. In this study, we develop a capillary hydrostatic device to apply controlled in vitro interstitial fluid pressure and study its effect during 3D tissue culture. We find that the IFP is a key player in porous biomaterial tissue integration, at physiological IFP levels, surpassing the known effect of cell adhesion motives. Spontaneous electrical activity indicates that the culture conditions are not harmful for the cells. Our work identifies interstitial fluid pressure at physiological negative values as a potential main driver for tissue integration into porous biomaterials. We anticipate that controlling the IFP level could narrow the gap between in vivo and in vitro and therefore decrease the need for animal screening in biomaterial design.
Collapse
Affiliation(s)
- Fabien Bonini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1022 Geneva, Switzerland; (F.B.); (A.B.); (A.B.)
| | - Sébastien Mosser
- Neurix SA, Avenue de la Roseraie 64, CH-1022 Geneva, Switzerland;
| | - Flavio Maurizio Mor
- Haute École du Paysage, d’Ingénierie et d’Architecture de Genève, Haute École Spécialisée de Suisse Occidentale (HEPIA HES-SO), University of Applied Sciences and Arts Western Switzerland, CH-1202 Geneva, Switzerland; (F.M.M.); (A.R.)
| | - Anissa Boutabla
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1022 Geneva, Switzerland; (F.B.); (A.B.); (A.B.)
| | - Patrick Burch
- Volumina-Medical SA, Route de la Corniche 5, CH-1066 Epalinges, Switzerland;
| | - Amélie Béduer
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1022 Geneva, Switzerland; (F.B.); (A.B.); (A.B.)
- Volumina-Medical SA, Route de la Corniche 5, CH-1066 Epalinges, Switzerland;
| | - Adrien Roux
- Haute École du Paysage, d’Ingénierie et d’Architecture de Genève, Haute École Spécialisée de Suisse Occidentale (HEPIA HES-SO), University of Applied Sciences and Arts Western Switzerland, CH-1202 Geneva, Switzerland; (F.M.M.); (A.R.)
| | - Thomas Braschler
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1022 Geneva, Switzerland; (F.B.); (A.B.); (A.B.)
| |
Collapse
|
200
|
Meningeal lymphatics regulate radiotherapy efficacy through modulating anti-tumor immunity. Cell Res 2022; 32:543-554. [PMID: 35301438 PMCID: PMC9159979 DOI: 10.1038/s41422-022-00639-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
As a first-line treatment, radiotherapy (RT) is known to modulate the immune microenvironment of glioma, but it is unknown whether the meningeal lymphatic vessel (MLV)-cervical lymph node (CLN) network regulates the process or influences RT efficacy. Here, we show that the MLV-CLN network contributes to RT efficacy in brain tumors and mediates the RT-modulated anti-tumor immunity that is enhanced by vascular endothelial growth factor C (VEGF-C). Meningeal lymphatic dysfunction impaired tumor-derived dendritic cell (DC) trafficking and CD8+ T cell activation after RT, whereas tumors overexpressing VEGF-C with meningeal lymphatic expansion were highly sensitive to RT. Mechanistically, VEGF-C-driven modulation of RT-triggered anti-tumor immunity was attributed to C-C Motif Chemokine Ligand 21 (CCL21)-dependent DC trafficking and CD8+ T cell activation. Notably, delivery of VEGF-C mRNA significantly enhanced RT efficacy and anti-tumor immunity in brain tumors. These findings suggest an essential role of the MLV-CLN network in RT-triggered anti-tumor immunity, and highlight the potential of VEGF-C mRNA for brain tumor therapy.
Collapse
|