151
|
Circular RNAs as Potential Biomarkers and Therapeutic Targets for Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1134:177-191. [PMID: 30919338 DOI: 10.1007/978-3-030-12668-1_10] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidemiological studies provide evidence of a continuous rise in metabolic diseases throughout industrialized countries. Metabolic diseases are commonly associated with different abnormalities that hold a key role in the emergence and progression of frequent disorders including diabetes mellitus (DM), non-alcoholic fatty liver disease (NAFLD), obesity, metabolic syndrome and cardiovascular diseases. The burden of metabolic diseases is believed to arise through complex interaction between genetic and epigenetic factors, lifestyle changes and environmental exposure to triggering stimuli. The diagnosis and treatment of metabolic disorders continue to be an overwhelming challenge. Thus, the development of novel biomarkers may enhance the accuracy of the diagnosis at an early stage of the disease and allow effective intervention. Over the past decade, progress has been made in exploring the potential role of noncoding RNAs (ncRNAs) in the regulation of gene networks involved in metabolic diseases. A growing body of evidence now suggests that aberrant expression of circular RNAs (circRNAs) is relevant to the occurrence and development of metabolic diseases. Accordingly, circRNAs are proposed as predictive biomarkers and potential therapeutic targets for these diseases. As the field of circRNAs is rapidly evolving and knowledge is increasing, the present paper provides current understanding of the regulatory roles of these RNA species mainly in the pathogenesis of DM, NAFLD and obesity. Furthermore, some of the limitations to the promise of circRNAs and perspectives on their future research are discussed.
Collapse
|
152
|
Comparison of Cardiac miRNA Transcriptomes Induced by Diabetes and Rapamycin Treatment and Identification of a Rapamycin-Associated Cardiac MicroRNA Signature. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8364608. [PMID: 30647817 PMCID: PMC6311877 DOI: 10.1155/2018/8364608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/16/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023]
Abstract
Rapamycin (Rap), an inhibitor of mTORC1, reduces obesity and improves lifespan in mice. However, hyperglycemia and lipid disorders are adverse side effects in patients receiving Rap treatment. We previously reported that diabetes induces pansuppression of cardiac cytokines in Zucker obese rats (ZO-C). Rap treatment (750 μg/kg/day for 12 weeks) reduced their obesity and cardiac fibrosis significantly; however, it increased their hyperglycemia and did not improve their cardiac diastolic parameters. Moreover, Rap treatment of healthy Zucker lean rats (ZL-C) induced cardiac fibrosis. Rap-induced changes in ZL-C's cardiac cytokine profile shared similarities with that of diabetes-induced ZO-C. Therefore, we hypothesized that the cardiac microRNA transcriptome induced by diabetes and Rap treatment could share similarities. Here, we compared the cardiac miRNA transcriptome of ZL-C to ZO-C, Rap-treated ZL (ZL-Rap), and ZO (ZO-Rap). We report that 80% of diabetes-induced miRNA transcriptome (40 differentially expressed miRNAs by minimum 1.5-fold in ZO-C versus ZL-C; p ≤ 0.05) is similar to 47% of Rap-induced miRNA transcriptome in ZL (68 differentially expressed miRNAs by minimum 1.5-fold in ZL-Rap versus ZL-C; p ≤ 0.05). This remarkable similarity between diabetes-induced and Rap-induced cardiac microRNA transcriptome underscores the role of miRNAs in Rap-induced insulin resistance. We also show that Rap treatment altered the expression of the same 17 miRNAs in ZL and ZO hearts indicating that these 17 miRNAs comprise a unique Rap-induced cardiac miRNA signature. Interestingly, only four miRNAs were significantly differentially expressed between ZO-C and ZO-Rap, indicating that, unlike the nondiabetic heart, Rap did not substantially change the miRNA transcriptome in the diabetic heart. In silico analyses showed that (a) mRNA-miRNA interactions exist between differentially expressed cardiac cytokines and miRNAs, (b) human orthologs of rat miRNAs that are strongly correlated with cardiac fibrosis may modulate profibrotic TGF-β signaling, and (c) changes in miRNA transcriptome caused by diabetes or Rap treatment include cardioprotective miRNAs indicating a concurrent activation of an adaptive mechanism to protect the heart in conditions that exacerbate diabetes.
Collapse
|
153
|
Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D, Lawrie CH. CircRNAs and cancer: Biomarkers and master regulators. Semin Cancer Biol 2018; 58:90-99. [PMID: 30550956 DOI: 10.1016/j.semcancer.2018.12.002] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are a novel class of regulatory RNAs that despite being relatively abundant have only recently begun to be explored. There are many thousands of genes that appear capable of producing circRNAs, however the function of all but a handful remain to be determined. What is emerging about these highly conserved molecules is that they play important roles in biology and cancer biology in particular. The most explored function of circRNAs is as master regulators of gene expression that act to sequester or ´sponge´ other gene expression regulators, in particular miRNAs. They have also been demonstrated to function via direct modulation of transcription, and by interfering with splicing mechanisms. Although generally expressed in low abundance when compared to their linear counterparts, they are often expressed in a tissue- and developmental stage- specific manner. Coupled with their remarkable resistance to RNAse activity due to a covalent closed cyclic structure, circRNAs show great promise as novel biomarkers of cancer and other diseases. In this review we consider the current state of knowledge regarding these molecules, their synthesis, function, and association with cancer. We will also review some of the challenges that remain to be resolved if this emerging class of RNAs are really to become useful in the clinic.
Collapse
Affiliation(s)
- Esther Arnaiz
- Molecular Oncology Group, Biodonostia Research Institute, Paseo Doctor Begiristain, s/n San Sebastián, 20014, Spain
| | - Carla Sole
- Molecular Oncology Group, Biodonostia Research Institute, Paseo Doctor Begiristain, s/n San Sebastián, 20014, Spain
| | - Lorea Manterola
- Molecular Oncology Group, Biodonostia Research Institute, Paseo Doctor Begiristain, s/n San Sebastián, 20014, Spain
| | - Leire Iparraguirre
- Multiple Sclerosis Group, Biodonostia Research Institute, Paseo Doctor Begiristain, s/n San Sebastián, 20014, Spain
| | - David Otaegui
- Multiple Sclerosis Group, Biodonostia Research Institute, Paseo Doctor Begiristain, s/n San Sebastián, 20014, Spain
| | - Charles H Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, Paseo Doctor Begiristain, s/n San Sebastián, 20014, Spain; Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom; IKERBASQUE, Basque Foundation for Science, María Díaz Haroko Kalea, 3, 48013, Bilbao, Spain.
| |
Collapse
|
154
|
Tian F, Zhan Y, Zhu W, Li J, Tang M, Chen X, Jiang J. MicroRNA-497 inhibits multiple myeloma growth and increases susceptibility to bortezomib by targeting Bcl-2. Int J Mol Med 2018; 43:1058-1066. [PMID: 30535471 DOI: 10.3892/ijmm.2018.4019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/30/2018] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma (MM) is a common severe hematopoietic malignancy occuring in aged population. MicroRNA (miR)‑497 was previously reported to contribute to the apoptosis of other cell types, presumably through targeting B‑cell lymphoma 2 (Bcl‑2). In the present study, miRNA and protein expression levels were detected by reverse transcription‑quantitative polymerase chain reaction and western blot analyses, respectively. The cell proliferation and viability was measured using 3‑(4,5‑dimethylthiazol‑2‑yl)‑2, 5‑diphenyltetrazolium bromide and plate clonality assays, and the cell growth cycle was measured with a flow cytometer. Terminal deoxynucleotidyl transferase (TdT)‑mediated dUTP nick‑end‑labeling, Annexin V and caspase‑3 activity assays were performed to examine the cell apoptotic rates. The results showed that miR‑497 was markedly decreased, whereas Bcl‑2 was enhanced in MM tissues and cell lines. miR‑497 targeted Bcl‑2 and affected its downstream apoptosis‑related genes. The overexpression of miR‑497 promoted MM cell apoptosis through cell cycle arrest, and decreased colony genesis ability and viability. In addition, miR‑497 increased the sensitivity of MM cells to bortezomib. Taken together, miR‑497 suppressed MM cell proliferation and promoted apoptosis by directly targeting Bcl‑2 and altering the expression of downstream apoptosis‑related proteins. The combination of miR‑497 and bortezomib may enhance drug sensitivity, serving as a potentially available therapeutic method for MM.
Collapse
Affiliation(s)
- Faqing Tian
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Yong Zhan
- Department of Pathology, School of Basic Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Wei Zhu
- Department of Radiology, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China, P.R. China
| | - Juheng Li
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Meiqin Tang
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Xiaohui Chen
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| | - Jian Jiang
- Department of Hematology, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, P.R. China
| |
Collapse
|
155
|
Characterization of circRNA‑associated ceRNA networks in patients with nonvalvular persistent atrial fibrillation. Mol Med Rep 2018; 19:638-650. [PMID: 30483740 DOI: 10.3892/mmr.2018.9695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/13/2018] [Indexed: 11/05/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs forming closed-loop structures, and their aberrant expression may lead to disease. However, the potential network of circRNA‑associated competing endogenous RNA (ceRNA) involved in nonvalvular persistent atrial fibrillation (NPAF) has not been previously reported. In the present study, four left atrial appendages (LAA) of patients with NPAF and four normal LAAs were examined via RNA sequencing, and their potential functions were investigated via bioinformatics analysis. The circRNA‑enriched genes were analyzed using Gene Ontology (GO) categories, while the enrichment of circRNAs was detected via the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. A total of 296 significantly dysregulated circRNA transcripts were obtained, with 238 upregulated and 58 downregulated. A number of circRNAs were further confirmed using reverse transcription‑quantitative polymerase chain reaction analysis. Furthermore, the more comprehensive circRNA‑associated ceRNA networks were examined in patients with NPAF. GO categories and KEGG annotation analysis of circRNAs revealed that the circRNA‑associated ceRNA networks were likely to influence AF though alterations in calcium and cardiac muscle contraction. The circRNA‑associated ceRNA networks revealed that dysregulated circRNAs in NPAF may be involved in regulating hsa‑microRNA (miR)‑208b and hsa‑miR‑21. To the best of our knowledge, this study presents the circRNA‑associated ceRNA networks in NPAF for the first time, which may have potential implications for the pathogenesis of AF. This study reveals a potential perspective from which to investigate circRNAs in circRNA‑associated ceRNA networks (hsa_circRNA002085, hsa_circRNA001321) in NPAF, and provides a potential biomarker for AF.
Collapse
|
156
|
Greco S, Cardinali B, Falcone G, Martelli F. Circular RNAs in Muscle Function and Disease. Int J Mol Sci 2018; 19:ijms19113454. [PMID: 30400273 PMCID: PMC6274904 DOI: 10.3390/ijms19113454] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of RNA produced during pre-mRNA splicing that are emerging as new members of the gene regulatory network. In addition to being spliced in a linear fashion, exons of pre-mRNAs can be circularized by use of the 3' acceptor splice site of upstream exons, leading to the formation of circular RNA species. In this way, genetic information can be re-organized, increasing gene expression potential. Expression of circRNAs is developmentally regulated, tissue and cell-type specific, and shared across eukaryotes. The importance of circRNAs in gene regulation is now beginning to be recognized and some putative functions have been assigned to them, such as the sequestration of microRNAs or proteins, the modulation of transcription, the interference with splicing, and translation of small proteins. In accordance with an important role in normal cell biology, circRNA deregulation has been reported to be associated with diseases. Recent evidence demonstrated that circRNAs are highly expressed in striated muscle tissue, both skeletal and cardiac, that is also one of the body tissue showing the highest levels of alternative splicing. Moreover, initial studies revealed altered circRNA expression in diseases involving striated muscle, suggesting important functions of these molecules in the pathogenetic mechanisms of both heart and skeletal muscle diseases. The recent findings in this field will be described and discussed.
Collapse
Affiliation(s)
- Simona Greco
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| | - Beatrice Cardinali
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, 00015 Rome, Italy.
| | - Germana Falcone
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, 00015 Rome, Italy.
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy.
| |
Collapse
|
157
|
Shangguan W, Liang X, Shi W, Liu T, Wang M, Li G. Identification and characterization of circular RNAs in rapid atrial pacing dog atrial tissue. Biochem Biophys Res Commun 2018; 506:1-6. [PMID: 29772236 DOI: 10.1016/j.bbrc.2018.05.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/13/2018] [Indexed: 12/11/2022]
Abstract
Circular RNAs (circRNAs) have emerged as novel molecules of interest in gene regulation as other noncoding RNAs, and participating in the process of many diseases. However, the expression and functions of circRNAs in Rapid atrial pacing (RAP) dog atrial tissue still unknown. 12 canines were randomly assigned to control and pacing group. RAP at 500 beats per minute was maintained 14 days in the pacing group. The expression characterization of circRNAs were revealed by high-throughput sequencing. We totally predicted 15,990 circRNAs in dog atrial tissues. Moreover, we found 146 differentially expressed circRNAs between control and RAP dogs. Five circRNAs were selected for subsequent RT-PCR validation, and four circRNAs confirmed with the high throughput sequencing analysis. GO analysis showed that the differentially expressed circRNAs might involve in the process of "structural constituent of cytoskeleton, ion channel activity". We explored the circRNA-miRNA interaction network, and found extensive interaction among differentially expressed circRNAs and AF related miRNAs and mRNAs. Our work firstly identified the characterization of circRNAs in the dog atrial, and revealed the differentially expressed circRNAs in the RAP dog, this might lay a solid foundation on the function of circRNA in the mechanisms of AF.
Collapse
Affiliation(s)
- Wenfeng Shangguan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Wen Shi
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Manman Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
158
|
Altesha M, Ni T, Khan A, Liu K, Zheng X. Circular RNA in cardiovascular disease. J Cell Physiol 2018; 234:5588-5600. [DOI: 10.1002/jcp.27384] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022]
Affiliation(s)
| | - Tiffany Ni
- Department of Physiology Western University Ontario Canada
| | - Afaan Khan
- Faculty of Applied Health Sciences University of Waterloo Ontario Canada
| | - Kexiang Liu
- Department of Cardiovascular Surgery The second Hospital of Jilin University Jilin China
| | - Xiufen Zheng
- Department of Pathology Western University Ontario Canada
- Department of Surgery General Surgery Division, Western University Ontario Canada
- Department of Oncology Western University Ontario Canada
- Multiple Organ Transplant Program, Lawson Health Research Institute Ontario Canada
- Department of Surgery, London Health Sciences Centre Ontario Canada
| |
Collapse
|
159
|
Xu JY, Chang NB, Rong ZH, Li T, Xiao L, Yao QP, Jiang R, Jiang J. circDiaph3 regulates rat vascular smooth muscle cell differentiation, proliferation, and migration. FASEB J 2018; 33:2659-2668. [PMID: 30307766 DOI: 10.1096/fj.201800243rrr] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intimal hyperplasia is a reaction to vascular injury, which is the primary reason for vascular restenosis caused by the diagnostic or therapeutic procedure for cardiovascular diseases. Circular RNAs (circRNAs) are known to be associated with several cardiovascular conditions, but the expression of circRNAs in the neointima has not been reported in detail. In this study, we established the balloon-injured rat carotid artery model and detected the expression of circRNAs in the carotid arteries with a microarray. We found that the circRNA expression profile of the healthy carotid arteries and the injured arteries were significantly different. We investigated the role of rno-circ_005717 ( circDiaph3) in the differentiation of rat vascular smooth muscle cells (VSMCs). We found that knockdown of circDiaph3 up-regulated the level of diaphanous-related formin-3 and promoted the differentiation of VSMCs to contractile type. In addition, circDiaph3 up-regulated the transcription of Igf1r and supported the proliferation and migration of VSMCs. circDiaph3 could be a molecular target to combat intimal hyperplasia.-Xu, J.-Y., Chang, N.-B., Rong, Z.-H., Li, T., Xiao, L., Yao, Q.-P., Jiang, R., Jiang, J. circDiaph3 regulates rat vascular smooth muscle cell differentiation, proliferation, and migration.
Collapse
Affiliation(s)
- Jia-Ying Xu
- Department of Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Neng-Bin Chang
- Department of Anatomy, Southwest Medical University, Luzhou, China
| | - Zhi-Hua Rong
- Department of Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ling Xiao
- Emergency Medical Center of Chongqing, Chongqing, China
| | - Qing-Ping Yao
- School of Life Sciences and Biotechnology, Institute of Mechanobiology and Medical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Jiang
- Department of Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Jiang
- Department of Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
160
|
Bei Y, Yang T, Wang L, Holvoet P, Das S, Sluijter JPG, Monteiro MC, Liu Y, Zhou Q, Xiao J. Circular RNAs as Potential Theranostics in the Cardiovascular System. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:407-418. [PMID: 30368217 PMCID: PMC6205062 DOI: 10.1016/j.omtn.2018.09.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases (CVDs) represent the largest contributor to mortality worldwide. Identification of novel therapeutic targets and biomarkers for CVDs is urgently needed. Circular RNAs (circRNAs) are endogenous, abundant, and stable non-coding RNAs formed by back-splicing events. Their role as regulators of gene expression has been increasingly reported. Notably, circRNAs mediate essential physiological and pathological processes in the cardiovascular system. Our first aim, therefore, is to summarize recent advances in the role of circRNAs in cardiac development as well as in pathogenesis of various CVDs. Because circRNAs are stable in circulation and their dynamic changes may reflect different disease stages, they are considered ideal biomarkers. Therefore, our second aim is to review studies that have identified circulating circRNAs as biomarkers for CVDs. Finally, we discuss the shortage of functional studies and the limitations of available clinical studies and provide future perspectives.
Collapse
Affiliation(s)
- Yihua Bei
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Tingting Yang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Lijun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Paul Holvoet
- Department of Cardiovascular Sciences, Experimental Cardiology, KU Leuven, 3000 Leuven, Belgium
| | - Saumya Das
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht 3508GA, the Netherlands; UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3508GA, the Netherlands
| | - Marta Chagas Monteiro
- Pharmaceutical Science Post-Graduation Program, Health Science Institute, Federal University of Pará/UFPA, Belém, PA 66075900, Brazil
| | - Yang Liu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Qiulian Zhou
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
161
|
Li R, Wang Y, Song X, Sun W, Zhang J, Liu Y, Li H, Meng C, Zhang J, Zheng Q, Lv C. Potential regulatory role of circular RNA in idiopathic pulmonary fibrosis. Int J Mol Med 2018; 42:3256-3268. [PMID: 30272257 PMCID: PMC6202105 DOI: 10.3892/ijmm.2018.3892] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive type of interstitial pneumonia with unknown causes, poor prognosis and no effective therapy available. Circular RNAs (circRNAs), which serve as potential therapeutic targets and diagnostic biomarkers for certain diseases, represent a recent hotspot in the field of RNA research. In the present study, a total of 67 significantly dysregulated circRNAs were identified in the plasma of IPF patients by using a circRNA microarray. Among these circRNAs, 38 were upregulated, whereas 29 were downregulated. Further validation of the results by polymerase chain reaction analysis indicated that Homo sapiens (hsa)_circRNA_100906, hsa_circRNA_102100 and hsa_circRNA_102348 were significantly upregulated, whereas hsa_circRNA_101225, hsa_circRNA_104780 and hsa_circRNA_101242 were downregulated in plasma samples of IPF patients compared with those in samples from healthy controls. The majority of differentially expressed circRNAs were generated from exonic regions. The host genes of the differentially expressed circRNAs were involved in the regulation of the cell cycle, adherens junctions and RNA transport. The competing endogenous RNA (ceRNA) network of the circRNAs/micro(mi)RNAs/mRNAs indicated that circRNA-protected mRNA participated in transforming growth factor-β1, hypoxia-inducible factor-1, Wnt, Janus kinase, Rho-associated protein kinase, vascular endothelial growth factor, mitogen-activated protein kinase, Hedgehog and nuclear factor κB signalling pathways or functioned as biomarkers for pulmonary fibrosis. Furthermore, luciferase reporter assays confirmed that hsa_circRNA_100906 and hsa_circRNA_102348 directly interact with miR-324-5p and miR-630, respectively, which were downregulated in IPF patients. The present study provided a novel avenue for exploring the underlying molecular mechanisms of IPF disease.
Collapse
Affiliation(s)
- Rongrong Li
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256602, P.R. China
| | - Youlei Wang
- School of Special Education, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xiaodong Song
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Wenjing Sun
- School of Life Sciences, Ludong University, Yantai, Shandong 264025, P.R. China
| | - Jinjin Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yuxia Liu
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256602, P.R. China
| | - Hongbo Li
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256602, P.R. China
| | - Chao Meng
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Jie Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Qingyin Zheng
- School of Special Education, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Changjun Lv
- Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256602, P.R. China
| |
Collapse
|
162
|
Carrara M, Fuschi P, Ivan C, Martelli F. Circular RNAs: Methodological challenges and perspectives in cardiovascular diseases. J Cell Mol Med 2018; 22:5176-5187. [PMID: 30277664 PMCID: PMC6201346 DOI: 10.1111/jcmm.13789] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/03/2018] [Accepted: 06/12/2018] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs are generated by back‐splicing of precursor‐mRNAs. Although they have been known for many years, only recently we have started to appreciate their widespread expression and their regulatory functions in a variety of biological processes. Not surprisingly, circular RNA dysregulation and participation in the pathogenic mechanisms have started to emerge in many instances, including cardiovascular diseases. Detection, differential expression analysis and validation are the three critical points for the characterization of any RNA, and circular RNAs are no exception. Their characteristics, however, generate several problems that are yet to be completely addressed, and literature still lacks comprehensive definitions of well‐defined best practices. We present a map of the current knowledge regarding circular RNAs and the critical issues limiting our understanding of their regulation and function. The goal was to provide the readers with the tools to critically decide which of the many approaches available is most suitable to their experimental plan. Although particularly focused on cardiovascular diseases, most critical issues concerning circular RNAs are common to many other fields of investigation.
Collapse
Affiliation(s)
- Matteo Carrara
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Paola Fuschi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,The Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| |
Collapse
|
163
|
Zhao G. Significance of non-coding circular RNAs and micro RNAs in the pathogenesis of cardiovascular diseases. J Med Genet 2018; 55:713-720. [PMID: 30177556 PMCID: PMC6252363 DOI: 10.1136/jmedgenet-2018-105387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
Abstract
Heart failure, coronary artery disease and myocardial infarction are the most prominent cardiovascular diseases contributing significantly to death worldwide. In the majority of situations, except for surgical interventions and transplantation, there are no reliable therapeutic approaches available to address these health problem. Despite several advances that led to the development of biomarkers and therapies based on the renin–angiotensin system, adrenergic pathways, etc, more definitive and consistent biomarkers and specific target based molecular therapies are still being sought. Recent advances in the field of genomic research has helped in identifying non-coding RNAs, including circular RNAs, piRNAs, micro RNAs, and long non-coding RNAs, that play a significant role in the regulation of gene expression and function and have direct impact on pathophysiological mechanisms. This new knowledge is currently being explored with much hope for the development of novel treatments and biomarkers. Circular RNAs and micro RNAs have been described in myocardium and aortic valves and were shown to be involved in the regulation of pathophysiological processes that potentially contribute to cardiovascular diseases. Approximately 32 000 human exonic circular RNAs have been catalogued and their functions are still being ascertained. In the heart, circular RNAs were shown to bind micro RNAs in a specific manner and regulate the expression of transcription factors and stress response genes, and expression of these non-coding RNAs were found to change in conditions such as cardiac hypertrophy, heart failure and cardiac remodelling, reflecting their significance as diagnostic and prognostic biomarkers. In this review, we address the present state of understanding on the biogenesis, regulation and pathophysiological roles of micro and circular RNAs in cardiovascular diseases, and on the potential future perspectives on their use as biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Guoan Zhao
- The Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
164
|
The emerging landscape of circular RNA in cardiovascular diseases. J Mol Cell Cardiol 2018; 122:134-139. [DOI: 10.1016/j.yjmcc.2018.08.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/30/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022]
|
165
|
Huang Z, Su R, Qing C, Peng Y, Luo Q, Li J. Plasma Circular RNAs hsa_circ_0001953 and hsa_circ_0009024 as Diagnostic Biomarkers for Active Tuberculosis. Front Microbiol 2018; 9:2010. [PMID: 30214434 PMCID: PMC6126419 DOI: 10.3389/fmicb.2018.02010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022] Open
Abstract
Recent studies have demonstrated that circular RNAs (circRNAs) could serve as potential molecular markers for disease diagnosis; however, little is known about their diagnostic value in active tuberculosis (TB). This study first performed a microarray screening of circRNA changes in plasma samples from 3 patients with active pulmonary TB and 3 healthy controls. Then, candidate circRNAs were selected for validation on a quantitative real-time PCR system. Of the 61 differentially expressed circRNAs recorded, 43 and 18 were upregulated and downregulated in the TB group, respectively. Validation assays demonstrated that plasma levels of 6 circRNAs, including hsa_circ_0009024, hsa_circ_0001953, hsa_circ_0008297, hsa_circ_0003528, hsa_circ_0003524 and hsa_circ_0015879 were remarkably increased in TB patients. Plasma levels of hsa_circ_0001953 and hsa_circ_0009024 were correlated with TB severity. Next, hsa_circ_0001953 and hsa_circ_0009024 were assessed in an independent cohort consisting of 120 TB patients and 100 control individuals. An area under the receiver operating characteristic (ROC) curve of 0.915 (95% confidence interval 0.880-0.951; P < 0.001) was obtained for detecting TB, with hsa_circ_0001953 and hsa_circ_0009024 used in combination. Additionally, plasma levels of hsa_circ_0001953 and hsa_circ_0009024 were reduced significantly in patients after treatment (P < 0.001). The present findings indicate that the circRNAs hsa_circ_0001953 and hsa_circ_0009024 may represent novel plasma biomarkers for active TB diagnosis.
Collapse
Affiliation(s)
- Zikun Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rigu Su
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cheng Qing
- Intensive Care Unit, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiping Peng
- Department of Tuberculosis, Jiangxi Chest Hospital, Nanchang, China
| | - Qing Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junming Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
166
|
Zhou J, Ge Y, Hu Y, Rong D, Fu K, Wang H, Cao H, Tang W. Circular RNAs as novel rising stars with huge potentials in development and disease. Cancer Biomark 2018; 22:597-610. [PMID: 29914009 DOI: 10.3233/cbm-181296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jian Zhou
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuyuan Ge
- Department of Neurosurgery, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Hu
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu, China
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dawei Rong
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Fu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
167
|
The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases. Acta Pharmacol Sin 2018; 39:1085-1099. [PMID: 29877319 DOI: 10.1038/aps.2018.35] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/20/2018] [Indexed: 12/21/2022] Open
Abstract
Pervasive transcription of the human genome is responsible for the production of a myriad of non-coding RNA molecules (ncRNAs) some of them with regulatory functions. The pivotal role of ncRNAs in cardiovascular biology has been unveiled in the last decade, starting from the characterization of the involvement of micro-RNAs in cardiovascular development and function, and followed by the use of circulating ncRNAs as biomarkers of cardiovascular diseases. The human non-coding secretome is composed by several RNA species that circulate in body fluids and could be used as biomarkers for diagnosis and outcome prediction. In cardiovascular diseases, secreted ncRNAs have been described as biomarkers of several conditions including myocardial infarction, cardiac failure, and atrial fibrillation. Among circulating ncRNAs, micro-RNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have been proposed as biomarkers in different cardiovascular diseases. In comparison with standard biomarkers, the biochemical nature of ncRNAs offers better stability and flexible storage conditions of the samples, and increased sensitivity and specificity. In this review we describe the current trends and future prospects of the use of the ncRNA secretome components as biomarkers of cardiovascular diseases, including the opening questions related with their secretion mechanisms and regulatory actions.
Collapse
|
168
|
Circular noncoding RNAs as potential therapies and circulating biomarkers for cardiovascular diseases. Acta Pharmacol Sin 2018; 39:1100-1109. [PMID: 29565037 DOI: 10.1038/aps.2017.196] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022] Open
Abstract
Recent advancements in genome-wide analyses and RNA-sequencing technologies led to the discovery of small noncoding RNAs, such as microRNAs (miRs), as well as both linear long noncoding RNAs (lncRNAs) and circular long noncoding RNAs (circRNAs). The importance of miRs and lncRNAs in the treatment, prognosis and diagnosis of cardiovascular diseases (CVDs) has been extensively reported. We also previously reviewed their implications in therapies and as biomarkers for CVDs. More recently, circRNAs have also emerged as important regulators in CVDs. CircRNAs are circular genome products that are generated by back splicing of specific regions of pre-messenger RNAs (pre-mRNAs). Growing interest in circRNAs led to the discovery of a wide array of their pathophysiological functions. CircRNAs have been shown to be key regulators of CVDs such as myocardial infarction, atherosclerosis, cardiomyopathy and cardiac fibrosis. Accordingly, circRNAs have been recently proposed as potential therapeutic targets and biomarkers for CVDs. In this review, we summarize the current state of the literature on circRNAs, starting with their biogenesis and global mechanisms of actions. We then provide a synopsis of their involvement in various CVDs. Lastly, we emphasize the great potential of circRNAs as biomarkers for the early detection of CVDs, and discuss several patents and recent papers that highlight the utilization of circRNAs as promising biomarkers.
Collapse
|
169
|
Sun JF. Roles of Circular RNAs And Their Interactions With MicroRNAs in Human Disorders. ACTA ACUST UNITED AC 2018. [DOI: 10.31491/csrc.2018.6.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
170
|
Qian L, Yu S, Chen Z, Meng Z, Huang S, Wang P. The emerging role of circRNAs and their clinical significance in human cancers. Biochim Biophys Acta Rev Cancer 2018; 1870:247-260. [PMID: 29928954 DOI: 10.1016/j.bbcan.2018.06.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/27/2018] [Accepted: 06/16/2018] [Indexed: 12/14/2022]
Abstract
Circular RNA (circRNA), a recently discovered subclass of non-coding RNAs (ncRNAs), forms a covalently closed loop with neither a 5' cap structure nor a 3' polyadenylated tail. Generated from precursor mRNA (pre-mRNA) through "backsplicing" (a type of alternative RNA splicing), the majority of circRNAs are located in the cytoplasm and are widespread among living organisms. They are stable and conserved and exhibit spatiotemporal-specific expression. CircRNAs are known to be involved in the development and progression of multiple diseases, including cancer, by acting as microRNA (miRNA) sponges and by regulating processes such as transcription and translation. The extensively aberrant expression profiles of circRNAs in multiple cancerous tissues make these molecules promising diagnostic biomarkers and therapeutic targets for cancer. Here, we briefly review the characteristics, biogenesis, classification, and functions of circRNAs, with a particular focus on the role of circRNAs in various cancers.
Collapse
Affiliation(s)
- Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 2000332, China
| | - Shulin Yu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 2000332, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 2000332, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 2000332, China
| | - Shenglin Huang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 2000332, China; Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 2000332, China.
| |
Collapse
|
171
|
Wang D, Yang S, Wang H, Wang J, Zhang Q, Zhou S, He Y, Zhang H, Deng F, Xu H, Zhong S, Fu L, Tang J. The progress of circular RNAs in various tumors. Am J Transl Res 2018; 10:1571-1582. [PMID: 30018701 PMCID: PMC6038087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Circular RNAs (circRNAs), a novel type of non-coding RNAs, presented as covalently closed continuous loops. Recent researches had found that circRNAs could function as microRNA sponges, regulators of gene transcription and encoding proteins. They were relatively stable and expressed widely in cytoplasm, which played important roles in carcinogenesis of cancers, such as esophageal cancer, gastric cancer, colorectal cancer, hepatocarcinoma, bladder cancer, glioma, breast cancer, osteosarcoma and so on. Furthermore, they were involved in many biological functions, like cell proliferation, drug resistance, cell cycle, invasion and metastasis. Therefore, the further studies were meaningful on the mechanism of cancers and circRNAs. In the review, we will summarize the current biogenesis of circRNAs and the roles of them in various cancers, which might be a novel biomarker and therapeutic avenue.
Collapse
Affiliation(s)
- Dandan Wang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Sujin Yang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Hui Wang
- Jiangsu Jiankang Vocational CollegeNanjing 210000, China
| | - Jinyan Wang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Siying Zhou
- The First Clinical Medical College, Nanjing University of Traditional Chinese MedicineNanjing 210023, China
| | - Yunjie He
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Heda Zhang
- Department of General Surgery, Southeast University Medical SchoolNanjing 210009, China
| | - Fei Deng
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| | - Hanzi Xu
- Department of Radiation Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical UniversityNanjing 210009, China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjing 210009, China
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and HospitalTianjin, China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical UniversityNanjing 210029, China
| |
Collapse
|
172
|
Holdt LM, Kohlmaier A, Teupser D. Molecular functions and specific roles of circRNAs in the cardiovascular system. Noncoding RNA Res 2018; 3:75-98. [PMID: 30159442 PMCID: PMC6096412 DOI: 10.1016/j.ncrna.2018.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 12/25/2022] Open
Abstract
As part of the superfamily of long noncoding RNAs, circular RNAs (circRNAs) are emerging as a new type of regulatory molecules that partake in gene expression control. Here, we review the current knowledge about circRNAs in cardiovascular disease. CircRNAs are not only associated with different types of cardiovascular disease, but they have also been identified as intracellular effector molecules for pathophysiological changes in cardiovascular tissues, and as cardiovascular biomarkers. This evidence is put in the context of the current understanding of general circRNA biogenesis and of known interactions of circRNAs with DNA, RNA, and proteins.
Collapse
Affiliation(s)
- Lesca M. Holdt
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Germany
| | | | | |
Collapse
|
173
|
Circular RNAs as novel biomarkers with regulatory potency in human diseases. Future Sci OA 2018; 4:FSO314. [PMID: 30112184 PMCID: PMC6088266 DOI: 10.4155/fsoa-2018-0036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) are a large class of noncoding RNAs characterized with closed loop structures without 3′ and 5′ polar ends. They can roughly be divided into exonic circRNAs, exon–intron circRNAs and circular intronic RNAs. CircRNAs are characterized with stability, prevalence, specificity and conservation, which arouse great interest in circRNAs as disease biomarkers. Their abilities to sponge to miRNAs, cis-regulate parent genes, bind to proteins and encode proteins endow circRNAs a critical role of regulation in eukaryotic cells. This concise review focuses on circRNAs as functional biomarkers and therapeutic targets in both tumor and nontumorous diseases. Although they were discovered in 1970s, circular RNAs (circRNAs) have attracted great interest only relatively recently. Instead of genome ‘junk matters’, circRNAs are now considered as promising biomarkers and treatment targets. CircRNAs are involved in numerous cancer-related and noncancer diseases, such as lung cancer, gastric cancer, cardiovascular diseases, diabetes mellitus and so on. This review outlines the classification, characterization and function of circRNAs, with a specific focus on recent studies concerning the role of circRNAs in human diseases.
Collapse
|
174
|
Lei K, Bai H, Wei Z, Xie C, Wang J, Li J, Chen Q. The mechanism and function of circular RNAs in human diseases. Exp Cell Res 2018; 368:147-158. [PMID: 29730164 DOI: 10.1016/j.yexcr.2018.05.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are a recently discovered form of RNA. Initially, circRNAs were believed to result from errors during the process of gene transcription. However, after further investigation, scientists suggested that circRNAs are of great biological significance. CircRNAs show stability, conservation, abundance, and tissue and stage specificity. They can also function as miRNA sponges, regulate gene expression, and interact with proteins to affect cell behavior. Emerging evidence has also demonstrated that circRNAs participate or show abnormal expression in diseases, including central nervous system diseases, cardiovascular diseases and cancers, indicating their marked potential in the prediction and prognosis of diseases and clinical treatment.
Collapse
Affiliation(s)
- Kexin Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hetian Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zihao Wei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changqing Xie
- Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Jiongke Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
175
|
Abstract
BACKGROUND Circular RNAs (circRNAs) have emerged as a novel class of widespread non-coding RNAs, and they play crucial roles in various biological processes. However, the characterization and function of circRNAs in infantile hemangioma (IH) remain elusive. METHODS In this study, we used RNA-Seq and circRNA prediction to study and characterize the circRNAs in IH tissue and a matched normal skin control. Specific circRNAs were verified using real-time polymerase chain reaction. RESULTS AND CONCLUSION We found that of the 9811 identified circRNAs, 249 candidates were differentially expressed, including 124 upregulated and 125 downregulated circRNAs in the IH group compared with the matched normal skin control group. A set of differentially expressed circRNAs (in particular, hsa_circRNA001885 and hsa_circRNA006612 expression) were confirmed using qRT-PCR. Gene ontology and pathway analysis revealed that compared to matched normal skin tissues, many processes that were over-represented in IH group were related to the binding, protein binding, gap junction, and focal adhesion. Specific circRNAs were associated with several micro-RNAs (miRNAs) predicted using miRanda. Altogether, our findings highlight the potential importance of circRNAs in the biology of IH and its response to treatment.
Collapse
|
176
|
Zhang L, Liu X, Ma X, Liu Y, Che S, Cui J, An X, Cao B, Song Y. Testin was regulated by circRNA3175-miR182 and inhibited endometrial epithelial cell apoptosis in pre-receptive endometrium of dairy goats. J Cell Physiol 2018; 233:6965-6974. [PMID: 29693265 DOI: 10.1002/jcp.26614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/22/2018] [Indexed: 12/16/2022]
Abstract
Circular RNAs (circRNAs) in various tissues and cell types from mammalian sources have been studied. However, present knowledge on circRNAs in the development of pre-receptive endometrium (PE) in dairy goats is limited. In the pre-receptive endometrium of dairy goats, higher circRNA3175 (ciR3175) levels, lower miR-182 levels and higher Testin (TES) levels were detected. And ciR3175 could decreased the miR-182 levels by acting as a miRNA sponge, and miR-182 could down-regulated the expression level of TES via the predicted target site in endometrial epithelial cells (EECs) in vitro. Via this way, ciR3175 functioned as a competing endogenous RNAs (ceRNA) that sequestered miR-182, thereby protecting TES transcripts from miR-182-mediated suppression in EECs in vitro. Further, TES inhibited EECs apoptosis by decreasing the expression level of BCL-2/BAX via the MAPK pathway. Thus, a ciR3175-miR182-TES pathway in the endometrium was identified in EECs, and the modulation of which could emerge as a potential target in regulating the pre-receptive endometrium development in dairy goats.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiaorui Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xingna Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yuexia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Sicheng Che
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Jiuzeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| |
Collapse
|
177
|
Zhou R, Wu Y, Wang W, Su W, Liu Y, Wang Y, Fan C, Li X, Li G, Li Y, Xiong W, Zeng Z. Circular RNAs (circRNAs) in cancer. Cancer Lett 2018; 425:134-142. [PMID: 29625140 DOI: 10.1016/j.canlet.2018.03.035] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 02/06/2023]
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs that do not have 5' end caps or 3' end poly (A) tails. There are more than one hundred thousand genes that encode circRNAs. Clinical data show that there are differences in the expression of circRNAs in a variety of diseases, including cancer, suggesting that circRNA has a regulatory effect on some diseases. Further studies reveal that circRNA can be used as an endogenous competitive RNA, thereby regulating the proliferation, invasion or other physiological activities of tumor cells. In addition, some circRNAs located in the nucleus can regulate the transcription of the parental gene by binding to RNA polymerase II. circRNA can also combine with proteins to influence the cell cycle. Furthermore, recent studies have shown that circRNA can encode proteins, similarly to mRNA. circRNAs are found extensively in human cells and have tissue specificity. They have the potential to be used in clinical applications as tumor markers and therapeutic targets.
Collapse
Affiliation(s)
- Ruoyu Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yuwei Wu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wenxi Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenjia Su
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yicong Liu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
178
|
Liu S, Yang Y, Jiang S, Tang N, Tian J, Ponnusamy M, Tariq MA, Lian Z, Xin H, Yu T. Understanding the role of non-coding RNA (ncRNA) in stent restenosis. Atherosclerosis 2018; 272:153-161. [PMID: 29609130 DOI: 10.1016/j.atherosclerosis.2018.03.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 02/02/2023]
Abstract
Coronary heart disease (CHD) is one of the leading disorders with the highest mortality rate. Percutaneous angioplasty and stent implantation are the currently available standard methods for the treatment of obstructive coronary artery disease. However, the stent being an exogenous substance causes several complications by promoting the proliferation of vascular smooth muscle cells, immune responses and neointima formation after implantation, leading to post-stent restenosis (ISR) and late thrombosis. The prevention of these adverse vascular events is important to achieve long-term proper functioning of the heart after stent implantation. Non-coding ribonucleic acids (ncRNAs) are RNA molecules not translated into proteins, theyhave a great potential in regulating endothelial cell and vascular smooth muscle function as well as inflammatory reactions. In this review, we outline the regulatory functions of different classes of ncRNA in cardiovascular disease and propose ncRNAs as new targets for stent restonosis treatment.
Collapse
Affiliation(s)
- Shaoyan Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 266000, People's Republic of China
| | - Yanyan Yang
- Institue for Translational Medicine, Qingdao University, 266021, People's Republic of China
| | - Shaoyan Jiang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, 266000, People's Republic of China
| | - Ningning Tang
- Institue for Translational Medicine, Qingdao University, 266021, People's Republic of China
| | - Jiawei Tian
- Department of Emergency, The Affiliated Hospital of Qingdao University, 266000, People's Republic of China
| | - Murugavel Ponnusamy
- Institue for Translational Medicine, Qingdao University, 266021, People's Republic of China
| | - Muhammad Akram Tariq
- Department of Biomolecular Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, CA, United states
| | - Zhexun Lian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 266000, People's Republic of China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 266000, People's Republic of China.
| | - Tao Yu
- Institue for Translational Medicine, Qingdao University, 266021, People's Republic of China.
| |
Collapse
|
179
|
|
180
|
Huang X, Chen Y, Xiao J, Huang Z, He L, Xu D, Peng J. Identification of differentially expressed circular RNAs during TGF-ß1-induced endothelial-to-mesenchymal transition in rat coronary artery endothelial cells. Anatol J Cardiol 2018; 19. [PMID: 29521313 PMCID: PMC5864769 DOI: 10.14744/anatoljcardiol.2018.95142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Although differentially expressed circRNAs have been proposed to be closely associated with epithelial-mesenchymal transition (EMT), the roles of circRNAs remain unclear in endothelial-to-mesenchymal transition (EndMT), which is a subcategory of EMT. Herein, we characterized the expression and potential function of circRNAs during TGF-ß1-induced EndMT in rat coronary artery endothelial cells (CAEC). METHODS High-throughput RNA sequencing was performed for unbiasedly profiling the expression of circRNAs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analysis were performed using online forecasting databases. Real-time quantitative polymerase chain reaction (RT-qPCR) was used for confirming the circRNA expression obtained from the sequencing data. RESULTS Among the candidated circRNAs, 102 circRNAs were differentially expressed, among which 66 circRNAs and 36 circRNAs were up-regulated and down-regulated, respectively, in TGF-ß1-treated rat CAEC. GO analysis findings revealed that numerous differentially expressed circRNAs were closely associated with the biological process. KEGG signaling pathway analysis suggested that the abnormal expression of circRNAs had been implicated in regulating the dynamics endothelial cell junctions. Furthermore, we also found that three EndMT-related circRNAs, chr5:90817794|90827570, chr8:71336875|71337745, and chr6:22033342|22038870, were significantly up-regulated in TGF-ß1-treated rat CAEC. CONCLUSION The findings of this study reveal a comprehensive expression and potential functions of differentially expressed circRNAs during TGF-ß1-induced EndMT. These findings provide mechanistic insights into the role of circRNAs in EndMT-related cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Xingfu Huang
- Department of Cardiology, Nanfang Hospital, Southern Medical University; Guangzhou-China
| | - Yanjia Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University; Guangzhou-China
| | - Junhui Xiao
- Department of Cardiology, Huadu District People’s Hospital, Southern Medical University; Guangzhou-China
| | - Zheng Huang
- Department of Cardiology, Nanfang Hospital, Southern Medical University; Guangzhou-China
| | - Liwei He
- Department of Cardiology, Nanfang Hospital, Southern Medical University; Guangzhou-China
| | - Dingli Xu
- Department of Cardiology, Nanfang Hospital, Southern Medical University; Guangzhou-China
| | - Jian Peng
- Department of Cardiology, Nanfang Hospital, Southern Medical University; Guangzhou-China
- Address for correspondence: Jian Peng, MD, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515-China Phone: +86-020-62787090 Fax: +86-020-62787093 E-mail:
| |
Collapse
|
181
|
Gomes CP, Salgado-Somoza A, Creemers EE, Dieterich C, Lustrek M, Devaux Y. Circular RNAs in the cardiovascular system. Noncoding RNA Res 2018; 3:1-11. [PMID: 30159434 PMCID: PMC6084836 DOI: 10.1016/j.ncrna.2018.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/16/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023] Open
Abstract
Until recently considered as rare, circular RNAs (circRNAs) are emerging as important regulators of gene expression. They are ubiquitously expressed and represent a novel branch of the family of non-coding RNAs. Recent investigations showed that circRNAs are regulated in the cardiovascular system and participate in its physiological and pathological development. In this review article, we will provide an overview of the role of circRNAs in cardiovascular health and disease. After a description of the biogenesis of circRNAs, we will summarize what is known of the expression, regulation and function of circRNAs in the cardiovascular system. We will then address some technical aspects of circRNAs research, discussing how artificial intelligence may aid in circRNAs research. Finally, the potential of circRNAs as biomarkers of cardiovascular disease will be addressed and directions for future research will be proposed.
Collapse
Key Words
- Artificial intelligence
- Biomarker
- CRISPR, clustered regularly interspaced short palindromic repeats
- CV, cardiovascular
- Cardiovascular disease
- Cardiovascular system
- Circular RNAs
- DCM, dilated cardiomyopathy
- EMT, epithelial-mesenchymal transition
- Non-coding RNAs
- RNA-seq, RNA sequencing
- RPAD, RNase R treatment followed by polyadenylation and poly(A)+ RNA depletion
- RT-qPCR, reverse transcription quantitative polymerase chain reaction
- circRNAs, circular RNAs
- lncRNAs, long non-coding RNAs
- miRNAs, microRNAs
- ncRNAs, non-coding RNAs
Collapse
Affiliation(s)
- Clarissa P.C. Gomes
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | | - Esther E. Creemers
- Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Christoph Dieterich
- German Center for Cardiovascular Research, University Hospital Heidelberg, Heidelberg, Germany
| | - Mitja Lustrek
- Department of Intelligent Systems, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | | |
Collapse
|
182
|
Holdt LM, Kohlmaier A, Teupser D. Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol Life Sci 2018; 75:1071-1098. [PMID: 29116363 PMCID: PMC5814467 DOI: 10.1007/s00018-017-2688-5] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/29/2017] [Accepted: 10/17/2017] [Indexed: 12/27/2022]
Abstract
Protein-coding and noncoding genes in eukaryotes are typically expressed as linear messenger RNAs, with exons arranged colinearly to their genomic order. Recent advances in sequencing and in mapping RNA reads to reference genomes have revealed that thousands of genes express also covalently closed circular RNAs. Many of these circRNAs are stable and contain exons, but are not translated into proteins. Here, we review the emerging understanding that both, circRNAs produced by co- and posttranscriptional head-to-tail "backsplicing" of a downstream splice donor to a more upstream splice acceptor, as well as circRNAs generated from intronic lariats during colinear splicing, may exhibit physiologically relevant regulatory functions in eukaryotes. We describe how circRNAs impact gene expression of their host gene locus by affecting transcriptional initiation and elongation or splicing, and how they partake in controlling the function of other molecules, for example by interacting with microRNAs and proteins. We conclude with an outlook how circRNA dysregulation affects disease, and how the stability of circRNAs might be exploited in biomedical applications.
Collapse
Affiliation(s)
- Lesca M Holdt
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Alexander Kohlmaier
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Faculty of Biology, Genetics, LMU Munich, Großhaderner Str. 2-4, 82152, Martinsried, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
183
|
Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol Ther 2018; 187:31-44. [PMID: 29406246 DOI: 10.1016/j.pharmthera.2018.01.010] [Citation(s) in RCA: 581] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The emerging recognition of the functional roles of circular RNAs (circRNAs) has given rise to a new perspective regarding our understanding of cellular physiology and disease pathogenesis. Unlike linear RNAs, circRNAs are covalently closed continuous loops that act as gene regulators in mammals, and their sequence composition determines the mode of circRNA biogenesis. The availability and integrated use of advanced genome analysis platforms have allowed the identification of a large number of these molecules. Their high abundance, stability and evolutionary conservation among species endow circRNAs with numerous potential functions, such as acting as microRNA (miRNA) sponges or binding to RNA-associated proteins to form RNA-protein complexes that regulate gene transcription. Moreover, circRNAs have been shown to be expressed in a tissue-specific manner and in pathological conditions, which has stimulated significant interest in their role in human disease and cancer. In this concise review, we outline the characteristics, functions and mechanisms of action of circRNAs as well as their involvement in different diseases. Although their exact roles and mechanisms of gene regulation remain to be clarified, circRNAs have potential applications as disease biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Bing Han
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China; Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
184
|
Guo XY, Sun F, Chen JN, Wang YQ, Pan Q, Fan JG. circRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling. World J Gastroenterol 2018; 24:323-337. [PMID: 29391755 PMCID: PMC5776394 DOI: 10.3748/wjg.v24.i3.323] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate micro (mi)R-34a-antagonizing circular (circ)RNA that underlies hepatocellular steatosis.
METHODS The effect of circRNA on miR-34a was recognized by the miRNA response element (MRE), and validated by the dual-luciferase reporter assay. Its association with hepatocellular steatosis was investigated in HepG2-based hepatocellular steatosis induced by free fatty acids (FFAs; 2:1 oleate:palmitate) stimulation. After normalization of the steatosis-related circRNA by expression vector, analysis of miR-34a activity, peroxisome proliferator-activated receptor (PPAR)α level, and expression of downstream genes were carried out so as to reveal its impact on the miR-34a/PPARα regulatory system. Both triglyceride (TG) assessment and cytopathological manifestations uncovered the role of circRNA in miR-34a-dependent hepatosteatogenesis.
RESULTS Bioinformatic and functional analysis verified circRNA_0046366 to antagonize the activity of miR-34a via MRE-based complementation. In contrast to its lowered level during FFA-induced hepatocellular steatosis, circRNA_0046366 up-regulation abolished the miR-34a-dependent inhibition of PPARα that played a critical role in metabolic signaling pathways. PPARα restoration exerted transcriptional improvement to multiple genes responsible for lipid metabolism. TG-specific lipolytic genes [carnitine palmitoyltransferase 1A (CPT1A) and solute-carrier family 27A (SLC27A)] among these showed significant increase in their expression levels. The circRNA_0046366-related rebalancing of lipid homeostasis led to dramatic reduction of TG content, and resulted in the ameliorated phenotype of hepatocellular steatosis.
CONCLUSION Dysregulation of circRNA_0046366/miR-34a/PPARα signaling may be a novel epigenetic mechanism underlying hepatocellular steatosis. circRNA_0046366 serves as a potential target for the treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Xing-Ya Guo
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Fang Sun
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Jian-Neng Chen
- Department of Hepatology, Zhengxing Hospital, Zhangzhou 363000, Fujian Province, China
| | - Yu-Qin Wang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Qin Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Shanghai Key Laboratory of Children’s Digestion and Nutrition, Shanghai 200092, China
| |
Collapse
|
185
|
Wang L, Meng X, Li G, Zhou Q, Xiao J. Circular RNAs in Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1087:191-204. [DOI: 10.1007/978-981-13-1426-1_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
186
|
Yao J, Dai Q, Liu Z, Zhou L, Xu J. Circular RNAs in Organ Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1087:259-273. [DOI: 10.1007/978-981-13-1426-1_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
187
|
Zhang L, Liu X, Che S, Cui J, Liu Y, An X, Cao B, Song Y. CircRNA-9119 regulates the expression of prostaglandin-endoperoxide synthase 2 (PTGS2) by sponging miR-26a in the endometrial epithelial cells of dairy goat. Reprod Fertil Dev 2018; 30:1759-1769. [DOI: 10.1071/rd18074] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) have been found to play important functional roles in epigenetic regulation under certain physiological and pathological conditions. However, knowledge of circRNAs during the development of receptive endometrium (RE) from pre-RE is limited. In the RE of dairy goats, higher circRNA-9119 levels, with lower miR-26a and higher prostaglandin-endoperoxide synthase 2 (PTGS2) levels, were detected. Further study showed that circRNA-9119 decreased levels of miR-26a by acting as a microRNA sponge, and that miR-26a downregulated the expression of PTGS2 via the predicted target site in endometrial epithelial cells (EECs) of dairy goats in vitro. In this way, circRNA-9119 functioned as a competing endogenous RNAs (ceRNA) that sequestered miR-26a, thereby protecting PTGS2 transcripts from miR-26a-mediated suppression in dairy goat EECs in vitro. Furthermore, PTGS2 participated in the regulation of some protein markers for endometrial receptivity in dairy goat EECs in vitro. Thus, a circRNA-9119–miR-26a–PTGS2 pathway in the endometrium was identified, and modulation of circRNA-9119–miR-26a–PTGS2 expression in EECs may emerge as a potential target to regulate the development of RE.
Collapse
|
188
|
Sulaiman SA, Abdul Murad NA, Mohamad Hanif EA, Abu N, Jamal R. Prospective Advances in Circular RNA Investigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1087:357-370. [PMID: 30259380 DOI: 10.1007/978-981-13-1426-1_28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
circRNAs have emerged as one of the key regulators in many cellular mechanisms and pathogenesis of diseases. However, with the limited knowledge and current technologies for circRNA investigations, there are several challenges that need to be addressed for. These include challenges in understanding the regulation of circRNA biogenesis, experimental designs, and sample preparations to characterize the circRNAs in diseases as well as the bioinformatics pipelines and algorithms. In this chapter, we discussed the above challenges and possible strategies to overcome those limitations. We also addressed the differences between the existing applications and technologies to study the circRNAs in diseases. By addressing these challenges, further understanding of circRNAs roles and regulations as well as the discovery of novel circRNAs could be achieved.
Collapse
Affiliation(s)
- Siti Aishah Sulaiman
- Universiti Kebangsaan Malaysia (UKM) Medical Molecular Biology Institute (UMBI), Kuala Lumpur, Malaysia
| | - Nor Azian Abdul Murad
- Universiti Kebangsaan Malaysia (UKM) Medical Molecular Biology Institute (UMBI), Kuala Lumpur, Malaysia.
| | | | - Nadiah Abu
- Universiti Kebangsaan Malaysia (UKM) Medical Molecular Biology Institute (UMBI), Kuala Lumpur, Malaysia.
| | - Rahman Jamal
- Universiti Kebangsaan Malaysia (UKM) Medical Molecular Biology Institute (UMBI), Kuala Lumpur, Malaysia
| |
Collapse
|
189
|
Wang T, Pan W, Hu J, Zhang Z, Li G, Liang Y. Circular RNAs in Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1087:275-285. [PMID: 30259374 DOI: 10.1007/978-981-13-1426-1_22] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metabolic diseases include diabetes mellitus (DM), obesity, metabolic syndrome, and non-alcoholic fatty liver disease (NAFLD). Circular RNA is a new type of RNA that is different from traditional linear RNA and has a closed loop structure. However, the function of circular RNA is not yet well elucidated in metabolic diseases. Only a few studies have reported about the relationship between circular RNA and metabolic diseases such as DM and NAFLD. This chapter presents a brief review of epidemiology, pathophysiology, or treatment of DM and NAFLD and then discusses the relationship between circular RNA and DM or NAFLD. Besides, this chapter further provides an updated discussion of the most relevant discoveries regarding circular RNA and their potential applications in molecular diagnostics, nucleic acid therapy, and biomarkers.
Collapse
Affiliation(s)
- Tianhui Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Wen Pan
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Jun Hu
- Department of Pediatric Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongrong Zhang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yajun Liang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
190
|
Yang D, Yang K, Yang M. Circular RNA in Aging and Age-Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:17-35. [DOI: 10.1007/978-981-13-1117-8_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
191
|
Song M, Xia L, Sun M, Yang C, Wang F. Circular RNA in Liver: Health and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1087:245-257. [PMID: 30259372 DOI: 10.1007/978-981-13-1426-1_20] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circular RNA (circRNA) is an important class of noncoding RNA characterized by covalently closed continuous loop structures. In recent years, the various functions of circRNAs have been continuously documented, including effects on cell proliferation and apoptosis and nutrient metabolism. The liver is the largest solid organ in mammals, and it also performs many functions in the body, which is considered to be the busiest organ in the body. At the same time, the liver is vulnerable to multiple pathogenic factors, causing various acute and chronic liver diseases. The pathogenesis of liver disease is still not fully understood. As a rising star for the past few years, circRNAs have been proven involved in the regulation of liver homeostasis and disease. This chapter will explain the role of circRNAs in liver health and diseases and sort out the confusion in the present study.
Collapse
Affiliation(s)
- Meiyi Song
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Xia
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengxue Sun
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changqing Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
192
|
Yang F, Zhu P, Guo J, Liu X, Wang S, Wang G, Liu W, Wang S, Ge N. Circular RNAs in thoracic diseases. J Thorac Dis 2017; 9:5382-5389. [PMID: 29312749 DOI: 10.21037/jtd.2017.10.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs with continuous, covalently closed circular structures. Investigators have shown previously that circRNAs are regulators of gene expression in mammals. These tissue-specific transcripts are produced primarily by exonic or intronic sequences of housekeeping genes. Several biosynthetic models have been proposed for circRNAs, and consensus is lacking. CircRNAs are widely expressed in the cytoplasm and highly conserved, what is more, unlike other noncoding RNAs, circRNAs are relatively stable. These properties suggest special roles of circRNAs, such as microRNA (miRNA) sponges, regulators of selective splicing, or even protein-coding sequences. The expression of circRNAs is associated with many pathologic conditions; therefore, circRNAs may have utility as biomarker for the diagnosis or prediction of diseases. Authors previously have demonstrated that circRNAs can regulate the expression of a variety of disease-related miRNAs. The circRNA-miRNA-target gene interaction network regulates several pathways that inhibit or promote the occurrence of certain diseases. Based on their potential clinical relevance, circRNAs are a crucial topic of disease prevention and treatment research. Herein, we review current research regarding circRNAs and explore their potential clinical applications for thoracic diseases diagnosis and treatment.
Collapse
Affiliation(s)
- Fan Yang
- Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ping Zhu
- Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jintao Guo
- Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiang Liu
- Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Sheng Wang
- Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Guoxin Wang
- Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wen Liu
- Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shupeng Wang
- Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Nan Ge
- Endoscopy Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
193
|
Haque S, Harries LW. Circular RNAs (circRNAs) in Health and Disease. Genes (Basel) 2017; 8:genes8120353. [PMID: 29182528 PMCID: PMC5748671 DOI: 10.3390/genes8120353] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 01/17/2023] Open
Abstract
Splicing events do not always produce a linear transcript. Circular RNAs (circRNAs) are a class of RNA that are emerging as key new members of the gene regulatory milieu, which are produced by back-splicing events within genes. In circRNA formation, rather than being spliced in a linear fashion, exons can be circularised by use of the 3′ acceptor splice site of an upstream exon, leading to the formation of a circular RNA species. circRNAs have been demonstrated across species and have the potential to present genetic information in new orientations distinct from their parent transcript. The importance of these RNA players in gene regulation and normal cellular homeostasis is now beginning to be recognised. They have several potential modes of action, from serving as sponges for micro RNAs and RNA binding proteins, to acting as transcriptional regulators. In accordance with an important role in the normal biology of the cell, perturbations of circRNA expression are now being reported in association with disease. Furthermore, the inherent stability of circRNAs conferred by their circular structure and exonuclease resistance, and their expression in blood and other peripheral tissues in association with endosomes and microvesicles, renders them excellent candidates as disease biomarkers. In this review, we explore the state of knowledge on this exciting class of transcripts in regulating gene expression and discuss their emerging role in health and disease.
Collapse
Affiliation(s)
- Shahnaz Haque
- RNA-Mediated Mechanisms of Disease Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter EX2 5DW, UK.
| | - Lorna W Harries
- RNA-Mediated Mechanisms of Disease Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Barrack Road, Exeter EX2 5DW, UK.
| |
Collapse
|
194
|
Wang M, Yu F, Wu W, Zhang Y, Chang W, Ponnusamy M, Wang K, Li P. Circular RNAs: A novel type of non-coding RNA and their potential implications in antiviral immunity. Int J Biol Sci 2017; 13:1497-1506. [PMID: 29230098 PMCID: PMC5723916 DOI: 10.7150/ijbs.22531] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/08/2017] [Indexed: 12/23/2022] Open
Abstract
Circular RNAs (circRNAs), a novel type of non-coding RNAs (ncRNAs), are ubiquitously expressed in eukaryotic cells during post-transcriptional processes. Unlike linear RNAs, circRNAs form covalent-closed continuous loops without 5' to 3' polarities and poly (A) tails. With advances in high-throughput sequencing technology, numerous circRNAs have been identified in plants, animals and humans. Notably, circRNAs display cell-type, tissue-type and developmental-stage specific expression patterns in eukaryotic transcriptome, which reveals their significant regulatory functions in gene expression. More importantly, circRNAs serve as microRNA (miRNA) sponges and crucial regulators of gene expression. Additionally, circRNAs modulate pre-mRNA alternative splicing and possess protein-coding capacity. CircRNAs exhibit altered expression under pathological conditions and are strongly associated with the development of various human diseases. Interestingly, circRNAs can also induce antiviral immune responses. A recent study found that the delivery of circRNAs generated in vitro activates RIG-I-mediated innate immune responses and provides protection against viral infection. The antiviral dsRNA-binding proteins, NF90/NF110, act as key regulators in circRNA biogenesis. NF90/NF110 are also functional in inhibiting viral replication through binding to viral mRNAs. In this review, we provide a comprehensive overview on the classification, biogenesis and functions of circRNAs. We also discuss the critical role of circRNAs in eliciting antiviral immunity, providing evidence for the potential implications of circRNAs in antiviral therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| |
Collapse
|
195
|
Circular RNA hsa_circ_0003575 regulates oxLDL induced vascular endothelial cells proliferation and angiogenesis. Biomed Pharmacother 2017; 95:1514-1519. [DOI: 10.1016/j.biopha.2017.09.064] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022] Open
|
196
|
Transcriptomic analysis of the role of RasGEF1B circular RNA in the TLR4/LPS pathway. Sci Rep 2017; 7:12227. [PMID: 28947785 PMCID: PMC5612941 DOI: 10.1038/s41598-017-12550-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) have recently emerged as a large class of novel non-coding RNA species. However, the detailed functional significance of the vast majority of them remains to be elucidated. Most functional characterization studies targeting circRNAs have been limited to resting cells, leaving their role in dynamic cellular responses to stimuli largely unexplored. In this study, we focus on the LPS-induced cytoplasmic circRNA, mcircRasGEF1B, and combine targeted mcircRasGEF1B depletion with high-throughput transcriptomic analysis to gain insight into its function during the cellular response to LPS stimulation. We show that knockdown of mcircRasGEF1B results in altered expression of a wide array of genes. Pathway analysis revealed an overall enrichment of genes involved in cell cycle progression, mitotic division, active metabolism, and of particular interest, NF-κB, LPS signaling pathways, and macrophage activation. These findings expand the set of functionally characterized circRNAs and support the regulatory role of mcircRasGEF1B in immune response during macrophage activation and protection against microbial infections.
Collapse
|
197
|
Rong D, Sun H, Li Z, Liu S, Dong C, Fu K, Tang W, Cao H. An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget 2017; 8:73271-73281. [PMID: 29069868 PMCID: PMC5641211 DOI: 10.18632/oncotarget.19154] [Citation(s) in RCA: 378] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/01/2017] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs), a novel class of long noncoding RNAs, are characterized by a covalently closed continuous loop without 5' or 3' polarities structure and have been widely found in thousands of lives including plants, animals and human beings. Utilizing the high-throughput RNA sequencing (RNA-seq) technology, recent findings have indicated thata great deal of circRNAs, which are endogenous, stable, widely expressed in mammalian cells, often exhibit cell type-specific, tissue-specific or developmental-stage-specific expression. Evidences are arising that some circRNAs might regulate microRNA (miRNA) function as microRNA sponges and play a significant role in transcriptional control. circRNAs associate with related miRNAs and the circRNA-miRNA axes are involved in a serious of disease pathways such as apoptosis, vascularization, invasion and metastasis. In this review, we generalize and analyse the aspects including synthesis, characteristics, classification, and several regulatory functions of circRNAs and highlight the association between circRNAs dysregulation by circRNA-miRNA-mRNA axis and sorts of diseases including cancer- related and non-cancer diseases."
Collapse
Affiliation(s)
- Dawei Rong
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Handong Sun
- Department of Oncology Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhouxiao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuheng Liu
- Department of Neurosurgery, The First affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chaoxi Dong
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Fu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
198
|
He L, Zhang A, Xiong L, Li Y, Huang R, Liao L, Zhu Z, Wang AY. Deep Circular RNA Sequencing Provides Insights into the Mechanism Underlying Grass Carp Reovirus Infection. Int J Mol Sci 2017; 18:ijms18091977. [PMID: 28906455 PMCID: PMC5618626 DOI: 10.3390/ijms18091977] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 12/26/2022] Open
Abstract
Grass carp hemorrhagic disease, caused by the grass carp reovirus (GCRV), is a major disease that hampers the development of grass carp aquaculture in China. The mechanism underlying GCRV infection is still largely unknown. Circular RNAs (circRNAs) are important regulators involved in various biological processes. In the present study, grass carp were infected with GCRV, and spleen samples were collected at 0 (control), 1, 3, 5, and 7 days post-infection (dpi). Samples were used to construct and sequence circRNA libraries, and a total of 5052 circRNAs were identified before and after GCRV infection, of which 41 exhibited differential expression compared with controls. Many parental genes of the differentially expressed circRNAs are involved in metal ion binding, protein ubiquitination, enzyme activity, and nucleotide binding. Moreover, 72 binding miRNAs were predicted from the differentially expressed circRNAs, of which eight targeted genes were predicted to be involved in immune responses, blood coagulation, hemostasis, and complement and coagulation cascades. Upregulation of these genes may lead to endothelial and blood cell damage and hemorrhagic symptoms. Our results indicate that an mRNA–miRNA–circRNA network may be present in grass carp infected with GCRV, providing new insight into the mechanism underlying grass carp reovirus infection.
Collapse
Affiliation(s)
- Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Aidi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Lv Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - And Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
199
|
Li M, Ding W, Sun T, Tariq MA, Xu T, Li P, Wang J. Biogenesis of circular RNAs and their roles in cardiovascular development and pathology. FEBS J 2017; 285:220-232. [PMID: 28783257 DOI: 10.1111/febs.14191] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/10/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) are a newly discovered type of RNA generated by back-splicing of precursor mRNA and found in many species. They are, expressed in a tissue-specific manner and fulfill regulatory activities in many biological processes. Recent research has revealed that circRNAs play critical roles in the development and pathologies of the cardiovascular system. Some of these circRNAs show aberrant expression and regulatory activities during heart disease including heart failure and cardiac infarction and hypertrophy. These findings suggest that circRNAs might be a suitable target for the treatment and prevention of heart disease. In this review, we summarize the latest research on the biogenesis and functions of circRNAs with emphasis on the regulatory roles of circRNAs in the development and pathologies of the cardiovascular system.
Collapse
Affiliation(s)
- Mengyang Li
- Center for Regenerative Medicine, Institute for Translational Medicine, Qingdao University, China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, China
| | - Teng Sun
- Center for Regenerative Medicine, Institute for Translational Medicine, Qingdao University, China
| | - Muhammad A Tariq
- Center for Regenerative Medicine, Institute for Translational Medicine, Qingdao University, China
| | - Tao Xu
- Center for Regenerative Medicine, Institute for Translational Medicine, Qingdao University, China
| | - Peifeng Li
- Center for Regenerative Medicine, Institute for Translational Medicine, Qingdao University, China
| | - Jianxun Wang
- Center for Regenerative Medicine, Institute for Translational Medicine, Qingdao University, China
| |
Collapse
|
200
|
Shao Y, Chen Y. Pathophysiology and Clinical Utility of Non-coding RNAs in Epilepsy. Front Mol Neurosci 2017; 10:249. [PMID: 28848386 PMCID: PMC5554344 DOI: 10.3389/fnmol.2017.00249] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is a common neurologic disorder. The underlying pathological processes include synaptic strength, inflammation, ion channels, and apoptosis. Acting as epigenetic factors, non-coding RNAs (ncRNAs) participate in the regulation of pathophysiologic processes of epilepsy and are dysregulated during epileptogenesis. Aberrant expression of ncRNAs are observed in epilepsy patients and animal models of epilepsy. Furthermore, ncRNAs might also be used as biomarkers for diagnosis and the prognosis of treatment response in epilepsy. In this review, we will summarize the role of ncRNAs in the pathophysiology of epilepsy and the putative utilization of ncRNAs as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yiye Shao
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China.,Department of Neurology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China.,Department of Neurology, Shanghai Medical College, Fudan UniversityShanghai, China
| |
Collapse
|