151
|
Affiliation(s)
- Douglas R Green
- St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
152
|
Verburg SG, Lelievre RM, Westerveld MJ, Inkol JM, Sun YL, Workenhe ST. Viral-mediated activation and inhibition of programmed cell death. PLoS Pathog 2022; 18:e1010718. [PMID: 35951530 PMCID: PMC9371342 DOI: 10.1371/journal.ppat.1010718] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Viruses are ubiquitous intracellular genetic parasites that heavily rely on the infected cell to complete their replication life cycle. This dependency on the host machinery forces viruses to modulate a variety of cellular processes including cell survival and cell death. Viruses are known to activate and block almost all types of programmed cell death (PCD) known so far. Modulating PCD in infected hosts has a variety of direct and indirect effects on viral pathogenesis and antiviral immunity. The mechanisms leading to apoptosis following virus infection is widely studied, but several modalities of PCD, including necroptosis, pyroptosis, ferroptosis, and paraptosis, are relatively understudied. In this review, we cover the mechanisms by which viruses activate and inhibit PCDs and suggest perspectives on how these affect viral pathogenesis and immunity.
Collapse
Affiliation(s)
- Shayla Grace Verburg
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | | | | | - Jordon Marcus Inkol
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Yi Lin Sun
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Samuel Tekeste Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
153
|
Zhang G, Dong D, Wan X, Zhang Y. Cardiomyocyte death in sepsis: Mechanisms and regulation (Review). Mol Med Rep 2022; 26:257. [PMID: 35703348 PMCID: PMC9218731 DOI: 10.3892/mmr.2022.12773] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/20/2022] [Indexed: 11/06/2022] Open
Abstract
Sepsis‑induced cardiac dysfunction is one of the most common types of organ dysfunction in sepsis; its pathogenesis is highly complex and not yet fully understood. Cardiomyocytes serve a key role in the pathophysiology of cardiac function; due to the limited ability of cardiomyocytes to regenerate, their loss contributes to decreased cardiac function. The activation of inflammatory signalling pathways affects cardiomyocyte function and modes of cardiomyocyte death in sepsis. Prevention of cardiomyocyte death is an important therapeutic strategy for sepsis‑induced cardiac dysfunction. Thus, understanding the signalling pathways that activate cardiomyocyte death and cross‑regulation between death modes are key to finding therapeutic targets. The present review focused on advances in understanding of sepsis‑induced cardiomyocyte death pathways, including apoptosis, necroptosis, mitochondria‑mediated necrosis, pyroptosis, ferroptosis and autophagy. The present review summarizes the effect of inflammatory activation on cardiomyocyte death mechanisms, the diversity of regulatory mechanisms and cross‑regulation between death modes and the effect on cardiac function in sepsis to provide a theoretical basis for treatment of sepsis‑induced cardiac dysfunction.
Collapse
Affiliation(s)
- Geping Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Dan Dong
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yongli Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
154
|
Uresti-Rivera EE, García-Hernández MH. AIM2-inflammasome role in systemic lupus erythematous and rheumatoid arthritis. Autoimmunity 2022; 55:443-454. [PMID: 35880661 DOI: 10.1080/08916934.2022.2103802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The inflammasome AIM2 regulates multiple aspects of innate immune functions and serves as a critical mediator of inflammatory responses. AIM2 inflammasome activation leads to the production of pro-inflammatory cytokines, IL-1β and IL-18 and participates triggering a pyroptosis response needed to counteract excessive cell proliferation. In addition, AIM2 expression and activation is wide regulated since alteration in its activity may derived in pathological consequences. Consequently, deregulated AIM2 activation contributes to the pathogenic processes of various inflammatory diseases. In this review, we will discuss the activation and function of AIM2 inflammasome, as well as its contribution in rheumatoid arthritis and systemic lupus erythematous pathology. Finally, we highlight the participation of the AIM2-inflammasome at the level of joint in rheumatoid arthritis and at kidney in systemic lupus erythematous. The development of therapeutic strategies based on modulation of AIM2-inflammasome activity should have a tissue-specific focus.
Collapse
Affiliation(s)
- E E Uresti-Rivera
- Research Center for Health Sciences and Biomedicine, UASLP, San Luis Potosi, Mexico.,Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, UASLP, San Luis Potosí, Mexico
| | - M H García-Hernández
- Instituto Mexicano del Seguro Social, IMSS, Unidad de Investigación Biomédica, Delegación Zacatecas, Zacatecas, México
| |
Collapse
|
155
|
Fan FX, Li PT, Xia ZG, Xie CQ, Xu JG, Xu Q. [Effects and molecular mechanism of exogenous L-carnitine on excessive endoplasmic reticulum stress-mediated hepatic pyroptosis in severely scald rats]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2022; 38:667-676. [PMID: 35899334 DOI: 10.3760/cma.j.cn501225-20220120-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Objective: To investigate the effects and molecular mechanism of exogenous L-carnitine on hepatic pyroptosis mediated by excessive endoplasmic reticulum stress in severely scald rats. Methods: The experimental research method was adopted. According to the random number table (the same group method below), fifteen female Sprague Dawley rats aged 6-8 weeks were divided into sham-injury group, scald alone group, and scald+carnitine group (with 5 rats in each group), and full-thickness scald of 30% total body surface area were made on the back of rats in scald alone group and scald+carnitine group, and rats in scald+carnitine group were additionally given intraperitoneal injection of L-carnitine. At post injury hour (PIH) 72, The levels of aspartate aminotransferase (AST) and alanine dehydrogenase (ALT) of biochemical indicators of liver injury were detected by automatic biochemical analyzer with the sample number of 5. At PIH 72, liver tissue damage was detected by hematoxylin-eosin staining. At PIH 72, The mRNA levels of nucleotide-binding oligomerization domain-containing protein-like receptor family pyrin domain containing 3 (NLRP3), cysteine aspartic acid specific protease 1 (caspase-1), gasderminD (GSDMD), and interleukin 1β(IL-1β) in liver tissue as pyroptosis-related markers and glucose regulatory protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP) in liver tissue as endoplasmic reticulum stress-related markers were detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction (RT-qPCR). Protein expression levels of GRP78, CHOP, NLRP3, caspase-1, caspase-1/p20, GSDMD-N, and cleaved IL-1β in liver tissue were detected by Western blotting, and the sample numbers were all 5. HepG2 cells as human liver cancer cells were divided into dimethyl sulfoxide (DMSO) group, 0.1 μmol/L tunicamycin (TM) group, 0.2 μmol/L TM group, 0.4 μmol/L TM group, and 0.8 μmol/L TM group and were treated accordingly. After 24 h of culture, cell viability was detected by cell counting kit 8, and the intervention concentration of TM was screened, and the sample number was 5. HepG2 cells were divided into DMSO group, TM alone group, and TM+carnitine group, and treated accordingly. After 24 h of culture, the protein expression levels of GRP78, CHOP, NLRP3, caspase-1, caspase-1/p20, GSDMD-N, and cleaved IL-1β in cells were detected by Western blotting, and the sample numbers were all 3. Data were statistically analyzed with one-way analysis of variance and least significant difference-t test. Results: At PIH 72, the AST and ALT levels of serum in scald alone group were (640±22) and (157±8) U/L, which were significantly higher than (106±13) and (42±6) U/L in sham-injury group, respectively, with t values of -46.78 and -25.98, respectively, P<0.01. The AST and ALT levels of serum in scald+carnitine group were (519±50) and (121±10) U/L, which were significantly lower than those in scald alone group, respectively, with t values of 4.93 and 6.06, respectively, P<0.01. At PIH 72, the morphology of liver tissue of rats in sham-injury group were basically normal with no obvious inflammatory cell infiltration; compared with those in sham-injury group, the liver tissue of rats in scald alone group showed a large number of inflammatory cell infiltration and disturbed cell arrangement; compared with that in scald alone group, the liver tissue of rats in scald+carnitine group showed a small amount of inflammatory cell infiltration. At PIH 72, the mRNA expression on levels of NLRP3, caspase-1, GSDMD, and IL-1β in liver tissue of rats in scald alone group were significantly higher than those in sham-injury group (with t values of 34.42, 41.93, 30.17, and 15.68, respectively, P<0.01); the mRNA levels of NLRP3, caspase-1, GSDMD, and IL-1β in liver tissue of rats in scald+carnitine group were significantly lower than those in scald alone group (with t values of 34.40, 37.20, 19.95, and 7.88, respectively, P<0.01). At PIH 72, the protein expression levels of NLRP3, caspase-1, caspase-1/p20, GSDMD-N, and cleaved IL-1β in liver tissue of rats in scald alone group were significantly higher than those in sham-injury group (with t values of 12.28, 26.92, 5.20, 10.02, and 24.78, respectively, P<0.01); compared with those in scald alone group, the protein expression levels of NLRP3, caspase-1, caspase-1/p20, GSDMD-N, and cleaved IL-1β in liver tissue of rats in scald+carnitine group were significantly decreased (with t values of 10.99, 27.96, 12.69, 8.96, and 12.27, respectively, P<0.01). At PIH 72, the mRNA levels of GRP78 and CHOP in liver tissue of rats in scald alone group were significantly higher than those in sham-injury group (with t values of 21.00 and 16.52, respectively, P<0.01), and the mRNA levels of GRP78 and CHOP in liver tissue of rats in scald+carnitine group were significantly lower than those in scald alone group (with t values of 8.92 and 8.21, respectively, P<0.01); the protein expression levels of GRP78 and CHOP in liver tissue of rats in scald alone group were significantly higher than those in sham-injury group (with t values of 22.50 and 14.29, respectively, P<0.01), and the protein expression levels of GRP78 and CHOP in liver tissue of rats in scald+carnitine group were significantly lower than those in scald alone group (with t values of 14.29 and 5.33 respectively, P<0.01). After 24 h of culture, the cell survival rates of 0.1 μmol/L TM group, 0.2 μmol/L TM group, 0.4 μmol/L TM group, and 0.8 μmol/L TM group were significantly decreased than that in DMSO group (with t values of 4.90, 9.35, 18.64, and 25.09, respectively, P<0.01). Then 0.8 μmol/L was selected as the intervention concentration of TM. After 24 h of culture, compared with that in DMSO group, the protein expression levels of GRP78 and CHOP in cells in TM alone group were significantly increased (with t values of 10.48 and 17.67, respectively, P<0.01), and the protein expression levels of GRP78 and CHOP in TM+carnitine group were significantly lower than those in TM alone group (with t values of 8.08 and 13.23, respectively, P<0.05 or P<0.01). After 24 h of culture, compared with those in DMSO group, the protein expression levels of NLRP3 and GSDMD-N in cells in TM alone group were significantly increased (with t values of 13.44 and 27.51, respectively, P<0.01), but the protein expression levels of caspase-1, caspase-1/p20, and cleaved IL-1β in cells were not significantly changed (P>0.05); compared with that in TM alone group, the protein expression levels of NLRP3 and GSDMD-N in cells in TM+carnitine group were significantly decreased (with t values of 20.49 and 21.95, respectively, P<0.01), but the protein expression levels of caspase-1, caspase-1/p20, and cleaved IL-1β in cells were not significantly changed (P>0.05). Conclusions: In severely scald rats, exogenous L-carnitine may play a protective role against liver injury by inhibiting the pathways related to excessive endoplasmic reticulum stress-mediated pyroptosis.
Collapse
Affiliation(s)
- F X Fan
- Department of Burn Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - P T Li
- Department of Plastic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Z G Xia
- Department of Burns and Plastic Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - C Q Xie
- Department of Burn Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - J G Xu
- Department of Immunology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Qinglian Xu
- Department of Burn Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
156
|
Hu D, Zhang T, Yan Z, Wang L, Wang Y, Meng N, Tu B, Teng Y, Li Z, Lou X, Lei Y, Ren X, Zou Y, Wang F. Multimolecular characteristics of cell-death related hub genes in human cancers: a comprehensive pan-cancer analysis. Cell Cycle 2022; 21:2444-2454. [PMID: 35848940 DOI: 10.1080/15384101.2022.2101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Failure of the normal process of cell death pathways contributes to the defection of immune systems and the occurrence of cancers. The key genes, the multimolecular mechanisms, and the immune functions of these genes in pan-cancers remain unclear. Using online databases of The Cancer Genome Atlas, GEPIA2, TISIDB, HPA, Kaplan-Meier Plotter, PrognoScan, cBioPortal, GSCALite, TIMER, and Sangerbox, we identified the key genes from the six primary cell death-related pathways and performed a comprehensive analysis to investigate the multimolecular characteristics and immunological functions of the hub genes in 33 human cancers. We identified five hub genes in the six primary cell death-related pathways (JUN, NFKB1, CASP3, PARP1, and TP53). We found that CASP3, PARP1, and TP53 were overexpressed in 28, 23, and 27 cancers. The expression of the five genes was associated with the development and prognosis of many cancers. Particularly, JUN, NFKB1, CASP3, and TP53 have prognostic values in Brain Lower Grade Glioma (LGG), while PARP1 and CASP3 could predict the survival outcomes in Adrenocortical carcinoma (ACC). In addition, an extensive association between five genes' expression, DNA methylation, and tumor-immune system interactions was noticed. The five cell death-related hub genes could function as potential biomarkers for various cancers, particularly LGG and ACC. The immunological function analysis of the five genes also proposes new targets for developing immunosuppressants and improving the immunotherapy efficacy of cancers. However, further extensive clinical and experimental research are required to validate their clinical values.
Collapse
Affiliation(s)
- Dingtao Hu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui, China.,Clinical Cancer Institute, Center for Translational Medicine, Second Military Medical University, Shanghai, China
| | - Tingyu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Ziye Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Linlin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Yuhua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Nana Meng
- Department of Quality Management Office, The Second Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Bizhi Tu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Ying Teng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Zhen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Xiaoqi Lou
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Yu Lei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Xiaoshuang Ren
- Department of Social Management, Ritsumeikan University, Osaka, Japan
| | - Yanfeng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui, China
| | - Fang Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| |
Collapse
|
157
|
González L, Bulnes JF, Orellana MP, Muñoz Venturelli P, Martínez Rodriguez G. The Role of Colchicine in Atherosclerosis: From Bench to Bedside. Pharmaceutics 2022; 14:pharmaceutics14071395. [PMID: 35890291 PMCID: PMC9323936 DOI: 10.3390/pharmaceutics14071395] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a key feature of atherosclerosis. The inflammatory process is involved in all stages of disease progression, from the early formation of plaque to its instability and disruption, leading to clinical events. This strongly suggests that the use of anti-inflammatory agents might improve both atherosclerosis progression and cardiovascular outcomes. Colchicine, an alkaloid derived from the flower Colchicum autumnale, has been used for years in the treatment of inflammatory pathologies, including Gout, Mediterranean Fever, and Pericarditis. Colchicine is known to act over microtubules, inducing depolymerization, and over the NLRP3 inflammasome, which might explain its known anti-inflammatory properties. Recent evidence has shown the therapeutic potential of colchicine in the management of atherosclerosis and its complications, with limited adverse effects. In this review, we summarize the current knowledge regarding colchicine mechanisms of action and pharmacokinetics, as well as the available evidence on the use of colchicine for the treatment of coronary artery disease, covering basic, translational, and clinical studies.
Collapse
Affiliation(s)
- Leticia González
- Centro de Imágenes Biomédicas, Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Instituto Milenio de Ingeniería e Inteligencia Artificial para la Salud, iHEALTH, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Juan Francisco Bulnes
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.F.B.); (M.P.O.)
| | - María Paz Orellana
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.F.B.); (M.P.O.)
| | - Paula Muñoz Venturelli
- Centro de Estudios Clínicos, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago 7610658, Chile;
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW 2042, Australia
| | - Gonzalo Martínez Rodriguez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.F.B.); (M.P.O.)
- Correspondence:
| |
Collapse
|
158
|
Luo R, Li X, Wang D. Reprogramming Macrophage Metabolism and its Effect on NLRP3 Inflammasome Activation in Sepsis. Front Mol Biosci 2022; 9:917818. [PMID: 35847986 PMCID: PMC9276983 DOI: 10.3389/fmolb.2022.917818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 12/29/2022] Open
Abstract
Sepsis, the most common life-threatening multi-organ dysfunction syndrome secondary to infection, lacks specific therapeutic strategy due to the limited understanding of underlying mechanisms. It is currently believed that inflammasomes play critical roles in the development of sepsis, among which NLRP3 inflammasome is involved to most extent. Recent studies have revealed that dramatic reprogramming of macrophage metabolism is commonly occurred in sepsis, and this dysregulation is closely related with the activation of NLRP3 inflammasome. In view of the fact that increasing evidence demonstrates the mechanism of metabolism reprogramming regulating NLRP3 activation in macrophages, the key enzymes and metabolites participated in this regulation should be clearer for better interpreting the relationship of NLRP3 inflammasome and sepsis. In this review, we thus summarized the detail mechanism of the metabolic reprogramming process and its important role in the NLRP3 inflammasome activation of macrophages in sepsis. This mechanism summarization will reveal the applicational potential of metabolic regulatory molecules in the treatment of sepsis.
Collapse
Affiliation(s)
- Ruiheng Luo
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Dan Wang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Dan Wang,
| |
Collapse
|
159
|
Yin H, Liu N, Sigdel KR, Duan L. Role of NLRP3 Inflammasome in Rheumatoid Arthritis. Front Immunol 2022; 13:931690. [PMID: 35833125 PMCID: PMC9271572 DOI: 10.3389/fimmu.2022.931690] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by multi-articular, symmetrical and invasive arthritis resulting from immune system abnormalities involving T and B lymphocytes. Although significant progress has been made in the understanding of RA pathogenesis, the underlying mechanisms are not fully understood. Recent studies suggest that NLRP3 inflammasome, a regulator of inflammation, might play an important role in the development of RA. There have been increasing clinical and pre-clinical evidence showing the treatment of NLRP3/IL-1β in inflammatory diseases. To provide a foundation for the development of therapeutic strategies, we will briefly summarize the roles of NLRP3 inflammasome in RA and explore its potential clinical treatment.
Collapse
Affiliation(s)
- Hui Yin
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Na Liu
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Keshav Raj Sigdel
- Department of Internal Medicine, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, Medical College of Nanchang University, Nanchang, China
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- *Correspondence: Lihua Duan,
| |
Collapse
|
160
|
Gomez-Lopez N, Galaz J, Miller D, Farias-Jofre M, Liu Z, Arenas-Hernandez M, Garcia-Flores V, Shaffer Z, Greenberg J, Theis KR, Romero R. The immunobiology of preterm labor and birth: intra-amniotic inflammation or breakdown of maternal-fetal homeostasis. Reproduction 2022; 164:R11-R45. [PMID: 35559791 PMCID: PMC9233101 DOI: 10.1530/rep-22-0046] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022]
Abstract
In brief The syndrome of preterm labor comprises multiple established and novel etiologies. This review summarizes the distinct immune mechanisms implicated in preterm labor and birth and highlights potential strategies for its prevention. Abstract Preterm birth, the leading cause of neonatal morbidity and mortality worldwide, results from preterm labor, a syndrome that includes multiple etiologies. In this review, we have summarized the immune mechanisms implicated in intra-amniotic inflammation, the best-characterized cause of preterm labor and birth, as well as novel etiologies non-associated with intra-amniotic inflammation (i.e. formally known as idiopathic). While the intra-amniotic inflammatory responses driven by microbes (infection) or alarmins (sterile) have some overlap in the participating cellular and molecular processes, the distinct natures of these two conditions necessitate the implementation of specific approaches to prevent adverse pregnancy and neonatal outcomes. Intra-amniotic infection can be treated with the correct antibiotics, whereas sterile intra-amniotic inflammation could potentially be treated by administering a combination of anti-inflammatory drugs (e.g. betamethasone, inflammasome inhibitors, etc.). Recent evidence also supports the role of fetal T-cell activation as a newly described trigger for preterm labor and birth in a subset of cases diagnosed as idiopathic. Moreover, herein we also provide evidence of two maternally-driven immune mechanisms responsible for preterm births formerly considered to be idiopathic. First, the impairment of maternal Tregs can lead to preterm birth, likely due to the loss of immunosuppressive activity resulting in unleashed effector T-cell responses. Secondly, homeostatic macrophages were shown to be essential for maintaining pregnancy and promoting fetal development, and the adoptive transfer of homeostatic M2-polarized macrophages shows great promise for preventing inflammation-induced preterm birth. Collectively, in this review, we discuss the established and novel immune mechanisms responsible for preterm birth and highlight the potential targets for novel strategies aimed at preventing the multi-etiological syndrome of preterm labor leading to preterm birth.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Marcelo Farias-Jofre
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Zhenjie Liu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Zachary Shaffer
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Jonathan Greenberg
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Kevin R. Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201, USA
- Detroit Medical Center, Detroit, Michigan, 48201, USA
| |
Collapse
|
161
|
Pazarçeviren AE, Akbaba S, Evis Z, Tezcaner A. Versatile-in-All-Trades: Multifunctional Boron-Doped Calcium-Deficient Hydroxyapatite Directs Immunomodulation and Regeneration. ACS Biomater Sci Eng 2022; 8:3038-3053. [PMID: 35708275 PMCID: PMC9277590 DOI: 10.1021/acsbiomaterials.2c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Osseointegration of implants depends on several intertwined factors: osteogenesis, angiogenesis, and immunomodulation. Lately, novel reinforcements allowing faster bonding with osseous tissue have been explored intensively. In this study, we hypothesized the use of boron as a major multifunctional ion to confer versatility to calcium-deficient hydroxyapatite (cHA) synthesized by a wet precipitation/microwave reflux method. By synthesis of boron-doped calcium-deficient hydroxyapatite (BcHA), we expected to obtain an osteoimmunomodulatory and regenerative nanoreinforcement. BcHA was found to possess a pure HA phase, a greater surface area (66.41 m2/g, p = 0.028), and cumulative concentrations of Ca (207.87 ± 6.90 mg/mL, p < 0.001) and B (112.70 ± 11.79 mg/mL, p < 0.001) released in comparison to cHA. Osteogenic potential of BcHA was analyzed using human fetal osteoblasts. BcHA resulted in a drastic increase in the ALP activity (1.11 ± 0.11 mmol/gDNA·min, p < 0.001), biomineralization rate, and osteogenic gene expressions compared to cHA. BcHA angiogenic potential was investigated using human umbilical cord vein endothelial cells. Significantly, the highest VEGF-A release (1111.14 ± 87.82 in 4 h, p = 0.009) and angiogenic gene expressions were obtained for BcHA-treated samples. These samples were also observed to induce a more prominent and highly branched tube network. Finally, inflammatory and inflammasome responses toward BcHA were elucidated using human monocyte-derived macrophages differentiated from THP-1s. BcHA exhibited lower CAS-1 release (50.18 ± 5.52 μg/gDNA μg/gDNA) and higher IL-10 release (126.97 ± 15.05 μg/gDNA) than cHA. In addition, BcHA treatment led to increased expression of regenerative genes such as VEGF-A, RANKL, and BMP-2. In vitro results demonstrated that BcHA has tremendous osteogenic, angiogenic, and immunomodulatory potential to be employed as a "versatile-in-all-trades" modality in various bone tissue engineering applications.
Collapse
Affiliation(s)
| | - Sema Akbaba
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Zafer Evis
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey.,Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800, Turkey
| |
Collapse
|
162
|
Wang S, Zhang Z, Wang J, Ma L, Zhao J, Wang J, Fang Z, Hou W, Guo H. Neuronal GPER Participates in Genistein-Mediated Neuroprotection in Ischemic Stroke by Inhibiting NLRP3 Inflammasome Activation in Ovariectomized Female Mice. Mol Neurobiol 2022; 59:5024-5040. [PMID: 35661323 DOI: 10.1007/s12035-022-02894-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
Abstract
Estrogen replacement therapy (ERT) is potentially beneficial for the prevention and treatment of postmenopausal cerebral ischemia but inevitably increases the risk of cerebral hemorrhage and breast cancer when used for a long period of time. Genistein, a natural phytoestrogen, has been reported to contribute to the recovery of postmenopausal ischemic stroke with reduced risks. However, the underlying mechanism of genistein-mediated neuroprotection remains unclear. We reported that genistein exerted significant neuroprotective effects by enhancing the expression of neuronal G protein-coupled estrogen receptor (GPER) in the ischemic penumbra after cerebral reperfusion in ovariectomized (OVX) mice, and this effect was achieved through GPER-mediated inhibition of nod-like receptor protein 3 (NLRP3) inflammasome activation. In addition, we found that peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) was the pivotal molecule that participated in GPER-mediated inhibition of NLRP3 inflammasome activation in OVX mice after ischemia/reperfusion (I/R) injury. Our data suggest that the neuronal GPER/PGC-1α pathway plays an important role in genistein-mediated neuroprotection against I/R injury in OVX mice.
Collapse
Affiliation(s)
- Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhen Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jin Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Lina Ma
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jianshuai Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jiajia Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zongping Fang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
163
|
Gangopadhyay A, Devi S, Tenguria S, Carriere J, Nguyen H, Jäger E, Khatri H, Chu LH, Ratsimandresy RA, Dorfleutner A, Stehlik C. NLRP3 licenses NLRP11 for inflammasome activation in human macrophages. Nat Immunol 2022; 23:892-903. [PMID: 35624206 PMCID: PMC9174058 DOI: 10.1038/s41590-022-01220-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 04/19/2022] [Indexed: 01/08/2023]
Abstract
Intracellular sensing of stress and danger signals initiates inflammatory innate immune responses by triggering inflammasome assembly, caspase-1 activation and pyroptotic cell death as well as the release of interleukin 1β (IL-1β), IL-18 and danger signals. NLRP3 broadly senses infectious patterns and sterile danger signals, resulting in the tightly coordinated and regulated assembly of the NLRP3 inflammasome, but the precise mechanisms are incompletely understood. Here, we identified NLRP11 as an essential component of the NLRP3 inflammasome in human macrophages. NLRP11 interacted with NLRP3 and ASC, and deletion of NLRP11 specifically prevented NLRP3 inflammasome activation by preventing inflammasome assembly, NLRP3 and ASC polymerization, caspase-1 activation, pyroptosis and cytokine release but did not affect other inflammasomes. Restored expression of NLRP11, but not NLRP11 lacking the PYRIN domain (PYD), restored inflammasome activation. NLRP11 was also necessary for inflammasome responses driven by NLRP3 mutations that cause cryopyrin-associated periodic syndrome (CAPS). Because NLRP11 is not expressed in mice, our observations emphasize the specific complexity of inflammasome regulation in humans.
Collapse
Affiliation(s)
- Anu Gangopadhyay
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Synthekine, Menlo Park, CA, USA
| | - Savita Devi
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Shivendra Tenguria
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica Carriere
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Huyen Nguyen
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Elisabeth Jäger
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Hemisha Khatri
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Lan H Chu
- Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Rojo A Ratsimandresy
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Department of Immunology, Genentech, South San Francisco, CA, USA
| | - Andrea Dorfleutner
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA.
| | - Christian Stehlik
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
164
|
Liu J, Chen J, Xu B, Lin L, Liu S, Ma X, Liu J. 3,4,5-O-tricaffeoylquinic acid with anti-radiation activity suppresses LPS-induced NLRP3 inflammasome activation via autophagy in THP-1 macrophages. Mol Immunol 2022; 147:187-198. [PMID: 35633614 DOI: 10.1016/j.molimm.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/09/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Damage to normal tissues caused by excessive ionizing radiation (IR) exposure is the major side effect of radiotherapy. Several recent studies have shown that IR-induced damage to tissues leads to a systemic immune response and NLRP3 inflammasome activation in immune cells. 3,4,5-O-tricaffeoylquinic acid (tCQA), extracted from the natural plant Azolla imbricata, relieves inflammation and has radioprotective function. Here, we aimed to investigate the inhibitory effect and molecular mechanism of tCQA on IR-induced NLRP3 inflammasome activation. First, the results of ELISA and qPCR assays showed that tCQA has anti-inflammatory effects in THP-1 cell line and healthy human peripheral blood mononuclear cells. Western blotting and ELISA suggested tCQA could inhibit NF-κB/MAPK signaling pathway, NLRP3 expression and the secretion of IL-1β in lipopolysaccharide (LPS)-stimulated THP-1 macrophages. Then, flow cytometry, LDH assay and western blotting demonstrated that tCQA could inhibit LPS- and nigericin-induced Caspase-1 activation and gasdermin D cleavage, thereby suppressing inflammatory cell death. Furthermore, we found that the autophagy inhibitor chloroquine, not the proteasome inhibitor MG132, could counteract the promoting effect of tCQA on NLRP3 degradation and the inhibitory effect on cell death. Western blotting and autophagosome staining results suggested tCQA could significantly enhance LPS-induced autophagic flux in macrophages and ATG5/ATG7 knockdown reverses the inhibitory effect of tCQA on NLRP3 expression and Caspase-1 activation, indicating that tCQA induces NLRP3 degradation via autophagy. Finally, THP-1 macrophages and BALB/c mice were irradiated with 137Cs γ-rays and tCQA could inhibit IR-induced NLRP3 inflammasome activation both in vitro and in vivo. To conclude, tCQA controls inflammation and NLRP3 inflammasome activation in vitro via NF-κB/MAPK signaling pathway and autophagy, meanwhile inhibits IR-induced NLRP3 inflammasome activation in vivo. Overall, our study provides an experimental and theoretical basis for the application of tCQA as a radioprotectant in clinical radiotherapy.
Collapse
Affiliation(s)
- Jiajun Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jingyun Chen
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Baixue Xu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Long Lin
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Shaoqun Liu
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hosipital & AHS, Fudan University, Shanghai, 201199, PR China; Department of Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China.
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
165
|
Challagundla N, Saha B, Agrawal-Rajput R. Insights into inflammasome regulation: cellular, molecular, and pathogenic control of inflammasome activation. Immunol Res 2022; 70:578-606. [PMID: 35610534 DOI: 10.1007/s12026-022-09286-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Maintenance of immune homeostasis is an intricate process wherein inflammasomes play a pivotal role by contributing to innate and adaptive immune responses. Inflammasomes are ensembles of adaptor proteins that can trigger a signal following innate sensing of pathogens or non-pathogens eventuating in the inductions of IL-1β and IL-18. These inflammatory cytokines substantially influence the antigen-presenting cell's costimulatory functions and T helper cell differentiation, contributing to adaptive immunity. As acute and chronic disease conditions may accompany parallel tissue damage, we analyze the critical role of extracellular factors such as cytokines, amyloids, cholesterol crystals, etc., intracellular metabolites, and signaling molecules regulating inflammasome activation/inhibition. We develop an operative framework for inflammasome function and regulation by host cell factors and pathogens. While inflammasomes influence the innate and adaptive immune components' interplay modulating the anti-pathogen adaptive immune response, pathogens may target inflammasome inhibition as a survival strategy. As trapped between health and diseases, inflammasomes serve as promising therapeutic targets and their modus operandi serves as a scientific rationale for devising better therapeutic strategies.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Lab-5, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Reena Agrawal-Rajput
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
166
|
Noh EJ, Lee JY, Park SY, Park JH, Cho JY, Kim YM, Kim JS, Lee KM, Choi S, Lee SK. Salicornia herbacea Aqueous Extracts Regulate NLRP3 Inflammasome Activation in Macrophages and Trophoblasts. J Med Food 2022; 25:503-512. [PMID: 35561274 DOI: 10.1089/jmf.2021.k.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Salicornia herbacea L. (Chenopodiaceae), an edible salt marsh plant with anti-inflammatory effects, was examined in macrophages and trophoblasts whether it modulates NLRP3 inflammasome activity. Pretreatment and delayed treatment of S. herbacea extract (SHE) in bone marrow-derived macrophages (BMDMs) reduced the activity of NLRP3 inflammasome induced by lipopolysaccharide (LPS) and adenosine triphosphate stimulation and downregulated interleukin (IL)-1β production. SHE also inhibited pyroptotic cell death, the adaptor molecule apoptosis-associated speck-like protein containing a CARD (ASC), oligomerization, and speck by NLRP3 inflammasome activity in BMDM. Similarly, SHE decreased the mRNA expression of NLRP3, ASC, IL-1β, and IL-6 in the LPS-stimulated human trophoblast cell line, Swan 71 cells. In addition, SHE inhibited the production of IL-6 and IL-1β and decreased the expression of cyclooxygenase-2 and prostaglandin E2 in stimulated Swan 71 cells. Finally, 3,5-dicaffeoylquinic acid (3,5-DCQA), one of the components of S. herbacea, inhibited IL-1β produced by NLRP3 inflammasome activity. In conclusion, SHE downregulated the activity of the NLRP3 inflammasome in macrophages and trophoblasts.
Collapse
Affiliation(s)
- Eui-Jeong Noh
- Department of Obstetrics and Gynecology, College of Medicine, Myunggok Medical Research Institute, Konyang University, Daejeon, Korea
| | | | - Seo-Ye Park
- Department of Obstetrics and Gynecology, College of Medicine, Myunggok Medical Research Institute, Konyang University, Daejeon, Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju, Korea
| | - Jeong-Yong Cho
- Department of Food Science and Technology, Chonnam National University, Gwangju, Korea
| | - Young-Min Kim
- Department of Food Science and Technology, Chonnam National University, Gwangju, Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Korea
| | - Ki-Mo Lee
- Department of Obstetrics and Gynecology, College of Medicine, Myunggok Medical Research Institute, Konyang University, Daejeon, Korea
| | - Sunga Choi
- Department of Bioinformatics & Biosystems, Seongnam Campus of Korea Polytechnics, Gyeonggi-do, Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, College of Medicine, Myunggok Medical Research Institute, Konyang University, Daejeon, Korea
| |
Collapse
|
167
|
Hochheiser IV, Behrmann H, Hagelueken G, Rodríguez-Alcázar JF, Kopp A, Latz E, Behrmann E, Geyer M. Directionality of PYD filament growth determined by the transition of NLRP3 nucleation seeds to ASC elongation. SCIENCE ADVANCES 2022; 8:eabn7583. [PMID: 35559676 PMCID: PMC9106292 DOI: 10.1126/sciadv.abn7583] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/30/2022] [Indexed: 05/03/2023]
Abstract
Inflammasomes sense intrinsic and extrinsic danger signals to trigger inflammatory responses and pyroptotic cell death. Homotypic pyrin domain (PYD) interactions of inflammasome forming nucleotide-binding oligomerization domain (NOD)-like receptors with the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) mediate oligomerization into filamentous assemblies. We describe the cryo-electron microscopy (cryo-EM) structure of the human NLRP3PYD filament and identify a pattern of highly polar interface residues that form the homomeric interactions leading to characteristic filament ends designated as A- and B-ends. Coupling a titration polymerization assay to cryo-EM, we demonstrate that ASC adaptor protein elongation on NLRP3PYD nucleation seeds is unidirectional, associating exclusively to the B-end of the filament. Notably, NLRP3 and ASC PYD filaments exhibit the same symmetry in rotation and axial rise per subunit, allowing a continuous transition between NLRP3 and ASC. Integrating the directionality of filament growth, we present a molecular model of the ASC speck consisting of active NLRP3, ASC, and Caspase-1 proteins.
Collapse
Affiliation(s)
- Inga V. Hochheiser
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Heide Behrmann
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gregor Hagelueken
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | | | - Anja Kopp
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 12 Parkville, VIC 3052, Australia
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Elmar Behrmann
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674 Cologne, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
168
|
Prather ER, Gavrilin MA, Wewers MD. The central inflammasome adaptor protein ASC activates the inflammasome after transition from a soluble to an insoluble state. J Biol Chem 2022; 298:102024. [PMID: 35568196 PMCID: PMC9163591 DOI: 10.1016/j.jbc.2022.102024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
Apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD) (ASC) is a 22 kDa protein that functions as the central adaptor for inflammasome assembly. ASC forms insoluble specks in monocytes undergoing pyroptosis, and the polymerization of ASC provides a template of CARDs that leads to proximity-mediated autoactivation of caspase-1 in canonical inflammasomes. However, specks are insoluble protein complexes, and solubility is typically important for protein function. Therefore, we sought to define whether ASC specks comprise active inflammasome complexes or are simply the end stage of exhausted ASC polymers. Using a THP-1 cell–lysing model of caspase-1 activation that is ASC dependent, we compared caspase-1 activation induced by preassembled insoluble ASC specks and soluble monomeric forms of ASC. Unexpectedly, after controlling for the concentration dependence of ASC oligomerization, we found that only insoluble forms of ASC promoted caspase-1 autocatalysis. This link to insolubility was recapitulated with recombinant ASC. We show that purified recombinant ASC spontaneously precipitated and was functional, whereas the maltose-binding protein–ASC fusion to ASC (promoting enhanced solubility) was inactive until induced to insolubility by binding to amylose beads. This functional link to insolubility also held true for the Y146A mutation of the CARD of ASC, which avoids insolubility and caspase-1 activation. Thus, we conclude that the role of ASC insolubility in inflammasome function is inextricably linked to its pyrin domain–mediated and CARD-mediated polymerizations. These findings will support future studies into the molecular mechanisms controlling ASC solubility.
Collapse
Affiliation(s)
- Evan R Prather
- Division of Pulmonary Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mikhail A Gavrilin
- Division of Pulmonary Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| | - Mark D Wewers
- Division of Pulmonary Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
169
|
Artlett CM. The Mechanism and Regulation of the NLRP3 Inflammasome during Fibrosis. Biomolecules 2022; 12:biom12050634. [PMID: 35625564 PMCID: PMC9138796 DOI: 10.3390/biom12050634] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Fibrosis is often the end result of chronic inflammation. It is characterized by the excessive deposition of extracellular matrix. This leads to structural alterations in the tissue, causing permanent damage and organ dysfunction. Depending on the organ it effects, fibrosis can be a serious threat to human life. The molecular mechanism of fibrosis is still not fully understood, but the NLRP3 (NOD-, LRR- and pyrin–domain–containing protein 3) inflammasome appears to play a significant role in the pathogenesis of fibrotic disease. The NLRP3 inflammasome has been the most extensively studied inflammatory pathway to date. It is a crucial component of the innate immune system, and its activation mediates the secretion of interleukin (IL)-1β and IL-18. NLRP3 activation has been strongly linked with fibrosis and drives the differentiation of fibroblasts into myofibroblasts by the chronic upregulation of IL-1β and IL-18 and subsequent autocrine signaling that maintains an activated inflammasome. Both IL-1β and IL-18 are profibrotic, however IL-1β can have antifibrotic capabilities. NLRP3 responds to a plethora of different signals that have a common but unidentified unifying trigger. Even after 20 years of extensive investigation, regulation of the NLRP3 inflammasome is still not completely understood. However, what is known about NLRP3 is that its regulation and activation is complex and not only driven by various activators but controlled by numerous post-translational modifications. More recently, there has been an intensive attempt to discover NLRP3 inhibitors to treat chronic diseases. This review addresses the role of the NLRP3 inflammasome in fibrotic disorders across many different tissues. It discusses the relationships of various NLRP3 activators to fibrosis and covers different therapeutics that have been developed, or are currently in development, that directly target NLRP3 or its downstream products as treatments for fibrotic disorders.
Collapse
Affiliation(s)
- Carol M Artlett
- Department of Microbiology & Immunology, College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| |
Collapse
|
170
|
Bertheloot D, Wanderley CW, Schneider AH, Schiffelers LD, Wuerth JD, Tödtmann JM, Maasewerd S, Hawwari I, Duthie F, Rohland C, Ribeiro LS, Jenster LM, Rosero N, Tesfamariam YM, Cunha FQ, Schmidt FI, Franklin BS. Nanobodies dismantle post-pyroptotic ASC specks and counteract inflammation in vivo. EMBO Mol Med 2022; 14:e15415. [PMID: 35438238 PMCID: PMC9174887 DOI: 10.15252/emmm.202115415] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes sense intracellular clues of infection, damage, or metabolic imbalances. Activated inflammasome sensors polymerize the adaptor ASC into micron‐sized “specks” to maximize caspase‐1 activation and the maturation of IL‐1 cytokines. Caspase‐1 also drives pyroptosis, a lytic cell death characterized by leakage of intracellular content to the extracellular space. ASC specks are released among cytosolic content, and accumulate in tissues of patients with chronic inflammation. However, if extracellular ASC specks contribute to disease, or are merely inert remnants of cell death remains unknown. Here, we show that camelid‐derived nanobodies against ASC (VHHASC) target and disassemble post‐pyroptotic inflammasomes, neutralizing their prionoid, and inflammatory functions. Notably, pyroptosis‐driven membrane perforation and exposure of ASC specks to the extracellular environment allowed VHHASC to target inflammasomes while preserving pre‐pyroptotic IL‐1β release, essential to host defense. Systemically administrated mouse‐specific VHHASC attenuated inflammation and clinical gout, and antigen‐induced arthritis disease. Hence, VHHASC neutralized post‐pyroptotic inflammasomes revealing a previously unappreciated role for these complexes in disease. VHHASC are the first biologicals that disassemble pre‐formed inflammasomes while preserving their functions in host defense.
Collapse
Affiliation(s)
- Damien Bertheloot
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Carlos Ws Wanderley
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.,Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Ayda H Schneider
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.,Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Lisa Dj Schiffelers
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jennifer D Wuerth
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jan Mp Tödtmann
- Core Facility Nanobodies, Medical Faculty, University of Bonn, Bonn, Germany
| | - Salie Maasewerd
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ibrahim Hawwari
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Fraser Duthie
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Cornelia Rohland
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lucas S Ribeiro
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lea-Marie Jenster
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Nathalia Rosero
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yonas M Tesfamariam
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Fernando Q Cunha
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.,Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.,Core Facility Nanobodies, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bernardo S Franklin
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
171
|
Dao A, Yadav AK, Wei L, Banerjee S, Huang H. Combination of Immunotherapy and Photo-Pyroptosis as Novel Anticancer Strategy. Chembiochem 2022; 23:e202200201. [PMID: 35438233 DOI: 10.1002/cbic.202200201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/17/2022] [Indexed: 11/11/2022]
Abstract
Immunotherapy has made great progress in clinical cancer treatment in recent years, but the therapeutic efficacy was significantly limited by the lack of immunogenicity in the tumor microenvironment. Pyroptosis is a kind of programmed cell death in which the dying cancer cells produce inflammatory cytokines to relieve immuno-suppressive microenvironment and thus increase anti-tumor immunity. Reactive oxygen species (ROS) produced during photodynamic therapy (PDT) is one of the efficient activators to induce pyroptosis. Recently, a few photosensitizers have emerged with the ability to induce immunogenic cancer cell death via pyroptosis, opening up a new field for PDT. This highlight introduces the latest research on anti-tumor strategies achieved by the combination of immunotherapy and photodynamic therapy through photo-pyroptosis.
Collapse
Affiliation(s)
- Anyi Dao
- Sun Yat-Sen University, School of Pharmaceutical Science (Shenzhen), CHINA
| | - Ashish Kumar Yadav
- IIT BHU: Indian Institute of Technology BHU Varanasi, Department of Chemistry, INDIA
| | - Li Wei
- Sun Yat-Sen University, School of Pharmaceutical Science (Shenzhen), CHINA
| | - Samya Banerjee
- Indian Institute of Technology BHU Varanasi, Chemistry, BHU, Varanasi, 221005, Varanasi, INDIA
| | - Huaiyi Huang
- Sun Yat-Sen University, School of Pharmaceutical Science (Shenzhen), CHINA
| |
Collapse
|
172
|
Wang D, Yuan T, Liu J, Wen Z, Shen Y, Tang J, Wang Z, Wu X. ATG16L2 inhibits NLRP3 inflammasome activation through promoting ATG5‐12‐16L1 complex assembly and autophagy. Eur J Immunol 2022; 52:1321-1334. [PMID: 35426127 DOI: 10.1002/eji.202149764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/24/2022] [Accepted: 04/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Dongyang Wang
- Department of Gastrointestinal Surgery Renji Hospital Affiliated Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Tianli Yuan
- Department of Gastrointestinal Surgery Renji Hospital Affiliated Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Jiamin Liu
- Hongqiao International Institute of Medicine Shanghai Tongren Hospital/Faculty of Basic Medicine Shanghai Institute of Immunology Department of Immunology and Microbiology Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Zhoujin Wen
- Department of Gastrointestinal Surgery Renji Hospital Affiliated Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Yuguang Shen
- Department of Gastrointestinal Surgery Renji Hospital Affiliated Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Jian Tang
- Department of Gastrointestinal Surgery Renji Hospital Affiliated Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Zheng Wang
- Department of Gastrointestinal Surgery Renji Hospital Affiliated Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Xuefeng Wu
- Hongqiao International Institute of Medicine Shanghai Tongren Hospital/Faculty of Basic Medicine Shanghai Institute of Immunology Department of Immunology and Microbiology Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| |
Collapse
|
173
|
Cai R, Xu Y, Ren Y, He S, Zheng J, Kong B, Li Q, Yang X, Dai R, Wei R, Su Q. MicroRNA-136-5p protects cardiomyocytes from coronary microembolization through the inhibition of pyroptosis. Apoptosis 2022; 27:206-221. [PMID: 35084609 DOI: 10.1007/s10495-022-01712-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 12/20/2022]
Abstract
This study investigated how miR-136-5p partially affected cardiomyocyte pyroptosis in rats with coronary microembolization (CME). The cardiac function and structure of rats with CME were evaluated using echocardiography, hematoxylin and eosin staining, Masson staining, and troponin I level. Pyroptosis was induced by lipopolysaccharide (LPS) in isolated rat cardiomyocytes and evaluated by the expression of caspase-1, NOD-like receptor family pyrin domain-containing 3, interleukin-1β, and gasdermin D-N. After cell transfection, the expression of Ataxin-1 like (ATXN1L), pyrin domain-containing 1 (PYDC1), and pyroptosis-related proteins was assessed. Dual-luciferase reporter and immunoprecipitation assays were used to verify the relationships among miR-136-5p, ATXN1L, and capicua (CIC). MiR-136-5p was under-expressed, whereas ATXN1L was overexpressed in rats with CME and in LPS-treated primary cardiomyocytes. MiR-136-5p targeted ATXN1L, and ATXN1L bound to CIC to suppress PYDC1 expression. MiR-136-5p overexpression suppressed pyroptosis by inhibiting the binding of ATXN1L with CIC and promoting PYDC1 expression, which was reversed by simultaneous elevation of ATXN1L. In conclusion, miR-136-5p suppressed pyroptosis by upregulating PYDC1 via ATXN1L/CIC axis, thereby attenuating cardiac damage caused by CME.
Collapse
Affiliation(s)
- Ruping Cai
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No. 15, Lequn Road, Guilin, 541001, Guangxi, China
| | - Yuli Xu
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No. 15, Lequn Road, Guilin, 541001, Guangxi, China
| | - Yanling Ren
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No. 15, Lequn Road, Guilin, 541001, Guangxi, China
| | - Shirong He
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No. 15, Lequn Road, Guilin, 541001, Guangxi, China
| | - Jing Zheng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Binghui Kong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Quanzhong Li
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No. 15, Lequn Road, Guilin, 541001, Guangxi, China
| | - Xiheng Yang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No. 15, Lequn Road, Guilin, 541001, Guangxi, China
| | - Rixin Dai
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No. 15, Lequn Road, Guilin, 541001, Guangxi, China
| | - Riming Wei
- College of Biotechnology, Guilin Medical University, No. 1, Zhiyuan Road, Guilin, 541004, Guangxi, China.
| | - Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, No. 15, Lequn Road, Guilin, 541001, Guangxi, China.
| |
Collapse
|
174
|
Huang Y, Yong P, Dickey D, Vora SM, Wu H, Bernlohr DA. Inflammasome Activation and Pyroptosis via a Lipid-regulated SIRT1-p53-ASC Axis in Macrophages From Male Mice and Humans. Endocrinology 2022; 163:6523230. [PMID: 35136993 PMCID: PMC8896164 DOI: 10.1210/endocr/bqac014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 02/07/2023]
Abstract
Obesity-linked diabetes is associated with accumulation of proinflammatory macrophages into adipose tissue leading to inflammasome activation and pyroptotic secretion of interleukin (IL)-1β and IL-18. Targeting fatty acid binding protein 4 (FABP4) uncouples obesity from inflammation, attenuates characteristics of type 2 diabetes and is mechanistically linked to the cellular accumulation of monounsaturated fatty acids in macrophages. Herein we show that pharmacologic inhibition or genetic deletion of FABP4 activates silent mating type information regulation 2 homolog 1 (SIRT1) and deacetylates its downstream targets p53 and signal transducer and activator of transcription 3 (STAT3). Pharmacologic inhibition of fatty acid synthase or stearoyl-coenzyme A desaturase inhibits, whereas exogenous addition of C16:1 or C18:1 but not their saturated acyl chain counterparts, activates SIRT1 and p53/STAT3 signaling and IL-1β/IL-18 release. Expression of the p53 target gene ASC [apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (CARD)] required for assembly of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is downregulated in FABP4 null mice and macrophage cell lines leading to loss of procaspase 1 activation and pyroptosis. Concomitant with loss of ASC expression in FABP4-/- macrophages, inflammasome activation, gasdermin D processing, and functional activation of pyroptosis are all diminished in FABP4 null macrophages but can be rescued by silencing SIRT1 or exogenous expression of ASC. Taken together, these results reveal a novel lipid-regulated pathway linking to SIRT1-p53-ASC signaling and activation of inflammasome action and pyroptosis.
Collapse
Affiliation(s)
- Yimao Huang
- Departments of Biochemistry, Molecular Biology and Biophysics
| | - Peter Yong
- Departments of Biochemistry, Molecular Biology and Biophysics
| | - Deborah Dickey
- Departments of Biochemistry, Molecular Biology and Biophysics
| | - Setu M Vora
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - David A Bernlohr
- Departments of Biochemistry, Molecular Biology and Biophysics
- Institute for Diabetes, Obesity and Metabolism University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Correspondence: David A. Bernlohr, Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
175
|
Ghait M, Husain RA, Duduskar SN, Haack TB, Rooney M, Göhrig B, Bauer M, Rubio I, Deshmukh SD. The TLR-chaperone CNPY3 is a critical regulator of NLRP3-Inflammasome activation. Eur J Immunol 2022; 52:907-923. [PMID: 35334124 DOI: 10.1002/eji.202149612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/08/2022]
Abstract
Toll like receptors (TLRs) mediate the recognition of microbial and endogenous insults to orchestrate the inflammatory response. TLRs localize to the plasma membrane or endomembranes, depending on the member, and rely critically on endoplasmic reticulum-resident chaperones to mature and reach their subcellular destinations. The chaperone canopy FGF signaling regulator 3 (CNPY3) is necessary for the proper trafficking of multiple TLRs including TLR1/2/4/5/9 but not TLR3. However, the exact role of CNPY3 in inflammatory signalling downstream of TLRs has not been studied in detail. Consistent with the reported client specificity, we report here that functional loss of CNPY3 in engineered macrophages impairs downstream signalling by TLR2 but not TLR3. Unexpectedly, CNPY3-deficient macrophages show reduced interleukin-1β (IL-1ß) and IL-18 processing and production independent of the challenged upstream TLR species, demonstrating a separate, specific role for CNPY3 in inflammasome activation. Mechanistically, we document that CNPY3 regulates caspase-1 localization to the apoptosis speck and auto-activation of caspase-1. Importantly, we were able to recapitulate these findings in macrophages from an early infantile epileptic encephalopathy (EIEE) patient with a novel CNPY3 loss-of-function variant. Summarizing, our findings reveal a hitherto unknown, TLR-independent role of CNPY3 in inflammasome activation, highlighting a more complex and dedicated role of CNPY3 to the inflammatory response than anticipated. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohamed Ghait
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ralf A Husain
- Department of Neuropediatrics, Jena University Hospital, Jena, Germany.,Centre for Rare Diseases, Jena University Hospital, Jena, Germany
| | - Shivalee N Duduskar
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Michael Rooney
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Bianca Göhrig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Ignacio Rubio
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Department for Anesthesiology & Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Sachin D Deshmukh
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
176
|
The role of the inflammasome and its related pathways in ovarian cancer. Clin Transl Oncol 2022; 24:1470-1477. [PMID: 35288840 DOI: 10.1007/s12094-022-02805-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/03/2022] [Indexed: 10/18/2022]
Abstract
Ovarian cancer (OC) is the most lethal tumor of the female reproductive tract and one of the most prevalent causes of death among female cancer patients. The absence of suitable procedures for early diagnosis, chemoresistance, and limited surgical debulking are all contributing to poor survival in patients. Despite aggressive treatments, the majority of patients have a recurrence within 16-22 months. Inflammasomes are multimeric protein complexes that play a major role in the innate immune system and inflammation. The overexpression of inflammasome-related pathways, including NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), Absent in melanoma 2 (AIM2), caspase-1, and Interleukin (IL)-1 have been reported in OC patients and in vitro cell lines. Therefore, inflammasome-related genes and protein might have a role in OC pathogenesis. Considering the potential relationship between inflammasome and OC, this study aimed to provide a literature-based review to explain the role of inflammasome and inflammation in cancer progression in OC.
Collapse
|
177
|
Yan Z, Da Q, Li Z, Lin Q, Yi J, Su Y, Yu G, Ren Q, Liu X, Lin Z, Qu J, Yin W, Liu J. Inhibition of NEK7 Suppressed Hepatocellular Carcinoma Progression by Mediating Cancer Cell Pyroptosis. Front Oncol 2022; 12:812655. [PMID: 35223495 PMCID: PMC8866693 DOI: 10.3389/fonc.2022.812655] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
NIMA-related kinase 7 (NEK7) is a serine/threonine kinase involved in cell cycle progression via mitotic spindle formation and cytokinesis. It has been related to multiple cancers, including breast cancer, hepatocellular cancer, lung cancer, and colorectal cancer. Moreover, NEK7 regulated the NLRP3 inflammasome to activate Caspase-1, resulting in cell pyroptosis. In the present study, we investigated whether NEK7 is involved in cell pyroptosis of hepatocellular carcinoma (HCC). Interestingly, we found that NEK7 was significantly related to expression of pyroptosis marker GSDMD in HCC. We found that NEK7 expression was significantly correlated with GSDMD expression in bioinformatics analysis, and NEK7 expression was significantly co-expressed with GSDMD in our HCC specimens. Cell viability, migration, and invasion capacity of HCC cell lines were inhibited, and the tumor growth in the xenograft mouse model was also suppressed following knockdown of NEK7 expression. Mechanistic studies revealed that knockdown of NEK7 in HCC cells significantly upregulated the expression of pyroptosis markers such as NLRP3, Caspase-1, and GSDMD. Coculture of HCC cells stimulated hepatic stellate cell activation by increasing p-ERK1/2 and α-SMA. Knockdown of NEK7 impaired the stimulation of HCC cells. Therefore, downregulation of NEK7 inhibited cancer–stromal interaction by triggering cancer cell pyroptosis. Taken together, this study highlights the functional role of NEK7-regulated pyroptosis in tumor progression and cancer–stromal interaction of HCC, suggesting NEK7 as a potential target for a new therapeutic strategy of HCC treatment.
Collapse
Affiliation(s)
- Zilong Yan
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qingen Da
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Zhangfu Li
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qirui Lin
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jing Yi
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yanze Su
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guanyin Yu
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qingqi Ren
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xu Liu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zewei Lin
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jianhua Qu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Weihua Yin
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jikui Liu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
178
|
Quek H, Cuní-López C, Stewart R, Colletti T, Notaro A, Nguyen TH, Sun Y, Guo CC, Lupton MK, Roberts TL, Lim YC, Oikari LE, La Bella V, White AR. ALS monocyte-derived microglia-like cells reveal cytoplasmic TDP-43 accumulation, DNA damage, and cell-specific impairment of phagocytosis associated with disease progression. J Neuroinflammation 2022; 19:58. [PMID: 35227277 PMCID: PMC8887023 DOI: 10.1186/s12974-022-02421-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterised by the loss of upper and lower motor neurons. Increasing evidence indicates that neuroinflammation mediated by microglia contributes to ALS pathogenesis. This microglial activation is evident in post-mortem brain tissues and neuroimaging data from patients with ALS. However, the role of microglia in the pathogenesis and progression of amyotrophic lateral sclerosis remains unclear, partly due to the lack of a model system that is able to faithfully recapitulate the clinical pathology of ALS. To address this shortcoming, we describe an approach that generates monocyte-derived microglia-like cells that are capable of expressing molecular markers, and functional characteristics similar to in vivo human brain microglia.
Methods
In this study, we have established monocyte-derived microglia-like cells from 30 sporadic patients with ALS, including 15 patients with slow disease progression, 6 with intermediate progression, and 9 with rapid progression, together with 20 non-affected healthy controls.
Results
We demonstrate that patient monocyte-derived microglia-like cells recapitulate canonical pathological features of ALS including non-phosphorylated and phosphorylated-TDP-43-positive inclusions. Moreover, ALS microglia-like cells showed significantly impaired phagocytosis, altered cytokine profiles, and abnormal morphologies consistent with a neuroinflammatory phenotype. Interestingly, all ALS microglia-like cells showed abnormal phagocytosis consistent with the progression of the disease. In-depth analysis of ALS microglia-like cells from the rapid disease progression cohort revealed significantly altered cell-specific variation in phagocytic function. In addition, DNA damage and NOD-leucine rich repeat and pyrin containing protein 3 (NLRP3) inflammasome activity were also elevated in ALS patient monocyte-derived microglia-like cells, indicating a potential new pathway involved in driving disease progression.
Conclusions
Taken together, our work demonstrates that the monocyte-derived microglia-like cell model recapitulates disease-specific hallmarks and characteristics that substantiate patient heterogeneity associated with disease subgroups. Thus, monocyte-derived microglia-like cells are highly applicable to monitor disease progression and can be applied as a functional readout in clinical trials for anti-neuroinflammatory agents, providing a basis for personalised treatment for patients with ALS.
Collapse
|
179
|
Tanishita Y, Sekiya H, Inohara N, Tsuchiya K, Mitsuyama M, Núñez G, Hara H. Listeria toxin promotes phosphorylation of the inflammasome adaptor ASC through Lyn and Syk to exacerbate pathogen expansion. Cell Rep 2022; 38:110414. [PMID: 35196496 DOI: 10.1016/j.celrep.2022.110414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/08/2021] [Accepted: 01/31/2022] [Indexed: 12/20/2022] Open
Abstract
Inflammasome activation exacerbates infectious disease caused by pathogens such as Listeria monocytogenes, Staphylococcus aureus, and severe acute respiratory syndrome coronavirus 2. Although these pathogens activate host inflammasomes to regulate pathogen expansion, the mechanisms by which pathogen toxins contribute to inflammasome activation remain poorly understood. Here we show that activation of inflammasomes by Listeria infection is promoted by amino acid residue T223 of listeriolysin O (LLO) independently of its pore-forming activity. LLO T223 is critical for phosphorylation of the inflammasome adaptor ASC at amino acid residue Y144 through Lyn-Syk signaling, which is essential for ASC oligomerization. Notably, a Listeria mutant expressing LLO T223A is impaired in inducing ASC phosphorylation and inflammasome activation. Furthermore, the virulence of LLO T223A mutant is markedly attenuated in vivo due to impaired ability to activate the inflammasome. Our results reveal a function of a pathogen toxin that exacerbates infection by promoting phosphorylation of ASC.
Collapse
Affiliation(s)
- Yuko Tanishita
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hisateru Sekiya
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Naohiro Inohara
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kohsuke Tsuchiya
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masao Mitsuyama
- Department of Microbiology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hideki Hara
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
180
|
Rastogi S, Briken V. Interaction of Mycobacteria With Host Cell Inflammasomes. Front Immunol 2022; 13:791136. [PMID: 35237260 PMCID: PMC8882646 DOI: 10.3389/fimmu.2022.791136] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
The inflammasome complex is important for host defense against intracellular bacterial infections. Mycobacterium tuberculosis (Mtb) is a facultative intracellular bacterium which is able to survive in infected macrophages. Here we discuss how the host cell inflammasomes sense Mtb and other related mycobacterial species. Furthermore, we describe the molecular mechanisms of NLRP3 inflammasome sensing of Mtb which involve the type VII secretion system ESX-1, cell surface lipids (TDM/TDB), secreted effector proteins (LpqH, PPE13, EST12, EsxA) and double-stranded RNA acting on the priming and/or activation steps of inflammasome activation. In contrast, Mtb also mediates inhibition of the NLRP3 inflammasome by limiting exposure of cell surface ligands via its hydrolase, Hip1, by inhibiting the host cell cathepsin G protease via the secreted Mtb effector Rv3364c and finally, by limiting intracellular triggers (K+ and Cl- efflux and cytosolic reactive oxygen species production) via its serine/threonine kinase PknF. In addition, Mtb inhibits the AIM2 inflammasome activation via an unknown mechanism. Overall, there is good evidence for a tug-of-war between Mtb trying to limit inflammasome activation and the host cell trying to sense Mtb and activate the inflammasome. The detailed molecular mechanisms and the importance of inflammasome activation for virulence of Mtb or host susceptibility have not been fully investigated.
Collapse
Affiliation(s)
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
181
|
Liu T, Hou M, Li M, Qiu C, Cheng L, Zhu T, Qu J, Li L. Pyroptosis: A Developing Foreland of Ovarian Cancer Treatment. Front Oncol 2022; 12:828303. [PMID: 35198448 PMCID: PMC8858844 DOI: 10.3389/fonc.2022.828303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OVCA) has the second highest mortality among all gynecological cancers worldwide due to its complexity and difficulty in early-stage diagnosis and a lack of targeted therapy. Modern strategies of OVCA treatment involve debulking surgery combined with chemotherapy. Nonetheless, the current treatment is far from satisfactory sometimes and therefore the demand for novel therapeutic measures needs to be settled. Pyroptosis is a notable form of programmed cell death characterized by influx of sodium with water, swelling of cells, and finally osmotic lysis, which is distinctive from numerous classes of programmed cell death. So far, four major pathways underlying mechanisms of pyroptosis have been identified and pyroptosis is indicated to be connected with a variety of disorders including cancerous diseases. Interestingly enough, pyroptosis plays an important role in ovarian cancer with regard to long non-coding RNAs and several regulatory molecules, as is shown by previously published reports. In this review, we summarized major pathways of pyroptosis and the current research foundations of pyroptosis and ovarian cancer, anticipating enriching the thoughts for the treatment of ovarian cancer. What is more, some problems yet unsolved in this field were also raised to hopefully propose several potential threads of OVCA treatment and research directions in future.
Collapse
Affiliation(s)
- Tianyi Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Hou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Manyu Li
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cheng Qiu
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Cheng
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tianyu Zhu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinfeng Qu
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lanyu Li
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Lanyu Li,
| |
Collapse
|
182
|
Wang X, Liu M, Geng N, Du Y, Li Z, Gao X, Han B, Liu J, Liu Y. Staphylococcus aureus mediates pyroptosis in bovine mammary epithelial cell via activation of NLRP3 inflammasome. Vet Res 2022; 53:10. [PMID: 35123552 PMCID: PMC8817610 DOI: 10.1186/s13567-022-01027-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/10/2022] [Indexed: 12/22/2022] Open
Abstract
Cell death and inflammation are intimately linked during mastitis due to Staphylococcus aureus (S. aureus). Pyroptosis, a programmed necrosis triggered by gasdermin protein family, often occurs after inflammatory caspase activation. Many pathogens invade host cells and activate cell-intrinsic death mechanisms, including pyroptosis, apoptosis, and necroptosis. We reported that bovine mammary epithelial cells (MAC-T) respond to S. aureus by NOD-like receptor protein 3 (NLRP3) inflammasome activation through K+ efflux, leading to the recruitment of apoptosis-associated speck-like protein (ASC) and the activation of caspase-1. The activated caspase-1 cleaves gasdermin D (GSDMD) and forms a N-terminal pore forming domain that drives swelling and membrane rupture. Membrane rupture results in the release of the pro-inflammatory cytokines IL-18 and IL-1β, which are activated by caspase-1. Can modulate GSDMD activation by NLRP3-dependent caspase-1 activation and then cause pyroptosis of bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Xiaozhou Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Na Geng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yongzhen Du
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zhaoming Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xin Gao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
183
|
Xu T, Yu W, Fang H, Wang Z, Chi Z, Guo X, Jiang D, Zhang K, Chen S, Li M, Guo Y, Zhang J, Yang D, Yu Q, Wang D, Zhang X. Ubiquitination of NLRP3 by gp78/Insig-1 restrains NLRP3 inflammasome activation. Cell Death Differ 2022; 29:1582-1595. [PMID: 35110683 PMCID: PMC9345978 DOI: 10.1038/s41418-022-00947-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
The NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome plays a pivotal role in defending the host against infection as well as sterile inflammation. Activation of the NLRP3 inflammasome is critically regulated by a de-ubiquitination mechanism, but little is known about how ubiquitination restrains NLRP3 activity. Here, we showed that the membrane-bound E3 ubiquitin ligase gp78 mediated mixed ubiquitination of NLRP3, which inhibited NLRP3 inflammasome activation by suppressing the oligomerization and subcellular translocation of NLRP3. In addition, the endoplasmic reticulum membrane protein insulin-induced gene 1 (Insig-1) was required for this gp78-NLRP3 interaction and gp78-mediated NLRP3 ubiquitination. gp78 or Insig-1 deficiency in myeloid cells led to exacerbated NLRP3 inflammasome-dependent inflammation in vivo, including lipopolysaccharide-induced systemic inflammation and alum-induced peritonitis. Taken together, our study identifies gp78-mediated NLRP3 ubiquitination as a regulatory mechanism that restrains inflammasome activation and highlights NLRP3 ubiquitination as a potential therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Ting Xu
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, P.R. China
| | - Weiwei Yu
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, P.R. China
| | - Hui Fang
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, P.R. China
| | - Zhen Wang
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, P.R. China
| | - Zhexu Chi
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, P.R. China
| | - Xingchen Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, 430072, Wuhan, P.R. China
| | - Danlu Jiang
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, P.R. China
| | - Kailian Zhang
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, P.R. China
| | - Sheng Chen
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, P.R. China
| | - Mobai Li
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, P.R. China
| | - Yuxian Guo
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, P.R. China
| | - Jian Zhang
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, P.R. China
| | - Dehang Yang
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, P.R. China
| | - Qianzhou Yu
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, P.R. China
| | - Di Wang
- Institute of Immunology and Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, P.R. China. .,Liangzhu Laboratory, Zhejiang University Medical Center, 311121, Hangzhou, P.R. China.
| | - Xue Zhang
- Department of Pathology and Pathophysiology and Department of Respiratory Medicine at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, P.R. China.
| |
Collapse
|
184
|
Ross C, Chan AH, von Pein JB, Maddugoda MP, Boucher D, Schroder K. Inflammatory Caspases: Toward a Unified Model for Caspase Activation by Inflammasomes. Annu Rev Immunol 2022; 40:249-269. [PMID: 35080918 DOI: 10.1146/annurev-immunol-101220-030653] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inflammasomes are inflammatory signaling complexes that provide molecular platforms to activate the protease function of inflammatory caspases. Caspases-1, -4, -5, and -11 are inflammatory caspases activated by inflammasomes to drive lytic cell death and inflammatory mediator production, thereby activating host-protective and pathological immune responses. Here, we comprehensively review the mechanisms that govern the activity of inflammatory caspases. We discuss inflammatory caspase activation and deactivation mechanisms, alongside the physiological importance of caspase activity kinetics. We also examine mechanisms of caspase substrate selection and how inflammasome and cell identities influence caspase activity and resultant inflammatory and pyroptotic cellular programs. Understanding how inflammatory caspases are regulated may offer new strategies for treating infection and inflammasome-driven disease. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Connie Ross
- Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia; .,Current affiliation: School of Molecular and Chemical Sciences, The University of Queensland, St. Lucia, Australia
| | - Amy H Chan
- Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia;
| | - Jessica B von Pein
- Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia;
| | - Madhavi P Maddugoda
- Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia;
| | - Dave Boucher
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Kate Schroder
- Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia;
| |
Collapse
|
185
|
Lo Giudice C, Yang J, Poncin MA, Adumeau L, Delguste M, Koehler M, Evers K, Dumitru AC, Dawson KA, Alsteens D. Nanophysical Mapping of Inflammasome Activation by Nanoparticles via Specific Cell Surface Recognition Events. ACS NANO 2022; 16:306-316. [PMID: 34957816 DOI: 10.1021/acsnano.1c06301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silica nanoparticles (SiNP) trigger a range of innate immune responses in relevant essential organs, such as the liver and the lungs. Inflammatory reactions, including NLRP3 inflammasome activation, have been linked to particulate materials; however, the molecular mechanisms and key actors remain elusive. Although many receptors, including several scavenger receptors, were suggested to participate in SiNP cellular uptake, mechanistic evidence of their role on innate immunity is lacking. Here we present an atomic force microscopy-based approach to physico-mechanically map the specific interaction occurring between nanoparticles and scavenger receptor A1 (SRA1) in vitro on living lung epithelial cells. We find that SiNP recognition by SRA1 on human macrophages plays a key role in mediating NLRP3 inflammasome activation, and we identify cellular mechanical changes as clear indicators of inflammasome activation in human macrophages, greatly advancing our knowledge on the interplay among nanomaterials and innate immunity.
Collapse
Affiliation(s)
- Cristina Lo Giudice
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
- Max Planck Institute for Medical Research, Heidelberg D-69120, Germany
| | - Jinsung Yang
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Mégane A Poncin
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Laurent Adumeau
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Dublin D04 N2E5, Ireland
| | - Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Koen Evers
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Dublin D04 N2E5, Ireland
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Kenneth A Dawson
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Dublin D04 N2E5, Ireland
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510261, China
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| |
Collapse
|
186
|
Shen S, Wang Z, Sun H, Ma L. Role of NLRP3 Inflammasome in Myocardial Ischemia-Reperfusion Injury and Ventricular Remodeling. Med Sci Monit 2022; 28:e934255. [PMID: 35042840 PMCID: PMC8790935 DOI: 10.12659/msm.934255] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Reperfusion therapy is the optimal therapy for acute myocardial infarction (AMI), but acute inflammatory injury and chronic heart failure (HF) after myocardial ischemia and reperfusion (MI/R) remain the leading cause of death after AMI. Pyroptosis, a newly discovered form of cell death, has been proven to play a significant role in the acute reperfusion process and the subsequent chronic process of ventricular remodeling. Current research shows that multiple stimuli activate the pyroptotic signaling pathway and contribute to cell death and nonbacterial inflammation after MI/R. These stimuli promote the assembly of the nucleotide-binding and oligomerization-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome by activating NLRP3. The mature NLRP3 inflammasome cleaves procaspase-1 to active caspase-1, which leads to mature processing of interleukin (IL)-18, IL-1β, and gasdermin D (GSDMD) protein. That eventually results in cell lysis and generation of nonbacterial inflammation. The present review summarizes the mechanism of NLRP3 inflammasome activation after MI/R and discusses the role that NLRP3-mediated pyroptosis plays in the pathophysiology of MI/R injury and ventricular remodeling. We also discuss potential mechanisms and targeted therapy for which there is evidence supporting treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Shichun Shen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (mainland)
| | - Zhen Wang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (mainland)
| | - Haozhong Sun
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (mainland)
| | - Likun Ma
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (mainland)
| |
Collapse
|
187
|
Yang J, Hu S, Bian Y, Yao J, Wang D, Liu X, Guo Z, Zhang S, Peng L. Targeting Cell Death: Pyroptosis, Ferroptosis, Apoptosis and Necroptosis in Osteoarthritis. Front Cell Dev Biol 2022; 9:789948. [PMID: 35118075 PMCID: PMC8804296 DOI: 10.3389/fcell.2021.789948] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
New research has shown that the development of osteoarthritis (OA) is regulated by different mechanisms of cell death and types of cytokines. Therefore, elucidating the mechanism of action among various cytokines, cell death processes and OA is important towards better understanding the pathogenesis and progression of the disease. This paper reviews the pathogenesis of OA in relation to different types of cytokine-triggered cell death. We describe the cell morphological features and molecular mechanisms of pyroptosis, apoptosis, necroptosis, and ferroptosis, and summarize the current research findings defining the molecular mechanisms of action between different cell death types and OA.
Collapse
Affiliation(s)
- Jian Yang
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Biomaterials and Medical Device Engineering Technology Research Center, Hainan Medical University, Haikou, China
| | - Shasha Hu
- Department of Pathology, Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Yangyang Bian
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Biomaterials and Medical Device Engineering Technology Research Center, Hainan Medical University, Haikou, China
| | - Jiangling Yao
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Biomaterials and Medical Device Engineering Technology Research Center, Hainan Medical University, Haikou, China
| | - Dong Wang
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Xiaoqian Liu
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Zhengdong Guo
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
| | - Siyuan Zhang
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Lei Peng
- Trauma Center, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Provincial Biomaterials and Medical Device Engineering Technology Research Center, Hainan Medical University, Haikou, China
- *Correspondence: Lei Peng,
| |
Collapse
|
188
|
Zheng J, Zhou Z, Qiu Y, Wang M, Yu H, Wu Z, Wang X, Jiang X. A Pyroptosis-Related Gene Prognostic Index Correlated with Survival and Immune Microenvironment in Glioma. J Inflamm Res 2022; 15:17-32. [PMID: 35018108 PMCID: PMC8742621 DOI: 10.2147/jir.s341774] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose As an inflammatory form of programmed cell death, pyroptosis has been well established to be associated with tumorigenesis and tumor immune microenvironment. In this paper, we aimed at the construction of a pyroptosis-related gene prognostic index (PRGPI) for predicting prognosis and guiding individualized immunotherapy in glioma patients. Patients and Methods Pyroptosis-related genes (PRGs) were identified based on a detailed review of published literatures. The transcriptome data and clinical information of glioma patients were obtained from CGGA and TCGA databases. PRGPI was constructed by using the multivariate Cox regression method. The immune cell infiltration level was analyzed via CIBERSORT algorithm. The tumor immune dysfunction and exclusion (TIDE) algorithm was applied to evaluate the potential response to immune checkpoint inhibitor (ICI) therapy. The expression patterns of PRGs in PRGPI were validated in cell lines and pathological specimens. Results We identified a total of 31 PRGs. Among them, PRGs (CASP3, DPP9, MAPK8, PELP1 and TOMM20) were selected for the construction of PRGPI. In both training (CGGA693) and validation (CGGA325 and TCGA) cohorts, PRGPI-high patients showed an inferior survival outcome compared with PRGPI-low patients. ROC curves illustrated that the prognostic prediction power of PRGPI was robust. A nomogram was developed based on independent prognostic indicators (PRGPI, age and WHO grade), and also exhibited a strong forecasting ability for overall survival (OS). Additionally, PRGPI-high patients exhibited higher immune, stroma and ESTIMATE scores, lower tumor purity, higher infiltration of M2-type macrophages, lower infiltration of CD8+ T cells and activated NK cells, higher tumor mutation burden (TMB), and higher expression of immune checkpoints. TIDE showed that PRGPI-high group had more responders of ICI therapy than PRGPI-low group. Finally, the expression patterns of five selected PRGs in PRGPI were significantly different between normal and glioma. Conclusion The constructed PRGPI can be used for predicting prognosis and guiding individualized immunotherapy in glioma patients.
Collapse
Affiliation(s)
- Jianglin Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zijie Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yue Qiu
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Minjie Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hao Yu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhipeng Wu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
189
|
Schwannoma Gene Therapy via Adeno-Associated Viral Vector Delivery of Apoptosis-Associated Speck-like Protein Containing CARD (ASC): Preclinical Efficacy and Safety. Int J Mol Sci 2022; 23:ijms23020819. [PMID: 35055004 PMCID: PMC8775599 DOI: 10.3390/ijms23020819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 11/17/2022] Open
Abstract
Schwannomas are tumors derived from Schwann-lineage cells, cells that protect and support myelinated nerves in the peripheral nervous system. They are typically slow-growing, encapsulated and benign. These tumors develop along peripheral, spinal and cranial nerves causing pain, sensory-motor dysfunction and death. Primary treatment for schwannoma is operative resection which can be associated with significant morbidity. Pharmacotherapy is largely restricted to bevacizumab, which has minimal or no efficacy for many patients and can be associated with treatment-limiting adverse effects. Given the suffering and morbidity associated with schwannoma and the paucity of therapeutic options, there is an urgent need for safe and effective therapies for schwannomas. We previously demonstrated that adeno-associated virus serotype 1 (AAV1) vector mediated delivery of the inflammasome adaptor protein, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) under the control of the P0 promoter, produced a prolonged reduction in tumor volume and tumor-associated pain in human xenograft and mouse syngeneic schwannoma models. Here, we present data essential for the translation of our AAV1-P0-ASC schwannoma gene therapy to clinical trials. We determine the minimum effective dose of AAV1-P0-hASC required to induce an anti-tumor effect in the xenograft human-schwannoma model. We also show that the presence of preexisting AAV1 immunity does not alter the antitumor efficacy of AAV-P0-mASC in a syngeneic mouse schwannoma model. Furthermore, the maximum deliverable intratumoral dose of AAV1-P0-ASC was not associated with neuronal toxicity in immunocompetent mice. Taken together, these safety and efficacy data support the translation of the AAV1-P0-ASC schwannoma gene therapy strategy to clinical trials.
Collapse
|
190
|
Banerjee I. In Vitro Assays to Study Inflammasome Activation in Primary Macrophages. Methods Mol Biol 2022; 2459:11-28. [PMID: 35212950 DOI: 10.1007/978-1-0716-2144-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inflammasomes are multimeric complexes that can sense pathogens and danger signals in the environment. Upon detection of stimuli, caspase-1 is recruited to the inflammasome complex that cleaves and activates pro-inflammatory cytokines, thus initiating a cascade of inflammatory events. While inflammasomes form a crucial component of the host response to pathogens and danger molecules, their unchecked activation can result in the development of autoimmune diseases, metabolic disorders, and pathological outcomes. This chapter describes some assays to detect the measurable outcomes of inflammasome formation and activation. The protocol describes the methods to study the inflammasome pathway using an in vitro assay in primary macrophages. It can be applied to studies investigating the pathway mechanisms and potential therapeutics in the form of inhibitors or activators.
Collapse
Affiliation(s)
- Ishita Banerjee
- Pandion Therapeutics - a wholly-owned subsidiary of Merck & Co., Inc.,, Kenilworth, NJ, USA.
- Merck & Co., Inc., Kenilworth, NJ, USA.
| |
Collapse
|
191
|
Chirita D, Jamilloux Y, Henry T, Magnotti F. Functional Assessment of Disease-Associated Pyrin Variants. Methods Mol Biol 2022; 2523:179-195. [PMID: 35759198 DOI: 10.1007/978-1-0716-2449-4_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The pyrin inflammasome detects effectors and toxins that inhibit RhoA GTPases and triggers inflammatory cytokines release and a fast cell death termed pyroptosis. Ancient plague pandemics in the Mediterranean basin have selected in the human population pyrin variants that can trigger an autoinflammatory disease termed familial Mediterranean fever (FMF). In addition, distinct mutations in MEFV, the gene encoding pyrin, cause a different rare autoinflammatory disease termed pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND). As of today, more than 385 MEFV variants have been described although for most of them, whether they are pathogenic variant or benign polymorphism is unknown.Here, we describe different methods using primary human monocytes or engineered monocytic cell lines to functionally characterize MEFV variants, determine their potential pathogenicity, and classify them as either FMF-like or PAAND-like variants.
Collapse
Affiliation(s)
- Daria Chirita
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm U1111, Lyon, France
- Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France
| | - Yvan Jamilloux
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm U1111, Lyon, France
- Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France
- Internal Medicine, University Hospital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Thomas Henry
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm U1111, Lyon, France.
- Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France.
| | - Flora Magnotti
- CIRI (Centre International de Recherche en Infectiologie), Univ Lyon, Inserm U1111, Lyon, France.
- Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France.
| |
Collapse
|
192
|
Sonowal H, Zhang H, Rice W, Howell SB. Luxeptinib disables NLRP3 inflammasome-mediated IL-1β release and pathways required for secretion of inflammatory cytokines IL-6 and TNFα. Biochem Pharmacol 2022; 195:114861. [PMID: 34843717 DOI: 10.1016/j.bcp.2021.114861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
Luxeptinib (CG-806) is an orally bioavailable multikinase inhibitor with nanomolar potency against select clusters of kinases including the BTK, FLT3, TRK, STE/MAPK and aurora kinase clusters. It is cytotoxic to primary malignant cells obtained from patients with AML, ALL, and CLL at lower concentrations than other BTK and FLT3 inhibitors, and has activity in AML and lymphoma xenografts at concentrations attainable in patients. Exposure of macrophages and monocytes to endotoxin triggers the release of IL-1β through activation of the NLRP3 inflammasome and IL-6 and TNFα through transcriptional up-regulation. These cytokines are key components of the innate immune signaling network that plays a central role in the pathogenesis of multiple human diseases including cancer. Drugs that concurrently inhibit proliferation and inflammatory signaling pathways may provide better therapeutic efficacy. The aim of this study was to determine the extent to which luxeptinib interferes with the release of IL-1β, IL-6 and TNFα from THP-1 monocytes and bone marrow-derived macrophages following endotoxin exposure and priming of the NLRP3 inflammasome. Luxeptinib inhibited the release of all 3 cytokines from THP-1 monocytes and macrophages at concentrations of 0.1 µM and above. Investigation of the mechanism disclosed that luxeptinib does not inhibit the assembly of the NLRP3 inflammasome but disables its ability to cleave and activate caspase-1 that is required for IL-1β release. It also inhibits the kinases p38MAPK, ERK1/2, SAPK/JNK and activation of transcription factor NF-κBp65 with a concentration profile similar to its inhibition of cytokine release. IMPLICATIONS: The ability of luxeptinib to inhibit the NLRP3-mediated release of IL-1β and pathways involved in the release of IL-6 and TNFα at concentrations which are well-tolerated in patients makes it a candidate for the treatment of inflammatory diseases and inflammation-associated resistance in cancer.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Moores Cancer Center, Division of Hematology, Department of Medicine, University of California, San Diego, CA, USA
| | | | | | - Stephen B Howell
- Moores Cancer Center, Division of Hematology, Department of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
193
|
King RJ, Singh PK, Mehla K. The cholesterol pathway: impact on immunity and cancer. Trends Immunol 2022; 43:78-92. [PMID: 34942082 PMCID: PMC8812650 DOI: 10.1016/j.it.2021.11.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 01/03/2023]
Abstract
Cholesterol is a multifaceted metabolite that is known to modulate processes in cancer, atherosclerosis, and autoimmunity. A common denominator between these diseases appears to be the immune system, in which many cholesterol-associated metabolites impact both adaptive and innate immunity. Many cancers display altered cholesterol metabolism, and recent studies demonstrate that manipulating systemic cholesterol metabolism may be useful in improving immunotherapy responses. However, cholesterol can have both proinflammatory and anti-inflammatory roles in mammals, acting via multiple immune cell types, and depending on context. Gaining mechanistic insights into various cholesterol-related metabolites can improve our understanding of their functions and extensive effects on the immune system, and ideally will inform the design of future therapeutic strategies against cancer and/or other pathologies.
Collapse
Affiliation(s)
- Ryan J. King
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198
| | - Pankaj K. Singh
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Correspondence: Pankaj K. Singh, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.559.2726, FAX: 402-559-2813 and Kamiya Mehla, Ph.D., Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.836.9117, FAX: 402-559-2813
| | - Kamiya Mehla
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 68198,Correspondence: Pankaj K. Singh, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.559.2726, FAX: 402-559-2813 and Kamiya Mehla, Ph.D., Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-6805, , Phone: 402.836.9117, FAX: 402-559-2813
| |
Collapse
|
194
|
Abstract
Pattern recognition receptors of innate immune cells allow the recognition of invariant microbial structures. The nucleotide-binding oligomerization domain-like receptors (NLRs) comprise 22 members, divided into 3 subfamilies. Homotypic pyrin domain (PYD) interactions were shown to mediate the interaction of inflammasome forming NLRPs with the adaptor protein ASC, bridging the interaction to caspase-1 and resulting in caspase-1-induced cytokine maturation and pyroptotic cell death. Here we describe a NLRP3PYD-mediated ASC polymerization assay that reconstitutes the transition from the NLRP3PYD nucleation seed to ASC adaptor filament elongation with recombinant proteins.
Collapse
Affiliation(s)
- Inga V Hochheiser
- Institute of Structural Biology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
195
|
Li N, Wang Y, Wang X, Sun N, Gong YH. Pathway network of pyroptosis and its potential inhibitors in acute kidney injury. Pharmacol Res 2021; 175:106033. [PMID: 34915124 DOI: 10.1016/j.phrs.2021.106033] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022]
Abstract
Acute kidney injury (AKI) is a worldwide problem, and there is no effective drug to eliminate AKI. The death of renal cells is an important pathological basis of intrinsic AKI. At present, targeted therapy for TEC death is a research hotspot in AKI therapy. There are many ways of cell death involved in the occurrence and development of AKI, such as apoptosis, necrosis, ferroptosis, and pyroptosis. This article mainly focuses on the role of pyroptosis in AKI. The assembly and activation of NLRP3 inflammasome is a key event in the occurrence of pyroptosis, which is affected by many factors, such as the activation of the NF-κB signaling pathway, mitochondrial instability and excessive endoplasmic reticulum (ER) stress. The activation of NLRP3 inflammasome can trigger its downstream inflammatory cytokines, which will lead to pyroptosis and eventually induce AKI. In this paper, we reviewed the possible mechanism of pyroptosis in AKI and the potential effective inhibitors of various key targets in this process. It may provide potential therapeutic targets for novel intrinsic AKI therapies based on pyroptosis, so as to develop better therapeutic strategies.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Yuru Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Na Sun
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Yan-Hua Gong
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China.
| |
Collapse
|
196
|
Attiq A, Yao LJ, Afzal S, Khan MA. The triumvirate of NF-κB, inflammation and cytokine storm in COVID-19. Int Immunopharmacol 2021; 101:108255. [PMID: 34688149 PMCID: PMC8516728 DOI: 10.1016/j.intimp.2021.108255] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 01/08/2023]
Abstract
The coronavirus disease (COVID-19) has once again reminded us of the significance of host immune response and consequential havocs of the immune dysregulation. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) inflicts severe complications to the infected host, including cough, dyspnoea, fever, septic shock, acute respiratory distress syndrome (ARDs), and multiple organ failure. These manifestations are the consequence of the dysregulated immune system, which gives rise to excessive and unattended production of pro-inflammatory mediators. Elevated circulatory cytokine and chemokine levels are accompanied by spontaneous haemorrhage, thrombocytopenia and systemic inflammation, which are the cardinal features of life-threatening cytokine storm syndrome in advanced COVID-19 diseases. Coronavirus hijacked NF-kappa B (NF-κB) is responsible for upregulating the expressions of inflammatory cytokine, chemokine, alarmins and inducible enzymes, which paves the pathway for cytokine storm. Given the scenario, the systemic approach of simultaneous inhibition of NF-κB offers an attractive therapeutic intervention. Targeted therapies with proteasome inhibitor (VL-01, bortezomib, carfilzomib and ixazomib), bruton tyrosine kinase inhibitor (acalabrutinib), nucleotide analogue (remdesivir), TNF-α monoclonal antibodies (infliximab and adalimumab), N-acetylcysteine and corticosteroids (dexamethasone), focusing the NF-κB inhibition have demonstrated effectiveness in terms of the significant decrease in morbidity and mortality in severe COVID-19 patients. Hence, this review highlights the activation, signal transduction and cross-talk of NF-κB with regard to cytokine storm in COVID-19. Moreover, the development of therapeutic strategies based on NF-κB inhibition are also discussed herein.
Collapse
Affiliation(s)
- Ali Attiq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia.
| | - Lui Jin Yao
- Kuala Balah Health Clinic (Klinik Kesihatan Kuala Balah), Kuala Balah, 17600 Jeli, Kelantan, Malaysia
| | - Sheryar Afzal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
| | - Mansoor Ali Khan
- COVID-19 Vaccination Centres, University College London Hospitals, National Health Service, N10QH London, England
| |
Collapse
|
197
|
Nicolson GL, Ferreira de Mattos G, Ash M, Settineri R, Escribá PV. Fundamentals of Membrane Lipid Replacement: A Natural Medicine Approach to Repairing Cellular Membranes and Reducing Fatigue, Pain, and Other Symptoms While Restoring Function in Chronic Illnesses and Aging. MEMBRANES 2021; 11:944. [PMID: 34940446 PMCID: PMC8707623 DOI: 10.3390/membranes11120944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Membrane Lipid Replacement (MLR) uses natural membrane lipid supplements to safely replace damaged, oxidized lipids in membranes in order to restore membrane function, decrease symptoms and improve health. Oral MLR supplements contain mixtures of cell membrane glycerolphospholipids, fatty acids, and other lipids, and can be used to replace and remove damaged cellular and intracellular membrane lipids. Membrane injury, caused mainly by oxidative damage, occurs in essentially all chronic and acute medical conditions, including cancer and degenerative diseases, and in normal processes, such as aging and development. After ingestion, the protected MLR glycerolphospholipids and other lipids are dispersed, absorbed, and internalized in the small intestines, where they can be partitioned into circulating lipoproteins, globules, liposomes, micelles, membranes, and other carriers and transported in the lymphatics and blood circulation to tissues and cellular sites where they are taken in by cells and partitioned into various cellular membranes. Once inside cells, the glycerolphospholipids and other lipids are transferred to various intracellular membranes by lipid carriers, globules, liposomes, chylomicrons, or by direct membrane-membrane interactions. The entire process appears to be driven by 'bulk flow' or mass action principles, where surplus concentrations of replacement lipids can stimulate the natural exchange and removal of damaged membrane lipids while the replacement lipids undergo further enzymatic alterations. Clinical studies have demonstrated the advantages of MLR in restoring membrane and organelle function and reducing fatigue, pain, and other symptoms in chronic illness and aging patients.
Collapse
Affiliation(s)
- Garth L. Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Gonzalo Ferreira de Mattos
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay;
| | - Michael Ash
- Clinical Education, Newton Abbot, Devon TQ12 4SG, UK;
| | | | - Pablo V. Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain;
| |
Collapse
|
198
|
Dou X, Qiao L, Chang J, Yan S, Song X, Chen Y, Xu Q, Xu C. Lactobacillus casei ATCC 393 and it's metabolites alleviate dextran sulphate sodium-induced ulcerative colitis in mice through the NLRP3-(Caspase-1)/IL-1β pathway. Food Funct 2021; 12:12022-12035. [PMID: 34755743 DOI: 10.1039/d1fo02405a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) represents a broad group of intestinal disorders, including ulcerative colitis (UC) and Crohn's disease (CD). Probiotics are increasingly being recognized as a means of treatment for people suffering from IBD. Our previous studies demonstrated that Lactobacillus casei ATCC 393 (L. casei ATCC 393) effectively alleviated enterotoxigenic Escherichia coli K88-induced intestinal barrier dysfunction. This study was conducted to investigate the protective effects of L. casei ATCC 393 and its metabolites on dextran sulfate sodium (DSS)-induced UC in C57BL/6 mice and the potential mechanism of these effects. The results showed that oral administration of L. casei ATCC 393 and its metabolites both effectively reversed the DSS-induced weight loss, and the reduction in the disease activity index (DAI), colon length, and villus height of colon tissue in mice. Compared to the DSS-induced model group, L. casei ATCC 393 and its metabolites significantly inhibited the infiltration of immune cells into the intestinal mucosa, decreased the production of pro-inflammatory factors, and increased the expression of anti-inflammatory factors in the serum and colon tissue, increased the expression levels of occludin, ZO-1, and claudin-1, and reduced the expression of nucleotide binding oligomeric domain-like receptor protein 3 (NLRP3), cysteine proteinase-1 (Caspase-1), IL-1β, and IL-18. In addition, L. casei ATCC 393 and its metabolites effectively improved DSS-induced gut microbiota dysbiosis. These results suggested that L. casei ATCC 393 and its metabolites alleviated the DSS-induced ulcerative inflammatory response in C57BL/6 mice through the NLRP3-(Caspase-1)/IL-1β signaling pathway.
Collapse
Affiliation(s)
- Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Shuqi Yan
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yue Chen
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Qinhong Xu
- Department of Geriatric Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
199
|
Hartmann C, Miggiolaro AFRDS, Motta JDS, Baena Carstens L, Busatta Vaz De Paula C, Fagundes Grobe S, Hermann de Souza Nunes L, Lenci Marques G, Libby P, Zytynski Moura L, de Noronha L, Pellegrino Baena C. The Pathogenesis of COVID-19 Myocardial Injury: An Immunohistochemical Study of Postmortem Biopsies. Front Immunol 2021; 12:748417. [PMID: 34804033 PMCID: PMC8602833 DOI: 10.3389/fimmu.2021.748417] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023] Open
Abstract
Rationale Myocardial injury associates significantly and independently with mortality in COVID-19 patients. However, the pathogenesis of myocardial injury in COVID-19 remains unclear, and cardiac involvement by SARS-CoV-2 presents a major challenge worldwide. Objective This histological and immunohistochemical study sought to clarify the pathogenesis and propose a mechanism with pathways involved in COVID-19 myocardial injury. Methods and Results Postmortem minimally invasive autopsies were performed in six patients who died from COVID-19, and the myocardium samples were compared to a control group (n=11). Histological analysis was performed using hematoxylin-eosin and toluidine blue staining. Immunohistochemical (IHC) staining was performed using monoclonal antibodies against targets: caspase-1, caspase-9, gasdermin-d, ICAM-1, IL-1β, IL-4, IL-6, CD163, TNF-α, TGF-β, MMP-9, type 1 and type 3 collagen. The samples were also assessed for apoptotic cells by TUNEL. Histological analysis showed severe pericardiocyte interstitial edema and higher mast cells counts per high-power field in all COVID-19 myocardium samples. The IHC analysis showed increased expression of caspase-1, ICAM-1, IL-1β, IL-6, MMP-9, TNF-α, and other markers in the hearts of COVID-19 patients. Expression of caspase-9 did not differ from the controls, while gasdermin-d expression was less. The TUNEL assay was positive in all the COVID-19 samples supporting endothelial apoptosis. Conclusions The pathogenesis of COVID-19 myocardial injury does not seem to relate to primary myocardiocyte involvement but to local inflammation with associated interstitial edema. We found heightened TGF-β and interstitial collagen expression in COVID-affected hearts, a potential harbinger of chronic myocardial fibrosis. These results suggest a need for continued clinical surveillance of patients for myocardial dysfunction and arrythmias after recovery from the acute phase of COVID-19.
Collapse
Affiliation(s)
- Camila Hartmann
- School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil.,Department of Medicine, Marcelino Champagnat Hospital, Curitiba, Brazil
| | | | | | - Lucas Baena Carstens
- School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | | | - Sarah Fagundes Grobe
- School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil.,Department of Medicine, Marcelino Champagnat Hospital, Curitiba, Brazil
| | - Larissa Hermann de Souza Nunes
- School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil.,Department of Medicine, Marcelino Champagnat Hospital, Curitiba, Brazil
| | - Gustavo Lenci Marques
- School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil.,Department of Medicine, Marcelino Champagnat Hospital, Curitiba, Brazil
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Lidia Zytynski Moura
- School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil.,Department of Medicine, Marcelino Champagnat Hospital, Curitiba, Brazil
| | - Lucia de Noronha
- School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil
| | - Cristina Pellegrino Baena
- School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Brazil.,Department of Medicine, Marcelino Champagnat Hospital, Curitiba, Brazil
| |
Collapse
|
200
|
Kim M, Mok H, Yeo WS, Ahn JH, Choi YK. Role of ginseng in the neurovascular unit of neuroinflammatory diseases focused on the blood-brain barrier. J Ginseng Res 2021; 45:599-609. [PMID: 34803430 PMCID: PMC8587512 DOI: 10.1016/j.jgr.2021.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/28/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Ginseng has long been considered as an herbal medicine. Recent data suggest that ginseng has anti-inflammatory properties and can improve learning- and memory-related function in the central nervous system (CNS) following the development of CNS neuroinflammatory diseases such as Alzheimer's disease, cerebral ischemia, and other neurological disorders. In this review, we discuss the role of ginseng in the neurovascular unit, which is composed of endothelial cells surrounded by astrocytes, pericytes, microglia, neural stem cells, oligodendrocytes, and neurons, especially their blood-brain barrier maintenance, anti-inflammatory effects and regenerative functions. In addition, cell-cell communication enhanced by ginseng may be attributed to regeneration via induction of neurogenesis and angiogenesis in CNS diseases. Thus, ginseng may have therapeutic potential to exert cognitive improvement in neuroinflammatory diseases such as stroke, traumatic brain injury, multiple sclerosis, Parkinson's disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Joong-Hoon Ahn
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|