151
|
Ponti D, Bastianelli D, Rosa P, Pacini L, Ibrahim M, Rendina EA, Ragona G, Calogero A. The expression of B23 and EGR1 proteins is functionally linked in tumor cells under stress conditions. BMC Cell Biol 2015; 16:27. [PMID: 26577150 PMCID: PMC4650859 DOI: 10.1186/s12860-015-0073-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nucleolus is a multi-domain enriched with proteins involved in ribosome biogenesis, cell cycle and apoptosis control, viral replication and differentiation of stem cells. Several authors have suggested a role for the nucleolus also in malignant transformation. We have recently demonstrated that under specific circumstances the transcriptional factor EGR1 is shuttled to the nucleolus where it functions as a negative regulator of RNA polymerase I. Since this activity is hampered in ARF -/- cells, and ARF transcription is regulated by EGR1 while the turnover of ARF protein is under the control of B23, we speculated that some sort of cooperation between EGR1 and B23 might also exist. RESULTS In this work we identified a canonical EGR1 binding site on the B23 promoter through experiments of transactivation and in vitro DNA binding assay. We then found that the levels of B23 expression are directly correlated with those of EGR1, and that this correlation applies to several cellular types and to different stress conditions. Furthermore, we showed that EGR1 stability and accumulation within the nucleolus is in turn regulated by B23 through proteasome involvement, similarly to ARF turnover. CONCLUSION Our results highlight EGR1 as a regulator of B23 expression actively playing within the newly discovered nucleolar B23-ARF-EGR1 network.
Collapse
Affiliation(s)
- Donatella Ponti
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Daniela Bastianelli
- Division of Thoracic Surgery, Department of Medical-Surgical Science and Translational Medicine, University Sapienza, S. Andrea Hospital, via di Grottarossa 1035, 00189, Rome, Italy.
| | - Paolo Rosa
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Luca Pacini
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Mohsen Ibrahim
- Division of Thoracic Surgery, Department of Medical-Surgical Science and Translational Medicine, University Sapienza, S. Andrea Hospital, via di Grottarossa 1035, 00189, Rome, Italy.
| | - Erino Angelo Rendina
- Division of Thoracic Surgery, Department of Medical-Surgical Science and Translational Medicine, University Sapienza, S. Andrea Hospital, via di Grottarossa 1035, 00189, Rome, Italy.
| | - Giuseppe Ragona
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Antonella Calogero
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Corso della Repubblica 79, 04100, Latina, Italy.
| |
Collapse
|
152
|
Ko H, Kim JM, Kim SJ, Shim SH, Ha CH, Chang HI. Induction of apoptosis by genipin inhibits cell proliferation in AGS human gastric cancer cells via Egr1/p21 signaling pathway. Bioorg Med Chem Lett 2015; 25:4191-6. [PMID: 26283511 DOI: 10.1016/j.bmcl.2015.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023]
Abstract
Natural compounds are becoming important candidates in cancer therapy due to their cytotoxic effects on cancer cells by inducing various types of programmed cell deaths. In this study, we investigated whether genipin induces programmed cell deaths and mediates in Egr1/p21 signaling pathways in gastric cancer cells. Effects of genipin in AGS cancer cell lines were observed via evaluation of cell viability, ROS generation, cell cycle arrest, and protein and RNA levels of p21, Egr1, as well as apoptotic marker genes. The cell viability of AGS cells reduced by genipin treatment via induction of the caspase 3-dependent apoptosis. Cell cycle arrest was observed at the G2/M phase along with induction of p21 and p21-dependent cyclins. As an upstream mediator of p21, the transcription factor early growth response-1 (Egr1) upregulated p21 through nuclear translocation and binding to the p21 promoter site. Silencing Egr1 expression inhibited the expression of p21 and downstream molecules involved in apoptosis. We demonstrated that genipin treatment in AGS human gastric cancer cell line induces apoptosis via p53-independent Egr1/p21 signaling pathway in a dose-dependent manner.
Collapse
Affiliation(s)
- Hyeonseok Ko
- Laboratory of Molecular Oncology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, Republic of Korea
| | - Jee Min Kim
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Sun-Joong Kim
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - So Hee Shim
- Department of Microbiology, College of Medicine, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Chang Hoon Ha
- Department of Asan Institute for Life Sciences, Asan Medical Center, College of Medicine, University of Ulsan, 86 Asanbyeoungwon-gil, Songpa-gu, Seoul 138-736, Republic of Korea.
| | - Hyo Ihl Chang
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea.
| |
Collapse
|
153
|
Ortega A, Rangel-López E, Hidalgo-Miranda A, Morales A, Ruiz-García E, Meneses-García A, Herrera-Gómez A, Aguilar-Ponce JL, González-Herrera IG, Guevara-Salazar P, Prospero-García O, Del Angel SA. On the effects of CP 55-940 and other cannabinoid receptor agonists in C6 and U373 cell lines. Toxicol In Vitro 2015; 29:1941-51. [PMID: 26255146 DOI: 10.1016/j.tiv.2015.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/14/2015] [Accepted: 08/05/2015] [Indexed: 01/16/2023]
Abstract
Cannabinoid receptor (CBs) agonists affect the growth of tumor cells via activation of deadly cascades. The spectrum of action of these agents and the precise role of the endocannabinoid system (ECS) on oncogenic processes remain elusive. Herein we compared the effects of synthetic (CP 55-940 and WIN 55,212-2) and endogenous (anandamide or AEA) CBs agonists (10-20 μM) on morphological changes, cell viability, and induction of apoptosis in primary astrocytes and in two glioblastoma cell lines (C6 and U373 cells) in order to characterize their possible differential actions on brain tumor cells. None of the CBs agonist tested induced changes in cell viability or morphology in primary astrocytes. In contrast, CP 55-940 significantly decreased cell viability in C6 and U373 cells at 5 days of treatment, whereas AEA and WIN 55,212-2 moderately decreased cell viability in both cell lines. Treatment of U373 and C6 for 3 and 5 days with AEA or WIN 55,212-2 produced discrete morphological changes in cell bodies, whereas the exposure to CP 55-940 induced soma degradation. CP 55-940 also induced apoptosis in both C6 and U373 cell lines. Our results support a more effective action of CP 55-940 to produce cell death of both cell lines through apoptotic mechanisms. Comparative aspects between cannabinoids with different profiles are necessary for the design of potential treatments against glial tumors.
Collapse
Affiliation(s)
- A Ortega
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, SSA, Mexico City 14080, Mexico
| | - E Rangel-López
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA, Mexico City 14269, Mexico
| | - A Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, SSA, Mexico City 14610, Mexico
| | - A Morales
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, SSA, Mexico City 14080, Mexico
| | - E Ruiz-García
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, SSA, Mexico City 14080, Mexico
| | - A Meneses-García
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, SSA, Mexico City 14080, Mexico
| | - A Herrera-Gómez
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, SSA, Mexico City 14080, Mexico
| | - J L Aguilar-Ponce
- Laboratorio de Medicina Translacional, Instituto Nacional de Cancerología, SSA, Mexico City 14080, Mexico
| | - I G González-Herrera
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA, Mexico City 14269, Mexico
| | - P Guevara-Salazar
- Departamento de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, SSA, Mexico City 14269, Mexico
| | - O Prospero-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| | - S A Del Angel
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA, Mexico City 14269, Mexico.
| |
Collapse
|
154
|
McNeal AS, Liu K, Nakhate V, Natale CA, Duperret EK, Capell BC, Dentchev T, Berger SL, Herlyn M, Seykora JT, Ridky TW. CDKN2B Loss Promotes Progression from Benign Melanocytic Nevus to Melanoma. Cancer Discov 2015; 5:1072-85. [PMID: 26183406 DOI: 10.1158/2159-8290.cd-15-0196] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/09/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Deletion of the entire CDKN2B-CDKN2A gene cluster is among the most common genetic events in cancer. The tumor-promoting effects are generally attributed to loss of CDKN2A-encoded p16 and p14ARF tumor suppressors. The degree to which the associated CDKN2B-encoded p15 loss contributes to human tumorigenesis is unclear. Here, we show that CDKN2B is highly upregulated in benign melanocytic nevi, contributes to maintaining nevus melanocytes in a growth-arrested premalignant state, and is commonly lost in melanoma. Using primary melanocytes isolated directly from freshly excised human nevi naturally expressing the common BRAF(V600E)-activating mutation, nevi progressing to melanoma, and normal melanocytes engineered to inducibly express BRAF(V600E), we show that BRAF activation results in reversible, TGFβ-dependent, p15 induction that halts proliferation. Furthermore, we engineer human skin grafts containing nevus-derived melanocytes to establish a new, architecturally faithful, in vivo melanoma model, and demonstrate that p15 loss promotes the transition from benign nevus to melanoma. SIGNIFICANCE Although BRAF(V600E) mutations cause melanocytes to initially proliferate into benign moles, mechanisms responsible for their eventual growth arrest are unknown. Using melanocytes from human moles, we show that BRAF activation leads to a CDKN2B induction that is critical for restraining BRAF oncogenic effects, and when lost, contributes to melanoma.
Collapse
Affiliation(s)
- Andrew S McNeal
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vihang Nakhate
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christopher A Natale
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth K Duperret
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian C Capell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tzvete Dentchev
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - John T Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Todd W Ridky
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
155
|
Pak MG, Lee CH, Lee WJ, Shin DH, Roh MS. Unique microRNAs in lung adenocarcinoma groups according to major TKI sensitive EGFR mutation status. Diagn Pathol 2015; 10:99. [PMID: 26170125 PMCID: PMC4501046 DOI: 10.1186/s13000-015-0339-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/27/2015] [Indexed: 11/29/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer mortality, despite development of therapeutic strategies. Altered expression of microRNAs(miRNAs) in human malignancies have been well recognized as diagnostic and prognostic indicators, including lung cancer. This study aims to delineate the clinicopathologic significance of three unique miRNAs in adenocarcinoma according to major sensitive EGFR mutation status. Methods One-hundred and three formalin-fixed paraffin-embedded (FFPE) tissues were collected from lung adenocarcinoma patients who underwent surgery and epidermal growth factor receptor (EGFR) mutation study. The samples were divided into three groups which include EGFR mutation in exons 19 and 21 and wild type. Some representative cases from each group were profiled using commercial miRNA microarray plates. Three significant miRNAs were selected and they were validated by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), using collective cases of FFPE samples. Results We identified three microRNAs (miR-34c, miR-183, and miR-210) which showed significantly altered expression in all groups of lung adenocarcinoma by microarray study. Compared to normal control lung tissue, down-regulation of miR-34c and up-regulation of miR-183 and miR-210 were identified in caner groups (p < 0.05 for each). We validated the expression of three miRNAs by qRT-PCR. Expression levels of miR-34c, miR-183, and miR-210 were significantly different between normal control group and cancer groups (p = 0.034, <0.000, and 0.036, respectively). Moreover, expression level of miR-183 was significantly higher in EGFR mutation groups than wild type group (p = 0.028). Higher expression levels of three miRNAs were positively related to poor tumor differentiation. Increased expression of miR-183 was positively associated with lymphovascular invasion (p = 0.037). Aberrant expression of miR-210 was independently associated with T stage (p = 0.019), and TNM stage (p = 0.007). However, there was noted a limited statistical significance. In EGFR exon 19 mutation group, miR-34c high expression group showed poor overall survival than low expression one by univariate Kaplan-Meier method. (p = 0.035). Conclusions Here, we show that miR-34c may act as a potential tumor suppressor gene and miR-183 and miR-210 have a potential oncogenic role in pulmonary adenocarcinoma. This study also suggests different miRNA expression between EGFR mutation group and wild type group. Consequently, further studies of the biology of miRNAs may lead to diagnostic and prognostic biomarkers in pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- Min Gyoung Pak
- Department of Pathology, Dong-A University Hospital, Busan, Republic of Korea.
| | - Chang-Hun Lee
- Department of Pathology and Medical Research Institute, Pusan National Univeristy Hospital, 1-10 Ami-dong, Seo-gu, Busan, 602-739, Republic of Korea.
| | - Woo-Jeong Lee
- Department of Pathology and Medical Research Institute, Pusan National Univeristy Hospital, 1-10 Ami-dong, Seo-gu, Busan, 602-739, Republic of Korea.
| | - Dong-Hoon Shin
- Department of Pathology, School of Medicine, Pusan National University, Yangsan, Republic of Korea.
| | - Mee-Sook Roh
- Department of Pathology, Dong-A University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
156
|
Uygur B, Abramo K, Leikina E, Vary C, Liaw L, Wu WS. SLUG is a direct transcriptional repressor of PTEN tumor suppressor. Prostate 2015; 75:907-16. [PMID: 25728608 PMCID: PMC4654464 DOI: 10.1002/pros.22974] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/08/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND PTEN/AKT signaling plays a key role in prostate cancer development and maintenance of prostate cancer stem cells. How other oncogenes or tumor suppressors interact with this pathway remain to be elucidated. SLUG is an zinc finger transcription factor of the Snail superfamily, and it promotes cancer metastasis and determines the mammary stem cell state. METHODS SLUG was overexpressed in cells by retroviral vector and knockdown of SLUG and PTEN was mediated by shRNAs-expressing lentiviruses. Expression level of SLUG and PTEN was examined by Western blot, RT-PCR, and qPCR analyses. PTEN promoter activity was measured by luciferase reporter assay. ChIP assay was used to measure the binding between SLUG and the PTEN promoter in vivo. RESULT We showed that overexpression of SLUG decreased expression of PTEN tumor repressor in prostate cancer cell lines 22RV1 and DU145; conversely, knockdown of SLUG expression elevated PTEN expresson at both protein and RNA level in these cells. We demonstrated that SLUG overexpression inhibits PTEN promoter activity through the proximal promoter region in prostate cancer cells. By ChIP assay, we confirmed that SLUG directly binds to the PTEN promoter region covering the E-box sites. We also showed that Slug deficiency leads to an increased expression of PTEN in mouse embryo fibroblasts and prostate tissues. Importantly, we found that overexpression of SLUG increases drug resistance of DU145 prostate cancer cell line and knockdown of SLUG by shRNA sensitizes DU145 cell line to chemotherapeutic drugs. We further demonstrated that PTEN knockdown converts drug sensitivity of DU145 cells expressing SLUG shRNA to anticancer drugs. CONCLUSION We provide compelling evidence showing that PTEN is a direct functional target of SLUG. Our findings offer new insight in the regulation of the PTEN/AKT pathway and provide a molecular basis for potential targeted therapies of prostate cancer Prostate 75:907-916, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- HEK293 Cells
- Humans
- Immunohistochemistry
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- PTEN Phosphohydrolase/antagonists & inhibitors
- PTEN Phosphohydrolase/biosynthesis
- PTEN Phosphohydrolase/genetics
- Promoter Regions, Genetic
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/genetics
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Snail Family Transcription Factors
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Berna Uygur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
- Program in Biochemistry and Molecular Biology, University of Maine, Orono, Maine, USA
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Katrina Abramo
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Evgenia Leikina
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Calvin Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Wen-Shu Wu
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA
- Department of Medicine, University of Illinois College of Medicine at Chicago, Chicago, Illinois, USA
- Correspondence to: Wen-Shu Wu, Department of Medicine, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA. Tel: 312-996-2586; Fax: 011-312-413-4131;
| |
Collapse
|
157
|
Matsumoto T, Shimizu T, Nishijima N, Ikeda A, Eso Y, Matsumoto Y, Chiba T, Marusawa H. Hepatic inflammation facilitates transcription-associated mutagenesis via AID activity and enhances liver tumorigenesis. Carcinogenesis 2015; 36:904-13. [DOI: 10.1093/carcin/bgv065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/06/2015] [Indexed: 11/14/2022] Open
|
158
|
Seo BJ, Son JW, Kim HR, Hong SH, Song H. Identification of egr1 direct target genes in the uterus by in silico analyses with expression profiles from mRNA microarray data. Dev Reprod 2015; 18:1-11. [PMID: 25949166 PMCID: PMC4282262 DOI: 10.12717/dr.2014.18.1.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 01/21/2014] [Accepted: 02/01/2014] [Indexed: 11/29/2022]
Abstract
Early growth response 1 (Egr1) is a zinc-finger transcription factor to direct second-wave gene expression leading to cell growth, differentiation and/or apoptosis. While it is well-known that Egr1 controls transcription of an array of targets in various cell types, downstream target gene(s) whose transcription is regulated by Egr1 in the uterus has not been identified yet. Thus, we have tried to identify a list of potential target genes of Egr1 in the uterus by performing multi-step in silico promoter analyses. Analyses of mRNA microarray data provided a cohort of genes (102 genes) which were differentially expressed (DEGs) in the uterus between Egr1(+/+) and Egr1(–/–) mice. In mice, the frequency of putative EGR1 binding sites (EBS) in the promoter of DEGs is significantly higher than that of randomly selected non-DEGs, although it is not correlated with expression levels of DEGs. Furthermore, EBS are considerably enriched within –500 bp of DEG’s promoters. Comparative analyses for EBS of DEGs with the promoters of other species provided power to distinguish DEGs with higher probability as EGR1 direct target genes. Eleven EBS in the promoters of 9 genes among analyzed DEGs are conserved between various species including human. In conclusion, this study provides evidence that analyses of mRNA expression profiles followed by two-step in silico analyses could provide a list of putative Egr1 direct target genes in the uterus where any known direct target genes are yet reported for further functional studies.
Collapse
Affiliation(s)
- Bong-Jong Seo
- Department of Biomedical Science, CHA University, Seoul 135-081, Republic of Korea
| | - Ji Won Son
- Department of Biomedical Science, CHA University, Seoul 135-081, Republic of Korea
| | - Hye-Ryun Kim
- Department of Biomedical Science, CHA University, Seoul 135-081, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seoul 135-081, Republic of Korea
| |
Collapse
|
159
|
Min KW, Liggett JL, Silva G, Wu WW, Wang R, Shen RF, Eling TE, Baek SJ. NAG-1/GDF15 accumulates in the nucleus and modulates transcriptional regulation of the Smad pathway. Oncogene 2015; 35:377-88. [PMID: 25893289 PMCID: PMC4613816 DOI: 10.1038/onc.2015.95] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 02/06/2023]
Abstract
Protein dynamics, modifications, and trafficking are all processes that can modulate protein activity. Accumulating evidence strongly suggests that many proteins play distinctive roles dependent on cellular location. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) is a TGF-β superfamily protein that plays a role in cancer, obesity, and inflammation. NAG-1 is synthesized and cleaved into a mature peptide, which is ultimately secreted into the extracellular matrix (ECM). In this study, we have found that full-length NAG-1 is expressed in not only the cytoplasm and ECM, but also in the nucleus. NAG-1 is dynamically moved to the nucleus, exported into cytoplasm, and further transported into the ECM. We have also found that nuclear NAG-1 contributes to inhibition of the Smad pathway by interrupting the Smad complex. Overall, our study indicates that NAG-1 is localized in the nucleus and provides new evidence that NAG-1 controls transcriptional regulation in the Smad pathway.
Collapse
Affiliation(s)
- K-W Min
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - J L Liggett
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - G Silva
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - W W Wu
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Bethesda, MD, USA
| | - R Wang
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Bethesda, MD, USA
| | - R-F Shen
- Facility for Biotechnology Resources, CBER, Food and Drug Administration, Bethesda, MD, USA
| | - T E Eling
- Laboratory of Molecular Carcinogenesis, NIH/NIEHS, Research Triangle Park, NC, USA
| | - S J Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
160
|
Verduci L, Azzalin G, Gioiosa S, Carissimi C, Laudadio I, Fulci V, Macino G. microRNA-181a enhances cell proliferation in acute lymphoblastic leukemia by targeting EGR1. Leuk Res 2015; 39:479-85. [DOI: 10.1016/j.leukres.2015.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/19/2014] [Accepted: 01/20/2015] [Indexed: 01/10/2023]
|
161
|
Loss of Egr-1 sensitizes pancreatic β-cells to palmitate-induced ER stress and apoptosis. J Mol Med (Berl) 2015; 93:807-18. [DOI: 10.1007/s00109-015-1272-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/23/2015] [Accepted: 02/11/2015] [Indexed: 01/07/2023]
|
162
|
Wei J, Ouyang Y, Li X, Zhu B, Yang J, Cui Y, Chen X, Lin F, Long M, Yang A, Dong K, Zhang H. Early growth response gene 1, a TRBP binding protein, is involved in miRNA activity of miR-125a-3p in human cells. Cell Signal 2015; 27:1120-8. [PMID: 25725290 DOI: 10.1016/j.cellsig.2015.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/28/2015] [Accepted: 02/16/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are key regulators of many cellular pathways. However, the picture for components or regulators involved in the process of miRNA biogenesis and function remains to be further elucidated. Early growth response gene 1 (Egr1) has long been considered as tumor suppressor and transcriptional factor involved in cell proliferation and regulation of apoptosis. RESULTS Here we show that Egr1 is able to modulate guide strand loading of certain miRNAs or siRNAs in human HEK293 and A549 cells, which is related with thermodynamic parameters of miRNA or siRNA. Further, we found that Egr1 modulates the silencing activity of miR-125a-3p in vivo. Immunoprecipitation experiment demonstrated that Egr1 could bind miRNA biogenesis protein TAR RNA-binding protein2 (TRBP2), and knockdown TRBP by RNAi abolished the regulating effects of Egr1 on miR-125a-3p efficiency. Further experiments revealed that deleting sequence 97-227aa containing dsRBD B domain of TRBP eliminated the binding phenomenon between Egr1 and TRBP and impaired the effect of Egr1 on miR-125a-3p efficiency. CONCLUSIONS Taken together, our study has demonstrated that Egr1 is able to regulate miRNA activity of miR-125a-3p in human cells through binding TRBP, which highlights an unexpected function of Egr1 in miRNA pathway.
Collapse
Affiliation(s)
- Junxia Wei
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yongri Ouyang
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xia Li
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Baoyi Zhu
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Yang
- Department of Nephroloogy, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ying Cui
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xi Chen
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fang Lin
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Min Long
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Angang Yang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China
| | - Ke Dong
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.
| | - Huizhong Zhang
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
163
|
The miR-199a/Brm/EGR1 axis is a determinant of anchorage-independent growth in epithelial tumor cell lines. Sci Rep 2015; 5:8428. [PMID: 25673149 PMCID: PMC4325331 DOI: 10.1038/srep08428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/15/2015] [Indexed: 11/08/2022] Open
Abstract
In epithelial cells, miRNA-199a-5p/-3p and Brm, a catalytic subunit of the SWI/SNF complex were previously shown to form a double-negative feedback loop through EGR1, by which human cancer cell lines tend to fall into either of the steady states, types 1 [miR-199a(−)/Brm(+)/EGR1(−)] and 2 [miR-199a(+)/Brm (−)/EGR1(+)]. We show here, that type 2 cells, unlike type 1, failed to form colonies in soft agar, and that CD44, MET, CAV1 and CAV2 (miR-199a targets), all of which function as plasma membrane sensors and can co-localize in caveolae, are expressed specifically in type 1 cells. Single knockdown of any of them suppressed anchorage-independent growth of type 1 cells, indicating that the miR-199a/Brm/EGR1 axis is a determinant of anchorage-independent growth. Importantly, two coherent feedforward loops are integrated into this axis, supporting the robustness of type 1-specific gene expression and exemplifying how the miRNA-target gene relationship can be stably sustained in a variety of epithelial tumors.
Collapse
|
164
|
Døssing KBV, Binderup T, Kaczkowski B, Jacobsen A, Rossing M, Winther O, Federspiel B, Knigge U, Kjær A, Friis-Hansen L. Down-Regulation of miR-129-5p and the let-7 Family in Neuroendocrine Tumors and Metastases Leads to Up-Regulation of Their Targets Egr1, G3bp1, Hmga2 and Bach1. Genes (Basel) 2014; 6:1-21. [PMID: 25546138 PMCID: PMC4377830 DOI: 10.3390/genes6010001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/09/2014] [Indexed: 01/12/2023] Open
Abstract
Expression of miRNAs in Neuroendocrine Neoplasms (NEN) is poorly characterized. We therefore wanted to examine the miRNA expression in Neuroendocrine Tumors (NETs), and identify their targets and importance in NET carcinogenesis. miRNA expression in six NEN primary tumors, six NEN metastases and four normal intestinal tissues was characterized using miRNA arrays, and validated by in-situ hybridization and qPCR. Among the down-regulated miRNAs miR-129-5p and the let-7f/let-7 family, were selected for further characterization. Transfection of miR-129-5p inhibited growth of a pulmonary and an intestinal carcinoid cell line. Analysis of mRNA expression changes identified EGR1 and G3BP1 as miR-129-5p targets. They were validated by luciferase assay and western blotting, and found robustly expressed in NETs by immunohistochemistry. Knockdown of EGR1 and G3BP1 mimicked the growth inhibition induced by miR-129-5p. let-7 overexpression inhibited growth of carcinoid cell lines, and let-7 inhibition increased protein content of the transcription factor BACH1 and its targets MMP1 and HMGA2, all known to promote bone metastases. Immunohistochemistry analysis revealed that let-7 targets are highly expressed in NETs and metastases. We found down-regulation of miR-129-5p and the let-7 family, and identified new neuroendocrine specific targets for these miRNAs, which contributes to the growth and metastatic potential of these tumors.
Collapse
Affiliation(s)
- Kristina B V Døssing
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Tina Binderup
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Bogumil Kaczkowski
- The Bioinformatics Center, Department of Biology and Biotech and Research Innovation Centre, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| | - Anders Jacobsen
- The Bioinformatics Center, Department of Biology and Biotech and Research Innovation Centre, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Ole Winther
- DTU Informatics, Technical University of Denmark, Anker Engelunds Vej 1, 2800 Kongens Lyngby, Denmark.
| | - Birgitte Federspiel
- Department of Pathology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Ulrich Knigge
- Cluster for Molecular Imaging, Faculty of Health Sciences, Blegdamsvej 3B, 2100 Copenhagen, Denmark.
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Lennart Friis-Hansen
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| |
Collapse
|
165
|
Abstract
Oncogene-induced senescence (OIS) protects normal cells from transformation by Ras, whereas cells lacking p14/p19(Arf) or other tumor suppressors can be transformed. The transcription factor C/EBPβ is required for OIS in primary fibroblasts but is downregulated by H-Ras(V12) in immortalized NIH 3T3 cells through a mechanism involving p19(Arf) loss. Here, we report that members of the serum-induced early growth response (Egr) protein family are also downregulated in 3T3(Ras) cells and directly and redundantly control Cebpb gene transcription. Egr1, Egr2, and Egr3 recognize three sites in the Cebpb promoter and associate transiently with this region after serum stimulation, coincident with Cebpb induction. Codepletion of all three Egrs prevented Cebpb expression, and serum induction of Egrs was significantly blunted in 3T3(Ras) cells. Egr2 and Egr3 levels were also reduced in Ras(V12)-expressing p19(Arf) null mouse embryonic fibroblasts (MEFs), and overall Egr DNA-binding activity was suppressed in Arf-deficient but not wild-type (WT) MEFs, leading to Cebpb downregulation. Analysis of human cancers revealed a strong correlation between EGR levels and CEBPB expression, regardless of whether CEBPB was increased or decreased in tumors. Moreover, overexpression of Egrs in tumor cell lines induced CEBPB and inhibited proliferation. Thus, our findings identify the Arf-Egr-C/EBPβ axis as an important determinant of cellular responses (senescence or transformation) to oncogenic Ras signaling.
Collapse
|
166
|
Abstract
The cyclin-dependent kinase 6 (CDK6) and CDK4 have redundant functions in regulating cell-cycle progression. We describe a novel role for CDK6 in hematopoietic and leukemic stem cells (hematopoietic stem cells [HSCs] and leukemic stem cells [LSCs]) that exceeds its function as a cell-cycle regulator. Although hematopoiesis appears normal under steady-state conditions, Cdk6(-/-) HSCs do not efficiently repopulate upon competitive transplantation, and Cdk6-deficient mice are significantly more susceptible to 5-fluorouracil treatment. We find that activation of HSCs requires CDK6, which interferes with the transcription of key regulators, including Egr1. Transcriptional profiling of HSCs is consistent with the central role of Egr1. The impaired repopulation capacity extends to BCR-ABL(p210+) LSCs. Transplantation with BCR-ABL(p210+)-infected bone marrow from Cdk6(-/-) mice fails to induce disease, although recipient mice do harbor LSCs. Egr1 knock-down in Cdk6(-/-) BCR-ABL(p210+) LSKs significantly enhances the potential to form colonies, underlining the importance of the CDK6-Egr1 axis. Our findings define CDK6 as an important regulator of stem cell activation and an essential component of a transcriptional complex that suppresses Egr1 in HSCs and LSCs.
Collapse
|
167
|
Papanikolaou NA, Tillinger A, Liu X, Papavassiliou AG, Sabban EL. A systems approach identifies co-signaling molecules of early growth response 1 transcription factor in immobilization stress. BMC SYSTEMS BIOLOGY 2014; 8:100. [PMID: 25217033 PMCID: PMC4363937 DOI: 10.1186/s12918-014-0100-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/13/2014] [Indexed: 11/10/2022]
Abstract
Background Adaptation to stress is critical for survival. The adrenal medulla, the major source of epinephrine, plays an important role in the development of the hyperadenergic state and increased risk for stress associated disorders, such as hypertension and myocardial infarction. The transcription factor Egr1 plays a central role in acute and repeated stress, however the complexity of the response suggests that other transcription factor pathways might be playing equally important roles during acute and repeated stress. Therefore, we sought to discover such factors by applying a systems approach. Results Using microarrays and network analysis we show here for the first time that the transcription factor signal transducer and activator of transcription 3 (Stat3) gene is activated in acute stress whereas the prolactin releasing hormone (Prlh11) and chromogranin B (Chgb) genes are induced in repeated immobilization stress and that along with Egr1 may be critical mediators of the stress response. Conclusions Our results suggest possible involvement of Stat3 and Prlh1/Chgb up-regulation in the transition from short to repeated stress activation.
Collapse
Affiliation(s)
- Nikolaos A Papanikolaou
- Laboratory of Biological Chemistry, Department of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Hellas (Greece).
| | - Andrej Tillinger
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA.
| | - Xiaoping Liu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA. .,Current Address: Clyde and Helen Wu Center of Molecular Cardiology, Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, University of Athens, 75 M. Asias Street, 11527, Athens, Hellas (Greece).
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
168
|
Albergante L, Blow JJ, Newman TJ. Buffered Qualitative Stability explains the robustness and evolvability of transcriptional networks. eLife 2014; 3:e02863. [PMID: 25182846 PMCID: PMC4151086 DOI: 10.7554/elife.02863] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/08/2014] [Indexed: 01/30/2023] Open
Abstract
The gene regulatory network (GRN) is the central decision-making module of the cell. We have developed a theory called Buffered Qualitative Stability (BQS) based on the hypothesis that GRNs are organised so that they remain robust in the face of unpredictable environmental and evolutionary changes. BQS makes strong and diverse predictions about the network features that allow stable responses under arbitrary perturbations, including the random addition of new connections. We show that the GRNs of E. coli, M. tuberculosis, P. aeruginosa, yeast, mouse, and human all verify the predictions of BQS. BQS explains many of the small- and large-scale properties of GRNs, provides conditions for evolvable robustness, and highlights general features of transcriptional response. BQS is severely compromised in a human cancer cell line, suggesting that loss of BQS might underlie the phenotypic plasticity of cancer cells, and highlighting a possible sequence of GRN alterations concomitant with cancer initiation.
Collapse
Affiliation(s)
- Luca Albergante
- College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - J Julian Blow
- College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Timothy J Newman
- College of Life Sciences, University of Dundee, Dundee, United Kingdom School of Engineering, Physics and Mathematics, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
169
|
Mikles DC, Bhat V, Schuchardt BJ, McDonald CB, Farooq A. Enthalpic factors override the polyelectrolyte effect in the binding of EGR1 transcription factor to DNA. J Mol Recognit 2014; 27:82-91. [PMID: 24436125 DOI: 10.1002/jmr.2336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/20/2013] [Accepted: 10/21/2013] [Indexed: 11/12/2022]
Abstract
Protein-DNA interactions are highly dependent upon salt such that the binding affinity precipitously decreases with increasing salt concentration in a phenomenon termed as the polyelectrolyte effect. In this study, we provide evidence that the binding of early growth response (EGR) 1 transcription factor to DNA displays virtually zero dependence on ionic strength under physiological salt concentrations and that such feat is accomplished via favorable enthalpic contributions. Importantly, we unearth the molecular origin of such favorable enthalpy and attribute it to the ability of H382 residue to stabilize the EGR1-DNA interaction via both intermolecular hydrogen bonding and van der Waals contacts against the backdrop of salt. Consistent with this notion, the substitution of H382 residue with other amino acids faithfully restores salt-dependent binding of EGR1 to DNA in a canonical fashion. Remarkably, H382 is highly conserved across other members of the EGR family, implying that changes in bulk salt concentration are unlikely to play a significant role in modulating protein-DNA interactions central to this family of transcription factors. Taken together, our study reports the first example of a eukaryotic protein-DNA interaction capable of overriding the polyelectrolyte effect.
Collapse
Affiliation(s)
- David C Mikles
- Department of Biochemistry and Molecular Biology, Leonard Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | | | | | | | | |
Collapse
|
170
|
EGR1 decreases the malignancy of human non-small cell lung carcinoma by regulating KRT18 expression. Sci Rep 2014; 4:5416. [PMID: 24990820 PMCID: PMC4080516 DOI: 10.1038/srep05416] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 06/03/2014] [Indexed: 12/03/2022] Open
Abstract
Early growth response 1 (EGR1) is a multifunctional transcription factor; Positive and negative functions of EGR1 in various tumors rely on the integrated functions of various genes it regulates. In this study, we observed the role of EGR1 in non-small-cell lung carcinoma (NSCLC) and identified genes that influence cell fate and tumor development. Various assays showed that EGR1 arrested cell mobility, inhibited migration, and induced apoptosis. Microarray analysis revealed that 100 genes, including CDKN1C, CDC27 and PRKDC, changed their mRNA expressions with the increase of EGR1 and contributed to intervention of tumor progression. Bioinformatics analysis and promoter analysis indicated that an EGR1 binding site was situated in the promoter of KRT18 (also named CK18) and KRT18 could assist in inhibition of NSCLC development. The expression level of EGR1 and KRT18 in NSCLC clinical cases was investigated by immunohistochemistry, in which the protein expression of KRT18 was found to be significantly associated with EGR1 and lymph node metastasis. The results collectively confirm that EGR1 functions as a tumor suppressor in NSCLC. This study is the first to report KRT18 expression is directly regulated by EGR1, and contributes to decrease malignancy of NSCLC.
Collapse
|
171
|
Feldman ME, Yarden Y. Steering tumor progression through the transcriptional response to growth factors and stroma. FEBS Lett 2014; 588:2407-14. [PMID: 24873881 DOI: 10.1016/j.febslet.2014.05.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/19/2014] [Accepted: 05/19/2014] [Indexed: 02/04/2023]
Abstract
Tumor progression can be understood as a collaborative effort of mutations and growth factors, which propels cell proliferation and matrix invasion, and also enables evasion of drug-induced apoptosis. Concentrating on EGFR, we discuss downstream signaling and the initiation of transcriptional events in response to growth factors. Specifically, we portray a wave-like program, which initiates by rapid disappearance of two-dozen microRNAs, followed by an abrupt rise of immediate early genes (IEGs), relatively short transcripts encoding transcriptional regulators. Concurrent with the fall of IEGs, some 30-60 min after stimulation, a larger group, the delayed early genes, is up-regulated and its own fall overlaps the rise of the final wave of late response genes. This late wave persists and determines long-term phenotype acquisition, such as invasiveness. Key regulatory steps in the orderly response to growth factors provide a trove of potential oncogenes and tumor suppressors.
Collapse
Affiliation(s)
- Morris E Feldman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
172
|
Xu B, Tang G, Xiao C, Wang L, Yang Q, Sun Y. Androgen deprivation therapy induces androgen receptor-dependent upregulation of Egr1 in prostate cancers. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2883-2893. [PMID: 25031707 PMCID: PMC4097214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/25/2014] [Indexed: 06/03/2023]
Abstract
Early growth response gene-1 (Egr1) has a crucial function in the development and progression of prostate cancer. However, whether Egr1 contributes to the transition of advanced androgen-independent prostate cancer (AIPC) from androgen-dependent prostate cancer (ADPC) remains largely unknown. To the best of our knowledge, through immunohistochemical staining methods, we were the first to identify that Egr1 is more highly expressed in AIPC clinical specimens than in androgen-dependent prostate cancer (ADPC). An in vitro study with quantitative RT-PCR and Western blot demonstrated that Egr1 also has a higher expression in androgen-independent PC3 cells than in the androgen-dependent LNCaP cells. Egr1 expression in LNCaP cells was significantly upregulated during the androgen deprivation treatment (ADT) and was re-downregulated through the addition of dihydrotestosterone. Although no variation in PC3 cells was identified, Egr1 responded to dihydrotestosterone and flutamide in the androgen receptor (AR)-transfected PC3 cells. Further investigation with Egr1 agonist and specific siRNA-targeting Egr1 revealed that Egr1 upregulation or downregulation was accompanied by a change in inhibitors of differentiation and DNA binding-1 (Id1) in the same direction in both LNCaP and PC3 cells. The variation is shown to be negatively regulated by androgen through AR during ADT. Our data suggested that upregulated Egr1 might partially contribute to the emergence of AIPC after prolonged ADT. This study also elucidated the potential mechanism underlying Id1 participation in the progression of prostate cancer. Understanding the key molecular events in the transition from ADPC to AIPC may provide new therapeutic intervention strategies for patients with AIPC.
Collapse
Affiliation(s)
- Bin Xu
- Department of Urology, Changhai Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Gusheng Tang
- Department of Hematology, Changhai Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Chengwu Xiao
- Department of Urology, Changhai Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Qing Yang
- Department of Urology, Changhai Hospital, Second Military Medical UniversityShanghai 200433, China
| | - Yinghao Sun
- Department of Urology, Changhai Hospital, Second Military Medical UniversityShanghai 200433, China
| |
Collapse
|
173
|
Choi DK, Kim IS, Do JH. Signaling pathway analysis of MPP+-treated human neuroblastoma SH-SY5Y cells. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0754-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
174
|
Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab 2014; 19:780-94. [PMID: 24746804 DOI: 10.1016/j.cmet.2014.03.017] [Citation(s) in RCA: 378] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/09/2014] [Accepted: 03/11/2014] [Indexed: 12/26/2022]
Abstract
Mouse embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are in a high-flux metabolic state, with a high dependence on threonine catabolism. However, little is known regarding amino acid metabolism in human ESCs/iPSCs. We show that human ESCs/iPSCs require high amounts of methionine (Met) and express high levels of enzymes involved in Met metabolism. Met deprivation results in a rapid decrease in intracellular S-adenosylmethionine (SAM), triggering the activation of p53-p38 signaling, reducing NANOG expression, and poising human iPSC/ESCs for differentiation, follow by potentiated differentiation into all three germ layers. However, when exposed to prolonged Met deprivation, the cells undergo apoptosis. We also show that human ESCs/iPSCs have regulatory systems to maintain constant intracellular Met and SAM levels. Our findings show that SAM is a key regulator for maintaining undifferentiated pluripotent stem cells and regulating their differentiation.
Collapse
|
175
|
Ponti D, Bellenchi GC, Puca R, Bastianelli D, Maroder M, Ragona G, Roussel P, Thiry M, Mercola D, Calogero A. The transcription factor EGR1 localizes to the nucleolus and is linked to suppression of ribosomal precursor synthesis. PLoS One 2014; 9:e96037. [PMID: 24787739 PMCID: PMC4006901 DOI: 10.1371/journal.pone.0096037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 04/03/2014] [Indexed: 01/13/2023] Open
Abstract
EGR1 is an immediate early gene with a wide range of activities as transcription factor, spanning from regulation of cell growth to differentiation. Numerous studies show that EGR1 either promotes the proliferation of stimulated cells or suppresses the tumorigenic growth of transformed cells. Upon interaction with ARF, EGR1 is sumoylated and acquires the ability to bind to specific targets such as PTEN and in turn to regulate cell growth. ARF is mainly localized to the periphery of nucleolus where is able to negatively regulate ribosome biogenesis. Since EGR1 colocalizes with ARF under IGF-1 stimulation we asked the question of whether EGR1 also relocate to the nucleolus to interact with ARF. Here we show that EGR1 colocalizes with nucleolar markers such as fibrillarin and B23 in the presence of ARF. Western analysis of nucleolar extracts from HeLa cells was used to confirm the presence of EGR1 in the nucleolus mainly as the 100 kDa sumoylated form. We also show that the level of the ribosomal RNA precursor 47S is inversely correlated to the level of EGR1 transcripts. The EGR1 iseffective to regulate the synthesis of the 47S rRNA precursor. Then we demonstrated that EGR1 binds to the Upstream Binding Factor (UBF) leading us to hypothesize that the regulating activity of EGR1 is mediated by its interaction within the transcriptional complex of RNA polymerase I. These results confirm the presence of EGR1 in the nucleolus and point to a role for EGR1 in the control of nucleolar metabolism.
Collapse
Affiliation(s)
- Donatella Ponti
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Latina, Italy
| | | | - Rosa Puca
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Latina, Italy
| | - Daniela Bastianelli
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Latina, Italy
| | - Marella Maroder
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Latina, Italy
| | - Giuseppe Ragona
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Latina, Italy
| | - Pascal Roussel
- RNA Biology, FRE 3402 CNRS-Universitè Pierre et Marie Curie, Paris, France
| | - Marc Thiry
- Unit of Cell Biology, GIGA-Neuroscience, University of Liege, CHU SartTilman, Liege, Belgium
| | - Dan Mercola
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, United States of America
| | - Antonella Calogero
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Latina, Italy
- * E-mail:
| |
Collapse
|
176
|
Zhang T, Zhao LL, Cao X, Qi LC, Wei GQ, Liu JY, Yan SJ, Liu JG, Li XQ. Bioinformatics analysis of time series gene expression in left ventricle (LV) with acute myocardial infarction (AMI). Gene 2014; 543:259-67. [PMID: 24704022 DOI: 10.1016/j.gene.2014.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 12/18/2022]
Abstract
This study is to investigate the key genes and their possible function in acute myocardial infarction (AMI). The data of GSE4648 downloaded from the Gene Expression Omnibus (GEO) database include 6 time points (15 min, 60 min, 4h, 12h, 24h and 48 h) of 12 left ventricle (LV) samples, 12 surviving LV free wall (FW) samples, 12 inter-ventricular septum (IVS) samples after AMI operation and corresponding sham-operated samples. The data of each sample were analyzed with Affy and Bioconductor packages, and differentially expressed genes (DEGs) were screened out using BETR package with false discovery rate (FDR)<0.01. Then, functional enrichment analysis for DEGs was conducted with Database for Annotation, Visualization and Integrated Discovery (DAVID). Totally 194 DEGs were identified in LV, and only the gene tubulin beta 2a (Tubb2a) and natriuretic peptide B (Nppb) were respectively up-regulated in surviving FW tissue and IVS tissue. The biological process response to wounding and inflammatory response were significantly enriched, as well as leukocyte transendothelial migration pathway. Besides, the expression pattern analysis showed the DEGs mostly up-regulated at 4h after AMI, and these genes were mainly associated with immunity. Additionally, in transcriptional regulatory network, early growth response 1 (Egr1), activating transcription factor 3 (Atf3), Atf4, Myc and Fos were considered as the key transcription factors related to immune response. The key transcription factors and potential target genes might provide new information for the development of AMI, and leukocyte transendothelial migration pathway might play a vital role in AMI.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Li-Li Zhao
- Department of Gastroenterology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xue Cao
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Li-Chun Qi
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Guo-Qian Wei
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jun-Yan Liu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Shu-Jun Yan
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jin-Gang Liu
- The Central Hospital of the Heilongjiang Prison Administrative Bureau, Harbin 150001, Heilongjiang Province, China
| | - Xue-Qi Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
177
|
Role of promoter DNA sequence variations on the binding of EGR1 transcription factor. Arch Biochem Biophys 2014; 549:1-11. [PMID: 24657079 DOI: 10.1016/j.abb.2014.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/02/2014] [Accepted: 03/10/2014] [Indexed: 12/20/2022]
Abstract
In response to a wide variety of stimuli such as growth factors and hormones, EGR1 transcription factor is rapidly induced and immediately exerts downstream effects central to the maintenance of cellular homeostasis. Herein, our biophysical analysis reveals that DNA sequence variations within the target gene promoters tightly modulate the energetics of binding of EGR1 and that nucleotide substitutions at certain positions are much more detrimental to EGR1-DNA interaction than others. Importantly, the reduction in binding affinity poorly correlates with the loss of enthalpy and gain of entropy-a trend indicative of a complex interplay between underlying thermodynamic factors due to the differential role of water solvent upon nucleotide substitution. We also provide a rationale for the physical basis of the effect of nucleotide substitutions on the EGR1-DNA interaction at atomic level. Taken together, our study bears important implications on understanding the molecular determinants of a key protein-DNA interaction at the cross-roads of human health and disease.
Collapse
|
178
|
Kim SJ, Kim JM, Shim SH, Chang HI. Shikonin induces cell cycle arrest in human gastric cancer (AGS) by early growth response 1 (Egr1)-mediated p21 gene expression. JOURNAL OF ETHNOPHARMACOLOGY 2014; 151:1064-1071. [PMID: 24384380 DOI: 10.1016/j.jep.2013.11.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/22/2013] [Accepted: 11/29/2013] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lithospermum erythrorhizon, a naphthoquinone compound derived from a shikonin, has long been used as traditional Chinese medicine for treatment of various diseases, including cancer. To evaluate the cytotoxic effects of shikonin on AGS gastric cancer cells via induction of cell cycle arrest. MATERIALS AND METHODS We observed the effects of 12.5-100 ng/mL dosage of shikonin treatment on AGS cancer cell line with the incubation time of 6h. Cytotoxic effects were assessed by measuring the changes in the intracellular ROS, appearance of senescence phenotype, cell cycle progression, CDK and cyclins expression levels upon shikonin treatment. We also examined upon the activation of Egr1-mediated p21 expression, by siRNA transfection, Luciferase assay, and ChIP assay. RESULTS In this study, we found that shikonin inhibits cell proliferation by arresting cell cycle progression at the G2/M phase via modulation of p21 in AGS cells. Also, our results revealed that the p21 gene was transactivated by early growth response1 (Egr1) in response to the shikonin treatment. Transient Egr1 expression enhanced shikonin-induced p21 promoter activity, whereas the suppression of Egr1 expression by small interfering RNA attenuated the ability of shikonin to induce p21 promoter activity. CONCLUSION Our results suggested that the anti-proliferative activity of shikonin was due to its ability to induce cell cycle arrest via Egr1-p21 signaling pathway. Thus, the work stated here validates the traditional use of shikonin in the treatment of cancer.
Collapse
Affiliation(s)
- Sun-Joong Kim
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea; Department of Molecular & Cellular Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd Unit 108, Houston, TX, USA
| | - Jee Min Kim
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - So Hee Shim
- Department of Microbiology, College of Medicine, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Hyo Ihl Chang
- College of Life Sciences & Biotechnology, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea.
| |
Collapse
|
179
|
Banning A, Regenbrecht CR, Tikkanen R. Increased activity of mitogen activated protein kinase pathway in flotillin-2 knockout mouse model. Cell Signal 2014; 26:198-207. [DOI: 10.1016/j.cellsig.2013.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
|
180
|
Heise C, Carter T, Schafer P, Chopra R. Pleiotropic mechanisms of action of lenalidomide efficacy in del(5q) myelodysplastic syndromes. Expert Rev Anticancer Ther 2014; 10:1663-72. [DOI: 10.1586/era.10.135] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
181
|
Fu L, Huang W, Jing Y, Jiang M, Zhao Y, Shi J, Huang S, Xue X, Zhang Q, Tang J, Dou L, Wang L, Nervi C, Li Y, Yu L. AML1-ETO triggers epigenetic activation of early growth response gene l, inducing apoptosis in t(8;21) acute myeloid leukemia. FEBS J 2014; 281:1123-31. [PMID: 24314118 DOI: 10.1111/febs.12673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/06/2013] [Accepted: 12/02/2013] [Indexed: 11/30/2022]
Abstract
The t(8;21)(q22;q22) translocation is the most common chromosomal translocation in acute myeloid leukemia (AML), and it gives rise to acute myeloid gene 1 (AML1)-myeloid transforming gene 8 (ETO)-positive AML, which has a relatively favorable prognosis. However, the molecular mechanism related to a favorable prognosis in AML1-ETO-positive AML is still not fully understood. Our results show that the AML1-ETO fusion protein triggered activation of early growth response gene l (EGR1) by binding at AML1-binding sites on the EGR1 promoter and, subsequently, recruiting acetyltransferase P300, which is known to acetylate histones. However, AML1-ETO could not recruit DNA methyltransferases and histone deacetylases; therefore, EGR1 expression was affected by histone acetylation but not by DNA methylation. Both transcription and translation of EGR1 were higher in AML1-ETO-positive AML cell lines than in AML1-ETO-negative AML cell lines, owing to acetylation. Furthermore, when AML1-ETO-positive AML cell lines were treated with C646 (P300 inhibitor) and trichostatin A (histone deacetylase inhibitor), EGR1 expression was significantly decreased and increased, respectively. In addition, treatment with 5-azacytidine (methyltransferase inhibitor) did not cause any significant change in EGR1 expression. Overexpression of EGR1 inhibited cell proliferation and promoted apoptosis, and EGR1 knockout promoted cell proliferation. Thus, EGR1 could be a novel prognostic factor for a favorable outcome in AML1-ETO-positive AML. The results of our study may explain the molecular mechanisms underlying the favorable prognosis in AML1-ETO-positive AML.
Collapse
Affiliation(s)
- Lin Fu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China; Nankai University School of Medicine, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Veyrac A, Besnard A, Caboche J, Davis S, Laroche S. The transcription factor Zif268/Egr1, brain plasticity, and memory. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:89-129. [PMID: 24484699 DOI: 10.1016/b978-0-12-420170-5.00004-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The capacity to remember our past experiences and organize our future draws on a number of cognitive processes that allow our brain to form and store neural representations that can be recalled and updated at will. In the brain, these processes require mechanisms of neural plasticity in the activated circuits, brought about by cellular and molecular changes within the neurons activated during learning. At the cellular level, a wealth of experimental data accumulated in recent years provides evidence that signaling from synapses to nucleus and the rapid regulation of the expression of immediate early genes encoding inducible, regulatory transcription factors is a key step in the mechanisms underlying synaptic plasticity and the modification of neural networks required for the laying down of memories. In the activated neurons, these transcriptional events are thought to mediate the activation of selective gene programs and subsequent synthesis of proteins, leading to stable functional and structural remodeling of the activated networks, so that the memory can later be reactivated upon recall. Over the past few decades, novel insights have been gained in identifying key transcriptional regulators that can control the genomic response of synaptically activated neurons. Here, as an example of this approach, we focus on one such activity-dependent transcription factor, Zif268, known to be implicated in neuronal plasticity and memory formation. We summarize current knowledge about the regulation and function of Zif268 in different types of brain plasticity and memory processes.
Collapse
Affiliation(s)
- Alexandra Veyrac
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, Orsay, France; Centre de Neurosciences Paris-Sud, Univ Paris-Sud, UMR 8195, Orsay, France
| | - Antoine Besnard
- Harvard Stem Cell Institute, Harvard Medical School, Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jocelyne Caboche
- INSERM, UMRS 952, Physiopathologie des Maladies du Système Nerveux Central, Paris, France; CNRS, UMR7224, Physiopathologie des Maladies du Système Nerveux Central, Paris, France; UPMC University Paris 6, Paris, France
| | - Sabrina Davis
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, Orsay, France; Centre de Neurosciences Paris-Sud, Univ Paris-Sud, UMR 8195, Orsay, France
| | - Serge Laroche
- CNRS, Centre de Neurosciences Paris-Sud, UMR 8195, Orsay, France; Centre de Neurosciences Paris-Sud, Univ Paris-Sud, UMR 8195, Orsay, France
| |
Collapse
|
183
|
Haploinsufficiency of del(5q) genes, Egr1 and Apc, cooperate with Tp53 loss to induce acute myeloid leukemia in mice. Blood 2013; 123:1069-78. [PMID: 24381225 DOI: 10.1182/blood-2013-07-517953] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An interstitial deletion of chromosome 5, del(5q), is the most common structural abnormality in primary myelodysplastic syndromes (MDS) and therapy-related myeloid neoplasms (t-MNs) after cytotoxic therapy. Loss of TP53 activity, through mutation or deletion, is highly associated with t-MNs with a del(5q). We previously demonstrated that haploinsufficiency of Egr1 and Apc, 2 genes lost in the 5q deletion, are key players in the progression of MDS with a del(5q). Using genetically engineered mice, we now show that reduction or loss of Tp53 expression, in combination with Egr1 haploinsufficiency, increased the rate of development of hematologic neoplasms and influenced the disease spectrum, but did not lead to overt myeloid leukemia, suggesting that altered function of additional gene(s) on 5q are likely required for myeloid leukemia development. Next, we demonstrated that cell intrinsic loss of Tp53 in hematopoietic stem and progenitor cells haploinsufficient for both Egr1 and Apc led to the development of acute myeloid leukemia (AML) in 17% of mice. The long latency (234-299 days) and clonal chromosomal abnormalities in the AMLs suggest that additional genetic changes may be required for full transformation. Thus, loss of Tp53 activity in cooperation with Egr1 and Apc haploinsufficiency creates an environment that is permissive for malignant transformation and the development of AML.
Collapse
|
184
|
Cell intrinsic and extrinsic factors synergize in mice with haploinsufficiency for Tp53, and two human del(5q) genes, Egr1 and Apc. Blood 2013; 123:228-38. [PMID: 24264229 DOI: 10.1182/blood-2013-05-506568] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Therapy-related myeloid neoplasms (t-MN) are a late complication of the successful use of cytotoxic therapy for patients with cancer. A heterozygous deletions of the long arm of chromosome 5 [del(5q)], observed in 40% of patients, is associated with prior exposure to alkylating agents, and a high frequency of TP53 loss or mutation. In previous studies, we demonstrated that haploinsufficiency of 2 del(5q) genes, Egr1, and Apc, individually play a role in the pathogenesis of hematologic disease in mice. We now show that loss of one copy of Egr1 or Tp53 in an Apc haploinsufficient background (Apc (del/+)) accelerated the development of a macrocytic anemia with monocytosis, early features of t-MN. The development of anemia was significantly accelerated by treatment of mice with the alkylating agent, N-ethyl-N-nitrosourea (ENU), regardless of the levels of expression of Egr1 and Tp53. Transplantation of either wild type; Egr1(+/-); Tp53(+/-); Apc(del/+); or Egr1(+/-), Apc(del/+) bone marrow cells into lethally irradiated Apc(del/+) recipients resulted in rapid development of anemia that was further accelerated by administration of ENU to recipients, demonstrating that the Apc(del/+)-induced anemia was cell extrinsic and potentiated by ENU mutagenesis. These data emphasize the synergistic role of cell intrinsic and cell extrinsic (microenvironment) factors in the pathogenesis of t-MN, and raise awareness of the deleterious effects of cytotoxic therapy on the stromal microenvironment.
Collapse
|
185
|
Parra E, Ferreira J, Gutierrez L. Decreased c-Abl activity in PC-3 and LNCaP prostate cancer cells overexpressing the early growth response-1 protein. Oncol Rep 2013; 31:422-7. [PMID: 24190424 DOI: 10.3892/or.2013.2829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/27/2013] [Indexed: 11/06/2022] Open
Abstract
Early growth response-1 (Egr-1) and the non-receptor protein tyrosine kinase (c-Abl) are 2 response genes that can act as regulators of cell growth and apoptosis in response to stress. Both Egr-1 and c-Abl regulate cell proliferation and survival in different types of cancer cells. To study the effect of overexpression of EGR-1 on the activity of c-Abl in prostate cancer cells, human PC-3 and LNCaP cells were transfected with a control vector or a vector containing the murine Egr-1 cDNA and assessed for the expression of the c-Abl gene. Cells overexpressing Egr-1 were studied with respect to apoptosis (Annexin V)/DEVDase activity, Egr-1/c-Abl activation (western blotting) and cell proliferation (MTT assay). The cells were exposed to tumor necrosis factor α (TNF-α), a known inductor of Egr-1, to c-Abl inhibitor STI-571 and to small interfering RNA (siRNA)-Egr-1, respectively. The results from our studies strongly suggest that overexpression of Egr-1 decreased c-Abl activity independent of endogenous Egr-1 inhibition by siRNA-Egr-1.
Collapse
Affiliation(s)
- Eduardo Parra
- Laboratory of Experimental Biomedicine, University of Tarapaca, Campus Esmeralda, Iquique, Chile
| | | | | |
Collapse
|
186
|
Kovalchuk A, Aladedunye F, Rodriguez-Juarez R, Li D, Thomas J, Kovalchuk O, Przybylski R. Novel antioxidants are not toxic to normal tissues but effectively kill cancer cells. Cancer Biol Ther 2013; 14:907-15. [PMID: 23917379 PMCID: PMC3926887 DOI: 10.4161/cbt.25935] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 07/18/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022] Open
Abstract
Free radicals are formed as a result of cellular processes and play a key role in predisposition to and development of numerous diseases and of premature aging. Recently, we reported the syntheses of a number of novel phenolic antioxidants for possible application in food industry. In the present study, analyses of the cellular processes and molecular gene expression effects of some of the novel antioxidants in normal human tissues and in cancer cells were undertaken. Results indicated that whereas the examined antioxidants showed no effects on morphology and gene expression of normal human oral and gingival epithelial tissues, they exerted a profound cell killing effect on breast cancer cells, including on chemotherapy-resistant breast cancer cells and on oral squamous carcinoma cells. Among the tested antioxidants, N-decyl-N-(3-methoxy-4-hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide and N-decyl-N-(3,5-dimethoxy-4-hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide were the most promising, with excellent potential for cancer treatment. Moreover, our gene expression databases can be used as a roadmap for future analysis of mechanisms of antioxidant action.
Collapse
Affiliation(s)
- Anna Kovalchuk
- Department of Chemistry; University of Lethbridge; Lethbridge, AB Canada
- Department of Biological Sciences; University of Lethbridge; Lethbridge, AB Canada
| | - Felix Aladedunye
- Department of Chemistry; University of Lethbridge; Lethbridge, AB Canada
| | | | - Dongping Li
- Department of Biological Sciences; University of Lethbridge; Lethbridge, AB Canada
| | - James Thomas
- Department of Biological Sciences; University of Lethbridge; Lethbridge, AB Canada
| | - Olga Kovalchuk
- Department of Biological Sciences; University of Lethbridge; Lethbridge, AB Canada
| | - Roman Przybylski
- Department of Chemistry; University of Lethbridge; Lethbridge, AB Canada
| |
Collapse
|
187
|
Takashima Y, Suzuki A. Regulation of organogenesis and stem cell properties by T-box transcription factors. Cell Mol Life Sci 2013; 70:3929-45. [PMID: 23479132 PMCID: PMC11113830 DOI: 10.1007/s00018-013-1305-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/07/2013] [Accepted: 02/18/2013] [Indexed: 12/28/2022]
Abstract
T-box transcription factors containing the common DNA-binding domain T-box contribute to the organization of multiple tissues in vertebrates and invertebrates. In mammals, 17 T-box genes are divided into five subfamilies depending on their amino acid homology. The proper distribution and expression of individual T-box transcription factors in different tissues enable regulation of the proliferation and differentiation of tissue-specific stem cells and progenitor cells in a suitable time schedule for tissue organization. Consequently, uncontrollable expressions of T-box genes induce abnormal tissue organization, and eventually cause various diseases with malformation and malfunction of tissues and organs. Furthermore, some T-box transcription factors are essential for maintaining embryonic stem cell pluripotency, improving the quality of induced pluripotent stem cells, and inducing cell-lineage conversion of differentiated cells. These lines of evidence indicate fundamental roles of T-box transcription factors in tissue organization and stem cell properties, and suggest that these transcription factors will be useful for developing therapeutic approaches in regenerative medicine.
Collapse
Affiliation(s)
- Yasuo Takashima
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
188
|
Hernandez VJ, Weng J, Ly P, Pompey S, Dong H, Mishra L, Schwarz M, Anderson RGW, Michaely P. Cavin-3 dictates the balance between ERK and Akt signaling. eLife 2013; 2:e00905. [PMID: 24069528 PMCID: PMC3780650 DOI: 10.7554/elife.00905] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 08/14/2013] [Indexed: 12/22/2022] Open
Abstract
Cavin-3 is a tumor suppressor protein of unknown function. Using both in vivo and in vitro approaches, we show that cavin-3 dictates the balance between ERK and Akt signaling. Loss of cavin-3 increases Akt signaling at the expense of ERK, while gain of cavin-3 increases ERK signaling at the expense Akt. Cavin-3 facilitates signal transduction to ERK by anchoring caveolae to the membrane skeleton of the plasma membrane via myosin-1c. Caveolae are lipid raft specializations that contain an ERK activation module and loss of the cavin-3 linkage reduces the abundance of caveolae, thereby separating this ERK activation module from signaling receptors. Loss of cavin-3 promotes Akt signaling through suppression of EGR1 and PTEN. The in vitro consequences of the loss of cavin-3 include induction of Warburg metabolism (aerobic glycolysis), accelerated cell proliferation, and resistance to apoptosis. The in vivo consequences of cavin-3 knockout are increased lactate production and cachexia. DOI:http://dx.doi.org/10.7554/eLife.00905.001.
Collapse
Affiliation(s)
- Victor J Hernandez
- Department of Cell Biology , University of Texas Southwestern Medical Center , Dallas , United States
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Pacini L, Suffredini S, Ponti D, Coppini R, Frati G, Ragona G, Cerbai E, Calogero A. Altered calcium regulation in isolated cardiomyocytes from Egr-1 knock-out mice. Can J Physiol Pharmacol 2013; 91:1135-42. [PMID: 24289086 DOI: 10.1139/cjpp-2012-0419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Early growth response-1 one gene (Egr-1), one of the immediate early response genes, plays an important role in the adaptive response of the myocardium to hypertrophic stimuli. We aimed to investigate the effects of Egr-1 deletion on cardiac function. Egr-1 knock-out (Egr-1(-/-)) homozygous mice were employed to evaluate the electrophysiological and molecular properties of left ventricular cardiomyocytes (VCM) by using patch-clamp technique, intracellular calcium measurements, real-time PCR, and Western blot. Action potential was prolonged and diastolic potential was positive-shifted in VCMs isolated from Egr-1(-/-) mice, in comparison with those from their wild-type (WT) littermates. The calcium content of the sarcoplasmic reticulum was reduced and the decay time for steady-state calcium transient slowed down. Serca2, Ryr, L-type Ca(2+)-channel, and PLB mRNA expression were reduced in Egr-1(-/-) mice compared with the controls. Moreover, Serca2 protein was reduced, while the amount of Ncx1 protein was increased in Egr-1(-/-) hearts compared with those of the WT littermates. Furthermore, genes involved in heart development (GATA-4, TGF-β) and in Egr-1 regulation (Nab1, Nab2) were down regulated in Egr-1(-/-) mice. These results suggest that Egr-1 plays a pivotal role in regulating excitation-contraction coupling in cardiac myocytes.
Collapse
Affiliation(s)
- Luca Pacini
- a Department of Medico-surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Corso della Repubblica 79, Latina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Stimulation of MMP-1 and CCL2 by NAMPT in PDL cells. Mediators Inflamm 2013; 2013:437123. [PMID: 24058270 PMCID: PMC3766615 DOI: 10.1155/2013/437123] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/18/2013] [Indexed: 01/04/2023] Open
Abstract
Periodontitis is an inflammatory disease caused by pathogenic microorganisms and characterized by the destruction of the periodontium. Obese individuals have an increased risk of periodontitis, and elevated circulating levels of adipokines, such as nicotinamide phosphoribosyltransferase (NAMPT), may be a pathomechanistic link between both diseases. The aim of this in vitro study was to examine the regulation of periodontal ligament (PDL) cells by NAMPT and its production under inflammatory and infectious conditions. NAMPT caused a significant upregulation of 9 genes and downregulation of 3 genes, as analyzed by microarray analysis. Eight of these genes could be confirmed by real-time PCR: NAMPT induced a significant upregulation of EGR1, MMP-1, SYT7, ITPKA, CCL2, NTM, IGF2BP3, and NRP1. NAMPT also increased significantly the MMP-1 and CCL2 protein synthesis. NAMPT was significantly induced by interleukin-1β and the periodontal microorganism P. gingivalis. NAMPT may contribute to periodontitis through upregulation of MMP-1 and CCL2 in PDL cells. Increased NAMPT levels, as found in obesity, may therefore represent a mechanism whereby obesity could confer an increased risk of periodontitis. Furthermore, microbial and inflammatory signals may enhance the NAMPT synthesis in PDL cells and thereby contribute to the increased gingival and serum levels of this adipokine, as found in periodontitis.
Collapse
|
191
|
Jin H, Sun Y, Wang S, Cheng X. Matrine activates PTEN to induce growth inhibition and apoptosis in V600EBRAF harboring melanoma cells. Int J Mol Sci 2013; 14:16040-57. [PMID: 23912239 PMCID: PMC3759898 DOI: 10.3390/ijms140816040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/12/2013] [Accepted: 07/18/2013] [Indexed: 01/06/2023] Open
Abstract
Here, we report a natural chemical Matrine, which exhibits anti-melanoma potential with its PTEN activation mechanism. Matrine effectively inhibited proliferation of several carcinoma cell lines, including melanoma V600EBRAF harboring M21 cells. Flow cytometry analysis showed Matrine induced G0/G1 cell cycle arrest in M21 cells dose-dependently. Apoptosis in M21 cells induced by Matrine was identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis and Annexin-V/FITC staining. Molecular mechanistic study suggested that Matrine upregulated both mRNA level and protein expression level of phosphatase and tensin homolog deleted on chromosome ten (PTEN), leading to inhibition of the PI3K/Akt pathway. Downregulation of phosphor-Aktser473 by Matrine activated p21 and Bax, which contributed to G0/G1 cell cycle and apoptosis. Besides, Matrine enhanced the PI3K/Akt inhibition effects to inhibit the cell proliferation with PI3K inhibitor, LY2940002. In summary, our findings suggest Matrine is a promising antitumor drug candidate with its possible PTEN activation mechanisms for treating cancer diseases, such as melanomas.
Collapse
Affiliation(s)
- Hui Jin
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; E-Mail:
| | - Yu Sun
- Yue-yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; E-Mails: (Y.S.); (S.W.)
| | - Shuiying Wang
- Yue-yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; E-Mails: (Y.S.); (S.W.)
| | - Xiaodong Cheng
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; E-Mail:
- Yue-yang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; E-Mails: (Y.S.); (S.W.)
- East Hospital, Tongji University, Shanghai 200120, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-21-6598-0295
| |
Collapse
|
192
|
Fenne IS, Helland T, Flågeng MH, Dankel SN, Mellgren G, Sagen JV. Downregulation of steroid receptor coactivator-2 modulates estrogen-responsive genes and stimulates proliferation of mcf-7 breast cancer cells. PLoS One 2013; 8:e70096. [PMID: 23936147 PMCID: PMC3728357 DOI: 10.1371/journal.pone.0070096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/14/2013] [Indexed: 11/18/2022] Open
Abstract
The p160/Steroid Receptor Coactivators SRC-1, SRC-2/GRIP1, and SRC-3/AIB1 are important regulators of Estrogen Receptor alpha (ERα) activity. However, whereas the functions of SRC-1 and SRC-3 in breast tumourigenesis have been extensively studied, little is known about the role of SRC-2. Previously, we reported that activation of the cAMP-dependent protein kinase, PKA, facilitates ubiquitination and proteasomal degradation of SRC-2 which in turn leads to inhibition of SRC-2-coactivation of ERα and changed expression of the ERα target gene, pS2. Here we have characterized the global program of transcription in SRC-2-depleted MCF-7 breast cancer cells using short-hairpin RNA technology, and in MCF-7 cells exposed to PKA activating agents. In order to identify genes that may be regulated through PKA-induced downregulation of SRC-2, overlapping transcriptional targets in response to the respective treatments were characterized. Interestingly, we observed decreased expression of several breast cancer tumour suppressor genes (e.g., TAGLN, EGR1, BCL11b, CAV1) in response to both SRC-2 knockdown and PKA activation, whereas the expression of a number of other genes implicated in cancer progression (e.g., RET, BCAS1, TFF3, CXCR4, ADM) was increased. In line with this, knockdown of SRC-2 also stimulated proliferation of MCF-7 cells. Together, these results suggest that SRC-2 may have an antiproliferative function in breast cancer cells.
Collapse
Affiliation(s)
- Ingvild S. Fenne
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Thomas Helland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Marianne H. Flågeng
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Simon N. Dankel
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Mellgren
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Jørn V. Sagen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
193
|
Mikles DC, Bhat V, Schuchardt BJ, Deegan BJ, Seldeen KL, McDonald CB, Farooq A. pH modulates the binding of early growth response protein 1 transcription factor to DNA. FEBS J 2013; 280:3669-84. [PMID: 23718776 DOI: 10.1111/febs.12360] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 05/21/2013] [Accepted: 05/28/2013] [Indexed: 11/29/2022]
Abstract
The transcription factor early growth response protein (EGR)1 orchestrates a plethora of signaling cascades involved in cellular homeostasis, and its downregulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with an increase in pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as His382 by virtue of the fact that its replacement by nonionizable residues abolishes the pH dependence of the binding of EGR1 to DNA. Notably, His382 inserts into the major groove of DNA, and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, His382 is mainly conserved across other members of the EGR family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating the protein-DNA interactions that are central to this family of transcription factors. Collectively, our findings reveal an unexpected but a key step in the molecular recognition of the EGR family of transcription factors, and suggest that they may act as sensors of pH within the intracellular environment.
Collapse
Affiliation(s)
- David C Mikles
- Department of Biochemistry & Molecular Biology, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
194
|
Han MH, Kim GY, Yoo YH, Choi YH. Sanguinarine induces apoptosis in human colorectal cancer HCT-116 cells through ROS-mediated Egr-1 activation and mitochondrial dysfunction. Toxicol Lett 2013; 220:157-66. [PMID: 23660334 DOI: 10.1016/j.toxlet.2013.04.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/27/2013] [Accepted: 04/26/2013] [Indexed: 12/14/2022]
Abstract
We examined the effects of sanguinarine, a benzophenanthridine alkaloid, on reactive oxygen species (ROS) production and the association of these effects with apoptotic cell death in a human colorectal cancer HCT-116 cell line. Sanguinarine generated ROS, which was followed by a decrease in the mitochondrial membrane potential (MMP), the activation of caspase-9 and -3, and the down-regulation of anti-apoptotic proteins, such as Bcl2, XIAP and cIAP-1. Sanguinarine also promoted the activation of caspase-8 and truncation of Bid (tBid). However, the quenching of ROS generation by N-acetyl-l-cysteine, a scavenger of ROS, reversed the sanguinarine-induced apoptosis effects via inhibition of the MMP collapse, tBid expression, and activation of caspases. Sanguinarine also markedly induced the expression of the early growth response gene-1 (Egr-1) during the early period, after which expression level was decreased. In addition, HCT-116 cells transfected with Egr-1 siRNA displayed significant blockage of sanguinarine-induced apoptotic activity in a ROS-dependent manner. These observations clearly indicate that ROS, which are key mediators of Egr-1 activation and MMP collapse, are involved in the early molecular events in the sanguinarine-induced apoptotic pathway acting in HCT-116 cells.
Collapse
Affiliation(s)
- Min Ho Han
- Department of Biomaterial Control (BK21 Program), Graduate School, Dongeui University, Busan 614-714, Republic of Korea
| | | | | | | |
Collapse
|
195
|
Hoang T, Fenne IS, Madsen A, Bozickovic O, Johannessen M, Bergsvåg M, Lien EA, Stallcup MR, Sagen JV, Moens U, Mellgren G. cAMP response element-binding protein interacts with and stimulates the proteasomal degradation of the nuclear receptor coactivator GRIP1. Endocrinology 2013; 154:1513-27. [PMID: 23462962 PMCID: PMC5393311 DOI: 10.1210/en.2012-2049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The glucocorticoid receptor interacting protein (GRIP1) belongs to the p160 steroid receptor coactivator family that plays essential roles in nuclear receptor-dependent transcriptional regulation. Previously, we reported that the cAMP-dependent protein kinase (PKA) induces ubiquitination leading to degradation of GRIP1. Here we show that the cAMP response element-binding protein (CREB) downregulates GRIP1 and is necessary for the PKA-stimulated degradation of GRIP1, which leads to changes in the expression of a subset of genes regulated by estrogen receptor-α in MCF-7 breast cancer cells. Our data of domain-mapping and ubiquitination analyses suggest that CREB promotes the proteasomal breakdown of ubiquitinated GRIP1 through 2 functionally independent protein domains containing amino acids 347 to 758 and 1121 to 1462. We provide evidence that CREB interacts directly with GRIP1 and that CREB Ser-133 phosphorylation or transcriptional activity is not required for GRIP1 interaction and degradation. The basic leucine zipper domain (bZIP) of CREB is important for the interaction with GRIP1, and deletion of this domain led to an inability to downregulate GRIP1. We propose that CREB mediates the PKA-stimulated degradation of GRIP1 through protein-protein interaction and stimulation of proteasomal degradation of ubiquitinated GRIP1.
Collapse
Affiliation(s)
- Tuyen Hoang
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Sun T, Tian H, Feng YG, Zhu YQ, Zhang WQ. Egr-1 promotes cell proliferation and invasion by increasing β-catenin expression in gastric cancer. Dig Dis Sci 2013; 58:423-30. [PMID: 22918686 DOI: 10.1007/s10620-012-2356-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 08/03/2012] [Indexed: 12/09/2022]
Abstract
BACKGROUND Abnormal expression of early growth response gene 1 (Egr-1) and β-catenin may play a crucial role in the development and progression of human cancer. However, little is known about the expression and underlying molecular mechanisms in which Egr-1 and β-catenin are involved in the development and progression of gastric cancer. AIMS The purpose of this study was to elucidate the potential relationship between Egr-1 and β-catenin expression in gastric cancer, which contributes to finding new molecular carcinogenesis as a potential therapeutic target for gastric cancer. METHODS In a sample of 102 cases of human gastric cancer, the expression of Egr-1 and β-catenin was detected using immunohistochemistry. Egr-1 gene was transfected into gastric cancer SGC7901 cells and its role in proliferation and cell invasion was detected by MTT assay, flow cytometry, wound-healing and transwell invasion assay. Western blot analysis was used to study the expression of β-catenin and cyclin D1 proteins. RESULTS Upregulated Egr-1 and β-catenin protein expression were strongly correlated with cancer progression and depth of invasion in gastric cancer. β-catenin, present mainly in cytoplasmic and nucleus of gastric cancer cells, was also positively correlated with Egr-1 expression in gastric cancer. Furthermore, the overexpression of Egr-1 upregulated β-catenin expression level, promoted cell proliferation, increased cell population in S-phase and enhanced gastric cancer cell migration and invasion in vitro. CONCLUSIONS Egr-1 might contribute to gastric cancer proliferation and invasion through activation of the β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ting Sun
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | | | | | | | | |
Collapse
|
197
|
Zhao Q, Wang H, Yang M, Yang D, Zuo Y, Wang J. Expression of a tumor-associated gene, LASS2, in the human bladder carcinoma cell lines BIU-87, T24, EJ and EJ-M3. Exp Ther Med 2013; 5:942-946. [PMID: 23407876 PMCID: PMC3570257 DOI: 10.3892/etm.2013.892] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/02/2013] [Indexed: 12/22/2022] Open
Abstract
Homo sapiens longevity assurance homolog 2 of yeast LAG1 (LASS2), a metastasis suppressor gene of human cancer, is the most abundantly expressed member of the ceramide synthase gene family. Expression of LASS2 has been reported in carcinomas of the prostate, liver and breast. However, there has been no report on the expression of LASS2 in human bladder cancer cell lines. In order to investigate the expression and potential role of this new tumor metastasis supressor gene in human bladder cancer, we compared the proliferation, metastasis and invasion among the BIU-87, T24, EJ and EJ-M3 human bladder cancer cell lines. The mRNA expression levels of the LASS2 gene were examined using real-time quantitative PCR (qPCR). The expression levels of LASS1 and LASS3 mRNA were used as references. The protein expression level of the LASS2 gene was detected using western blotting. The most aggressive of these four human cancer cell lines was observed to be EJ-M3. The expression of LASS2 mRNA was significantly correlated with diverse proliferation, metastasis and invasion. The expression levels of LASS1 and LASS3 mRNA were not correlated with these parameters. At the protein level, we observed that the more aggressive the cancer cell line, the lower the LASS2 protein expression level. Therefore, LASS2 expression may be correlated with the development and progression of human bladder cancer and may be a prognostic indicator for this cancer.
Collapse
Affiliation(s)
- Qinghua Zhao
- Department of Gynaecology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming 650101, P.R. China
| | | | | | | | | | | |
Collapse
|
198
|
Vijayaraghavalu S, Dermawan JK, Cheriyath V, Labhasetwar V. Highly synergistic effect of sequential treatment with epigenetic and anticancer drugs to overcome drug resistance in breast cancer cells is mediated via activation of p21 gene expression leading to G2/M cycle arrest. Mol Pharm 2012; 10:337-52. [PMID: 23215027 DOI: 10.1021/mp3004622] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epigenetic alterations such as aberrant DNA methylation and histone modifications contribute substantially to both the cause and maintenance of drug resistance. These epigenetic changes lead to silencing of tumor suppressor genes involved in key DNA damage-response pathways, making drug-resistant cancer cells nonresponsive to conventional anticancer drug therapies. Our hypothesis is that treating drug-resistant cells with epigenetic drugs could restore the sensitivity to anticancer drugs by reactivating previously silenced genes. To test our hypothesis, we used drug-resistant breast cancer cells (MCF-7/ADR) and two epigenetic drugs that act via different mechanisms--5-aza-2'-deoxycytidine (decitabine, DAC), a demethylating agent, and suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor--in combination with doxorubicin. We show that the sequential treatment of resistant cells, first with an epigenetic drug (DAC), and then with doxorubicin, induces a highly synergistic effect, thus reducing the IC(50) of doxorubicin by several thousand fold. The sequential treatment caused over 90% resistant cells to undergo G2/M cell cycle arrest, determined to be due to upregulation of p21(WAF1/CIP1) expression, which is responsible for cell-cycle regulation. The induction of p21(WAF1/CIP1) correlated well with the depletion of DNA methyltransferase1 (DNMT1), an enzyme that promotes methylation of DNA, suggesting that the p21(WAF1/CIP1) gene may have been methylated and hence is inactive in MCF-7/ADR cells. Microarray analysis shows expression of several tumor suppressor genes and downregulation of tumor promoter genes, particularly in sequentially treated resistant cells. Sequential treatment was found to be significantly more effective than simultaneous treatment, and DAC was more effective than SAHA in overcoming doxorubicin resistance. Synergistic effect with sequential treatment was also seen in drug-sensitive breast cancer cells, but the effect was significantly more pronounced in resistant cells. In conclusion, the sequential treatment of an epigenetic drug in combination with doxorubicin induces a highly synergistic effect that overcomes doxorubicin resistance in breast cancer cells.
Collapse
Affiliation(s)
- Sivakumar Vijayaraghavalu
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | | | | | | |
Collapse
|
199
|
Fukuoka M, Uehara A, Niki K, Goto S, Kato D, Utsugi T, Ohtsu M, Murakami Y. Identification of preferentially reactivated genes during early G1 phase using nascent mRNA as an index of transcriptional activity. Biochem Biophys Res Commun 2012; 430:1005-10. [PMID: 23261446 DOI: 10.1016/j.bbrc.2012.12.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022]
Abstract
During mammalian mitosis, transcription is silenced due to dissociation of transcription factors from DNA and chromosome condensation. At the end of mitosis, transcription is reactivated through chromosome relaxation and reloading of these factors to the DNA. Early G1 genes, which are preferentially reactivated during M/G1 transition, are important for maintenance of cellular function and are known to be strictly regulated. As only few early G1 genes have been identified to date, screening for early G1 genes by genome-wide analysis using nascent mRNA could contribute to the elucidation of the regulatory mechanisms during early G1. Here, we performed a detailed expression analysis for the M/G1 transition of mammalian cells by microarray analysis of nascent mRNA, and identified 298 early G1 genes. Analysis of these genes provides two important insights. Firstly, certain motifs are enriched in the upstream sequences of early G1 genes; from this we could predict candidate cognate transcription factors, including Sp1, which is recruited to the DNA in the early G1 phase. Secondly, we discovered that neighboring genes of early G1 genes were also frequently up-regulated in the G1 phase. Information about these numerous newly identified early G1 genes will likely contribute to an understanding of the regulatory mechanisms of the early G1 genes.
Collapse
Affiliation(s)
- Masashi Fukuoka
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Bhattacharyya S, Fang F, Tourtellotte W, Varga J. Egr-1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). J Pathol 2012; 229:286-97. [PMID: 23132749 DOI: 10.1002/path.4131] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/24/2012] [Accepted: 10/05/2012] [Indexed: 12/13/2022]
Abstract
Fibroblasts and myofibroblasts are the key effector cells executing physiological tissue repair leading to regeneration on the one hand, and pathological fibrogenesis leading to chronic fibrosing conditions on the other. Recent studies identify the multifunctional transcription factor early growth response-1(Egr-1) as an important mediator of fibroblast activation triggered by diverse stimuli. Egr-1 has potent stimulatory effects on fibrotic gene expression, and aberrant Egr-1 expression or function is associated with animal models of fibrosis and human fibrotic disorders, including emphysema, pulmonary fibrosis, pulmonary hypertension and systemic sclerosis. Pharmacological suppression or genetic targeting of Egr-1 blocks fibrotic responses in vitro and ameliorates experimental fibrosis in the skin and lung. In contrast, Egr-1 appears to act as a negative regulator of hepatic fibrosis in mouse models, suggesting a context-dependent role in fibrosis. The Egr-1-binding protein Nab2 is an endogenous inhibitor of Egr-1-mediated signalling and abrogates the stimulation of fibrotic responses induced by transforming growth factor-β (TGFβ). Moreover, mice deficient in Nab2 show excessive collagen accumulation in the skin. These observations highlight a previously unsuspected fundamental physiological function for the Egr-1-Nab2 signalling axis in regulating fibrogenesis, and suggest that Egr-1 may be a potential novel therapeutic target in human diseases complicated by fibrosis. This review summarizes recent advances in understanding the regulation and complex functional role of Egr-1 and its related proteins and inhibitors in pathological fibrosis.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | |
Collapse
|