151
|
Baritaki S, Suzuki E, Umezawa K, Spandidos DA, Berenson J, Daniels TR, Penichet ML, Jazirehi AR, Palladino M, Bonavida B. Inhibition of Yin Yang 1-dependent repressor activity of DR5 transcription and expression by the novel proteasome inhibitor NPI-0052 contributes to its TRAIL-enhanced apoptosis in cancer cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:6199-210. [PMID: 18424742 DOI: 10.4049/jimmunol.180.9.6199] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TRAIL promotes apoptotic tumor cell death; however, TRAIL-resistant tumors need to be sensitized to reverse resistance. Proteasome inhibitors potentiate TRAIL apoptosis in vitro and in vivo and correlate with up-regulation of death receptor 5 (DR5) via an unknown mechanism. We hypothesized that the proteasome inhibitor NPI-0052 inhibits the transcription repressor Yin Yang 1 (YY1) which regulates TRAIL resistance and negatively regulates DR5 transcription. Treatment of PC-3 and Ramos cells with NPI-0052 (</=2.5 nM) and TRAIL sensitizes the tumor cells to TRAIL-induced apoptosis. By comparison to bortezomib, a 400-fold less concentration of NPI-0052 was used. NPI-0052 up-regulated DR5 reporter activity and both surface and total DR5 protein expression. NPI-0052-induced inhibition of NF-kappaB activity was involved in TRAIL sensitization as corroborated by the use of the NF-kappaB inhibitor dehydroxymethylepoxyquinomicin. NPI-0052 inhibited YY1 promoter activity as well as both YY1 mRNA and protein expression. The direct role of NPI-0052-induced inhibition of YY1 and up-regulation of DR5 in the regulation of TRAIL sensitivity was demonstrated by the use of YY1 small interfering RNA. The NPI-0052-induced sensitization to TRAIL involved activation of the intrinsic apoptotic pathway and dysregulation of genes that regulate apoptosis. The NPI-0052 concentrations used for TRAIL sensitization were not toxic to human hematopoetic stem cells. The present findings demonstrate, for the first time, the potential mechanism by which a proteasome inhibitor, like NPI-0052, inhibits the transcription repressor YY1 involved in TRAIL resistance and DR5 regulation. The findings also suggest the therapeutic application of subtoxic NPI-0052 concentrations in combination with TRAIL/agonist DR4/DR5 mAbs in the treatment of TRAIL-resistant tumors.
Collapse
Affiliation(s)
- Stavroula Baritaki
- Department of Microbiology, Immunology, and Molecular Genetics, Division of Surgical Oncology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Pedersen NM, Madshus IH, Haslekås C, Stang E. Geldanamycin-induced down-regulation of ErbB2 from the plasma membrane is clathrin dependent but proteasomal activity independent. Mol Cancer Res 2008; 6:491-500. [PMID: 18337455 DOI: 10.1158/1541-7786.mcr-07-0191] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ErbB2, a member of the epidermal growth factor receptor family, is overexpressed in a number of human cancers. In contrast to the epidermal growth factor receptor, ErbB2 is normally endocytosis resistant. However, ErbB2 can be down-regulated by inhibitors of heat shock protein 90, such as geldanamycin. We now show that geldanamycin induces endocytosis and lysosomal degradation of full-length ErbB2. We further report that the endocytosis of ErbB2 is dynamin and clathrin dependent. When ErbB2 was retained at the plasma membrane due to knockdown of clathrin heavy chain, the intracellular part of ErbB2 was degraded in a proteasomal manner. However, our data strongly suggest that proteasomal activity is not required for geldanamycin-induced endocytosis of ErbB2 in SKBr3 cells. Interestingly, however, proteasomal inhibitors retarded degradation of ErbB2, and electron microscopy analysis strongly suggested that proteasomal activity is required to sort internalized ErbB2 to lysosomes. Because geldanamycin derivatives and inhibitors of proteasomal activity are both used in experimental cancer treatment, knowledge of molecular mechanisms involved in geldanamycin-induced down-regulation of ErbB2 is important for future design of cancer treatment.
Collapse
Affiliation(s)
- Nina Marie Pedersen
- Institute of Pathology, University of Oslo Faculty of Medicine, Oslo, Norway
| | | | | | | |
Collapse
|
153
|
Orlowski RZ, Kuhn DJ. Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res 2008; 14:1649-57. [PMID: 18347166 DOI: 10.1158/1078-0432.ccr-07-2218] [Citation(s) in RCA: 443] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ubiquitin-proteasome pathway is involved in intracellular protein turnover, and its function is crucial to cellular homeostasis. First synthesized as probes of proteolytic processes, proteasome inhibitors began to be thought of as potential drug candidates when they were found to induce programmed cell death preferentially in transformed cells. They made their first leap into the clinic to be tested as therapeutic agents 10 years ago, and since then, great strides have been made in defining their mechanisms of action, their clinical efficacy and toxicity, and some of their limitations in the form of resistance pathways. Validation of the ubiquitin-proteasome pathway as a target for cancer therapy has come in the form of approvals of the first such inhibitor, bortezomib, for relapsed/refractory multiple myeloma and mantle cell lymphoma, for which this agent has become a standard of care. Lessons learned from this first-in-class agent are now being applied to the development of a new generation of proteasome inhibitors that hold the promise of efficacy in bortezomib-resistant disease and possibly in a broader spectrum of diseases. This saga provides a salient example of the promise of translational medicine and a paradigm by which other agents may be successfully brought from the bench to the bedside.
Collapse
Affiliation(s)
- Robert Z Orlowski
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
154
|
Inhibition of proteasome activity by anthocyanins and anthocyanidins. Biochem Biophys Res Commun 2008; 372:57-61. [PMID: 18460339 DOI: 10.1016/j.bbrc.2008.04.140] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 04/28/2008] [Indexed: 11/22/2022]
Abstract
Recent reports have demonstrated multiple benefits associated with the consumption of berry fruits, including a decreased vulnerability to oxidative stress, reduced ischemic brain damage, protection of neurons from stroke-induced damage and the reversal of age-related changes in brain and behaviour. Berry fruits contain high amounts of anthocyanins, which play a major role as free radical scavengers. The present study addresses proteasome inhibition as a further mechanism by which anthocyanins and their aglycons, the anthocyanidins, may exert health-promoting effects. HL-60 cells were incubated with 19 test substances and inhibition of the chymotrypsin-like enzyme activity was determined in a chemiluminescent assay. Anthocyanins and their aglycons achieved IC(50) values ranging from 7.8 microM for kaempferidinidin and pelargonidin, to 32.4 microM for delphinidin. Thus proteasome inhibitory properties of anthocyanins may contribute to their known anticarcinogenic, antioxidative, anti-inflammatory and neuroprotective activities, rationalizing dietary supplementations with anthocyanins in the prevention and treatment of chronic diseases, including neurodegenerative disorders.
Collapse
|
155
|
Fineschi S, Bongiovanni M, Donati Y, Djaafar S, Naso F, Goffin L, Argiroffo CB, Pache JC, Dayer JM, Ferrari-Lacraz S, Chizzolini C. In vivo investigations on anti-fibrotic potential of proteasome inhibition in lung and skin fibrosis. Am J Respir Cell Mol Biol 2008; 39:458-65. [PMID: 18458239 DOI: 10.1165/rcmb.2007-0320oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In systemic sclerosis (SSc), a disease characterized by fibrosis of the skin and internal organs, the occurrence of interstitial lung disease is responsible for high morbidity and mortality. We previously demonstrated that proteasome inhibitors (PI) show anti-fibrotic properties in vitro by reducing collagen production and favoring collagen degradation in a c-jun N-terminal kinase (JNK)-dependent manner in human fibroblasts. Therefore, we tested whether PI could control fibrosis development in bleomycin-induced lung injury, which is preceded by massive inflammation. We extended the study to test PI in TSK-1/+ mice, where skin fibrosis develops in the absence of overt inflammation. C57Bl/6 mice received bleomycin intratracheally and were treated or not with PI. Lung inflammation and fibrosis were assessed by histology and quantification of hydroxyproline content, type I collagen mRNA, and TGF-beta at Days 7, 15, and 21, respectively. Histology was used to detect skin fibrosis in TSK-1/+mice. The chymotryptic activity of 20S proteasome was assessed in mice blood. JNK and Smad2 phosphorylation were evaluated by Western blot on lung protein extracts. PI reduced collagen mRNA levels in murine lung fibroblasts, without affecting their viability in vitro. In addition, PI inhibited the chymotryptic activity of proteasome and enhanced JNK and TGF-beta signaling in vivo. PI failed to prevent bleomycin-induced lung inflammation and fibrosis and to attenuate skin fibrosis in TSK-1/+mice. In conclusion, our results provide direct evidence that, despite promising in vitro results, proteasome blockade may not be a strategy easily applicable to control fibrosis development in diseases such as lung fibrosis and scleroderma.
Collapse
Affiliation(s)
- Serena Fineschi
- Immunology and Allergy, Department of Internal Medicine, School of Medicine and University Hospital, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Lehrnbecher T, Koehl U, Wittekindt B, Bochennek K, Tramsen L, Klingebiel T, Chanock SJ. Changes in host defence induced by malignancies and antineoplastic treatment: implication for immunotherapeutic strategies. Lancet Oncol 2008; 9:269-78. [DOI: 10.1016/s1470-2045(08)70071-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
157
|
Response of primary plasma cell leukemia to the combination of bortezomib and dexamethasone: do specific cytogenetic and immunophenotypic characteristics influence treatment outcome? Leuk Res 2008; 32:1153-6. [PMID: 18083228 DOI: 10.1016/j.leukres.2007.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/06/2007] [Accepted: 11/06/2007] [Indexed: 11/21/2022]
Abstract
Plasma cell leukemia (PCL) is a rare and aggressive form of plasma cell dyscrasias. Its special biological characteristics may play an important role in the poor outcome when treated with conventional therapy or even with stem cell transplantation. New treatment approaches based on the biology of this disease are mandatory. Here we present three cases of primary PCL with adverse cytogenetics (deletion 13q14 and translocation 4;14) and specific immunophenotypic features (CD27 antigen strong expression) in which excellent response and sustained remission was achieved with the combination of bortezomib and dexamethasone. The possible role of these biological characteristics is been analyzed.
Collapse
|
158
|
Pharmacology and Pharmacotherapy. CONCISE MANUAL OF HEMATOLOGY AND ONCOLOGY 2008. [PMCID: PMC7119909 DOI: 10.1007/978-3-540-73277-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
159
|
Eberle J, Kurbanov BM, Hossini AM, Trefzer U, Fecker LF. Overcoming apoptosis deficiency of melanoma-hope for new therapeutic approaches. Drug Resist Updat 2007; 10:218-34. [PMID: 18054518 DOI: 10.1016/j.drup.2007.09.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 09/02/2007] [Accepted: 09/07/2007] [Indexed: 11/16/2022]
Abstract
The increased incidence of malignant melanoma in the last decades, its high mortality and pronounced therapy resistance pose an enormous challenge. Important therapeutic targets for melanoma are the induction of apoptosis and suppression of survival pathways. Preclinical studies have demonstrated the efficacy of pro-apoptotic Bcl-2 proteins and of death receptor ligands to trigger apoptosis in melanoma cells. In the clinical setting, BH3 domain mimics and death receptor agonists are therefore considered as promising, specific novel treatments to add to the conventional pro-apoptotic strategies such as chemo- or radiotherapy. However, constitutively activated survival pathways, in particular the mitogen-activated protein kinases, protein kinase B/Akt and nuclear factor (NF)-kappaB, all may work in concert to prevent effective therapy. Thus, selective biologicals developed with the aim to inhibit pro-survival signaling are currently tested in melanoma. For highly therapy-resistant tumors such as melanoma, development of novel drug combinations will be essential, and combinations of survival inhibitors and pro-apoptotic mediators appear most promising. The challenge of the near future will be to make a rational choice of the multiple possible combinations and protocols. This review gives a critical overview of proteins involved in melanoma chemoresistance, which are targets for current drug development leading to the best choice for future trials.
Collapse
Affiliation(s)
- Jürgen Eberle
- Charité-Universitätsmedizin Berlin, Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
160
|
Lin AE, Mak TW. The role of E3 ligases in autoimmunity and the regulation of autoreactive T cells. Curr Opin Immunol 2007; 19:665-73. [PMID: 18036806 DOI: 10.1016/j.coi.2007.10.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/01/2007] [Accepted: 10/02/2007] [Indexed: 11/30/2022]
Abstract
The ubiquitination of proteins by E3 ligases has become an important regulatory mechanism for a variety of immune functions, including the maintenance of self tolerance and suppression of autoreactive T cell development. This review highlights recent advances in our knowledge of the functions in this context of known and potential E3 ligases, including autoimmune regulator (AIRE), TNF receptor-associated factor 6 (TRAF6), Casitas B cell lymphoma b (Cbl-b), gene related to anergy in lymphocytes (GRAIL), Itch, and Roquin. We discuss how disruptions to these molecules may contribute to the loss of T cell homeostasis and the pathogenesis of autoimmunity. We also report on the implications of the potential coordinated actions of these molecules for T cell anergy and regulatory T cell (Treg) functions. The great diversity of E3 ligases and the growing list of cellular processes in which ubiquitination plays a role make for an exciting field of research. Findings emerging from these investigations may suggest ways to exploit the therapeutic potential of manipulating ubiquitination, particularly for autoimmune disorders.
Collapse
Affiliation(s)
- Amy Erica Lin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
161
|
Abstract
Multiple myeloma is a malignant tumour of plasma cells that remains incurable for the vast majority of patients, with a median survival of 2-3 years. It is characterized by the patchy accumulation of tumour cells within bone marrow leading to variable anaemia, bone destruction, hypercalcaemia, renal failure and infections. Immune dysfunction is an important feature of the disease and leads to infections that are both a major cause of morbidity and mortality and may promote tumour growth and resistance to chemotherapy. Numerous defects of the immune system have been described in multiple myeloma although the relative clinical importance of these remains elusive. There has been considerable interest in the identification of an autologous response against myeloma. Although T cells and humoral responses directed against myeloma-associated antigens have been described, it is uncertain if the immune system plays a role in preventing or controlling myeloma cell growth. There is increasing interest in the potential role of immunotherapy but the success of these interventions is likely to be modified by the immunologically hostile environment associated with multiple myeloma. This review attempts to summarize the current knowledge relating to the immune defects found in multiple myeloma.
Collapse
Affiliation(s)
- Guy Pratt
- CRUK Institute for Cancer Studies, University of Birmingham, Birmingham, UK.
| | | | | |
Collapse
|
162
|
Avcu F, Ural AU, Cetin T, Nevruz O. Effects of bortezomib on platelet aggregation and ATP release in human platelets, in vitro. Thromb Res 2007; 121:567-71. [PMID: 17910980 DOI: 10.1016/j.thromres.2007.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/07/2007] [Accepted: 06/12/2007] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Proteasome inhibitor bortezomib (PS-341) has been the first proteasome inhibitor that has entered clinical trials with its antiproliferative and proapoptotic effects in patients with multiple myeloma. Recent studies indicate that proteasome inhibitors can be useful in prevention of experimental arterial thrombosis in renovascular hypertensive rat models. The aim of the present study is to investigate the effect of bortezomib on in vitro platelet aggregation and adenosine triphosphate (ATP) release of human platelets. MATERIALS AND METHODS For this purpose, platelet aggregation was induced in the platelet-rich plasma (PRP) using 3 microg ml(-1) collagen, 5 microM adenosine diphosphate (ADP), 10 microM epinephrine and 1 U ml(-1) thrombin and ATP release was induced by collagen. RESULTS AND CONCLUSIONS Bortezomib showed an inhibitory effect on platelet aggregation induced by ADP in human PRP in a dose- and time-dependent manner, whereas it had no effect on collagen-, epinephrin and thrombin-induced aggregation. ATP-release reaction induced by collagen was inhibited dose- and time-dependently by bortezomib, even though collagen-induced platelet aggregation was apparently not affected in human PRP. These findings indicate that bortezomib may be an antiaggregating agent and its' effects may be related to adenine nucleotide receptor dependent regulatory proteins which are important for physiological and pathophysiological cellular processes. However, our in vitro studies suggest that this hypothesis is inadequate to explain the observations completely. This phenomenon and its clinical implication justify further clinical investigations.
Collapse
Affiliation(s)
- Ferit Avcu
- Gulhane Military Medical Academy, Department of Haematology, Medical and Cancer Research Center, Ankara, Turkey.
| | | | | | | |
Collapse
|
163
|
London CA. The role of small molecule inhibitors for veterinary patients. Vet Clin North Am Small Anim Pract 2007; 37:1121-36; vii. [PMID: 17950886 DOI: 10.1016/j.cvsm.2007.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Advances in molecular biology over the past several years have permitted a much more detailed understanding of cellular dysfunction at the biochemical level in cancer cells. This has resulted in the identification of novel targets for therapeutic intervention, including proteins that regulate signal transduction, gene expression, and protein turnover. In many instances, small molecules are used to disrupt the function of these targets, often through competitive inhibition of ATP binding or the prevention of necessary protein-protein interactions. Future challenges lie in identifying appropriate targets for intervention and combining small molecule inhibitors with standard treatment modalities, such as radiation therapy and chemotherapy.
Collapse
Affiliation(s)
- Cheryl A London
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 454 VMAB, 1925 Coffey Road, Columbus, OH 43210, USA.
| |
Collapse
|
164
|
Reynolds JM, El Bissati K, Brandenburg J, Günzl A, Mamoun CB. Antimalarial activity of the anticancer and proteasome inhibitor bortezomib and its analog ZL3B. BMC CLINICAL PHARMACOLOGY 2007; 7:13. [PMID: 17956613 PMCID: PMC2213633 DOI: 10.1186/1472-6904-7-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 10/23/2007] [Indexed: 12/01/2022]
Abstract
Background The high rate of mortality due to malaria and the worldwide distribution of parasite resistance to the commonly used antimalarial drugs chloroquine and pyrimethamine emphasize the urgent need for the development of new antimalarial drugs. An alternative approach to the long and uncertain process of designing and developing new compounds is to identify among the armamentarium of drugs already approved for clinical treatment of various human diseases those that may have strong antimalarial activity. Methods Proteasome inhibitor bortezomib (Velcade™: [(1R)-3-methyl-1-[[(2S)-1-oxo-3-phenyl-2-[(pyrazinylcarbonyl) amino]propyl]amino]butyl] boronic acid), which has been approved for treatment of patients with multiple myeloma, and a second boronate analog Z-Leu-Leu-Leu-B(OH)2 (ZL3B), were tested against four different strains of P. falciparum (3D7, HB3, W2 and Dd2) that are either sensitive or have different levels of resistance to the antimalarial drugs pyrimethamine and chloroquine. Results Bortezomib and ZL3B are equally effective against drug-sensitive and -resistant parasites and block intraerythrocytic development prior to DNA synthesis, but have no effect on parasite egress or invasion. Conclusion The identification of bortezomib and its analog as potent antimalarial drugs will set the stage for the advancement of this class of compounds, either alone or in combination therapy, for treatment of malaria, and emphasize the need for large-scale screens to identify new antimalarials within the library of clinically approved compounds.
Collapse
Affiliation(s)
- Jennifer M Reynolds
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-3301, USA.
| | | | | | | | | |
Collapse
|
165
|
Riccioni R, Senese M, Diverio D, Riti V, Buffolino S, Mariani G, Boe A, Cedrone M, Lo-Coco F, Foà R, Peschle C, Testa U. M4 and M5 acute myeloid leukaemias display a high sensitivity to Bortezomib-mediated apoptosis. Br J Haematol 2007; 139:194-205. [PMID: 17897295 DOI: 10.1111/j.1365-2141.2007.06757.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study explored the sensitivity of leukaemic blasts derived from 30 acute myeloid leukaemia (AML) patients to Bortezomib. Bortezomib induced apoptosis of primary AML blasts: 18/30 AMLs were clearly sensitive to the proapoptotic effects of Bortezomib, while the remaining cases were moderately sensitive to this molecule. The addition of tumour necrosis factor-related-apoptosis-inducing ligand, when used alone, did not induce apoptosis of AML blasts and further potentiated the cytotoxic effects of Bortezomib. The majority of AMLs sensitive to Bortezomib showed immunophenotypic features of the M4 and M5 French-American-British classification subtypes and displayed myelomonocytic features. All AMLs with mutated FLT3 were in the Bortezomib-sensitive group. Biochemical studies showed that: (i) Bortezomib activated caspase-8 and caspase-3 and decreased cellular FLICE [Fas-associated death domain (FADD)-like interleukin-1beta-converting enzyme]-inhibitory protein (c-FLIP) levels in AML blasts; (ii) high c-FLIP levels in AML blasts were associated with low Bortezomib sensitivity. Finally, analysis of the effects of Bortezomib on leukaemic cells displaying high aldehyde dehydrogenase activity suggested that this drug induced in vitro killing of leukaemic stem cells. The findings of the present study, further support the development of Bortezomib as an anti-leukaemic drug and provide simple tools to predict the sensitivity of AML cells to this drug.
Collapse
MESH Headings
- Aldehyde Dehydrogenase/metabolism
- Apoptosis
- Boronic Acids/therapeutic use
- Bortezomib
- CASP8 and FADD-Like Apoptosis Regulating Protein/analysis
- CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism
- Caspase 3/metabolism
- Caspase 8/metabolism
- Cells, Cultured
- Fas-Associated Death Domain Protein/analysis
- Fas-Associated Death Domain Protein/metabolism
- Flow Cytometry
- Humans
- Immunophenotyping
- Leukemia, Monocytic, Acute/drug therapy
- Leukemia, Monocytic, Acute/pathology
- Leukemia, Myelomonocytic, Acute/drug therapy
- Leukemia, Myelomonocytic, Acute/pathology
- Protease Inhibitors/therapeutic use
- Pyrazines/therapeutic use
- Receptors, TNF-Related Apoptosis-Inducing Ligand/analysis
- Stem Cells/drug effects
- TNF-Related Apoptosis-Inducing Ligand/analysis
- X-Linked Inhibitor of Apoptosis Protein/analysis
- X-Linked Inhibitor of Apoptosis Protein/metabolism
Collapse
Affiliation(s)
- Roberta Riccioni
- Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Abstract
Recent studies have established that type I interferon modulates expression of large number of cellular genes. While the proteins encoded by some of these genes have a direct antiviral activity, the functions of the majority of the others have not yet been determined. One of the first identified IFN stimulated gene, encodes ubiquitin like protein ISG15 that is also expressed in response to different stress stimuli. Although it was shown that ISG15 functions as protein modifier, it has been only recently that the targets of ISG15 conjugation were identified. Recent studies have also revealed mechanism of ISG15 conjugation and its interaction with the ubiquitin conjugation pathway. This review is focused on the possible role of ISG15 in the antiviral response, regulation of cell growth and carcinogenesis.
Collapse
|
167
|
Tang ZY, Wu YL, Gao SL, Shen HW. Effects of the proteasome inhibitor bortezomib on gene expression profiles of pancreatic cancer cells. J Surg Res 2007; 145:111-23. [PMID: 17714734 DOI: 10.1016/j.jss.2007.03.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 03/13/2007] [Accepted: 03/15/2007] [Indexed: 11/17/2022]
Abstract
BACKGROUND Pancreatic cancer remains a highly chemoresistant malignancy. Gemcitabine is a widely used clinical chemotherapeutic agent against locally advanced and metastatic pancreatic cancer. Proteasome inhibitor bortezomib has been shown to result in enhanced cytotoxicity and apoptosis when used alone or in combination with gemcitabine in pancreatic cancer cell lines. MATERIALS AND METHODS To determine the effect of bortezomib on gene expression profile of pancreatic adenocarcinoma cells with different sensitivity to gemcitabine, we used Affymetrix HG U133A 2.0 GeneChip (Santa Clara, CA) and measured changes induced by bortezomib in pancreatic cancer cell lines with high (BxPC-3) and low (PANC-1) sensitivity to gemcitabine, at time points 24 h. Selected genes were subsequently validated by quantitative real-time polymerase chain reaction. RESULTS Forty-four common genes in both PANC-1 and BxPC-3 cells were identified as up-regulated (>3-fold) induced by bortezomib analyzed by microarray, which are associated with multiple cytotoxic and cytoprotective effects. Bcl-2 was repressed by bortezomib in both PANC-1 and BxPC-3 cells, while no changes induced in either cell by bortezomib were disclosed in all five members of nuclear factor-kappa B family. Other interesting genes related to apoptosis or drug metabolism, such as TP53 and ABCB1 (mdr1), were not found differentially expressed in common. CONCLUSIONS Bortezomib exhibits antitumor effects toward pancreatic cancer in vitro and in vivo. Genes with divergent apoptotic effects are induced by bortezomib, which may become promising targets for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Zhi-Yu Tang
- Department of Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | |
Collapse
|
168
|
Abstract
Cancer cachexia is a debilitating and life-threatening syndrome characterised by anorexia, body weight loss, loss of adipose tissue and skeletal muscle, and accounts for > or = 20% of deaths in neoplastic patients. Cancer cachexia significantly impairs quality of life and response to antineoplastic therapies, increasing the morbidity and mortality of cancer patients. Muscle wasting is the most important phenotypic feature of cancer cachexia and the principle cause of function impairment, fatigue and respiratory complications, and is mainly related to a hyperactivation of muscle proteolytic pathways. Existing therapeutic strategies have proven to be only partially effective. In the last decade, the correction of anorexia, the inhibition of catabolic processes and the stimulation of anabolic pathways in muscle has been attempted pharmacologically, giving encouraging results in animal models and through preliminary clinical trials.
Collapse
Affiliation(s)
- Maurizio Bossola
- Catholic University of the Sacred Heart, Department of Surgery, Largo A. Gemelli, Roma, Italy.
| | | | | |
Collapse
|
169
|
Yan H, Wang YC, Li D, Wang Y, Liu W, Wu YL, Chen GQ. Arsenic trioxide and proteasome inhibitor bortezomib synergistically induce apoptosis in leukemic cells: the role of protein kinase Cδ. Leukemia 2007; 21:1488-95. [PMID: 17495969 DOI: 10.1038/sj.leu.2404735] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Arsenic trioxide (ATO) and proteasome inhibitor bortezomib have been successfully applied to treat acute promyelocytic leukemia (APL) and multiple myeloma (MM), respectively. Their synergistic effects with other anticancer drugs have been widely studied. Here, we investigated the potential synergy of bortezomib and ATO on Bcr-Abl(+) leukemic K562 cells. The results showed that cotreatment of bortezomib at 32 nM, a half concentration for growth arrest, and ATO at 1 microM, a dose with no significant cytotoxic effect, synergistically induced apoptosis in the cell line, followed by enhanced mitochondrial dysfunction, release of cytochrome c and apoptosis-inducing factor, caspase-3 cleavage and degradation of poly-adenosine diphosphate-ribose polymerase together with the decreased Bcr-Abl protein. These two drugs synergistically induced proteolytic activation of protein kinase Cdelta (PKCdelta) with enhanced activation of two mitogen-activated protein kinases phospho-c-Jun NH(2)-terminal kinase and p38. The specific PKCdelta inhibitor rottlerin markedly decreased bortezomib plus ATO-induced apoptosis, suggesting that PKCdelta plays an important role in bortezomib plus ATO-induced apoptosis. Moreover, apoptosis synergy of bortezomib and ATO could also be seen in some kinds of acute leukemic cell lines and primary cells. Totally, our results indicate that combined regimen of bortezomib and ATO might be a potential therapeutic remedy for the treatment of leukemia.
Collapse
Affiliation(s)
- H Yan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
170
|
Straube C, Wehner R, Wendisch M, Bornhäuser M, Bachmann M, Rieber EP, Schmitz M. Bortezomib significantly impairs the immunostimulatory capacity of human myeloid blood dendritic cells. Leukemia 2007; 21:1464-71. [PMID: 17495970 DOI: 10.1038/sj.leu.2404734] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bortezomib is a potent drug for the treatment of multiple myeloma. Its anti-tumor activity is mediated by proteasome inhibition leading to decreased cell proliferation and induction of apoptosis. However, an unimpaired proteasomal function plays a crucial role for the induction of anti-tumor immunity by dendritic cells (DCs), which are currently used for therapeutic vaccination against various tumors including myeloma. In the present study, we investigated the impact of bortezomib on the immunostimulatory capacity of 6-sulfo LacNAc (slan) DCs, which represent a major subset of human blood DCs. We demonstrated that this proteasome inhibitor efficiently impairs the spontaneous in vitro maturation of slanDCs and the release of tumor necrosis factor (TNF)-alpha as well as interleukin (IL)-12 upon lipopolysaccharide (LPS) stimulation. Functional data revealed that bortezomib profoundly inhibits slanDC-induced proliferation and differentiation of CD4(+) T cells. In addition, the capacity of slanDCs to promote interferon-gamma secretion and tumor-directed cytotoxicity of natural killer (NK) cells is markedly impaired by bortezomib. These results provide evidence that bortezomib significantly reduces the ability of native human blood DCs to regulate innate and adaptive anti-tumor immunity and may have implications for the design of therapeutic strategies combining DC vaccination and bortezomib treatment.
Collapse
Affiliation(s)
- C Straube
- Medical Faculty, Institute of Immunology, Technical University of Dresden, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
Regulation of protein function by posttranslational modification plays an important role in many biological pathways. The most well known among such modifications is protein phosphorylation performed by highly specific protein kinases. In the past decade, however, covalent linkage of the low-molecular-weight protein ubiquitin to substrate proteins (protein ubiquitination) has proven to be yet another widely used mechanism of protein regulation playing a crucial role in virtually all aspects of cellular functions. This review highlights some of the recently discovered and provocative roles for ubiquitination in the regulation of the life cycle and signal transduction properties of 7-transmembrane receptors that serve to integrate many biological functions and play fundamental roles in cardiovascular homeostasis.
Collapse
Affiliation(s)
- Sudha K Shenoy
- Duke University Medical Center, Departments of Medicine and Cell Biology, Durham, NC 27710, USA.
| |
Collapse
|
172
|
Tabruyn SP, Griffioen AW. A new role for NF-kappaB in angiogenesis inhibition. Cell Death Differ 2007; 14:1393-7. [PMID: 17464324 DOI: 10.1038/sj.cdd.4402156] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- S P Tabruyn
- Angiogenesis Laboratory, Department of Pathology, Research Institute For Growth and Development (GROW), University of Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
173
|
Stapnes C, Døskeland AP, Hatfield K, Ersvaer E, Ryningen A, Lorens JB, Gjertsen BT, Bruserud O. The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells. Br J Haematol 2007; 136:814-28. [PMID: 17341267 DOI: 10.1111/j.1365-2141.2007.06504.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proteasome inhibitors represent a new class of antineoplastic drugs that are considered in the treatment of haematological malignancies. We compared the effects of the reversible proteasome inhibitor bortezomib (Velcade) and the epoxomicin derivative PR-171, an irreversible inhibitor, on primary human acute myeloid leukaemia (AML) cells. Both drugs inhibited autocrine- and cytokine-dependent proliferation of primary AML blasts when tested at nanomolar levels (0.1-100 nmol/l). The antiproliferative effect was independent of basal chymotrypsin-like proteasome activity (showing a 20-fold variation between patients), genetic abnormalities, morphological differentiation and CD34 expression when testing a large group of consecutive patients (n = 54). The effect was retained in cocultures with bone marrow stromal cells. In addition, both drugs enhanced apoptosis. The effect of PR-171 could be detected at lower concentrations than for bortezomib, especially when testing the influence on clonogenic AML cell proliferation. Both drugs had divergent effects on AML cells' constitutive cytokine release. Furthermore, both drugs caused a decrease in proliferation and viability when tested in combination with idarubicin or cytarabine. An antiproliferative effect on primary human acute lymphoblastic leukaemia cells was also detected. We conclude that nanomolar levels of the proteasome inhibitors tested had dose-dependent antiproliferative and proapoptotic effects on primary AML cells in vitro.
Collapse
|