151
|
Li S, Shen G, Li W. Intramembrane Thiol Oxidoreductases: Evolutionary Convergence and Structural Controversy. Biochemistry 2017; 57:258-266. [PMID: 29064673 DOI: 10.1021/acs.biochem.7b00876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During oxidative protein folding, disulfide bond formation is catalyzed by thiol oxidoreductases. Through dedicated relay pathways, the disulfide is generated in donor enzymes, passed to carrier enzymes, and subsequently delivered to target proteins. The eukaryotic disulfide donors are flavoenzymes, Ero1 in the endoplasmic reticulum and Erv1 in mitochondria. In prokaryotes, disulfide generation is coupled to quinone reduction, catalyzed by intramembrane donor enzymes, DsbB and VKOR. To catalyze de novo disulfide formation, these different disulfide donors show striking structural convergence at several levels. They share a four-helix bundle core structure at their active site, which contains a CXXC motif at a helical end. They have also evolved a flexible loop with shuttle cysteines to transfer electrons to the active site and relay the disulfide bond to the carrier enzymes. Studies of the prokaryotic VKOR, however, have stirred debate about whether the human homologue adopts the same topology with four transmembrane helices and uses the same electron-transfer mechanism. The controversies have recently been resolved by investigating the human VKOR structure and catalytic process in living cells with a mass spectrometry-based approach. Structural convergence between human VKOR and the disulfide donors is found to underlie cofactor reduction, disulfide generation, and electron transfer.
Collapse
Affiliation(s)
- Shuang Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| | - Guomin Shen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63110, United States.,College of Medicine, Henan University of Science and Technology , Luoyang, Henan 471003, P. R. China
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine , St. Louis, Missouri 63110, United States
| |
Collapse
|
152
|
Ma X, Dai Z, Sun K, Zhang Y, Chen J, Yang Y, Tso P, Wu G, Wu Z. Intestinal Epithelial Cell Endoplasmic Reticulum Stress and Inflammatory Bowel Disease Pathogenesis: An Update Review. Front Immunol 2017; 8:1271. [PMID: 29118753 PMCID: PMC5660968 DOI: 10.3389/fimmu.2017.01271] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022] Open
Abstract
The intestinal epithelial cells serve essential roles in maintaining intestinal homeostasis, which relies on appropriate endoplasmic reticulum (ER) function for proper protein folding, modification, and secretion. Exogenous or endogenous risk factors with an ability to disturb the ER function can impair the intestinal barrier function and activate inflammatory responses in the host. The last decade has witnessed considerable progress in the understanding of the functional role of ER stress and unfolded protein response (UPR) in the gut homeostasis and its significant contribution to the pathogenesis of inflammatory bowel disease (IBD). Herein, we review recent evidence supporting the viewpoint that deregulation of ER stress and UPR signaling in the intestinal epithelium, including the absorptive cells, Paneth cells, goblet cells, and enteroendocrine cells, mediates the action of genetic or environmental factors driving colitis in experimental animals and IBD patients. In addition, we highlight pharmacologic application of chaperones or small molecules that enhance protein folding and modification capacity or improve the function of the ER. These molecules represent potential therapeutic strategies in the prevention or treatment of IBD through restoring ER homeostasis in intestinal epithelial cells.
Collapse
Affiliation(s)
- Xiaoshi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Kaiji Sun
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Jingqing Chen
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
153
|
Matsuo Y, Hirota K. Transmembrane thioredoxin-related protein TMX1 is reversibly oxidized in response to protein accumulation in the endoplasmic reticulum. FEBS Open Bio 2017; 7:1768-1777. [PMID: 29123984 PMCID: PMC5666389 DOI: 10.1002/2211-5463.12319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/21/2022] Open
Abstract
Numerous secretory and membrane proteins undergo post‐translational modifications in the endoplasmic reticulum (ER), and the formation of disulfide bonds is a modification that is critical for proper protein folding. The mammalian ER contains a large family of oxidoreductases that are considered to catalyze thiol/disulfide exchange and ensure the maintenance of a redox environment within the ER. Disruption of ER homeostasis causes an accumulation of misfolded and unfolded proteins, a condition termed ER stress. Despite advances in our understanding of the ER stress response and its downstream signaling pathway, it remains unclear how ER redox balance is controlled and restored in the stressed ER. In this study, we determined that brefeldin A (BFA)‐induced protein accumulation in the ER triggers reversible oxidation of transmembrane thioredoxin‐related protein 1 (TMX1). Conversion of TMX1 to the oxidized state preceded the induction of immunoglobulin‐binding protein, a downstream marker of ER stress. Oxidized TMX1 reverted to the basal reduced state after BFA removal, and our results suggest that glutathione is involved in maintaining TMX1 in the reduced form. These findings provide evidence for a redox imbalance caused by protein overload, and demonstrate the existence of a pathway that helps restore ER homeostasis during poststress recovery.
Collapse
Affiliation(s)
- Yoshiyuki Matsuo
- Department of Human Stress Response Science Institute of Biomedical Science Kansai Medical University Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science Institute of Biomedical Science Kansai Medical University Japan
| |
Collapse
|
154
|
Zacchi LF, Dittmar JC, Mihalevic MJ, Shewan AM, Schulz BL, Brodsky JL, Bernstein KA. Early-onset torsion dystonia: a novel high-throughput yeast genetic screen for factors modifying protein levels of torsinAΔE. Dis Model Mech 2017; 10:1129-1140. [PMID: 28768697 PMCID: PMC5611967 DOI: 10.1242/dmm.029926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022] Open
Abstract
Dystonia is the third most common movement disorder, but its diagnosis and treatment remain challenging. One of the most severe types of dystonia is early-onset torsion dystonia (EOTD). The best studied and validated EOTD-associated mutation, torsinAΔE, is a deletion of a C-terminal glutamate residue in the AAA+ ATPase torsinA. TorsinA appears to be an endoplasmic reticulum (ER)/nuclear envelope chaperone with multiple roles in the secretory pathway and in determining subcellular architecture. Many functions are disabled in the torsinAΔE variant, and torsinAΔE is also less stable than wild-type torsinA and is a substrate for ER-associated degradation. Nevertheless, the molecular factors involved in the biogenesis and degradation of torsinA and torsinAΔE have not been fully explored. To identify conserved cellular factors that can alter torsinAΔE protein levels, we designed a new high-throughput, automated, genome-wide screen utilizing our validated Saccharomyces cerevisiae torsinA expression system. By analyzing the yeast non-essential gene deletion collection, we identified 365 deletion strains with altered torsinAΔE steady-state levels. One notable hit was EUG1, which encodes a member of the protein disulfide isomerase family (PDIs). PDIs reside in the ER and catalyze the formation of disulfide bonds, mediate protein quality control and aid in nascent protein folding. We validated the role of select human PDIs in torsinA biogenesis in mammalian cells and found that overexpression of PDIs reduced the levels of torsinA and torsinAΔE. Together, our data report the first genome-wide screen to identify cellular factors that alter expression levels of the EOTD-associated protein torsinAΔE. More generally, the identified hits help in dissecting the cellular machinery involved in folding and degrading a torsinA variant, and constitute potential therapeutic factors for EOTD. This screen can also be readily adapted to identify factors impacting the levels of any protein of interest, considerably expanding the applicability of yeast in both basic and applied research.
Collapse
Affiliation(s)
- Lucía F Zacchi
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - John C Dittmar
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Michael J Mihalevic
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, UPCI Research Pavilion, 2.42e, Pittsburgh, PA 15213, USA
| | - Annette M Shewan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jeffrey L Brodsky
- Department of Biological Sciences, A320 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 5117 Centre Avenue, UPCI Research Pavilion, 2.42e, Pittsburgh, PA 15213, USA
| |
Collapse
|
155
|
Porosk R, Kilk K, Mahlapuu R, Terasmaa A, Soomets U. Glutathione system in Wolfram syndrome 1‑deficient mice. Mol Med Rep 2017; 16:7092-7097. [PMID: 28901522 DOI: 10.3892/mmr.2017.7419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/27/2017] [Indexed: 11/06/2022] Open
Abstract
Wolfram syndrome 1 (WS) is a rare neurodegenerative disease that is caused by mutations in the Wolfram syndrome 1 (WFS1) gene, which encodes the endoplasmic reticulum (ER) glycoprotein wolframin. The pathophysiology of WS is ER stress, which is generally considered to induce oxidative stress. As WS has a well‑defined monogenetic origin and a model for chronic ER stress, the present study aimed to characterize how glutathione (GSH), a major intracellular antioxidant, was related to the disease and its progression. The concentration of GSH and the activities of reduction/oxidation system enzymes GSH peroxidase and GSH reductase were measured in Wfs1‑deficient mice. The GSH content was lower in most of the studied tissues, and the activities of antioxidative enzymes varied between the heart, kidneys and liver tissues. The results indicated that GSH may be needed for ER stress control; however, chronic ER stress from the genetic syndrome eventually depletes the cellular GSH pool and leads to increased oxidative stress.
Collapse
Affiliation(s)
- Rando Porosk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kalle Kilk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Riina Mahlapuu
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Anton Terasmaa
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Ursel Soomets
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
156
|
Lopez CE, Sheehan HC, Vierra DA, Azzinaro PA, Meedel TH, Howlett NG, Irvine SQ. Proteomic responses to elevated ocean temperature in ovaries of the ascidian Ciona intestinalis. Biol Open 2017; 6:943-955. [PMID: 28500033 PMCID: PMC5550911 DOI: 10.1242/bio.024786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 05/10/2017] [Indexed: 11/21/2022] Open
Abstract
Ciona intestinalis, a common sea squirt, exhibits lower reproductive success at the upper extreme of the water temperatures it experiences in coastal New England. In order to understand the changes in protein expression associated with elevated temperatures, and possible response to global temperature change, we reared C. intestinalis from embryos to adults at 18°C (a temperature at which they reproduce normally at our collection site in Rhode Island) and 22°C (the upper end of the local temperature range). We then dissected ovaries from animals at each temperature, extracted protein, and measured proteomic levels using shotgun mass spectrometry (LC-MS/MS). 1532 proteins were detected at a 1% false discovery rate present in both temperature groups by our LC-MS/MS method. 62 of those proteins are considered up- or down-regulated according to our statistical criteria. Principal component analysis shows a clear distinction in protein expression pattern between the control (18°C) group and high temperature (22°C) group. Similar to previous studies, cytoskeletal and chaperone proteins are upregulated in the high temperature group. Unexpectedly, we find evidence that proteolysis is downregulated at the higher temperature. We propose a working model for the high temperature response in C. intestinalis ovaries whereby increased temperature induces upregulation of signal transduction pathways involving PTPN11 and CrkL, and activating coordinated changes in the proteome especially in large lipid transport proteins, cellular stress responses, cytoskeleton, and downregulation of energy metabolism.
Collapse
Affiliation(s)
- Chelsea E Lopez
- Departments of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Hannah C Sheehan
- Departments of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - David A Vierra
- Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Paul A Azzinaro
- Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Thomas H Meedel
- Biology Department, Rhode Island College, Providence, RI 02908, USA
| | - Niall G Howlett
- Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Steven Q Irvine
- Departments of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
157
|
Foster CK, Thorpe C. Challenges in the evaluation of thiol-reactive inhibitors of human protein disulfide Isomerase. Free Radic Biol Med 2017; 108:741-749. [PMID: 28465261 PMCID: PMC5507595 DOI: 10.1016/j.freeradbiomed.2017.04.367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/12/2017] [Accepted: 04/28/2017] [Indexed: 12/29/2022]
Abstract
This paper addresses how to evaluate the efficacy of the growing inventory of thiol-reactive inhibitors of mammalian protein disulfide Isomerase (PDI) enzymes under realistic concentrations of potentially competing thiol-containing peptides and proteins. For this purpose, we introduce a variant of the widely-used reductase assay by using a commercially-available cysteine derivative (BODIPY FL L-Cystine; BD-SS) that yields a 55-fold increase in fluorescence (excitation/emission; 490/513nm) on scission of the disulfide bond. This plate reader-compatible method detects human PDI down to 5-10nM, can utilize a range of thiol substrates (including 5µM dithiothreitol, 10µM reduced RNase thiols, and 5mM glutathione; GSH), and can operate from pH 6-9.5 in a variety of buffers. PDI assays often employ low micromolar levels of substrates leading to ambiguities when thiol-directed inhibitors are evaluated. The present work utilizes 5mM GSH for both pre-incubation and assay phases to more realistically reflect the high concentration of thiols that an inhibitor would encounter intracellularly. Extracellular PDI faces a much lower concentration of potentially competing thiols; to assess reductase activity under these conditions, the pre-reduced PDI is treated with inhibitor and then fluorescence increase upon reduction of BD-SS is followed in the absence of additional competing thiols. Both assay modes were tested with four mechanistically diverse PDI inhibitors. Two reversible reagents, 3,4-methylenedioxy-β-nitrostyrene (MNS) and the arsenical APAO, were found to be strong inhibitors of PDI in the absence of competing thiols, but were ineffective in the presence of 5mM GSH. A further examination of the nitrostyrene showed that MNS not only forms facile Michael adducts with GSH, but also with the thiols of unfolded proteins (Kd values of 7 and <0.1µM, respectively) suggesting the existence of multiple potential intracellular targets for this membrane-permeant reagent. The inhibition of PDI by the irreversible alkylating agent, the chloroacetamide 16F16, was found to be only modestly attenuated by 5mM GSH. Finally, the thiol-independent flavonoid inhibitor quercetin-3-O-rutinoside was found to show equal efficacy in reoxidation and turnover assay types. This work provides a framework to evaluate inhibitors that may target the CxxC motifs of PDI and addresses some of the complexities in the interpretation of the behavior of thiol-directed reagents in vivo.
Collapse
Affiliation(s)
- Celia K Foster
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
158
|
Zhang Y, Pan J, Huang X, Guo D, Lou H, Hou Z, Su M, Liang R, Xie C, You M, Li B. Differential effects of a post-anthesis heat stress on wheat (Triticum aestivum L.) grain proteome determined by iTRAQ. Sci Rep 2017; 7:3468. [PMID: 28615669 PMCID: PMC5471245 DOI: 10.1038/s41598-017-03860-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/04/2017] [Indexed: 12/19/2022] Open
Abstract
Heat stress, a major abiotic stressor of wheat (Triticum aestivum L.), often results in reduced yield and decreased quality. In this study, a proteomic method, Tags for Relative and Absolute Quantitation Isobaric (iTRAQ), was adopted to analyze the protein expression profile changes among wheat cultivar Jing411 under heat stress. Results indicated that there were 256 different proteins expressed in Jing411 under heat stress. According to the result of gene annotation and functional classification, 239 proteins were annotated by 856 GO function entries, including growth and metabolism proteins, energy metabolism proteins, processing and storage proteins, defense-related proteins, signal transduction, unknown function proteins and hypothetical proteins. GO enrichment analysis suggested that the differentially expressed proteins in Jing411 under heat stress were mainly involved in stimulus response (67), abiotic stress response (26) and stress response (58), kinase activity (12), and transferase activity (12). Among the differentially expressed proteins in Jing411, 115 were attributed to 119 KEGG signaling/metabolic pathways. KEGG pathway enrichment analysis in Jing411 showed that heat stress mainly affected the starch and sucrose metabolism as well as protein synthesis pathway in the endoplasmic reticulum. The protein interaction network indicated that there were 8 differentially expressed proteins that could form an interaction network in Jing411.
Collapse
Affiliation(s)
- Yufeng Zhang
- Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis & Utilization, Ministry of Education, College of Agronomy, China Agricultural University, Beijing, 100193, China
| | - Jiajia Pan
- Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis & Utilization, Ministry of Education, College of Agronomy, China Agricultural University, Beijing, 100193, China
| | - Xiuwen Huang
- Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis & Utilization, Ministry of Education, College of Agronomy, China Agricultural University, Beijing, 100193, China
| | - Dandan Guo
- Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis & Utilization, Ministry of Education, College of Agronomy, China Agricultural University, Beijing, 100193, China
| | - Hongyao Lou
- Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis & Utilization, Ministry of Education, College of Agronomy, China Agricultural University, Beijing, 100193, China
| | - Zhenghong Hou
- Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis & Utilization, Ministry of Education, College of Agronomy, China Agricultural University, Beijing, 100193, China
| | - Meng Su
- Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis & Utilization, Ministry of Education, College of Agronomy, China Agricultural University, Beijing, 100193, China
| | - Rongqi Liang
- Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis & Utilization, Ministry of Education, College of Agronomy, China Agricultural University, Beijing, 100193, China
| | - Chaojie Xie
- Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis & Utilization, Ministry of Education, College of Agronomy, China Agricultural University, Beijing, 100193, China
| | - Mingshan You
- Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis & Utilization, Ministry of Education, College of Agronomy, China Agricultural University, Beijing, 100193, China
| | - Baoyun Li
- Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis & Utilization, Ministry of Education, College of Agronomy, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
159
|
Nakao H, Seko A, Ito Y, Sakono M. PDI family protein ERp29 recognizes P-domain of molecular chaperone calnexin. Biochem Biophys Res Commun 2017; 487:763-767. [DOI: 10.1016/j.bbrc.2017.04.139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 11/16/2022]
|
160
|
Mechanistic insights on the reduction of glutathione disulfide by protein disulfide isomerase. Proc Natl Acad Sci U S A 2017; 114:E4724-E4733. [PMID: 28559343 DOI: 10.1073/pnas.1618985114] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We explore the enzymatic mechanism of the reduction of glutathione disulfide (GSSG) by the reduced a domain of human protein disulfide isomerase (hPDI) with atomistic resolution. We use classical molecular dynamics and hybrid quantum mechanics/molecular mechanics calculations at the mPW1N/6-311+G(2d,2p):FF99SB//mPW1N/6-31G(d):FF99SB level. The reaction proceeds in two stages: (i) a thiol-disulfide exchange through nucleophilic attack of the Cys53-thiolate to the GSSG-disulfide followed by the deprotonation of Cys56-thiol by Glu47-carboxylate and (ii) a second thiol-disulfide exchange between the Cys56-thiolate and the mixed disulfide intermediate formed in the first step. The Gibbs activation energy for the first stage was 18.7 kcal·mol-1, and for the second stage, it was 7.2 kcal·mol-1, in excellent agreement with the experimental barrier (17.6 kcal·mol-1). Our results also suggest that the catalysis by protein disulfide isomerase (PDI) and thiol-disulfide exchange is mostly enthalpy-driven (entropy changes below 2 kcal·mol-1 at all stages of the reaction). Hydrogen bonds formed between the backbone of His55 and Cys56 and the Cys56-thiol result in an increase in the Gibbs energy barrier of the first thiol-disulfide exchange. The solvent plays a key role in stabilizing the leaving glutathione thiolate formed. This role is not exclusively electrostatic, because an explicit inclusion of several water molecules at the density-functional theory level is a requisite to form the mixed disulfide intermediate. In the intramolecular oxidation of PDI, a transition state is only observed if hydrogen bond donors are nearby the mixed disulfide intermediate, which emphasizes that the thermochemistry of thiol-disulfide exchange in PDI is influenced by the presence of hydrogen bond donors.
Collapse
|
161
|
Kung PH, Hsieh PW, Lin YT, Lee JH, Chen IH, Wu CC. HPW-RX40 prevents human platelet activation by attenuating cell surface protein disulfide isomerases. Redox Biol 2017; 13:266-277. [PMID: 28600983 PMCID: PMC5466588 DOI: 10.1016/j.redox.2017.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 01/01/2023] Open
Abstract
Protein disulfide isomerase (PDI) present at platelet surfaces has been considered to play an important role in the conformational change and activation of the integrin glycoprotein IIb/IIIa (GPIIb/IIIa) and thus enhances platelet aggregation. Growing evidences indicated that platelet surface PDI may serve as a potential target for developing of a new class of antithrombotic agents. In the present study, we investigated the effects of HPW-RX40, a chemical derivative of β-nitrostyrene, on platelet activation and PDI activity. HPW-RX40 inhibited platelet aggregation, GPIIb/IIIa activation, and P-selectin expression in human platelets. Moreover, HPW-RX40 reduced thrombus formation in human whole blood under flow conditions, and protects mice from FeCl3-induced carotid artery occlusion. HPW-RX40 inhibited the activity of recombinant PDI family proteins (PDI, ERp57, and ERp5) as well as suppressed cell surface PDI activity of platelets in a reversible manner. Exogenous addition of PDI attenuated the inhibitory effect of HPW-RX40 on GPIIb/IIIa activation. Structure-based molecular docking simulations indicated that HPW-RX40 binds to the active site of PDI by forming hydrogen bonds. In addition, HPW-RX40 neither affected the cell viability nor induced endoplasmic reticulum stress in human cancer A549 and MDA-MB-231 cells. Taken together, our results suggest that HPW-RX40 is a reversible and non-cytotoxic PDI inhibitor with antiplatelet effects, and it may have a potential for development of novel antithrombotic agents.
Collapse
Affiliation(s)
- Po-Hsiung Kung
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ying-Ting Lin
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-Hau Lee
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Hua Chen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
162
|
Herpes Simplex Virus 1 UL34 Protein Regulates the Global Architecture of the Endoplasmic Reticulum in Infected Cells. J Virol 2017; 91:JVI.00271-17. [PMID: 28356536 DOI: 10.1128/jvi.00271-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/21/2017] [Indexed: 11/20/2022] Open
Abstract
Upon herpes simplex virus 1 (HSV-1) infection, the CD98 heavy chain (CD98hc) is redistributed around the nuclear membrane (NM), where it promotes viral de-envelopment during the nuclear egress of nucleocapsids. In this study, we attempted to identify the factor(s) involved in CD98hc accumulation and demonstrated the following: (i) the null mutation of HSV-1 UL34 caused specific dispersion throughout the cytoplasm of CD98hc and the HSV-1 de-envelopment regulators, glycoproteins B and H (gB and gH); (ii) as observed with CD98hc, gB, and gH, wild-type HSV-1 infection caused redistribution of the endoplasmic reticulum (ER) markers calnexin and ERp57 around the NM, whereas the UL34-null mutation caused cytoplasmic dispersion of these markers; (iii) the ER markers colocalized efficiently with CD98hc, gB, and gH in the presence and absence of UL34 in HSV-1-infected cells; (iv) at the ultrastructural level, wild-type HSV-1 infection caused ER compression around the NM, whereas the UL34-null mutation caused cytoplasmic dispersion of the ER; and (v) the UL34-null mutation significantly decreased the colocalization efficiency of lamin protein markers of the NM with CD98hc and gB. Collectively, these results indicate that HSV-1 infection causes redistribution of the ER around the NM, with resulting accumulation of ER-associated CD98hc, gB, and gH around the NM and that UL34 is required for ER redistribution, as well as for efficient recruitment to the NM of the ER-associated de-envelopment factors. Our study suggests that HSV-1 induces remodeling of the global ER architecture for recruitment of regulators mediating viral nuclear egress to the NM.IMPORTANCE The ER is an important cellular organelle that exists as a complex network extending throughout the cytoplasm. Although viruses often remodel the ER to facilitate viral replication, information on the effects of herpesvirus infections on ER morphological integrity is limited. Here, we showed that HSV-1 infection led to compression of the global ER architecture around the NM, resulting in accumulation of ER-associated regulators associated with nuclear egress of HSV-1 nucleocapsids. We also identified HSV-1 UL34 as a viral factor that mediated ER remodeling. Furthermore, we demonstrated that UL34 was required for efficient targeting of these regulators to the NM. To our knowledge, this is the first report showing that a herpesvirus remodels ER global architecture. Our study also provides insight into the mechanism by which the regulators for HSV-1 nuclear egress are recruited to the NM, where this viral event occurs.
Collapse
|
163
|
Ping S, Liu S, Zhou Y, Li Z, Li Y, Liu K, Bardeesi AS, Wang L, Chen J, Deng L, Wang J, Wang H, Chen D, Zhang Z, Sheng P, Li C. Protein disulfide isomerase-mediated apoptosis and proliferation of vascular smooth muscle cells induced by mechanical stress and advanced glycosylation end products result in diabetic mouse vein graft atherosclerosis. Cell Death Dis 2017; 8:e2818. [PMID: 28542133 PMCID: PMC5520728 DOI: 10.1038/cddis.2017.213] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/12/2017] [Accepted: 04/05/2017] [Indexed: 01/08/2023]
Abstract
Protein disulfide isomerase (PDI) involves cell survival and death. Whether PDI mediates mechanical stretch stress (SS) and/or advanced glycosylation end products (AGEs) -triggered simultaneous increases in proliferation and apoptosis of vascular smooth muscle cells (VSMCs) is unknown. Here, we hypothesized that different expression levels of PDI trigger completely opposite cell fates among the different VSMC subtypes. Mouse veins were grafted into carotid arteries of non-diabetic and diabetic mice for 8 weeks; the grafted veins underwent simultaneous increases in proliferation and apoptosis, which triggered vein graft arterializations in non-diabetic or atherosclerosis in diabetic mice. A higher rate of proliferation and apoptosis was seen in the diabetic group. SS and/or AGEs stimulated the quiescent cultured VSMCs, resulting in simultaneous increases in proliferation and apoptosis; they could induce increased PDI activation and expression. Both in vivo and in vitro, the proliferating VSMCs indicated weak co-expression of PDI and SM-α-actin while apoptotic or dead cells showed strong co-expression of both. Either SS or AGEs rapidly upregulated the expression of PDI, NOX1 and ROS, and their combination had synergistic effects. Inhibiting PDI simultaneously suppressed the proliferation and apoptosis of VSMCs, while inhibition of SM-α-actin with cytochalasin D led to increased apoptosis and cleaved caspases-3 but had no effect on proliferation. In conclusion, different expression levels of PDI in VSMCs induced by SS and/or AGEs triggered a simultaneous increase in proliferation and apoptosis, accelerated vein graft arterializations or atherosclerosis, leading us to propose PDI as a novel target for the treatment of vascular remodeling and diseases.
Collapse
Affiliation(s)
- Suning Ping
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuhuan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziqing Li
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuhuang Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kefeng Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Adham Sa Bardeesi
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linli Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingbo Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lie Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingjing Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hong Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dadi Chen
- Experimental Center for Basic Medical Teaching, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhengyu Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Histology and Embryology, School of Basic Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
164
|
Santos GB, Gonzalez-Perilli L, Mastrogiovanni M, Aicardo A, Cerdeira CD, Trostchansky A, Brigagão MRPL. Nitroxide 4-hydroxy-2,2',6,6'-tetramethylpiperidine 1-oxyl (Tempol) inhibits the reductase activity of protein disulfide isomerase via covalent binding to the Cys 400 residue on CXXC redox motif at the a'active site. Chem Biol Interact 2017; 272:117-124. [PMID: 28532685 DOI: 10.1016/j.cbi.2017.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIM Oxidative stress arising from inflammatory processes is a serious cause of cell and tissue damage. Tempol is an efficient antioxidant with superoxide dismutase-like activity. The purpose of this paper is to address the inhibition of protein disulfide isomerase (PDI), an essential redox chaperone whose active sites contain the Cys-Gly-His-Cys (CXXC) motif, by the nitroxide Tempol. RESULTS In the presence of Tempol (5-120 μM), the reductase activity of PDI was reversibly affected both in vitro and in activated mice neutrophils, with an IC50 of 22.9 ± 10.8 μM. Inhibitory activity was confirmed by using both the insulin method and fluorescent formation of eosin-glutathione (E-GSH). The capacity of Tempol to bind the enzyme was determined by EPR and mass spectrometry. EPR Tempol signal decreased in the presence of PDI while remained unaffected when PDI thiols were previously blocked with NEM. When total protein was analyzed, 1 and 4 molecules of Tempol were bound to the protein. However, only one was found to be covalently bound to PDI at the a'active site. More specifically, Cys400 was modified by Tempol. CONCLUSION We have shown that the nitroxide Tempol acts as an inhibitor of PDI through covalent binding to the Cys400 of the protein structure. Since PDI is coupled with the assembly of the NADPH oxidase complex of phagocytes, these findings reveal a novel action of Tempol that presents potential clinical applications for therapeutic intervention to target PDI knockdown in pathological processes in which this protein is engaged.
Collapse
Affiliation(s)
- Gérsika Bitencourt Santos
- Department of Biochemistry (DBq), Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Brazil
| | - Lucia Gonzalez-Perilli
- Biochemistry Department, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- Biochemistry Department, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Adrián Aicardo
- Biochemistry Department, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Cláudio Daniel Cerdeira
- Department of Biochemistry (DBq), Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Brazil
| | - Andrés Trostchansky
- Biochemistry Department, Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | |
Collapse
|
165
|
Langsjoen RM, Auguste AJ, Rossi SL, Roundy CM, Penate HN, Kastis M, Schnizlein MK, Le KC, Haller SL, Chen R, Watowich SJ, Weaver SC. Host oxidative folding pathways offer novel anti-chikungunya virus drug targets with broad spectrum potential. Antiviral Res 2017; 143:246-251. [PMID: 28461071 DOI: 10.1016/j.antiviral.2017.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/05/2017] [Indexed: 11/15/2022]
Abstract
Alphaviruses require conserved cysteine residues for proper folding and assembly of the E1 and E2 envelope glycoproteins, and likely depend on host protein disulfide isomerase-family enzymes (PDI) to aid in facilitating disulfide bond formation and isomerization in these proteins. Here, we show that in human HEK293 cells, commercially available inhibitors of PDI or modulators thereof (thioredoxin reductase, TRX-R; endoplasmic reticulum oxidoreductin-1, ERO-1) inhibit the replication of CHIKV chikungunya virus (CHIKV) in vitro in a dose-dependent manner. Further, the TRX-R inhibitor auranofin inhibited Venezuelan equine encephalitis virus and the flavivirus Zika virus replication in vitro, while PDI inhibitor 16F16 reduced replication but demonstrated notable toxicity. 16F16 significantly altered the viral genome: plaque-forming unit (PFU) ratio of CHIKV in vitro without affecting relative intracellular viral RNA quantities and inhibited CHIKV E1-induced cell-cell fusion, suggesting that PDI inhibitors alter progeny virion infectivity through altered envelope function. Auranofin also increased the extracellular genome:PFU ratio but decreased the amount of intracellular CHIKV RNA, suggesting an alternative mechanism of action. Finally, auranofin reduced footpad swelling and viremia in the C57BL/6 murine model of CHIKV infection. Our results suggest that targeting oxidative folding pathways represents a potential new anti-alphavirus therapeutic strategy.
Collapse
Affiliation(s)
- Rose M Langsjoen
- Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Albert J Auguste
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shannan L Rossi
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Christopher M Roundy
- Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Heidy N Penate
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maria Kastis
- Center in Environmental Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Kevin C Le
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sherry L Haller
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rubing Chen
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Stanley J Watowich
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Center in Environmental Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
166
|
Wang D, Du S, Cazenave-Gassiot A, Ge J, Lee JS, Wenk MR, Yao SQ. Global Mapping of Protein-Lipid Interactions by Using Modified Choline-Containing Phospholipids Metabolically Synthesized in Live Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Danyang Wang
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Shubo Du
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | | | - Jingyan Ge
- Institute of Bioengineering; Zhejiang University of Technology; China
| | - Jun-Seok Lee
- Department of Biological Chemistry; University of Science & Technology; South Korea
| | - Markus R. Wenk
- Department of Biological Sciences; National University of Singapore; Singapore
| | - Shao Q. Yao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
167
|
Wang D, Du S, Cazenave-Gassiot A, Ge J, Lee JS, Wenk MR, Yao SQ. Global Mapping of Protein-Lipid Interactions by Using Modified Choline-Containing Phospholipids Metabolically Synthesized in Live Cells. Angew Chem Int Ed Engl 2017; 56:5829-5833. [DOI: 10.1002/anie.201702509] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Danyang Wang
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Shubo Du
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | | | - Jingyan Ge
- Institute of Bioengineering; Zhejiang University of Technology; China
| | - Jun-Seok Lee
- Department of Biological Chemistry; University of Science & Technology; South Korea
| | - Markus R. Wenk
- Department of Biological Sciences; National University of Singapore; Singapore
| | - Shao Q. Yao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
168
|
Sousa HR, Gaspar RS, Sena EML, da Silva SA, Fontelles JL, AraUjo TLS, Mastrogiovanni M, Fries DM, Azevedo-Santos APS, Laurindo FRM, Trostchansky A, Paes AM. Novel antiplatelet role for a protein disulfide isomerase-targeted peptide: evidence of covalent binding to the C-terminal CGHC redox motif. J Thromb Haemost 2017; 15:774-784. [PMID: 28109047 DOI: 10.1111/jth.13633] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 11/30/2022]
Abstract
Essentials Inhibitors of protein disulfide isomerase (PDI) have been considered a new antithrombotic class. CxxC is a PDI-targeted peptide that has been previously shown to inhibit its reductase activity. CxxC binds to surface PDI and inhibits ADP- and thrombin-evoked platelet activation and aggregation. CxxC binds to Cys400 on CGHC redox motif of PDI a' domain, a site for PDI prothrombotic activity. SUMMARY Background Protein disulfide isomerase (PDI) plays a major role in platelet aggregation, and its inhibitors have emerged as novel antithrombotic drugs. In previous work, we designed a peptide based on a PDI redox motif (CGHC) that inhibited both PDI reductase activity and PDI-modulated superoxide generation by neutrophil Nox2. Thus, we hypothesized that this peptide would also inhibit platelet aggregation by association with surface PDI. Methods Three peptides were used: CxxC, containing the PDI redox motif; Scr, presenting a scrambled sequence of the same residues and AxxA, with cysteines replaced by alanine. These peptides were tested under platelet aggregation and flow cytometry protocols to identify their possible antiplatelet activity. We labeled membrane free thiol and electrospray ionization liquid chromatography tandem mass spectrometry to test for an interaction. Results CxxC decreased platelet aggregation in a dose-dependent manner, being more potent at lower agonist concentrations, whereas neither AxxA nor Scr peptides exerted any effect. CxxC decreased aIIbb3 activation, but had no effect on the other markers. CxxC also decreased cell surface PDI pulldown without interfering with the total thiol protein content. Finally, we detected the addition of one CxxC molecule to reduced PDI through binding to Cys400 through mass spectrometry. Interestingly, CxxC did not react with oxidized PDI. Discussion CxxC has consistently shown its antiplatelet effects, both in PRP and washed platelets, corroborated by decreased aIIbb3 activation. The probable mechanism of action is through a mixed dissulphide bond with Cys400 of PDI, which has been shown to be essential for PDI's actions. Conclusion In summary, our data support antiplatelet activity for CxxC through binding to Cys400 in the PDI a0 domain, which can be further exploited as a model for sitedriven antithrombotic agent development.
Collapse
Affiliation(s)
- H R Sousa
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - R S Gaspar
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - E M L Sena
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - S A da Silva
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - J L Fontelles
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - T L S AraUjo
- Laboratory of Vascular Biology, Heart Institute, School of Medicine of the University of São Paulo, São Paulo, SP, Brazil
| | - M Mastrogiovanni
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - D M Fries
- Laboratory of Vascular Biology, Heart Institute, School of Medicine of the University of São Paulo, São Paulo, SP, Brazil
| | - A P S Azevedo-Santos
- Laboratory of Immunophysiology, Department of Pathology, Federal University of Maranhão, São Luís, MA, Brazil
| | - F R M Laurindo
- Laboratory of Vascular Biology, Heart Institute, School of Medicine of the University of São Paulo, São Paulo, SP, Brazil
| | - A Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - A M Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| |
Collapse
|
169
|
Stopa JD, Baker KM, Grover SP, Flaumenhaft R, Furie B. Kinetic-based trapping by intervening sequence variants of the active sites of protein-disulfide isomerase identifies platelet protein substrates. J Biol Chem 2017; 292:9063-9074. [PMID: 28364042 DOI: 10.1074/jbc.m116.771832] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/30/2017] [Indexed: 12/15/2022] Open
Abstract
Thiol isomerases such as protein-disulfide isomerase (PDI) direct disulfide rearrangements required for proper folding of nascent proteins synthesized in the endoplasmic reticulum. Identifying PDI substrates is challenging because PDI catalyzes conformational changes that cannot be easily monitored (e.g. compared with proteolytic cleavage or amino acid phosphorylation); PDI has multiple substrates; and it can catalyze either oxidation, reduction, or isomerization of substrates. Kinetic-based substrate trapping wherein the active site motif CGHC is modified to CGHA to stabilize a PDI-substrate intermediate is effective in identifying some substrates. A limitation of this approach, however, is that it captures only substrates that are reduced by PDI, whereas many substrates are oxidized by PDI. By manipulating the highly conserved -GH- residues in the CGHC active site of PDI, we created PDI variants with a slowed reaction rate toward substrates. The prolonged intermediate state allowed us to identify protein substrates that have biased affinities for either oxidation or reduction by PDI. Because extracellular PDI is critical for thrombus formation but its extracellular substrates are not known, we evaluated the ability of these bidirectional trapping PDI variants to trap proteins released from platelets and on the platelet surface. Trapped proteins were identified by mass spectroscopy. Of the trapped substrate proteins identified by mass spectroscopy, five proteins, cathepsin G, glutaredoxin-1, thioredoxin, GP1b, and fibrinogen, showed a bias for oxidation, whereas annexin V, heparanase, ERp57, kallekrein-14, serpin B6, tetranectin, and collagen VI showed a bias for reduction. These bidirectional trapping variants will enable more comprehensive identification of thiol isomerase substrates and better elucidation of their cellular functions.
Collapse
Affiliation(s)
- Jack D Stopa
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
| | - Katherine M Baker
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
| | - Steven P Grover
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
| | - Robert Flaumenhaft
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
| | - Bruce Furie
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
170
|
Mamik S, Sharma AD. Protective role of boiling stable antioxidant enzymes in invasive alien species of Lantana exposed to natural abiotic stress like conditions. RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2017. [DOI: 10.1134/s207511171701009x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
171
|
Nitroarachidonic acid (NO 2AA) inhibits protein disulfide isomerase (PDI) through reversible covalent adduct formation with critical cysteines. Biochim Biophys Acta Gen Subj 2017; 1861:1131-1139. [PMID: 28215702 DOI: 10.1016/j.bbagen.2017.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Nitroarachidonic acid (NO2AA) exhibits pleiotropic anti-inflammatory actions in a variety of cell types. We have recently shown that NO2AA inhibits phagocytic NADPH oxidase 2 (NOX2) by preventing the formation of the active complex. Recent work indicates the participation of protein disulfide isomerase (PDI) activity in NOX2 activation. Cysteine (Cys) residues at PDI active sites could be targets for NO2AA- nitroalkylation regulating PDI activity which could explain our previous observation. METHODS PDI reductase and chaperone activities were assessed using the insulin and GFP renaturation methods in the presence or absence of NO2AA. To determine the covalent reaction with PDI as well as the site of reaction, the PEG-switch assay and LC-MS/MS studies were performed. RESULTS AND CONCLUSIONS We determined that both activities of PDI were inhibited by NO2AA in a dose- and time- dependent manner and independent from release of nitric oxide. Since nitroalkenes are potent electrophiles and PDI has critical Cys residues for its activity, then formation of a covalent adduct between NO2AA and PDI is feasible. To this end we demonstrated the reversible covalent modification of PDI by NO2AA. Trypsinization of modified PDI confirmed that the Cys residues present in the active site a' of PDI were key targets accounting for nitroalkene modification. GENERAL SIGNIFICANCE PDI may contribute to NOX2 activation. As such, inhibition of PDI by NO2AA might be involved in preventing NOX2 activation. Future work will be directed to determine if the covalent modifications observed play a role in the reported NO2AA inhibition of NOX2 activity.
Collapse
|
172
|
Ishima Y. Albumin-Based Nitric Oxide Traffic System for the Treatment of Intractable Cancers. Biol Pharm Bull 2017; 40:128-134. [PMID: 28154250 DOI: 10.1248/bpb.b16-00867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biomacromolecules (>40 kDa) have been developed as drug delivery system (DDS) carriers of low-molecular weight drugs to promote these drugs' uptake by cancer tissues via enhanced permeability and retention (EPR) effects. Human serum albumin (HSA) has been found to accumulate in cancer tissues via this EPR effect. HSA is the most abundant protein in serum, which performs essential physiological functions such as the transportation of many endogenous and exogenous ligands. Nitric oxide (NO) is a very small ligand of HSA; it is a unique and diffusible molecular messenger that plays a central role in mammalian physiology. Although the in vivo half-life of NO is extremely short, HSA could prolong the half-life of NO via S-nitrosation at the position of Cys-34. S-Nitrosated HSA (mono-SNO-HSA) is called an 'Endogenous NO traffic protein,' due to the highly stable S-nitroso form in circulating blood, and to the efficiency of S-transnitrosation in cells that require NO. Mono-SNO-HSA possesses a very strong cytoprotective action via the induction of heme oxygenase-1. On the other hand, HSA reinforced with approximately seven NO molecules (poly-SNO-HSA), which we developed by means of chemical modification, possesses multiple anticancer activities. Our previous data clarified that the high expression of protein disulfide isomerase on the surface of cancer cells plays a very important role in the anticancer action of poly-SNO-HSA. In this review, we focus on the advantage of poly-SNO-HSA in treating intractable cancers from the viewpoint of drug delivery systems and drug resistance.
Collapse
Affiliation(s)
- Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences,
Tokushima University Graduate School
| |
Collapse
|
173
|
Valle C, Carrì MT. Cysteine Modifications in the Pathogenesis of ALS. Front Mol Neurosci 2017; 10:5. [PMID: 28167899 PMCID: PMC5253364 DOI: 10.3389/fnmol.2017.00005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022] Open
Abstract
Several proteins are found misfolded and aggregated in sporadic and genetic forms of amyotrophic lateral sclerosis (ALS). These include superoxide dismutase (SOD1), transactive response DNA-binding protein (TDP-43), fused in sarcoma/translocated in liposarcoma protein (FUS/TLS), p62, vasolin-containing protein (VCP), Ubiquilin-2 and dipeptide repeats produced by unconventional RAN-translation of the GGGGCC expansion in C9ORF72. Up to date, functional studies have not yet revealed a common mechanism for the formation of such diverse protein inclusions. Consolidated studies have demonstrated a fundamental role of cysteine residues in the aggregation process of SOD1 and TDP43, but disturbance of protein thiols homeostatic factors such as protein disulfide isomerases (PDI), glutathione, cysteine oxidation or palmitoylation might contribute to a general aberration of cysteine residues proteostasis in ALS. In this article we review the evidence that cysteine modifications may have a central role in many, if not all, forms of this disease.
Collapse
Affiliation(s)
- Cristiana Valle
- Institute for Cell Biology and Neurobiology, CNRRome, Italy
- Fondazione Santa Lucia IRCCSRome, Italy
| | - Maria Teresa Carrì
- Fondazione Santa Lucia IRCCSRome, Italy
- Department of Biology, University of Rome Tor VergataRome, Italy
| |
Collapse
|
174
|
Poet GJ, Oka OB, van Lith M, Cao Z, Robinson PJ, Pringle MA, Arnér ES, Bulleid NJ. Cytosolic thioredoxin reductase 1 is required for correct disulfide formation in the ER. EMBO J 2017; 36:693-702. [PMID: 28093500 PMCID: PMC5331760 DOI: 10.15252/embj.201695336] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 11/09/2022] Open
Abstract
Folding of proteins entering the secretory pathway in mammalian cells frequently requires the insertion of disulfide bonds. Disulfide insertion can result in covalent linkages found in the native structure as well as those that are not, so-called non-native disulfides. The pathways for disulfide formation are well characterized, but our understanding of how non-native disulfides are reduced so that the correct or native disulfides can form is poor. Here, we use a novel assay to demonstrate that the reduction in non-native disulfides requires NADPH as the ultimate electron donor, and a robust cytosolic thioredoxin system, driven by thioredoxin reductase 1 (TrxR1 or TXNRD1). Inhibition of this reductive pathway prevents the correct folding and secretion of proteins that are known to form non-native disulfides during their folding. Hence, we have shown for the first time that mammalian cells have a pathway for transferring reducing equivalents from the cytosol to the ER, which is required to ensure correct disulfide formation in proteins entering the secretory pathway.
Collapse
Affiliation(s)
- Greg J Poet
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Ojore Bv Oka
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Marcel van Lith
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Zhenbo Cao
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Philip J Robinson
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Marie Anne Pringle
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Elias Sj Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden
| | - Neil J Bulleid
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| |
Collapse
|
175
|
Perri E, Parakh S, Atkin J. Protein Disulphide Isomerases: emerging roles of PDI and ERp57 in the nervous system and as therapeutic targets for ALS. Expert Opin Ther Targets 2016; 21:37-49. [PMID: 27786579 DOI: 10.1080/14728222.2016.1254197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION There is increasing evidence that endoplasmic reticulum (ER) chaperones Protein Disulphide Isomerase (PDI) and ERp57 (endoplasmic reticulum protein 57) are protective against neurodegenerative diseases related to protein misfolding, including Amyotrophic Lateral Sclerosis (ALS). PDI and ERp57 also possess disulphide interchange activity, in which protein disulphide bonds are oxidized, reduced and isomerized, to form their native conformation. Recently, missense and intronic variants of PDI and ERp57 were associated with ALS, implying that PDI proteins are relevant to ALS pathology. Areas covered: Here, we discuss possible implications of the PDI and ERp57 variants, as well as recent studies describing previously unrecognized roles for PDI and ERp57 in the nervous system. Therapeutics based on PDI may therefore be attractive candidates for ALS. However, in addition to its protective functions, aberrant, toxic roles for PDI have recently been described. These functions need to be fully characterized before effective therapeutic strategies can be designed. Expert opinion: These disease-associated variants of PDI and ERp57 provide additional evidence for an important role for PDI proteins in ALS. However, there are many questions remaining unanswered that need to be addressed before the potential of the PDI family in relation to ALS can be fully realized.
Collapse
Affiliation(s)
- Emma Perri
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Sonam Parakh
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia
| | - Julie Atkin
- a Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science , La Trobe University , Melbourne , Australia
| |
Collapse
|
176
|
Liebel S, Regina Grötzner S, Dietrich Moura Costa D, Antônio Ferreira Randi M, Alberto de Oliveira Ribeiro C, Filipak Neto F. Cylindrospermopsin effects on protein profile of HepG2 cells. Toxicol Mech Methods 2016; 26:554-563. [PMID: 27494769 DOI: 10.1080/15376516.2016.1216209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Human hepatoma cells (HepG2) were exposed to purified cylindrospermopsin (CYN), a potent toxicant for eukaryotic cells produced by several cyanobacteria. Exposure to 10 μg l-1 of CYN for 24 h resulted in alteration of expression of 48 proteins, from which 26 were identified through mass spectrometry. Exposure to 100 μg l-1 of CYN for 24 h affected nuclear area and actin filaments intensity, which can be associated with cell proliferation and toxicity. The proteins are implicated in different biological processes: protein folding, xenobiotic efflux, antioxidant defense, energy metabolism and cell anabolism, cell signaling, tumorigenic potential, and cytoskeleton structure. Protein profile indicates that CYN exposure may lead to alteration of glucose metabolism that can be associated with the supply of useful energy to cells respond to chemical stress and proliferate. Increase of G protein-coupled receptors (GPCRs), heterogeneous nuclear ribonucleoproteins (hnRNP), and reactive oxygen species (ROS) levels observed in HepG2 cells can associate with cell proliferation and resistance. Increase of MRP3 and glutathione peroxidase can protect cells against some chemicals and ROS. CYN exposure also led to alteration of the expression of cytoskeleton proteins, which may be associated with cell proliferation and toxicity.
Collapse
Affiliation(s)
- Samuel Liebel
- a Departamento De Biologia Celular , Universidade Federal Do Paraná , Curitiba , Brazil
| | - Sonia Regina Grötzner
- a Departamento De Biologia Celular , Universidade Federal Do Paraná , Curitiba , Brazil
| | | | | | | | | |
Collapse
|
177
|
Bocedi A, Fabrini R, Pedersen JZ, Federici G, Iavarone F, Martelli C, Castagnola M, Ricci G. The extreme hyper-reactivity of selected cysteines drives hierarchical disulfide bond formation in serum albumin. FEBS J 2016; 283:4113-4127. [DOI: 10.1111/febs.13909] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Alessio Bocedi
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; Italy
| | - Raffaele Fabrini
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; Italy
| | | | - Giorgio Federici
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; Italy
| | - Federica Iavarone
- Institute of Biochemistry and Clinical Biochemistry; Catholic University and/or Institute for Molecular Recognition; National Research Council; Rome Italy
| | - Claudia Martelli
- Institute of Biochemistry and Clinical Biochemistry; Catholic University and/or Institute for Molecular Recognition; National Research Council; Rome Italy
| | - Massimo Castagnola
- Institute of Biochemistry and Clinical Biochemistry; Catholic University and/or Institute for Molecular Recognition; National Research Council; Rome Italy
| | - Giorgio Ricci
- Department of Chemical Sciences and Technologies; University of Rome ‘Tor Vergata’; Italy
| |
Collapse
|
178
|
Zhong Y, Sun XX, Zhang P, Qin X, Chen W, Guo Y, Jia Z, Bian H, Li Z. Identification and localization of xylose-binding proteins as potential biomarkers for liver fibrosis/cirrhosis. MOLECULAR BIOSYSTEMS 2016; 12:598-605. [PMID: 26687723 DOI: 10.1039/c5mb00703h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In our recent study, we found that the expression levels of total xylose-binding proteins (XBPs) were up-regulated significantly in activated hepatic stellate cells (HSCs); however, the denomination, distribution, and function of the XBPs were uncharted. Herein, 70 XBPs from activated HSCs and 64 XBPs from quiescent HSCs were isolated, identified and annotated. A total of 30 XBPs were up-regulated (all fold change ≥ 1.5, p ≤ 0.05) and 14 XBPs were down-regulated (all fold change ≤ 0.67, p ≤ 0.05) in the activated HSCs. The XBPs were localized at the cytoplasm and cytoplasmic membrane in HSCs and cirrhotic liver tissues by cy/histochemistry. The XBPs (i.e. PDIA6 and CFL2) responsible for the regulation of protein binding were up-regulated and those responsible for the regulation of catalytic activity (i.e. TUBB and MX1) were up-regulated in the activated HSCs. 2 candidates (i.e. PDIA6 and APOA1) were then selected for further verification in the sera of patients with HBV-induced chronic hepatitis/cirrhosis using western blotting and serum microarrays. PDIA6 showed a higher discrimination (Area Under Curves, AUCs = 0.8985, p < 0.0001) relative to APOA1 (AUCs = 0.8738, p < 0.0001) in the sera of patients as biomarker candidate. In conclusion, the precision alteration of the XBPs associated with pathological changes in HSCs during liver fibrosis/cirrhosis may provide pivotal information needed to discover potential glycan-binding protein-related biomarkers for diagnosis of liver fibrosis/cirrhosis and for development of new anti-fibrotic strategies.
Collapse
Affiliation(s)
- Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, No. 229 Taibai Beilu, Xi'an 710069, P. R. China.
| | - Xiu-Xuan Sun
- Cell Engineering Research Centre and Department of Cell Biology, Fourth Military Medical University, No. 169 Changle Xilu, Xi'an 710032, P. R. China.
| | - Peixin Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, No. 229 Taibai Beilu, Xi'an 710069, P. R. China.
| | - Xinmin Qin
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, No. 229 Taibai Beilu, Xi'an 710069, P. R. China.
| | - Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, No. 229 Taibai Beilu, Xi'an 710069, P. R. China.
| | - Yonghong Guo
- Department of Infectious Diseases, The Second Hospital of Medicine College of Xi'an Jiaotong University, Xi'an 710004, P. R. China
| | - Zhansheng Jia
- Center of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, P. R. China
| | - Huijie Bian
- Cell Engineering Research Centre and Department of Cell Biology, Fourth Military Medical University, No. 169 Changle Xilu, Xi'an 710032, P. R. China.
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, No. 229 Taibai Beilu, Xi'an 710069, P. R. China.
| |
Collapse
|
179
|
Bekendam RH, Bendapudi PK, Lin L, Nag PP, Pu J, Kennedy DR, Feldenzer A, Chiu J, Cook KM, Furie B, Huang M, Hogg PJ, Flaumenhaft R. A substrate-driven allosteric switch that enhances PDI catalytic activity. Nat Commun 2016; 7:12579. [PMID: 27573496 PMCID: PMC5013553 DOI: 10.1038/ncomms12579] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/14/2016] [Indexed: 01/01/2023] Open
Abstract
Protein disulfide isomerase (PDI) is an oxidoreductase essential for folding proteins in the endoplasmic reticulum. The domain structure of PDI is a–b–b′–x–a′, wherein the thioredoxin-like a and a′ domains mediate disulfide bond shuffling and b and b′ domains are substrate binding. The b′ and a′ domains are connected via the x-linker, a 19-amino-acid flexible peptide. Here we identify a class of compounds, termed bepristats, that target the substrate-binding pocket of b′. Bepristats reversibly block substrate binding and inhibit platelet aggregation and thrombus formation in vivo. Ligation of the substrate-binding pocket by bepristats paradoxically enhances catalytic activity of a and a′ by displacing the x-linker, which acts as an allosteric switch to augment reductase activity in the catalytic domains. This substrate-driven allosteric switch is also activated by peptides and proteins and is present in other thiol isomerases. Our results demonstrate a mechanism whereby binding of a substrate to thiol isomerases enhances catalytic activity of remote domains. Protein Disulfide Isomerase (PDI) is a prothrombotic, multidomain enzyme with separate substrate binding and catalytic domains. Here, the authors identify a new class of compounds that target the PDI substrate binding site, inducing a conformational change in the catalytic domains and inhibiting thrombosis.
Collapse
Affiliation(s)
- Roelof H Bekendam
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Pavan K Bendapudi
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Lin Lin
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Partha P Nag
- Department of Pharmaceutical and Administrative Sciences, The Broad Institute Probe Development Center, Cambridge, Massachusetts 02142, USA.,Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Jun Pu
- Department of Pharmaceutical and Administrative Sciences, The Broad Institute Probe Development Center, Cambridge, Massachusetts 02142, USA
| | - Daniel R Kennedy
- College of Pharmacy, Western New England University, Springfield, Massachusetts 01119, USA
| | - Alexandra Feldenzer
- College of Pharmacy, Western New England University, Springfield, Massachusetts 01119, USA
| | - Joyce Chiu
- The Centenary Institute, Newtown, Sydney, New South Wales 2050, Australia.,National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Kristina M Cook
- The Centenary Institute, Newtown, Sydney, New South Wales 2050, Australia
| | - Bruce Furie
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mingdong Huang
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Philip J Hogg
- The Centenary Institute, Newtown, Sydney, New South Wales 2050, Australia.,National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
180
|
Behnke J, Mann MJ, Scruggs FL, Feige MJ, Hendershot LM. Members of the Hsp70 Family Recognize Distinct Types of Sequences to Execute ER Quality Control. Mol Cell 2016; 63:739-52. [PMID: 27546788 DOI: 10.1016/j.molcel.2016.07.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/27/2016] [Accepted: 07/15/2016] [Indexed: 02/02/2023]
Abstract
Protein maturation in the endoplasmic reticulum is controlled by multiple chaperones, but how they recognize and determine the fate of their clients remains unclear. We developed an in vivo peptide library covering substrates of the ER Hsp70 system: BiP, Grp170, and three of BiP's DnaJ-family co-factors (ERdj3, ERdj4, and ERdj5). In vivo binding studies revealed that sites for pro-folding chaperones BiP and ERdj3 were frequent and dispersed throughout the clients, whereas Grp170, ERdj4, and ERdj5 specifically recognized a distinct type of rarer sequence with a high predicted aggregation potential. Mutational analyses provided insights into sequence recognition characteristics for these pro-degradation chaperones, which could be readily introduced or disrupted, allowing the consequences for client fates to be determined. Our data reveal unanticipated diversity in recognition sequences for chaperones; establish a sequence-encoded interplay between protein folding, aggregation, and degradation; and highlight the ability of clients to co-evolve with chaperones, ensuring quality control.
Collapse
Affiliation(s)
- Julia Behnke
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Melissa J Mann
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Fei-Lin Scruggs
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Chemistry, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| | - Matthias J Feige
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Center for Integrated Protein Science at the Department of Chemistry and Institute for Advanced Study, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany.
| | - Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
181
|
Song T, Chu M, Lahlali R, Yu F, Peng G. Shotgun Label-free Proteomic Analysis of Clubroot (Plasmodiophora brassicae) Resistance Conferred by the Gene Rcr1 in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2016; 7:1013. [PMID: 27462338 PMCID: PMC4939851 DOI: 10.3389/fpls.2016.01013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/27/2016] [Indexed: 05/23/2023]
Abstract
Clubroot, caused by the plasmodiophorid pathogen Plasmodiophora brassicae, is one of the most serious diseases on Brassica crops worldwide and a major threat to canola production in western Canada. Host resistance is the key strategy for clubroot management on canola. Several clubroot resistance (CR) genes have been identified, but the mechanisms associated with these CR genes are poorly understood. In the current study, a label-free shotgun proteomic approach was used to profile and compare the proteomes of Brassica rapa carrying and not carrying the CR gene Rcr1 in response to P. brassicae infection. A total of 527 differentially accumulated proteins (DAPs) were identified between the resistant (with Rcr1) and susceptible (without Rcr1) samples, and functional annotation of these DAPs indicates that the perception of P. brassicae and activation of defense responses are triggered via an unique signaling pathway distinct from common modes of recognition receptors reported with many other plant-pathogen interactions; this pathway appears to act in a calcium-independent manner through a not-well-defined cascade of mitogen-activated protein kinases and may require the ubiquitin-26S proteasome found to be related to abiotic stresses, especially the cold-stress tolerance in other studies. Both up-regulation of defense-related and down-regulation of pathogenicity-related metabolism was observed in plants carrying Rcr1, and these functions may all contribute to the CR mediated by Rcr1. These results, combined with those of transcriptomic analysis reported earlier, improved our understanding of molecular mechanisms associated with Rcr1 and CR at large, and identified candidate metabolites or pathways related to specific resistance mechanisms. Deploying CR genes with different modes of action may help improve the durability of CR.
Collapse
Affiliation(s)
- Tao Song
- Department of Agriculture and Agri-Food Canada, Saskatoon Research and Development CenterSaskatoon, SK, Canada
| | - Mingguang Chu
- Department of Agriculture and Agri-Food Canada, Saskatoon Research and Development CenterSaskatoon, SK, Canada
| | - Rachid Lahlali
- Department of Agriculture and Agri-Food Canada, Saskatoon Research and Development CenterSaskatoon, SK, Canada
- Canadian Light Source Inc.Saskatoon, SK, Canada
| | - Fengqun Yu
- Department of Agriculture and Agri-Food Canada, Saskatoon Research and Development CenterSaskatoon, SK, Canada
| | - Gary Peng
- Department of Agriculture and Agri-Food Canada, Saskatoon Research and Development CenterSaskatoon, SK, Canada
| |
Collapse
|
182
|
Thulasitha WS, Umasuthan N, Jayasooriya RGPT, Noh JK, Park HC, Lee J. A thioredoxin domain-containing protein 12 from black rockfish Sebastes schlegelii: Responses to immune challenges and protection from apoptosis against oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2016; 185-186:29-37. [PMID: 26945103 DOI: 10.1016/j.cbpc.2016.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/19/2016] [Accepted: 02/28/2016] [Indexed: 01/15/2023]
Abstract
Thioredoxin (TXN) superfamily proteins are identified by the presence of a thioredoxin active site with a conserved CXXC active motif. TXN members are involved in a wide range of biochemical and biological functions including redox regulation, refolding of disulfide containing proteins, and regulation of transcription factors. In the present study, a thioredoxin domain-containing protein 12 was identified and characterized from black rockfish, Sebastes schlegelii (RfTXNDC12). The full length of RfTXNDC12 consists of a 522-bp coding region encoding a 173-amino acid protein. It has a 29-amino acid signal peptide and a single TXN active site with a consensus atypical WCGAC active motif. Multiple sequence alignment revealed that the active site is conserved among vertebrates. RfTXNDC12 shares highest identity with its Epinephelus coioides homolog. Transcriptional analysis revealed its ubiquitous expression in a wide range of tissues with the highest expression in the ovary. Immune challenges conducted with Streptococcus iniae and poly I:C caused upregulation of RfTXNDC12 transcript levels in gills and peripheral blood cells (PBCs), while lipopolysaccharide injection caused downregulation of RfTXNDC12 in gills and upregulation in PBCs. Similar to TXN, RfTXNDC12 exhibited insulin disulfide reducing activity. Interestingly, the recombinant protein showed significant protection of LNCaP cells against apoptosis induced by H2O2-mediated oxidative stress in a concentration dependent manner. Collectively, the present data indicate that RfTXNDC12 is a TXN superfamily member, which could function as a potential antioxidant enzyme and be involved in a defense mechanism against immune challenges.
Collapse
Affiliation(s)
- William Shanthakumar Thulasitha
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - R G P T Jayasooriya
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Jae Koo Noh
- Genetics & Breeding Research Center, National Institute of Fisheries Science, Geoje 656-842, Republic of Korea
| | - Hae-Chul Park
- Graduate School of Medicine, Korea University, Ansan, Gyeonggido 425-707, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
183
|
Abstract
Thiol isomerases are multifunctional enzymes that influence protein structure via their oxidoreductase, isomerase, and chaperone activities. These enzymes localize at high concentrations in the endoplasmic reticulum of all eukaryotic cells where they serve an essential function in folding nascent proteins. However, thiol isomerases can escape endoplasmic retention and be secreted and localized on plasma membranes. Several thiol isomerases including protein disulfide isomerase, ERp57, and ERp5 are secreted by and localize to the membranes of platelets and endothelial cells. These vascular thiol isomerases are released following vessel injury and participate in thrombus formation. Although most of the activities of vascular thiol isomerases that contribute to thrombus formation are yet to be defined at the molecular level, allosteric disulfide bonds that are modified by thiol isomerases have been described in substrates such as αIIbβ3, αvβ3, GPIbα, tissue factor, and thrombospondin. Vascular thiol isomerases also act as redox sensors. They respond to the local redox environment and influence S-nitrosylation of surface proteins on platelets and endothelial cells. Despite our rudimentary understanding of the mechanisms by which thiol isomerases control vascular function, the clinical utility of targeting them in thrombotic disorders is already being explored in clinical trials.
Collapse
|
184
|
Abstract
Disulfide bonds play an important role in protein folding and stability. However, the cross-linking of sites within proteins by cysteine disulfides has significant distance and dihedral angle constraints. Here we report the genetic encoding of noncanonical amino acids containing long side-chain thiols that are readily incorporated into both bacterial and mammalian proteins in good yields and with excellent fidelity. These amino acids can pair with cysteines to afford extended disulfide bonds and allow cross-linking of more distant sites and distinct domains of proteins. To demonstrate this notion, we preformed growth-based selection experiments at nonpermissive temperatures using a library of random β-lactamase mutants containing these noncanonical amino acids. A mutant enzyme that is cross-linked by one such extended disulfide bond and is stabilized by ∼9 °C was identified. This result indicates that an expanded set of building blocks beyond the canonical 20 amino acids can lead to proteins with improved properties by unique mechanisms, distinct from those possible through conventional mutagenesis schemes.
Collapse
|
185
|
Wu JS, Li WM, Chen YN, Zhao Q, Chen QF. Endoplasmic reticulum stress is activated in acute pancreatitis. J Dig Dis 2016; 17:295-303. [PMID: 27059531 DOI: 10.1111/1751-2980.12347] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 12/11/2022]
Abstract
Endoplasmic reticulum (ER) is one of the most important cell organelles in the body, regulating protein synthesis, folding and aggregation. Endoplasmic reticulum stress (ERS) is a particular subcellular pathological process involving an imbalance of homeostasis and ER disorder. In the early stage of ERS, cells show a protective unfolded protein response that changes the cellular transcriptional and translational programs to alleviate the process. Therefore, a certain degree of ERS can activate the protective adaptation of cells, whereas sustained severe ERS triggers an apoptotic signal and leads to apoptosis. Acute pancreatitis is a disease caused by trypsin digestion of the pancreas, although the pathogenesis is not completely understood. However, a close association has been suggested between pancreatitis and ERS. This article reviewed relevant research advances and discussed the effect of ERS on the development and progression of acute pancreatitis.
Collapse
Affiliation(s)
- Jian Sheng Wu
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wei Min Li
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yi Na Chen
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qian Zhao
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qin Fen Chen
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
186
|
Garcia-Huerta P, Bargsted L, Rivas A, Matus S, Vidal RL. ER chaperones in neurodegenerative disease: Folding and beyond. Brain Res 2016; 1648:580-587. [PMID: 27134034 DOI: 10.1016/j.brainres.2016.04.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022]
Abstract
Proteins along the secretory pathway are co-translationally translocated into the lumen of the endoplasmic reticulum (ER) as unfolded polypeptide chains. Afterwards, they are usually modified with N-linked glycans, correctly folded and stabilized by disulfide bonds. ER chaperones and folding enzymes control these processes. The accumulation of unfolded proteins in the ER activates a signaling response, termed the unfolded protein response (UPR). The hallmark of this response is the coordinated transcriptional up-regulation of ER chaperones and folding enzymes. In order to discuss the importance of the proper folding of certain substrates we will address the role of ER chaperones in normal physiological conditions and examine different aspects of its contribution in neurodegenerative disease. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Paula Garcia-Huerta
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Leslie Bargsted
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Alexis Rivas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Soledad Matus
- Neurounion Biomedical Foundation, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; CENPAR, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| | - Rene L Vidal
- Neurounion Biomedical Foundation, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; CENPAR, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| |
Collapse
|
187
|
Woehlbier U, Colombo A, Saaranen MJ, Pérez V, Ojeda J, Bustos FJ, Andreu CI, Torres M, Valenzuela V, Medinas DB, Rozas P, Vidal RL, Lopez-Gonzalez R, Salameh J, Fernandez-Collemann S, Muñoz N, Matus S, Armisen R, Sagredo A, Palma K, Irrazabal T, Almeida S, Gonzalez-Perez P, Campero M, Gao FB, Henny P, van Zundert B, Ruddock LW, Concha ML, Henriquez JP, Brown RH, Hetz C. ALS-linked protein disulfide isomerase variants cause motor dysfunction. EMBO J 2016; 35:845-65. [PMID: 26869642 PMCID: PMC4972141 DOI: 10.15252/embj.201592224] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 12/27/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022] Open
Abstract
Disturbance of endoplasmic reticulum (ER) proteostasis is a common feature of amyotrophic lateral sclerosis (ALS). Protein disulfide isomerases (PDIs) areERfoldases identified as possibleALSbiomarkers, as well as neuroprotective factors. However, no functional studies have addressed their impact on the disease process. Here, we functionally characterized fourALS-linked mutations recently identified in two majorPDIgenes,PDIA1 andPDIA3/ERp57. Phenotypic screening in zebrafish revealed that the expression of thesePDIvariants induce motor defects associated with a disruption of motoneuron connectivity. Similarly, the expression of mutantPDIs impaired dendritic outgrowth in motoneuron cell culture models. Cellular and biochemical studies identified distinct molecular defects underlying the pathogenicity of thesePDImutants. Finally, targetingERp57 in the nervous system led to severe motor dysfunction in mice associated with a loss of neuromuscular synapses. This study identifiesERproteostasis imbalance as a risk factor forALS, driving initial stages of the disease.
Collapse
Affiliation(s)
- Ute Woehlbier
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile Center for Genomics and Bioinformatics, Universidad Mayor, Santiago, Chile
| | - Alicia Colombo
- Program of Anatomy and Developmental Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile Department of Pathological Anatomy, Hospital Clínico, University of Chile, Santiago, Chile
| | - Mirva J Saaranen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Viviana Pérez
- Department of Cell Biology, Faculty of Biological Sciences, Millennium Nucleus of Regenerative Biology, Center for Advanced Microscopy (CMA Bio-Bio), Universidad de Concepción, Concepción, Chile
| | - Jorge Ojeda
- Department of Cell Biology, Faculty of Biological Sciences, Millennium Nucleus of Regenerative Biology, Center for Advanced Microscopy (CMA Bio-Bio), Universidad de Concepción, Concepción, Chile
| | - Fernando J Bustos
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello, Santiago, Chile
| | - Catherine I Andreu
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Mauricio Torres
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Vicente Valenzuela
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Danilo B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Pablo Rozas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Rene L Vidal
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile Center for Geroscience, Brain Health and Metabolism, Santiago, Chile Neurounion Biomedical Foundation, CENPAR, Santiago, Chile
| | | | - Johnny Salameh
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Natalia Muñoz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile Center for Geroscience, Brain Health and Metabolism, Santiago, Chile Neurounion Biomedical Foundation, CENPAR, Santiago, Chile
| | - Soledad Matus
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile Center for Geroscience, Brain Health and Metabolism, Santiago, Chile Neurounion Biomedical Foundation, CENPAR, Santiago, Chile
| | - Ricardo Armisen
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Alfredo Sagredo
- Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Karina Palma
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Thergiory Irrazabal
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Paloma Gonzalez-Perez
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mario Campero
- Department of Neurology and Neurosurgery, Faculty of Medicine, University of Chile, Santiago, Chile Faculty of Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Pablo Henny
- Department of Anatomy, Medical School, Universidad Católica de Chile, Santiago, Chile
| | - Brigitte van Zundert
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research, Universidad Andres Bello, Santiago, Chile
| | - Lloyd W Ruddock
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Miguel L Concha
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile Program of Anatomy and Developmental Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Juan P Henriquez
- Department of Cell Biology, Faculty of Biological Sciences, Millennium Nucleus of Regenerative Biology, Center for Advanced Microscopy (CMA Bio-Bio), Universidad de Concepción, Concepción, Chile
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile Center for Geroscience, Brain Health and Metabolism, Santiago, Chile Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
188
|
Ao N, Yang J, Wang X, Du J. Glucagon-like peptide-1 preserves non-alcoholic fatty liver disease through inhibition of the endoplasmic reticulum stress-associated pathway. Hepatol Res 2016; 46:343-53. [PMID: 26147696 DOI: 10.1111/hepr.12551] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/18/2022]
Abstract
AIM Glucagon-like peptide-1 (GLP-1) has been increasingly recognized for treating diabetes mellitus, and for its potential to effectively treat non-alcoholic fatty liver disease (NAFLD). However, the mechanisms of GLP-1 induction in NAFLD are not completely known. We investigated whether GLP-1 can protect against NAFLD by alleviating endoplasmic reticulum (ER) stress. METHODS Male Sprague-Dawley rats were fed a high-fat diet and treated with a long-acting GLP-1 receptor agonist, liraglutide. Biochemical, morphological, genetic and protein expression of ER stress were investigated. In vitro, HepG2 cells were exposed to 0.4 mM palmitate fatty acid and treated with different concentrations of GLP-1, and ER protein 46 (ERp46) and ER stress pathways were analyzed. Cellular response to ER stress and apoptosis were determined upon transfection with either ERp46 siRNA or a negative control siRNA. RESULTS In vivo, the treatment of GLP-1 attenuated the hepatic accumulation of lipids, reduced inflammation and improved metabolic parameters. GLP-1 treatment significantly upregulated the expression of ERp46 and downregulated the ER stress marker. Activation of ER pathways was restrained by GLP-1. Similar observations were made in vitro. Furthermore, inhibition of ERp46 expression by siRNA-mediated silencing increased the ER stress response and enhanced cell apoptosis rates. In addition, GLP-1 could not reduce the levels of ER stress and apoptosis in cells transfected with ERp46 siRNA compared with in negative control transfected cells after palmitate treatment. CONCLUSION GLP-1 protected against NAFLD by inactivating the ER stress-associated apoptosis pathway. In addition, the effect was possibly related to the signaling pathway of ERp46.
Collapse
Affiliation(s)
- Na Ao
- Department of Endocrinology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Yang
- Department of Endocrinology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaochen Wang
- Department of Endocrinology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Du
- Department of Endocrinology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
189
|
Feleciano DR, Arnsburg K, Kirstein J. Interplay between redox and protein homeostasis. WORM 2016; 5:e1170273. [PMID: 27386166 DOI: 10.1080/21624054.2016.1170273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/20/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
Abstract
The subcellular compartments of eukaryotic cells are characterized by different redox environments. Whereas the cytosol, nucleus and mitochondria are more reducing, the endoplasmic reticulum represents a more oxidizing environment. As the redox level controls the formation of intra- and inter-molecular disulfide bonds, the folding of proteins is tightly linked to its environment. The proteostasis network of each compartment needs to be adapted to the compartmental redox properties. In addition to chaperones, also members of the thioredoxin superfamily can influence the folding of proteins by regulation of cysteine reduction/oxidation. This review will focus on thioredoxin superfamily members and chaperones of C. elegans, which play an important role at the interface between redox and protein homeostasis. Additionally, this review will highlight recent methodological developments on in vivo and in vitro assessment of the redox state and their application to provide insights into the high complexity of redox and proteostasis networks of C. elegans.
Collapse
Affiliation(s)
- Diogo R Feleciano
- Leibniz-Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. , Berlin, Germany
| | - Kristin Arnsburg
- Leibniz-Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. , Berlin, Germany
| | - Janine Kirstein
- Leibniz-Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. , Berlin, Germany
| |
Collapse
|
190
|
Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides. Proc Natl Acad Sci U S A 2016; 113:3227-32. [PMID: 26957604 DOI: 10.1073/pnas.1525790113] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Formation of correct disulfide bonds in the endoplasmic reticulum is a crucial step for folding proteins destined for secretion. Protein disulfide isomerases (PDIs) play a central role in this process. We report a previously unidentified, hypervariable family of PDIs that represents the most diverse gene family of oxidoreductases described in a single genus to date. These enzymes are highly expressed specifically in the venom glands of predatory cone snails, animals that synthesize a remarkably diverse set of cysteine-rich peptide toxins (conotoxins). Enzymes in this PDI family, termed conotoxin-specific PDIs, significantly and differentially accelerate the kinetics of disulfide-bond formation of several conotoxins. Our results are consistent with a unique biological scenario associated with protein folding: The diversification of a family of foldases can be correlated with the rapid evolution of an unprecedented diversity of disulfide-rich structural domains expressed by venomous marine snails in the superfamily Conoidea.
Collapse
|
191
|
Gorasia DG, Dudek NL, Safavi-Hemami H, Perez RA, Schittenhelm RB, Saunders PM, Wee S, Mangum JE, Hubbard MJ, Purcell AW. A prominent role of PDIA6 in processing of misfolded proinsulin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:715-723. [PMID: 26947243 DOI: 10.1016/j.bbapap.2016.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 02/22/2016] [Accepted: 03/02/2016] [Indexed: 11/17/2022]
Abstract
Despite its critical role in maintaining glucose homeostasis, surprisingly little is known about proinsulin folding in the endoplasmic reticulum. In this study we aimed to understand the chaperones involved in the maturation and degradation of proinsulin. We generated pancreatic beta cell lines expressing FLAG-tagged proinsulin. Several chaperones (including BiP, PDIA6, calnexin, calreticulin, GRP170, Erdj3 and ribophorin II) co-immunoprecipitated with proinsulin suggesting a role for these proteins in folding. To investigate the chaperones responsible for targeting misfolded proinsulin for degradation, we also created a beta cell line expressing FLAG-tagged proinsulin carrying the Akita mutation (Cys96Tyr). All chaperones found to be associated with wild type proinsulin also co-immunoprecipitated with Akita proinsulin. However, one additional protein, namely P58(IPK), specifically precipitated with Akita proinsulin and approximately ten fold more PDIA6, but not other PDI family members, was bound to Akita proinsulin. The latter suggests that PDIA6 may act as a key reductase and target misfolded proinsulin to the ER-degradation pathway. The preferential association of PDIA6 to Akita proinsulin was also confirmed in another beta cell line (βTC-6). Furthermore, for the first time, a physiologically relevant substrate for PDIA6 has been evidenced. Thus, this study has identified several chaperones/foldases that associated with wild type proinsulin and has also provided a comprehensive interactome for Akita misfolded proinsulin.
Collapse
Affiliation(s)
- Dhana G Gorasia
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Nadine L Dudek
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia; Infection and Immunity Program, Biomolecular Discovery Institute and Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Helena Safavi-Hemami
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Rochelle Ayala Perez
- Infection and Immunity Program, Biomolecular Discovery Institute and Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Ralf B Schittenhelm
- Infection and Immunity Program, Biomolecular Discovery Institute and Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Philippa M Saunders
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sheena Wee
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Jon E Mangum
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J Hubbard
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia; Infection and Immunity Program, Biomolecular Discovery Institute and Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
192
|
Zeeshan HMA, Lee GH, Kim HR, Chae HJ. Endoplasmic Reticulum Stress and Associated ROS. Int J Mol Sci 2016; 17:327. [PMID: 26950115 PMCID: PMC4813189 DOI: 10.3390/ijms17030327] [Citation(s) in RCA: 596] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/21/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS). Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI)-endoplasmic reticulum oxidoreductin (ERO)-1, glutathione (GSH)/glutathione disuphide (GSSG), NADPH oxidase 4 (Nox4), NADPH-P450 reductase (NPR), and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases.
Collapse
Affiliation(s)
- Hafiz Maher Ali Zeeshan
- Department of Pharmacology and New Drug Development Institute, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Korea.
| | - Geum Hwa Lee
- Department of Pharmacology and New Drug Development Institute, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Korea.
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology and Wonkwang Biomaterial Implant Research Institute, School of Dentistry, Wonkwang University, Iksan, Chonbuk 570-749, Korea.
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Korea.
| |
Collapse
|
193
|
Figueroa-Montiel A, Ramos MA, Mares RE, Dueñas S, Pimienta G, Ortiz E, Possani LD, Licea-Navarro AF. In Silico Identification of Protein Disulfide Isomerase Gene Families in the De Novo Assembled Transcriptomes of Four Different Species of the Genus Conus. PLoS One 2016; 11:e0148390. [PMID: 26859138 PMCID: PMC4747531 DOI: 10.1371/journal.pone.0148390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/18/2016] [Indexed: 11/18/2022] Open
Abstract
Small peptides isolated from the venom of the marine snails belonging to the genus Conus have been largely studied because of their therapeutic value. These peptides can be classified in two groups. The largest one is composed by peptides rich in disulfide bonds, and referred to as conotoxins. Despite the importance of conotoxins given their pharmacology value, little is known about the protein disulfide isomerase (PDI) enzymes that are required to catalyze their correct folding. To discover the PDIs that may participate in the folding and structural maturation of conotoxins, the transcriptomes of the venom duct of four different species of Conus from the peninsula of Baja California (Mexico) were assembled. Complementary DNA (cDNA) libraries were constructed for each species and sequenced using a Genome Analyzer Illumina platform. The raw RNA-seq data was converted into transcript sequences using Trinity, a de novo assembler that allows the grouping of reads into contigs without a reference genome. An N50 value of 605 was established as a reference for future assemblies of Conus transcriptomes using this software. Transdecoder was used to extract likely coding sequences from Trinity transcripts, and PDI-specific sequence motif "APWCGHCK" was used to capture potential PDIs. An in silico analysis was performed to characterize the group of PDI protein sequences encoded by the duct-transcriptome of each species. The computational approach entailed a structural homology characterization, based on the presence of functional Thioredoxin-like domains. Four different PDI families were characterized, which are constituted by a total of 41 different gene sequences. The sequences had an average of 65% identity with other PDIs. Using MODELLER 9.14, the homology-based three-dimensional structure prediction of a subset of the sequences reported, showed the expected thioredoxin fold which was confirmed by a "simulated annealing" method.
Collapse
Affiliation(s)
- Andrea Figueroa-Montiel
- Departamento de Innovación Biomédica, Centro de Investigación y Estudios Superiores de Ensenada (CICESE), Ensenada, Baja California, México
| | - Marco A. Ramos
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Rosa E. Mares
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Salvador Dueñas
- Departamento de Innovación Biomédica, Centro de Investigación y Estudios Superiores de Ensenada (CICESE), Ensenada, Baja California, México
| | - Genaro Pimienta
- Departamento de Innovación Biomédica, Centro de Investigación y Estudios Superiores de Ensenada (CICESE), Ensenada, Baja California, México
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alexei F. Licea-Navarro
- Departamento de Innovación Biomédica, Centro de Investigación y Estudios Superiores de Ensenada (CICESE), Ensenada, Baja California, México
| |
Collapse
|
194
|
Suzuki Y, Schmitt MJ. Redox diversity in ERAD-mediated protein retrotranslocation from the endoplasmic reticulum: a complex puzzle. Biol Chem 2016; 396:539-54. [PMID: 25741737 DOI: 10.1515/hsz-2014-0299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/23/2015] [Indexed: 11/15/2022]
Abstract
Misfolded and incorrectly assembled proteins in the secretory pathway are eliminated by ubiquitylation and proteasomal degradation in a process known as ER-associated degradation (ERAD). Retrotranslocation of diverse substrates including misfolded proteins and viruses occurs through channels in the ER membrane, which are also utilized for host cell penetration by A/B class protein toxins such as cholera toxin, ricin or K28. According to the current view, disulfide-bonded proteins must either be reduced or rearranged to ensure translocation competence and entry into the cytosol from the ER. As the underlying mechanisms are still largely mysterious, we here focus on the redox status and disulfide isomerization of ERAD substrates and the role of oxidoreductases in the essential process of ER-to-cytosol retrotranslocation.
Collapse
|
195
|
Duan J, Kodali VK, Gaffrey MJ, Guo J, Chu RK, Camp DG, Smith RD, Thrall BD, Qian WJ. Quantitative Profiling of Protein S-Glutathionylation Reveals Redox-Dependent Regulation of Macrophage Function during Nanoparticle-Induced Oxidative Stress. ACS NANO 2016; 10:524-38. [PMID: 26700264 PMCID: PMC4762218 DOI: 10.1021/acsnano.5b05524] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Engineered nanoparticles (ENPs) are increasingly utilized for commercial and medical applications; thus, understanding their potential adverse effects is an important societal issue. Herein, we investigated protein S-glutathionylation (SSG) as an underlying regulatory mechanism by which ENPs may alter macrophage innate immune functions, using a quantitative redox proteomics approach for site-specific measurement of SSG modifications. Three high-volume production ENPs (SiO2, Fe3O4, and CoO) were selected as representatives which induce low, moderate, and high propensity, respectively, to stimulate cellular reactive oxygen species (ROS) and disrupt macrophage function. The SSG modifications identified highlighted a broad set of redox sensitive proteins and specific Cys residues which correlated well with the overall level of cellular redox stress and impairment of macrophage phagocytic function (CoO > Fe3O4 ≫ SiO2). Moreover, our data revealed pathway-specific differences in susceptibility to SSG between ENPs which induce moderate versus high levels of ROS. Pathways regulating protein translation and protein stability indicative of ER stress responses and proteins involved in phagocytosis were among the most sensitive to SSG in response to ENPs that induce subcytoxic levels of redox stress. At higher levels of redox stress, the pattern of SSG modifications displayed reduced specificity and a broader set pathways involving classical stress responses and mitochondrial energetics (e.g., glycolysis) associated with apoptotic mechanisms. An important role for SSG in regulation of macrophage innate immune function was also confirmed by RNA silencing of glutaredoxin, a major enzyme which reverses SSG modifications. Our results provide unique insights into the protein signatures and pathways that serve as ROS sensors and may facilitate cellular adaption to ENPs, versus intracellular targets of ENP-induced oxidative stress that are linked to irreversible cell outcomes.
Collapse
Affiliation(s)
- Jicheng Duan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vamsi K. Kodali
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Matthew J. Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jia Guo
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Rosalie K. Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David G. Camp
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Brian D. Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Corresponding Authors: .
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Corresponding Authors: .
| |
Collapse
|
196
|
Mo R, Peng J, Xiao J, Ma J, Li W, Wang J, Ruan Y, Ma S, Hong Y, Wang C, Gao K, Fan J. High TXNDC5 expression predicts poor prognosis in renal cell carcinoma. Tumour Biol 2016; 37:9797-806. [PMID: 26810069 DOI: 10.1007/s13277-016-4891-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/19/2016] [Indexed: 12/15/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common primary kidney cancer in adults, and the identification of biomarkers involved in the pathogenesis and prognosis of ccRCC is crucial for early diagnosis and anticancer treatment. In this study, we demonstrate that thioredoxin domain-containing protein 5 (TXNDC5) expression is markedly upregulated in ccRCC tissues in comparison with adjacent non-cancerous tissues through quantitative RT-PCR, Western blotting, and immunohistochemical analyses. Importantly, TXNDC5 expression is negatively correlated with the overall survival of patients. Knockdown of TXNDC5 by siRNAs inhibits the cell growth, migration, and invasion of ccRCC cells as well as sensitizes ccRCC cells to chemotherapeutic drugs, such as Camptothecin and 5-Fluorouracil. Moreover, we used complementary DNA (cDNA) microarray analyses to explore the underlying molecular mechanisms of TXNDC5 in the pathogenesis of ccRCC. We demonstrate that knockdown of TXNDC5 affects the messenger RNA (mRNA) and protein levels of numerous important genes associated with tumorigenesis. In summary, our findings indicate that TXNDC5 performs an essential function in ccRCC pathogenesis and can serve as a novel prognostic marker of ccRCC.
Collapse
MESH Headings
- Aged
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/secondary
- Case-Control Studies
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm
- Female
- Follow-Up Studies
- Gene Expression Profiling
- Humans
- Immunoenzyme Techniques
- Kidney/metabolism
- Kidney/pathology
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Lymphatic Metastasis
- Male
- Neoplasm Grading
- Neoplasm Invasiveness
- Neoplasm Staging
- Prognosis
- Protein Disulfide-Isomerases/antagonists & inhibitors
- Protein Disulfide-Isomerases/genetics
- Protein Disulfide-Isomerases/metabolism
- RNA, Messenger/genetics
- RNA, Small Interfering
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Ren Mo
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
- Department of Urology, Inner Mongolia Autonomous Region Peoples Hospital, Hohhot, 010017, Inner Mongolia, China
| | - Jingtao Peng
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Jiantao Xiao
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Jian Ma
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Weiguo Li
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Jing Wang
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Shaofei Ma
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Yan Hong
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Kun Gao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Jie Fan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China.
| |
Collapse
|
197
|
Lamriben L, Graham JB, Adams BM, Hebert DN. N-Glycan-based ER Molecular Chaperone and Protein Quality Control System: The Calnexin Binding Cycle. Traffic 2016; 17:308-26. [PMID: 26676362 DOI: 10.1111/tra.12358] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 12/17/2022]
Abstract
Helenius and colleagues proposed over 20-years ago a paradigm-shifting model for how chaperone binding in the endoplasmic reticulum was mediated and controlled for a new type of molecular chaperone- the carbohydrate-binding chaperones, calnexin and calreticulin. While the originally established basics for this lectin chaperone binding cycle holds true today, there has been a number of important advances that have expanded our understanding of its mechanisms of action, role in protein homeostasis, and its connection to disease states that are highlighted in this review.
Collapse
Affiliation(s)
- Lydia Lamriben
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jill B Graham
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Benjamin M Adams
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
198
|
Perri ER, Thomas CJ, Parakh S, Spencer DM, Atkin JD. The Unfolded Protein Response and the Role of Protein Disulfide Isomerase in Neurodegeneration. Front Cell Dev Biol 2016; 3:80. [PMID: 26779479 PMCID: PMC4705227 DOI: 10.3389/fcell.2015.00080] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
The maintenance and regulation of proteostasis is a critical function for post-mitotic neurons and its dysregulation is increasingly implicated in neurodegenerative diseases. Despite having different clinical manifestations, these disorders share similar pathology; an accumulation of misfolded proteins in neurons and subsequent disruption to cellular proteostasis. The endoplasmic reticulum (ER) is an important component of proteostasis, and when the accumulation of misfolded proteins occurs within the ER, this disturbs ER homeostasis, giving rise to ER stress. This triggers the unfolded protein response (UPR), distinct signaling pathways that whilst initially protective, are pro-apoptotic if ER stress is prolonged. ER stress is increasingly implicated in neurodegenerative diseases, and emerging evidence highlights the complexity of the UPR in these disorders, with both protective and detrimental components being described. Protein Disulfide Isomerase (PDI) is an ER chaperone induced during ER stress that is responsible for the formation of disulfide bonds in proteins. Whilst initially considered to be protective, recent studies have revealed unconventional roles for PDI in neurodegenerative diseases, distinct from its normal function in the UPR and the ER, although these mechanisms remain poorly defined. However, specific aspects of PDI function may offer the potential to be exploited therapeutically in the future. This review will focus on the evidence linking ER stress and the UPR to neurodegenerative diseases, with particular emphasis on the emerging functions ascribed to PDI in these conditions.
Collapse
Affiliation(s)
- Emma R Perri
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Melbourne, VIC, Australia
| | - Colleen J Thomas
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University Melbourne, VIC, Australia
| | - Sonam Parakh
- Department of Biomedical Sciences, Faculty of Medicine and Human Science, Macquarie University Sydney, NSW, Australia
| | - Damian M Spencer
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Melbourne, VIC, Australia
| | - Julie D Atkin
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia; Department of Biomedical Sciences, Faculty of Medicine and Human Science, Macquarie UniversitySydney, NSW, Australia
| |
Collapse
|
199
|
Yoshioka J. Thioredoxin superfamily and its effects on cardiac physiology and pathology. Compr Physiol 2016; 5:513-30. [PMID: 25880503 DOI: 10.1002/cphy.c140042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A precise control of oxidation/reduction of protein thiols is essential for intact cardiac physiology. Irreversible oxidative modifications have been proposed to play a role in the pathogenesis of cardiovascular diseases. An imbalance of redox homeostasis with diminution of antioxidant capacities predisposes the heart to oxidant injury. There is growing interest in endoplasmic reticulum (ER) stress in the cardiovascular field, since perturbation of redox homeostasis in the ER is sufficient to cause ER stress. Because a number of human diseases are related to altered redox homeostasis and defects in protein folding, many research efforts have been devoted in recent years to understanding the structure and enzymatic properties of the thioredoxin superfamily. The thioredoxin superfamily has been well documented as thiol oxidoreductases to exert a role in various cell signaling pathways. The redox properties of the thioredoxin motif account for the different functions of several members of the thioredoxin superfamily. While thioredoxin and glutaredoxin primarily act as antioxidants by reducing protein disulfides and mixed disulfide, another member of the superfamily, protein disulfide isomerase (PDI), can act as an oxidant by forming intrachain disulfide bonds that contribute to proper protein folding. Increasing evidence suggests a pivotal role of PDI in the survival pathway that promotes cardiomyocyte survival and leads to more favorable cardiac remodeling. Thus, the thiol redox state is important for cellular redox signaling and survival pathway in the heart. This review summarizes the key features of major members of the thioredoxin superfamily directly involved in cardiac physiology and pathology.
Collapse
Affiliation(s)
- Jun Yoshioka
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, Massachusetts, USA
| |
Collapse
|
200
|
Mor-Cohen R. Disulfide Bonds as Regulators of Integrin Function in Thrombosis and Hemostasis. Antioxid Redox Signal 2016; 24:16-31. [PMID: 25314675 DOI: 10.1089/ars.2014.6149] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE Disulfide bonds are generally viewed as structure-stabilizing elements in proteins, but some display an alternative functional role as redox switches. Functional disulfide bonds have recently emerged as important regulators of integrin function in thrombosis and hemostasis. RECENT ADVANCES Functional disulfide bonds were identified in the β subunit of the major platelet integrin αIIbβ3 and in other integrins involved in thrombus formation that is, αvβ3 and α2β1. Most of these functional bonds are located in the four epidermal growth factor-like domains of the integrins. Redox agents such as glutathione and nitric oxide and enzymatic thiol isomerase activity were shown to regulate the function of these integrins by disulfide bond reduction and thiol/disulfide exchange. CRITICAL ISSUES Increasing evidence suggests that thiol isomerases such as protein disulfide isomerase (PDI) and Erp57 directly bind to the β3 subunit of αIIbβ3 and αvβ3 and regulate their function during thrombus formation. αIIbβ3 also exhibits an endogenous thiol isomerase activity. The specific functional disulfide bonds identified in the β3 subunit might be the targets for both exogenous and endogenous thiol isomerase activity. FUTURE DIRECTIONS Targeting redox sites of integrins or redox agents and enzymes that regulate their function can provide a useful tool for development of anti-thrombotic therapy. Hence, inhibitors of PDI are currently studied for this purpose.
Collapse
Affiliation(s)
- Ronit Mor-Cohen
- 1 The Amalia Biron Research Institute of Thrombosis and Hemostasis, Chaim Sheba Medical Center , Tel Hashomer, Israel .,2 Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv, Israel
| |
Collapse
|