151
|
Burnum-Johnson KE, Conrads TP, Drake RR, Herr AE, Iyengar R, Kelly RT, Lundberg E, MacCoss MJ, Naba A, Nolan GP, Pevzner PA, Rodland KD, Sechi S, Slavov N, Spraggins JM, Van Eyk JE, Vidal M, Vogel C, Walt DR, Kelleher NL. New Views of Old Proteins: Clarifying the Enigmatic Proteome. Mol Cell Proteomics 2022; 21:100254. [PMID: 35654359 PMCID: PMC9256833 DOI: 10.1016/j.mcpro.2022.100254] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
All human diseases involve proteins, yet our current tools to characterize and quantify them are limited. To better elucidate proteins across space, time, and molecular composition, we provide a >10 years of projection for technologies to meet the challenges that protein biology presents. With a broad perspective, we discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise. Extrapolating recent trends, we describe a next generation of approaches to define, quantify, and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease in the coming decade.
Collapse
Affiliation(s)
- Kristin E Burnum-Johnson
- The Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA.
| | - Thomas P Conrads
- Inova Women's Service Line, Inova Health System, Falls Church, Virginia, USA
| | - Richard R Drake
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Ravi Iyengar
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Emma Lundberg
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, California, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Salvatore Sechi
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nikolai Slavov
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Jeffrey M Spraggins
- Department of Cell and Developmental Biology, Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Institute in the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Marc Vidal
- Department of Genetics, Harvard University, Cambridge, Massachusetts, USA
| | - Christine Vogel
- New York University Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - David R Walt
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Wyss Institute at Harvard University, Boston, Massachusetts, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
152
|
Reixachs‐Solé M, Eyras E. Uncovering the impacts of alternative splicing on the proteome with current omics techniques. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1707. [PMID: 34979593 PMCID: PMC9542554 DOI: 10.1002/wrna.1707] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
The high-throughput sequencing of cellular RNAs has underscored a broad effect of isoform diversification through alternative splicing on the transcriptome. Moreover, the differential production of transcript isoforms from gene loci has been recognized as a critical mechanism in cell differentiation, organismal development, and disease. Yet, the extent of the impact of alternative splicing on protein production and cellular function remains a matter of debate. Multiple experimental and computational approaches have been developed in recent years to address this question. These studies have unveiled how molecular changes at different steps in the RNA processing pathway can lead to differences in protein production and have functional effects. New and emerging experimental technologies open exciting new opportunities to develop new methods to fully establish the connection between messenger RNA expression and protein production and to further investigate how RNA variation impacts the proteome and cell function. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing Translation > Regulation RNA Evolution and Genomics > Computational Analyses of RNA.
Collapse
Affiliation(s)
- Marina Reixachs‐Solé
- The John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- EMBL Australia Partner Laboratory Network and the Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Eduardo Eyras
- The John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- EMBL Australia Partner Laboratory Network and the Australian National UniversityCanberraAustralian Capital TerritoryAustralia
- Catalan Institution for Research and Advanced StudiesBarcelonaSpain
- Hospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
| |
Collapse
|
153
|
Rahman M, Islam KR, Islam MR, Islam MJ, Kaysir MR, Akter M, Rahman MA, Alam SMM. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. MICROMACHINES 2022; 13:968. [PMID: 35744582 PMCID: PMC9229244 DOI: 10.3390/mi13060968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Single-molecule techniques have shifted the paradigm of biological measurements from ensemble measurements to probing individual molecules and propelled a rapid revolution in related fields. Compared to ensemble measurements of biomolecules, single-molecule techniques provide a breadth of information with a high spatial and temporal resolution at the molecular level. Usually, optical and electrical methods are two commonly employed methods for probing single molecules, and some platforms even offer the integration of these two methods such as optofluidics. The recent spark in technological advancement and the tremendous leap in fabrication techniques, microfluidics, and integrated optofluidics are paving the way toward low cost, chip-scale, portable, and point-of-care diagnostic and single-molecule analysis tools. This review provides the fundamentals and overview of commonly employed single-molecule methods including optical methods, electrical methods, force-based methods, combinatorial integrated methods, etc. In most single-molecule experiments, the ability to manipulate and exercise precise control over individual molecules plays a vital role, which sometimes defines the capabilities and limits of the operation. This review discusses different manipulation techniques including sorting and trapping individual particles. An insight into the control of single molecules is provided that mainly discusses the recent development of electrical control over single molecules. Overall, this review is designed to provide the fundamentals and recent advancements in different single-molecule techniques and their applications, with a special focus on the detection, manipulation, and control of single molecules on chip-scale devices.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Kazi Rafiqul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Rashedul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Jahirul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Md. Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada;
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Masuma Akter
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Arifur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - S. M. Mahfuz Alam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| |
Collapse
|
154
|
Bachman JL, Wight CD, Bardo AM, Johnson AM, Pavlich CI, Boley AJ, Wagner HR, Swaminathan J, Iverson BL, Marcotte EM, Anslyn EV. Evaluating the Effect of Dye-Dye Interactions of Xanthene-Based Fluorophores in the Fluorosequencing of Peptides. Bioconjug Chem 2022; 33:1156-1165. [PMID: 35622964 DOI: 10.1021/acs.bioconjchem.2c00103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A peptide sequencing scheme utilizing fluorescence microscopy and Edman degradation to determine the amino acid position in fluorophore-labeled peptides was recently reported, referred to as fluorosequencing. It was observed that multiple fluorophores covalently linked to a peptide scaffold resulted in a decrease in the anticipated fluorescence output and worsened the single-molecule fluorescence analysis. In this study, we report an improvement in the photophysical properties of fluorophore-labeled peptides by incorporating long and flexible (PEG)10 linkers at the peptide attachment points. Long linkers to the fluorophores were installed using copper-catalyzed azide-alkyne cycloaddition conditions. The photophysical properties of these peptides were analyzed in solution and immobilized on a microscope slide at the single-molecule level under peptide fluorosequencing conditions. Solution-phase fluorescence analysis showed improvements in both quantum yield and fluorescence lifetime with the long linkers. While on the solid support, photometry measurements showed significant increases in fluorescence brightness and 20 to 60% improvements in the ability to determine the amino acid position with fluorosequencing. This spatial distancing strategy demonstrates improvements in the peptide sequencing platform and provides a general approach for improving the photophysical properties in fluorophore-labeled macromolecules.
Collapse
Affiliation(s)
- James L Bachman
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Christopher D Wight
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Angela M Bardo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Amber M Johnson
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Cyprian I Pavlich
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alexander J Boley
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Holden R Wagner
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jagannath Swaminathan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brent L Iverson
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
155
|
Abstract
Despite tremendous gains over the past decade, methods for characterizing proteins have generally lagged behind those for nucleic acids, which are characterized by extremely high sensitivity, dynamic range, and throughput. However, the ability to directly characterize proteins at nucleic acid levels would address critical biological challenges such as more sensitive medical diagnostics, deeper protein quantification, large-scale measurement, and discovery of alternate protein isoforms and modifications and would open new paths to single-cell proteomics. In response to this need, there has been a push to radically improve protein sequencing technologies by taking inspiration from high-throughput nucleic acid sequencing, with a particular focus on developing practical methods for single-molecule protein sequencing (SMPS). SMPS technologies fall generally into three categories: sequencing by degradation (e.g., mass spectrometry or fluorosequencing), sequencing by transit (e.g., nanopores or quantum tunneling), and sequencing by affinity (as in DNA hybridization-based approaches). We describe these diverse approaches, which range from those that are already experimentally well-supported to the merely speculative, in this nascent field striving to reformulate proteomics.
Collapse
Affiliation(s)
- Brendan M Floyd
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, Texas, USA; ,
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, Texas, USA; ,
| |
Collapse
|
156
|
Abstract
This review discusses our understanding of platelet diversity with implications for the roles of platelets in hemostasis and thrombosis and identifies advanced technologies set to provide new insights. We use the term diversity to capture intrasubject platelet variability that can be intrinsic or governed by the environment and lead to a heterogeneous response pattern of aggregation, clot promotion, and external communication. Using choice examples, we discuss how the use of advanced technologies can provide new insights into the underlying causes of platelet molecular, structural, and functional diversity. As sources of diversity, we discuss the proliferating megakaryocytes with different allele-specific expression patterns, the asymmetrical formation of proplatelets, changes in platelets induced by aging and priming, interplatelet heterogeneity in thrombus organization and stability, and platelet-dependent communications. We provide indications how current knowledge gaps can be addressed using promising technologies, such as next-generation sequencing, proteomic approaches, advanced imaging techniques, multicolor flow and mass cytometry, multifunctional microfluidics assays, and organ-on-a-chip platforms. We then argue how this technology base can aid in characterizing platelet populations and in identifying platelet biomarkers relevant for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (J.W.M.H.)
| | - Jonathan West
- Faculty of Medicine and Centre for Hybrid Biodevices, University of Southampton, United Kingdom (J.W.)
| |
Collapse
|
157
|
Dayon L, Cominetti O, Affolter M. Proteomics of Human Biological Fluids for Biomarker Discoveries: Technical Advances and Recent Applications. Expert Rev Proteomics 2022; 19:131-151. [PMID: 35466824 DOI: 10.1080/14789450.2022.2070477] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Biological fluids are routine samples for diagnostic testing and monitoring. Blood samples are typically measured because of their moderate collection invasiveness and high information content on health and disease. Several body fluids, such as cerebrospinal fluid (CSF), are also studied and suited to specific pathologies. Over the last two decades proteomics has quested to identify protein biomarkers but with limited success. Recent technologies and refined pipelines have accelerated the profiling of human biological fluids. AREAS COVERED We review proteomic technologies for the identification of biomarkers. Those are based on antibodies/aptamers arrays or mass spectrometry (MS), but new ones are emerging. Advances in scalability and throughput have allowed to better design studies and cope with the limited sample size that had until now prevailed due to technological constraints. With these enablers, plasma/serum, CSF, saliva, tears, urine, and milk proteomes have been further profiled; we provide a non-exhaustive picture of some recent highlights (mainly covering literature from last five years in the Scopus database) using MS-based proteomics. EXPERT OPINION While proteomics has been in the shadow of genomics for years, proteomic tools and methodologies have reached a certain maturity. They are better suited to discover innovative and robust biofluid biomarkers.
Collapse
Affiliation(s)
- Loïc Dayon
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland.,Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ornella Cominetti
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Michael Affolter
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
| |
Collapse
|
158
|
Cardoch S, Timneanu N, Caleman C, Scheicher RH. Distinguishing between Similar Miniproteins with Single-Molecule Nanopore Sensing: A Computational Study. ACS NANOSCIENCE AU 2022; 2:119-127. [PMID: 37101662 PMCID: PMC10125149 DOI: 10.1021/acsnanoscienceau.1c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nanopore is a tool in single-molecule sensing biotechnology that offers label-free identification with high throughput. Nanopores have been successfully applied to sequence DNA and show potential in the study of proteins. Nevertheless, the task remains challenging due to the large variability in size, charges, and folds of proteins. Miniproteins have a small number of residues, limited secondary structure, and stable tertiary structure, which can offer a systematic way to reduce complexity. In this computational work, we theoretically evaluated sensing two miniproteins found in the human body using a silicon nitride nanopore. We employed molecular dynamics methods to compute occupied-pore ionic current magnitudes and electronic structure calculations to obtain interaction strengths between pore wall and miniprotein. From the interaction strength, we derived dwell times using a mix of combinatorics and numerical solutions. This latter approach circumvents typical computational demands needed to simulate translocation events using molecular dynamics. We focused on two miniproteins potentially difficult to distinguish owing to their isotropic geometry, similar number of residues, and overall comparable structure. We found that the occupied-pore current magnitudes not to vary significantly, but their dwell times differ by 1 order of magnitude. Together, these results suggest a successful identification protocol for similar miniproteins.
Collapse
Affiliation(s)
- Sebastian Cardoch
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Nicusor Timneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Carl Caleman
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ralph H. Scheicher
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| |
Collapse
|
159
|
Webber KGI, Truong T, Johnston SM, Zapata SE, Liang Y, Davis JM, Buttars AD, Smith FB, Jones HE, Mahoney AC, Carson RH, Nwosu AJ, Heninger JL, Liyu AV, Nordin GP, Zhu Y, Kelly RT. Label-Free Profiling of up to 200 Single-Cell Proteomes per Day Using a Dual-Column Nanoflow Liquid Chromatography Platform. Anal Chem 2022; 94:6017-6025. [PMID: 35385261 PMCID: PMC9356711 DOI: 10.1021/acs.analchem.2c00646] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Single-cell proteomics (SCP) has great potential to advance biomedical research and personalized medicine. The sensitivity of such measurements increases with low-flow separations (<100 nL/min) due to improved ionization efficiency, but the time required for sample loading, column washing, and regeneration in these systems can lead to low measurement throughput and inefficient utilization of the mass spectrometer. Herein, we developed a two-column liquid chromatography (LC) system that dramatically increases the throughput of label-free SCP using two parallel subsystems to multiplex sample loading, online desalting, analysis, and column regeneration. The integration of MS1-based feature matching increased proteome coverage when short LC gradients were used. The high-throughput LC system was reproducible between the columns, with a 4% difference in median peptide abundance and a median CV of 18% across 100 replicate analyses of a single-cell-sized peptide standard. An average of 621, 774, 952, and 1622 protein groups were identified with total analysis times of 7, 10, 15, and 30 min, corresponding to a measurement throughput of 206, 144, 96, and 48 samples per day, respectively. When applied to single HeLa cells, we identified nearly 1000 protein groups per cell using 30 min cycles and 660 protein groups per cell for 15 min cycles. We explored the possibility of measuring cancer therapeutic targets with a pilot study comparing the K562 and Jurkat leukemia cell lines. This work demonstrates the feasibility of high-throughput label-free single-cell proteomics.
Collapse
Affiliation(s)
- Kei G. I. Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - S. Madisyn Johnston
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Sebastian E. Zapata
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Yiran Liang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Jacob M. Davis
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Alexander D. Buttars
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Fletcher B. Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Hailey E. Jones
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Arianna C. Mahoney
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Richard H. Carson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Andikan J. Nwosu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Jacob L. Heninger
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Andrey V. Liyu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gregory P. Nordin
- Department of Electrical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ryan T. Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
160
|
Abstract
Evolution has found countless ways to transport material across cells and cellular compartments separated by membranes. Protein assemblies are the cornerstone for the formation of channels and pores that enable this regulated passage of molecules in and out of cells, contributing to maintaining most of the fundamental processes that sustain living organisms. As in several other occasions, we have borrowed from the natural properties of these biological systems to push technology forward and have been able to hijack these nano-scale proteinaceous pores to learn about the physical and chemical features of molecules passing through them. Today, a large repertoire of biological pores is exploited as molecular sensors for characterizing biomolecules that are relevant for the advancement of life sciences and application to medicine. Although the technology has quickly matured to enable nucleic acid sensing with transformative implications for genomics, biological pores stand as some of the most promising candidates to drive the next developments in single-molecule proteomics.
Collapse
Affiliation(s)
- Simon Finn Mayer
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Chan Cao
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
161
|
Ying C, Houghtaling J, Mayer M. Effects of off-axis translocation through nanopores on the determination of shape and volume estimates for individual particles. NANOTECHNOLOGY 2022; 33:275501. [PMID: 35320779 DOI: 10.1088/1361-6528/ac6087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Resistive pulses generated by nanoparticles that translocate through a nanopore contain multi-parametric information about the physical properties of those particles. For example, non-spherical particles sample several different orientations during translocation, producing fluctuations in blockade current that relate to their shape. Due to the heterogenous distribution of electric field from the center to the wall of a nanopore while a particle travels through the pore, its radial position influences the blockade current, thereby affecting the quantification of parameters related to the particle's characteristics. Here, we investigate the influence of these off-axis effects on parameters estimated by performing finite element simulations of dielectric particles transiting a cylindrical nanopore. We varied the size, ellipsoidal shape, and radial position of individual particles, as well as the size of the nanopore. As expected, nanoparticles translocating near the nanopore wall produce increase current blockades, resulting in overestimates of particle volume. We demonstrated that off-axis effects also influence estimates of shape determined from resistive pulse analyses, sometimes producing a multiple-fold deviation in ellipsoidal length-to-diameter ratio between estimates and reference values. By using a nanopore with the minimum possible diameter that still allows the particle to rotate while translocating, off-axis effects on the determination of both volume and shape can be minimized. In addition, tethering the nanoparticles to a fluid coating on the nanopore wall makes it possible to determine an accurate particle shape with an overestimated volume. This work provides a framework to select optimal ratios of nanopore to nanoparticle size for experiments targeting free translocations.
Collapse
Affiliation(s)
- Cuifeng Ying
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Jared Houghtaling
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
162
|
Wu Y, Jamali S, Tilley RD, Gooding JJ. Spiers Memorial Lecture. Next generation nanoelectrochemistry: the fundamental advances needed for applications. Faraday Discuss 2022; 233:10-32. [PMID: 34874385 DOI: 10.1039/d1fd00088h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanoelectrochemistry, where electrochemical processes are controlled and investigated with nanoscale resolution, is gaining more and more attention because of the many potential applications in energy and sensing and the fact that there is much to learn about fundamental electrochemical processes when we explore them at the nanoscale. The development of instrumental methods that can explore the heterogeneity of electrochemistry occurring across an electrode surface, monitoring single molecules or many single nanoparticles on a surface simultaneously, have been pivotal in giving us new insights into nanoscale electrochemistry. Equally important has been the ability to synthesise or fabricate nanoscale entities with a high degree of control that allows us to develop nanoscale devices. Central to the latter has been the incredible advances in nanomaterial synthesis where electrode materials with atomic control over electrochemically active sites can be achieved. After introducing nanoelectrochemistry, this paper focuses on recent developments in two major application areas of nanoelectrochemistry; electrocatalysis and using single entities in sensing. Discussion of the developments in these two application fields highlights some of the advances in the fundamental understanding of nanoelectrochemical systems really driving these applications forward. Looking into our nanocrystal ball, this paper then highlights: the need to understand the impact of nanoconfinement on electrochemical processes, the need to measure many single entities, the need to develop more sophisticated ways of treating the potentially large data sets from measuring such many single entities, the need for more new methods for characterising nanoelectrochemical systems as they operate and the need for material synthesis to become more reproducible as well as possess more nanoscale control.
Collapse
Affiliation(s)
- Yanfang Wu
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Sina Jamali
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Richard D Tilley
- School of Chemistry and Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
163
|
Zrehen A, Hili U, Weil N, Ben-David O, Yosef A, Eitan B. UV surface disinfection in a wearable drug delivery device. BIOMEDICAL OPTICS EXPRESS 2022; 13:2144-2155. [PMID: 35519282 PMCID: PMC9045911 DOI: 10.1364/boe.453270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
The advent of recombinant DNA technology fundamentally altered the drug discovery landscape, replacing traditional small-molecule drugs with protein and peptide-based biologics. Being susceptible to degradation via the oral route, biologics require comparatively invasive injections, most commonly by intravenous infusion (IV). Significant academic and industrial efforts are underway to replace IV transport with subcutaneous delivery by wearable infusion devices. To further complement the ease-of-use and safety of disposable infusion devices, surface disinfection of the drug container can be automated. For ease of use, the desired injector is a combination device, where the drug is inside the injector as a single solution combination device. The main obstacle of the desired solution is the inability to sterilize both injector and drug in the same chamber or using the same method (Gamma for the drug and ETO for the injector). This leads to the assembly of both drug container and injector after sterilization, resulting in at least one transition area that is not sterilized. To automate the delivery of the drug to the patient, a disinfection step before the drug delivery through the injector is required on the none-sterilized interface. As an innovative solution, the autoinjector presented here is designed with a single ultraviolet light-emitting diode (UV LED) for surface disinfection of the drug container and injector interface. In order to validate microbial disinfection similar to ethanol swabbing on the injector, a bacterial 3 or 6 log reduction needed to be demonstrated. However, the small disinfection chamber surfaces within the device are incapable of holding an initial bacterial load for demonstrating the 3 or 6 log reduction, complicating the validation method, and presenting a dilemma as to how to achieve the log reduction while producing real chamber conditions. The suggested solution in this paper is to establish a correlation model between the UV irradiance distribution within the disinfection chamber and a larger external test setup, which can hold the required bacterial load and represents a worse-case test scenario. Bacterial log reduction was subsequently performed on nine different microorganisms of low to high UV-tolerance. The procedure defined herein can be adopted for other surface or chamber disinfection studies in which the inoculation space is limited.
Collapse
Affiliation(s)
| | - Uri Hili
- Eitan Medical, Netanya 4250529, Israel
| | - Noam Weil
- Eitan Medical, Netanya 4250529, Israel
| | | | | | | |
Collapse
|
164
|
Zhao Y, Iarossi M, De Fazio AF, Huang JA, De Angelis F. Label-Free Optical Analysis of Biomolecules in Solid-State Nanopores: Toward Single-Molecule Protein Sequencing. ACS PHOTONICS 2022; 9:730-742. [PMID: 35308409 PMCID: PMC8931763 DOI: 10.1021/acsphotonics.1c01825] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Sequence identification of peptides and proteins is central to proteomics. Protein sequencing is mainly conducted by insensitive mass spectroscopy because proteins cannot be amplified, which hampers applications such as single-cell proteomics and precision medicine. The commercial success of portable nanopore sequencers for single DNA molecules has inspired extensive research and development of single-molecule techniques for protein sequencing. Among them, three challenges remain: (1) discrimination of the 20 amino acids as building blocks of proteins; (2) unfolding proteins; and (3) controlling the motion of proteins with nonuniformly charged sequences. In this context, the emergence of label-free optical analysis techniques for single amino acids and peptides by solid-state nanopores shows promise for addressing the first challenge. In this Perspective, we first discuss the current challenges of single-molecule fluorescence detection and nanopore resistive pulse sensing in a protein sequencing. Then, label-free optical methods are described to show how they address the single-amino-acid identification within single peptides. They include localized surface plasmon resonance detection and surface-enhanced Raman spectroscopy on plasmonic nanopores. Notably, we report new data to show the ability of plasmon-enhanced Raman scattering to record and discriminate the 20 amino acids at a single-molecule level. In addition, we discuss briefly the manipulation of molecule translocation and liquid flow in plasmonic nanopores for controlling molecule movement to allow high-resolution reading of protein sequences. We envision that a combination of Raman spectroscopy with plasmonic nanopores can succeed in single-molecule protein sequencing in a label-free way.
Collapse
Affiliation(s)
- Yingqi Zhao
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marzia Iarossi
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Jian-An Huang
- Faculty
of Medicine, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | | |
Collapse
|
165
|
Ahn JH, Kang CK, Kim EM, Kim AR, Kim A. Proteomics for Early Detection of Non-Muscle-Invasive Bladder Cancer: Clinically Useful Urine Protein Biomarkers. Life (Basel) 2022; 12:395. [PMID: 35330146 PMCID: PMC8950253 DOI: 10.3390/life12030395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Bladder cancer is the fourth most common cancer in men, and most cases are non-muscle-invasive. A high recurrence rate is a critical problem in non-muscle-invasive bladder cancer. The availability of few urine tests hinders the effective detection of superficial and small bladder tumors. Cystoscopy is the gold standard for diagnosis; however, it is associated with urinary tract infections, hematuria, and pain. Early detection is imperative, as intervention influences recurrence. Therefore, urinary biomarkers need to be developed to detect these bladder cancers. Recently, several protein candidates in the urine have been identified as biomarkers. In the present narrative review, the current status of the development of urinary protein biomarkers, including FDA-approved biomarkers, is summarized. Additionally, contemporary proteomic technologies, such as antibody-based methods, mass-spectrometry-based methods, and machine-learning-based diagnosis, are reported. Furthermore, new strategies for the rapid and correct profiling of potential biomarkers of bladder cancer in urine are introduced, along with their limitations. The advantages of urinary protein biomarkers and the development of several related technologies are highlighted in this review. Moreover, an in-depth understanding of the scientific background and available protocols in research and clinical applications of the surveillance of non-muscle bladder cancer is provided.
Collapse
Affiliation(s)
- Jae-Hak Ahn
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea;
| | - Chan-Koo Kang
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, Korea;
- School of Life Science, Handong Global University, Pohang 37554, Gyungbuk, Korea
| | - Eun-Mee Kim
- Department of Emergency Medical Technology, Korea Nazarene University, Cheonan 31172, Chungcheongnam-do, Korea;
| | - Ah-Ram Kim
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, Korea;
- School of Life Science, Handong Global University, Pohang 37554, Gyungbuk, Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea;
| |
Collapse
|
166
|
Godwin J, Farrona S. The Importance of Networking: Plant Polycomb Repressive Complex 2 and Its Interactors. EPIGENOMES 2022; 6:epigenomes6010008. [PMID: 35323212 PMCID: PMC8948837 DOI: 10.3390/epigenomes6010008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Polycomb Repressive Complex 2 (PRC2) is arguably the best-known plant complex of the Polycomb Group (PcG) pathway, formed by a group of proteins that epigenetically represses gene expression. PRC2-mediated deposition of H3K27me3 has amply been studied in Arabidopsis and, more recently, data from other plant model species has also been published, allowing for an increasing knowledge of PRC2 activities and target genes. How PRC2 molecular functions are regulated and how PRC2 is recruited to discrete chromatin regions are questions that have brought more attention in recent years. A mechanism to modulate PRC2-mediated activity is through its interaction with other protein partners or accessory proteins. Current evidence for PRC2 interactors has demonstrated the complexity of its protein network and how far we are from fully understanding the impact of these interactions on the activities of PRC2 core subunits and on the formation of new PRC2 versions. This review presents a list of PRC2 interactors, emphasizing their mechanistic action upon PRC2 functions and their effects on transcriptional regulation.
Collapse
|
167
|
Jia TZ, Nishikawa S, Fujishima K. Sequencing the Origins of Life. BBA ADVANCES 2022; 2:100049. [PMID: 37082609 PMCID: PMC10074849 DOI: 10.1016/j.bbadva.2022.100049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/10/2023] Open
Abstract
One goal of origins of life research is to understand how primitive informational and catalytic biopolymers emerged and evolved. Recently, a number of sequencing techniques have been applied to analysis of replicating and evolving primitive biopolymer systems, providing a sequence-specific and high-resolution view of primitive chemical processes. Here, we review application of sequencing techniques to analysis of synthetic and primitive nucleic acids and polypeptides. This includes next-generation sequencing of primitive polymerization and evolution processes, followed by discussion of other novel biochemical techniques that could contribute to sequence analysis of primitive biopolymer driven chemical systems. Further application of sequencing to origins of life research, perhaps as a life detection technology, could provide insight into the origin and evolution of informational and catalytic biopolymers on early Earth or elsewhere.
Collapse
Affiliation(s)
- Tony Z. Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA 98104, USA
- Corresponding author
| | - Shota Nishikawa
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate School of Media and Governance, Keio University, 5322 Endo, Fujisawa-shi, Kanagawa 252-0882, Japan
| |
Collapse
|
168
|
Modifying the pH sensitivity of OmpG nanopore for improved detection at acidic pH. Biophys J 2022; 121:731-741. [PMID: 35131293 PMCID: PMC8943698 DOI: 10.1016/j.bpj.2022.01.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/02/2022] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
Abstract
The outer membrane protein G (OmpG) nanopore is a monomeric β-barrel channel consisting of seven flexible extracellular loops. Its most flexible loop, loop 6, can be used to host high-affinity binding ligands for the capture of protein analytes, which induces characteristic current patterns for protein identification. At acidic pH, the ability of OmpG to detect protein analytes is hampered by its tendency toward the closed state, which renders the nanopore unable to reveal current signal changes induced by bound analytes. In this work, critical residues that control the pH-dependent gating of loop 6 were identified, and an OmpG nanopore that can stay predominantly open at a broad range of pHs was created by mutating these pH-sensitive residues. A short single-stranded DNA was chemically tethered to the pH-insensitive OmpG to demonstrate the utility of the OmpG nanopore for sensing complementary DNA and a DNA binding protein at an acidic pH.
Collapse
|
169
|
Analysis of protein phosphorylation using Phos-tag gels. J Proteomics 2022; 259:104558. [DOI: 10.1016/j.jprot.2022.104558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022]
|
170
|
Mayse LA, Imran A, Larimi MG, Cosgrove MS, Wolfe AJ, Movileanu L. Disentangling the recognition complexity of a protein hub using a nanopore. Nat Commun 2022; 13:978. [PMID: 35190547 PMCID: PMC8861093 DOI: 10.1038/s41467-022-28465-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
WD40 repeat proteins are frequently involved in processing cell signaling and scaffolding large multi-subunit machineries. Despite their significance in physiological and disease-like conditions, their reversible interactions with other proteins remain modestly examined. Here, we show the development and validation of a protein nanopore for the detection and quantification of WD40 repeat protein 5 (WDR5), a chromatin-associated hub involved in epigenetic regulation of histone methylation. Our nanopore sensor is equipped with a 14-residue Win motif of mixed lineage leukemia 4 methyltransferase (MLL4Win), a WDR5 ligand. Our approach reveals a broad dynamic range of MLL4Win-WDR5 interactions and three distant subpopulations of binding events, representing three modes of protein recognition. The three binding events are confirmed as specific interactions using a weakly binding WDR5 derivative and various environmental contexts. These outcomes demonstrate the substantial sensitivity of our nanopore sensor, which can be utilized in protein analytics. Nanopores are powerful tools for sampling protein-peptide interactions. Here, the authors convert a protein-based nanopore into a sensitive biosensor to characterize the complex binding of WDR5 protein to a 14-residue ligand.
Collapse
|
171
|
Afshar Bakshloo M, Kasianowicz JJ, Pastoriza-Gallego M, Mathé J, Daniel R, Piguet F, Oukhaled A. Nanopore-Based Protein Identification. J Am Chem Soc 2022; 144:2716-2725. [PMID: 35120294 DOI: 10.1021/jacs.1c11758] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The implementation of a reliable, rapid, inexpensive, and simple method for whole-proteome identification would greatly benefit cell biology research and clinical medicine. Proteins are currently identified by cleaving them with proteases, detecting the polypeptide fragments with mass spectrometry, and mapping the latter to sequences in genomic/proteomic databases. Here, we demonstrate that the polypeptide fragments can instead be detected and classified at the single-molecule limit using a nanometer-scale pore formed by the protein aerolysin. Specifically, three different water-soluble proteins treated with the same protease, trypsin, produce different polypeptide fragments defined by the degree by which the latter reduce the nanopore's ionic current. The fragments identified with the aerolysin nanopore are consistent with the predicted fragments that trypsin could produce.
Collapse
Affiliation(s)
| | - John J Kasianowicz
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States.,Freiburg Institute for Advanced Studies, Universität Freiburg, 79104 Freiburg, Germany
| | | | - Jérôme Mathé
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, 91000, France
| | - Régis Daniel
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, Evry-Courcouronnes, 91000, France
| | - Fabien Piguet
- CY Cergy Paris Université, CNRS, LAMBE, Cergy, 95000, France
| | | |
Collapse
|
172
|
Choudhary A, Maffeo C, Aksimentiev A. Multi-resolution simulation of DNA transport through large synthetic nanostructures. Phys Chem Chem Phys 2022; 24:2706-2716. [PMID: 35050282 PMCID: PMC8855663 DOI: 10.1039/d1cp04589j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Modeling and simulation has become an invaluable partner in development of nanopore sensing systems. The key advantage of the nanopore sensing method - the ability to rapidly detect individual biomolecules as a transient reduction of the ionic current flowing through the nanopore - is also its key deficiency, as the current signal itself rarely provides direct information about the chemical structure of the biomolecule. Complementing experimental calibration of the nanopore sensor readout, coarse-grained and all-atom molecular dynamics simulations have been used extensively to characterize the nanopore translocation process and to connect the microscopic events taking place inside the nanopore to the experimentally measured ionic current blockades. Traditional coarse-grained simulations, however, lack the precision needed to predict ionic current blockades with atomic resolution whereas traditional all-atom simulations are limited by the length and time scales amenable to the method. Here, we describe a multi-resolution framework for modeling electric field-driven passage of DNA molecules and nanostructures through to-scale models of synthetic nanopore systems. We illustrate the method by simulating translocation of double-stranded DNA through a solid-state nanopore and a micron-scale slit, capture and translocation of single-stranded DNA in a double nanopore system, and modeling ionic current readout from a DNA origami nanostructure passage through a nanocapillary. We expect our multi-resolution simulation framework to aid development of the nanopore field by providing accurate, to-scale modeling capability to research laboratories that do not have access to leadership supercomputer facilities.
Collapse
Affiliation(s)
- Adnan Choudhary
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Christopher Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
173
|
Swift J, Greenham K, Ecker JR, Coruzzi GM, McClung CR. The biology of time: dynamic responses of cell types to developmental, circadian and environmental cues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:764-778. [PMID: 34797944 PMCID: PMC9215356 DOI: 10.1111/tpj.15589] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 05/26/2023]
Abstract
As sessile organisms, plants are finely tuned to respond dynamically to developmental, circadian and environmental cues. Genome-wide studies investigating these types of cues have uncovered the intrinsically different ways they can impact gene expression over time. Recent advances in single-cell sequencing and time-based bioinformatic algorithms are now beginning to reveal the dynamics of these time-based responses within individual cells and plant tissues. Here, we review what these techniques have revealed about the spatiotemporal nature of gene regulation, paying particular attention to the three distinct ways in which plant tissues are time sensitive. (i) First, we discuss how studying plant cell identity can reveal developmental trajectories hidden in pseudotime. (ii) Next, we present evidence that indicates that plant cell types keep their own local time through tissue-specific regulation of the circadian clock. (iii) Finally, we review what determines the speed of environmental signaling responses, and how they can be contingent on developmental and circadian time. By these means, this review sheds light on how these different scales of time-based responses can act with tissue and cell-type specificity to elicit changes in whole plant systems.
Collapse
Affiliation(s)
- Joseph Swift
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kathleen Greenham
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN 55108, USA
| | - Joseph R. Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Gloria M. Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, NY, USA
| | | |
Collapse
|
174
|
Zhang B, Ryan E, Wang X, Song W, Lindsay S. Electronic Transport in Molecular Wires of Precisely Controlled Length Built from Modular Proteins. ACS NANO 2022; 16:1671-1680. [PMID: 35029115 PMCID: PMC9279515 DOI: 10.1021/acsnano.1c10830] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DNA molecular wires have been studied extensively because of the ease with which molecules of controlled length and composition can be synthesized. The same has not been true for proteins. Here, we have synthesized and studied a series of consensus tetratricopeptide repeat (CTPR) proteins, spanning 4 to 20 nm in length, in increments of 4 nm. For lengths in excess of 6 nm, their conductance exceeds that of the canonical molecular wire, oligo(phenylene-ethylenene), because of the more gradual decay of conductance with length in the protein. We show that, while the conductance decay fits an exponential (characteristic of quantum tunneling) and not a linear increase of resistance with length (characteristic of hopping transport), it is also accounted for by a square-law dependence on length (characteristic of weakly driven hopping). Measurements of the energy dependence of the decay length rule out the quantum tunneling case. A resonance in the carrier injection energy shows that allowed states in the protein align with the Fermi energy of the electrodes. Both the energy of these states and the long-range of hopping suggest that the reorganization induced by hole formation is greatly reduced inside the protein. We outline a model for calculating the molecular-electronic properties of proteins.
Collapse
Affiliation(s)
- Bintian Zhang
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - Eathen Ryan
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
| | - Weisi Song
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
| | - Stuart Lindsay
- Biodesign Institute, Arizona State University, Tempe, AZ 85281
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281
- Department of Physics, Arizona State University, Tempe, AZ 85281
- Corresponding Author: Stuart Lindsay: Phone 480 205 6432
| |
Collapse
|
175
|
Nasser M, Meller A. Lifetime-based analysis of binary fluorophores mixtures in the low photon count limit. iScience 2022; 25:103554. [PMID: 34977508 PMCID: PMC8689154 DOI: 10.1016/j.isci.2021.103554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022] Open
Abstract
Single biomolecule sensing often requires the quantification of multiple fluorescent species. Here, we theoretically and experimentally use time-resolved fluorescence via Time Correlated Single Photon Counting (TCSPC) to accurately quantify fluorescent species with similar chromatic signatures. A modified maximum likelihood estimator is introduced to include two fluorophore species, with compensation of the instrument response function. We apply this algorithm to simulated data of a simplified two-fluorescent species model, as well as to experimental data of fluorophores' mixtures and to a model protein, doubly labeled with different fluorophores' ratio. We show that 100 to 200 photons per fluorophore, in a 10-ms timescale, are sufficient to provide an accurate estimation of the dyes' ratio on the model protein. Our results provide estimation for the desired photon integration time toward implementation of TCSPC in systems with fast occurring events, such as translocation of biomolecules through nanopores or single-molecule burst analyses experiments. Exact ratios of emission-similar dyes in binary mixtures were quantified by TCSPC MLE-based analysis with IRF compensation was implemented for two fluorescent dyes Dual dye bioconjugation on a model protein was quantified at limited photon counts
Collapse
Affiliation(s)
- Maisa Nasser
- Department of Biomedical Engineering, Technion - IIT, Haifa 32000, Israel
| | - Amit Meller
- Department of Biomedical Engineering, Technion - IIT, Haifa 32000, Israel
| |
Collapse
|
176
|
Hong JM, Gibbons M, Bashir A, Wu D, Shao S, Cutts Z, Chavarha M, Chen Y, Schiff L, Foster M, Church VA, Ching L, Ahadi S, Hieu-Thao Le A, Tran A, Dimon M, Coram M, Williams B, Jess P, Berndl M, Pawlosky A. ProtSeq: Toward high-throughput, single-molecule protein sequencing via amino acid conversion into DNA barcodes. iScience 2022; 25:103586. [PMID: 35005536 PMCID: PMC8717419 DOI: 10.1016/j.isci.2021.103586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/06/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
We demonstrate early progress toward constructing a high-throughput, single-molecule protein sequencing technology utilizing barcoded DNA aptamers (binders) to recognize terminal amino acids of peptides (targets) tethered on a next-generation sequencing chip. DNA binders deposit unique, amino acid-identifying barcodes on the chip. The end goal is that, over multiple binding cycles, a sequential chain of DNA barcodes will identify the amino acid sequence of a peptide. Toward this, we demonstrate successful target identification with two sets of target-binder pairs: DNA-DNA and Peptide-Protein. For DNA-DNA binding, we show assembly and sequencing of DNA barcodes over six consecutive binding cycles. Intriguingly, our computational simulation predicts that a small set of semi-selective DNA binders offers significant coverage of the human proteome. Toward this end, we introduce a binder discovery pipeline that ultimately could merge with the chip assay into a technology called ProtSeq, for future high-throughput, single-molecule protein sequencing. Designed ProtSeq protein sequencing method compatible with widely used NGS technology Built Target-Switch SELEX to isolate aptamers specific to N-terminal amino acids (AAs) Showed binding, ligation, cleavage, and NGS of six DNA binders in ordered barcode chain Developed pipeline to deconvolve AAs from DNA barcodes to identify putative proteins
Collapse
Affiliation(s)
| | | | - Ali Bashir
- Google, LLC, Mountain View, CA 94043, USA
| | - Diana Wu
- Google, LLC, Mountain View, CA 94043, USA
| | | | | | | | - Ye Chen
- Google, LLC, Mountain View, CA 94043, USA
| | | | | | | | | | - Sara Ahadi
- Google, LLC, Mountain View, CA 94043, USA
| | | | | | | | - Marc Coram
- Google, LLC, Mountain View, CA 94043, USA
| | | | | | | | | |
Collapse
|
177
|
Slavov N. Counting protein molecules for single-cell proteomics. Cell 2022; 185:232-234. [PMID: 35063071 DOI: 10.1016/j.cell.2021.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
Technologies for counting protein molecules are enabling single-cell proteomics at increasing depth and scale. New advances in single-molecule methods by Brinkerhoff and colleagues promise to further increase the sensitivity of protein analysis and motivate questions about scaling up the counting of the human proteome.
Collapse
Affiliation(s)
- Nikolai Slavov
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States; Barnett Institute, Northeastern University, Boston, Massachusetts 02115, United States.
| |
Collapse
|
178
|
Liu Y, Wang K, Wang Y, Wang L, Yan S, Du X, Zhang P, Chen HY, Huang S. Machine Learning Assisted Simultaneous Structural Profiling of Differently Charged Proteins in a Mycobacterium smegmatis Porin A (MspA) Electroosmotic Trap. J Am Chem Soc 2022; 144:757-768. [PMID: 34994548 DOI: 10.1021/jacs.1c09259] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The nanopore is emerging as a means of single-molecule protein sensing. However, proteins demonstrate different charge properties, which complicates the design of a sensor that can achieve simultaneous sensing of differently charged proteins. In this work, we introduce an asymmetric electrolyte buffer combined with the Mycobacterium smegmatis porin A (MspA) nanopore to form an electroosmotic flow (EOF) trap. Apo- and holo-myoglobin, which differ in only a single heme, can be fully distinguished by this method. Direct discrimination of lysozyme, apo/holo-myoglobin, and the ACTR/NCBD protein complex, which are basic, neutral, and acidic proteins, respectively, was simultaneously achieved by the MspA EOF trap. To automate event classification, multiple event features were extracted to build a machine learning model, with which a 99.9% accuracy is achieved. The demonstrated method was also applied to identify single molecules of α-lactalbumin and β-lactoglobulin directly from whey protein powder. This protein-sensing strategy is useful in direct recognition of a protein from a mixture, suggesting its prospective use in rapid and sensitive detection of biomarkers or real-time protein structural analysis.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| |
Collapse
|
179
|
Li W, Zhou J, Maccaferri N, Krahne R, Wang K, Garoli D. Enhanced Optical Spectroscopy for Multiplexed DNA and Protein-Sequencing with Plasmonic Nanopores: Challenges and Prospects. Anal Chem 2022; 94:503-514. [PMID: 34974704 PMCID: PMC8771637 DOI: 10.1021/acs.analchem.1c04459] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Wang Li
- State
Key Laboratory of Analytical Chemistry for Life Science School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, P. R. China
| | - Juan Zhou
- State
Key Laboratory of Analytical Chemistry for Life Science School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, P. R. China
| | - Nicolò Maccaferri
- Department
of Physics and Materials Science, University
of Luxembourg, L-1511 Luxembourg, Luxembourg
- Department
of Physics, Umeå University, Linnaeus väg 20, SE-90736 Umeå, Sweden
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, Optoelectronics
Research Line, Morego
30, I-16163 Genova, Italy
| | - Kang Wang
- State
Key Laboratory of Analytical Chemistry for Life Science School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, P. R. China
| | - Denis Garoli
- Istituto
Italiano di Tecnologia, Optoelectronics
Research Line, Morego
30, I-16163 Genova, Italy
| |
Collapse
|
180
|
Iizuka R, Yamazaki H, Uemura S. Zero-mode waveguides and nanopore-based sequencing technologies accelerate single-molecule studies. Biophys Physicobiol 2022; 19:e190032. [DOI: 10.2142/biophysico.bppb-v19.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/26/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Ryo Iizuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Hirohito Yamazaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| |
Collapse
|
181
|
Adam PS, Bornemann TLV, Probst AJ. Progress and Challenges in Studying the Ecophysiology of Archaea. Methods Mol Biol 2022; 2522:469-486. [PMID: 36125771 DOI: 10.1007/978-1-0716-2445-6_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It has been less than two decades since the study of archaeal ecophysiology has become unshackled from the limitations of cultivation and amplicon sequencing through the advent of metagenomics. As a primer to the guide on producing archaeal genomes from metagenomes, we briefly summarize here how different meta'omics, imaging, and wet lab methods have contributed to progress in understanding the ecophysiology of Archaea. We then peer into the history of how our knowledge on two particularly important lineages was assembled: the anaerobic methane and alkane oxidizers, encountered primarily among Euryarchaeota, and the nanosized, mainly parasitic, members of the DPANN superphylum.
Collapse
Affiliation(s)
- Panagiotis S Adam
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
| | - Till L V Bornemann
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany
| | - Alexander J Probst
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, UniversitätsstraÔe, Essen, Germany.
| |
Collapse
|
182
|
Signore M, Manganelli V. Reverse Phase Protein Arrays in cancer stem cells. Methods Cell Biol 2022; 171:33-61. [DOI: 10.1016/bs.mcb.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
183
|
Nicholson J. A nanopore distance away from next-generation protein sequencing. Chem 2022. [DOI: 10.1016/j.chempr.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
184
|
|
185
|
Benton JT, Bayly-Jones C. Challenges and approaches to studying pore-forming proteins. Biochem Soc Trans 2021; 49:2749-2765. [PMID: 34747994 PMCID: PMC8892993 DOI: 10.1042/bst20210706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Pore-forming proteins (PFPs) are a broad class of molecules that comprise various families, structural folds, and assembly pathways. In nature, PFPs are most often deployed by their host organisms to defend against other organisms. In humans, this is apparent in the immune system, where several immune effectors possess pore-forming activity. Furthermore, applications of PFPs are found in next-generation low-cost DNA sequencing, agricultural crop protection, pest control, and biosensing. The advent of cryoEM has propelled the field forward. Nevertheless, significant challenges and knowledge-gaps remain. Overcoming these challenges is particularly important for the development of custom, purpose-engineered PFPs with novel or desired properties. Emerging single-molecule techniques and methods are helping to address these unanswered questions. Here we review the current challenges, problems, and approaches to studying PFPs.
Collapse
Affiliation(s)
- Joshua T. Benton
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Charles Bayly-Jones
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
186
|
Brinkerhoff H, Kang ASW, Liu J, Aksimentiev A, Dekker C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 2021; 374:1509-1513. [PMID: 34735217 DOI: 10.1126/science.abl4381] [Citation(s) in RCA: 254] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Henry Brinkerhoff
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Albert S W Kang
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| | - Jingqian Liu
- Center for Biophysics and Quantitative Biology and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, Netherlands
| |
Collapse
|
187
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Filip Bošković
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
188
|
Technique development of high-throughput and high-sensitivity sample preparation and separation for proteomics. Bioanalysis 2021; 14:101-111. [PMID: 34854341 DOI: 10.4155/bio-2021-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sample preparation and separation methods determine the sensitivity and the quantification accuracy of the proteomics analysis. This article covers a comprehensive review of the recent technique development of high-throughput and high-sensitivity sample preparation and separation methods in proteomics research.
Collapse
|
189
|
Shrestha P, Yang D, Tomov TE, MacDonald JI, Ward A, Bergal HT, Krieg E, Cabi S, Luo Y, Nathwani B, Johnson-Buck A, Shih WM, Wong WP. Single-molecule mechanical fingerprinting with DNA nanoswitch calipers. NATURE NANOTECHNOLOGY 2021; 16:1362-1370. [PMID: 34675411 PMCID: PMC8678201 DOI: 10.1038/s41565-021-00979-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/16/2021] [Indexed: 05/31/2023]
Abstract
Decoding the identity of biomolecules from trace samples is a longstanding goal in the field of biotechnology. Advances in DNA analysis have substantially affected clinical practice and basic research, but corresponding developments for proteins face challenges due to their relative complexity and our inability to amplify them. Despite progress in methods such as mass spectrometry and mass cytometry, single-molecule protein identification remains a highly challenging objective. Towards this end, we combine DNA nanotechnology with single-molecule force spectroscopy to create a mechanically reconfigurable DNA nanoswitch caliper capable of measuring multiple coordinates on single biomolecules with atomic resolution. Using optical tweezers, we demonstrate absolute distance measurements with ångström-level precision for both DNA and peptides, and using multiplexed magnetic tweezers, we demonstrate quantification of relative abundance in mixed samples. Measuring distances between DNA-labelled residues, we perform single-molecule fingerprinting of synthetic and natural peptides, and show discrimination, within a heterogeneous population, between different posttranslational modifications. DNA nanoswitch calipers are a powerful and accessible tool for characterizing distances within nanoscale complexes that will enable new applications in fields such as single-molecule proteomics.
Collapse
Affiliation(s)
- Prakash Shrestha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Darren Yang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Toma E Tomov
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - James I MacDonald
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Andrew Ward
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Hans T Bergal
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Biophysics Program, Harvard University, Cambridge, MA, USA
| | - Elisha Krieg
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Serkan Cabi
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yi Luo
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Bhavik Nathwani
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexander Johnson-Buck
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Biophysics Program, Harvard University, Cambridge, MA, USA
| | - William M Shih
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Wesley P Wong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
190
|
Meyer N, Abrao-Nemeir I, Janot JM, Torrent J, Lepoitevin M, Balme S. Solid-state and polymer nanopores for protein sensing: A review. Adv Colloid Interface Sci 2021; 298:102561. [PMID: 34768135 DOI: 10.1016/j.cis.2021.102561] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 01/15/2023]
Abstract
In two decades, the solid state and polymer nanopores became attractive method for the protein sensing with high specificity and sensitivity. They also allow the characterization of conformational changes, unfolding, assembly and aggregation as well the following of enzymatic reaction. This review aims to provide an overview of the protein sensing regarding the technique of detection: the resistive pulse and ionic diodes. For each strategy, we report the most significant achievement regarding the detection of peptides and protein as well as the conformational change, protein-protein assembly and aggregation process. We discuss the limitations and the recent strategies to improve the nanopore resolution and accuracy. A focus is done about concomitant problematic such as protein adsorption and nanopore lifetime.
Collapse
|
191
|
Planar Boronic Graphene and Nitrogenized Graphene Heterostructure for Protein Stretch and Confinement. Biomolecules 2021; 11:biom11121756. [PMID: 34944399 PMCID: PMC8698321 DOI: 10.3390/biom11121756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
Abstract
Single-molecule techniques such as electron tunneling and atomic force microscopy have attracted growing interests in protein sequencing. For these methods, it is critical to refine and stabilize the protein sample to a “suitable mode” before applying a high-fidelity measurement. Here, we show that a planar heterostructure comprising boronic graphene (BC3) and nitrogenized graphene (C3N) sandwiched stripe (BC3/C3N/BC3) is capable of the effective stretching and confinement of three types of intrinsically disordered proteins (IDPs), including amyloid-β (1–42), polyglutamine (Q42), and α-Synuclein (61–95). Our molecular dynamics simulations demonstrate that the protein molecules interact more strongly with the C3N stripe than the BC3 one, which leads to their capture, elongation, and confinement along the center C3N stripe of the heterostructure. The conformational fluctuations of IDPs are substantially reduced after being stretched. This design may serve as a platform for single-molecule protein analysis with reduced thermal noise.
Collapse
|
192
|
Zhang L, Floyd BM, Chilamari M, Mapes J, Swaminathan J, Bloom S, Marcotte EM, Anslyn EV. Photoredox-Catalyzed Decarboxylative C-Terminal Differentiation for Bulk- and Single-Molecule Proteomics. ACS Chem Biol 2021; 16:2595-2603. [PMID: 34734691 DOI: 10.1021/acschembio.1c00631] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Methods for the selective labeling of biogenic functional groups on peptides are being developed and used in the workflow of both current and emerging proteomics technologies, such as single-molecule fluorosequencing. To achieve successful labeling with any one method requires that the peptide fragments contain the functional group for which labeling chemistry is designed. In practice, only two functional groups are present in every peptide fragment regardless of the protein cleavage site, namely, an N-terminal amine and a C-terminal carboxylic acid. Developing a global-labeling technology, therefore, requires one to specifically target the N- and/or C-terminus of peptides. In this work, we showcase the first successful application of photocatalyzed C-terminal decarboxylative alkylation for peptide mass spectrometry and single-molecule protein sequencing that can be broadly applied to any proteome. We demonstrate that peptides in complex mixtures generated from enzymatic digests from bovine serum albumin, as well as protein mixtures from yeast and human cell extracts, can be site-specifically labeled at their C-terminal residue with a Michael acceptor. Using two distinct analytical approaches, we characterize C-terminal labeling efficiencies of greater than 50% across complete proteomes and document the proclivity of various C-terminal amino-acid residues for decarboxylative labeling, showing histidine and tryptophan to be the most disfavored. Finally, we combine C-terminal decarboxylative labeling with an orthogonal carboxylic acid-labeling technology in tandem to establish a new platform for fluorosequencing.
Collapse
Affiliation(s)
- Le Zhang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brendan M. Floyd
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Maheshwerreddy Chilamari
- School of Pharmacy - Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045-7572, United States
| | - James Mapes
- Erisyon, Inc., Austin, Texas 78701, United States
| | - Jagannath Swaminathan
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Steven Bloom
- School of Pharmacy - Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045-7572, United States
| | - Edward M. Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric V. Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
193
|
Evaluation of FRET X for single-molecule protein fingerprinting. iScience 2021; 24:103239. [PMID: 34729466 PMCID: PMC8546410 DOI: 10.1016/j.isci.2021.103239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Single-molecule protein identification is an unrealized concept with potentially ground-breaking applications in biological research. We propose a method called FRET X (Förster Resonance Energy Transfer via DNA eXchange) fingerprinting, in which the FRET efficiency is read out between exchangeable dyes on protein-bound DNA docking strands and accumulated FRET efficiencies constitute the fingerprint for a protein. To evaluate the feasibility of this approach, we simulated fingerprints for hundreds of proteins using a coarse-grained lattice model and experimentally demonstrated FRET X fingerprinting on model peptides. Measured fingerprints are in agreement with our simulations, corroborating the validity of our modeling approach. In a simulated complex mixture of >300 human proteins of which only cysteines, lysines, and arginines were labeled, a support vector machine was able to identify constituents with 95% accuracy. We anticipate that our FRET X fingerprinting approach will form the basis of an analysis tool for targeted proteomics. We propose a FRET-based single-molecule protein identification method Peptides are experimentally distinguishable by their fingerprints Our approach can classify the constituents of complex samples with 95% accuracy
Collapse
|
194
|
Leiser OP, Hobbs EC, Sims AC, Korch GW, Taylor KL. Beyond the List: Bioagent-Agnostic Signatures Could Enable a More Flexible and Resilient Biodefense Posture Than an Approach Based on Priority Agent Lists Alone. Pathogens 2021; 10:1497. [PMID: 34832652 PMCID: PMC8623450 DOI: 10.3390/pathogens10111497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/23/2022] Open
Abstract
As of 2021, the biothreat policy and research communities organize their efforts around lists of priority agents, which elides consideration of novel pathogens and biotoxins. For example, the Select Agents and Toxins list is composed of agents that historic biological warfare programs had weaponized or that have previously caused great harm during natural outbreaks. Similarly, lists of priority agents promulgated by the World Health Organization and the National Institute of Allergy and Infectious Diseases are composed of previously known pathogens and biotoxins. To fill this gap, we argue that the research/scientific and biodefense/biosecurity communities should categorize agents based on how they impact their hosts to augment current list-based paradigms. Specifically, we propose integrating the results of multi-omics studies to identify bioagent-agnostic signatures (BASs) of disease-namely, patterns of biomarkers that accurately and reproducibly predict the impacts of infection or intoxication without prior knowledge of the causative agent. Here, we highlight three pathways that investigators might exploit as sources of signals to construct BASs and their applicability to this framework. The research community will need to forge robust interdisciplinary teams to surmount substantial experimental, technical, and data analytic challenges that stand in the way of our long-term vision. However, if successful, our functionality-based BAS model could present a means to more effectively surveil for and treat known and novel agents alike.
Collapse
Affiliation(s)
- Owen P. Leiser
- Pacific Northwest National Laboratory, Seattle, WA 98109, USA; (O.P.L.); (E.C.H.)
| | - Errett C. Hobbs
- Pacific Northwest National Laboratory, Seattle, WA 98109, USA; (O.P.L.); (E.C.H.)
| | - Amy C. Sims
- Pacific Northwest National Laboratory, Richland, WA 99354, USA;
| | - George W. Korch
- Battelle National Biodefense Institute, LLC, Fort Detrick, MD 21072, USA;
| | - Karen L. Taylor
- Pacific Northwest National Laboratory, Seattle, WA 98109, USA; (O.P.L.); (E.C.H.)
| |
Collapse
|
195
|
Dolgalev G, Poverennaya E. Applications of CRISPR-Cas Technologies to Proteomics. Genes (Basel) 2021; 12:1790. [PMID: 34828396 PMCID: PMC8625504 DOI: 10.3390/genes12111790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
CRISPR-Cas-based genome editing is a revolutionary approach that has provided an unprecedented investigational power for the life sciences. Rapid and efficient, CRISPR-Cas technologies facilitate the generation of complex biological models and at the same time provide the necessary methods required to study these models in depth. The field of proteomics has already significantly benefited from leveraging the power of CRISPR-Cas technologies, however, many potential applications of these technologies in the context of proteomics remain unexplored. In this review, we intend to provide an introduction to the CRISPR-Cas technologies and demonstrate how they can be applied to solving proteome-centric questions. To achieve this goal, we begin with the description of the modern suite of CRISPR-Cas-based tools, focusing on the more mature CRISPR-Cas9 system. In the second part of this review, we highlight both established and potential applications of the CRISPR-Cas technologies to proteomics.
Collapse
|
196
|
Roy AL, Wilder EL, Anderson JM. Validation of antibodies: Lessons learned from the Common Fund Protein Capture Reagents Program. SCIENCE ADVANCES 2021; 7:eabl7148. [PMID: 34757791 PMCID: PMC8580312 DOI: 10.1126/sciadv.abl7148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Large-scale generation of protein capture reagents remains a technical challenge, but their generation is just the beginning. Validation is a critical, iterative process that yields different results for different uses. Independent, community-based validation offers the possibility of transparent data sharing, with use case–specific results made broadly available. This type of resource, which can grow as new validation data are obtained for an expanding group of reagents, provides a community resource that should accompany future reagent-generating efforts. To address a pressing need for antibodies or other reagents that recognize human proteins, the National Institutes of Health Common Fund launched the Protein Capture Reagents Program in 2010 as a pilot to target human transcription factors. Here, we describe lessons learned from this program concerning generation and validation of research reagents, which we believe are generally applicable for future research endeavors working in a similar space.
Collapse
Affiliation(s)
- Ananda L. Roy
- Office of Strategic Coordination, National Institutes of Health, Bethesda, MD 20892, USA
- Division of Program Coordination, Planning and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth L. Wilder
- Office of Strategic Coordination, National Institutes of Health, Bethesda, MD 20892, USA
- Division of Program Coordination, Planning and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - James M. Anderson
- Division of Program Coordination, Planning and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
197
|
Qing Y, Bayley H. Enzymeless DNA Base Identification by Chemical Stepping in a Nanopore. J Am Chem Soc 2021; 143:18181-18187. [PMID: 34669377 DOI: 10.1021/jacs.1c07497] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stepwise movement of a single biopolymer strand through a nanoscopic detector for the sequential identification of its building blocks offers a universal means for single-molecule sequencing. This principle has been implemented in portable sequencers that use enzymes to move DNA or RNA through hundreds of individual nanopore detectors positioned in an array. Nevertheless, its application to the sequencing of other biopolymers, including polypeptides and polysaccharides, has not progressed because suitable enzymes are lacking. Recently, we devised a purely chemical means to move molecules processively in steps comparable to the repeat distances in biopolymers. Here, with this chemical approach, we demonstrate sequential nucleobase identification during DNA translocation through a nanopore. Further, the relative location of a guanine modification with a chemotherapeutic platinum derivative is pinpointed with single-base resolution. After further development, chemical translocation might replace stepping by enzymes for highly parallel single-molecule biopolymer sequencing.
Collapse
Affiliation(s)
- Yujia Qing
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
198
|
The Tumor Dynamism Is the Dark Matter of the NGS Galaxy: How to Understand It? Cancers (Basel) 2021; 13:cancers13215476. [PMID: 34771638 PMCID: PMC8582436 DOI: 10.3390/cancers13215476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022] Open
|
199
|
Ohigashi I, Matsuda-Lennikov M, Takahama Y. Peptides for T cell selection in the thymus. Peptides 2021; 146:170671. [PMID: 34624431 DOI: 10.1016/j.peptides.2021.170671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Major histocompatibility complex (MHC)-associated peptides generated and displayed by antigen-presenting cells in the thymus are essential for the generation of functional and self-tolerant T cells that protect our body from various pathogens. The peptides displayed by cortical thymic epithelial cells (cTECs) are generated by unique enzymatic machineries including the thymoproteasomes, and are involved in the positive selection of self-protective T cells. On the other hand, the peptides displayed by medullary thymic epithelial cells (mTECs) and thymic dendritic cells (DCs) are involved in further selection to establish self-tolerance in T cells. Although the biochemical nature of the peptide repertoire displayed in the thymus remains unclear, many studies have suggested a thymus-specific mechanism for the generation of MHC-associated peptides in the thymus. In this review, we summarize basic knowledge and recent advances in MHC-associated thymic peptides, focusing on the generation and function of thymoproteasome-dependent peptides specifically displayed by cTECs.
Collapse
Affiliation(s)
- Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, 770-8503, Japan.
| | - Mami Matsuda-Lennikov
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yousuke Takahama
- Thymus Biology Section, Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
200
|
Motone K, Cardozo N, Nivala J. Herding cats: Label-based approaches in protein translocation through nanopore sensors for single-molecule protein sequence analysis. iScience 2021; 24:103032. [PMID: 34527891 PMCID: PMC8433247 DOI: 10.1016/j.isci.2021.103032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Proteins carry out life's essential functions. Comprehensive proteome analysis technologies are thus required for a full understanding of the operating principles of biological systems. While current proteomics techniques suffer from limitations in sensitivity and/or throughput, nanopore technology has the potential to enable de novo protein identification through single-molecule sequencing. However, a significant barrier to achieving this goal is controlling protein/peptide translocation through the nanopore sensor for processive strand analysis. Here, we review recent approaches that use a range of techniques, from oligonucleotide conjugation to molecular motors, aimed at driving protein strands and peptides through protein nanopores. We further discuss site-specific protein conjugation chemistry that could be combined with these translocation approaches as future directions to achieve single-molecule protein detection and sequencing of native proteins.
Collapse
Affiliation(s)
- Keisuke Motone
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Nicolas Cardozo
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|