151
|
Suzuki K, Satake M, Suwada J, Oshikiri S, Ashino H, Dozono H, Hino A, Kasahara H, Minamizawa T. Synthesis and evaluation of a novel 68Ga-chelate-conjugated bisphosphonate as a bone-seeking agent for PET imaging. Nucl Med Biol 2011; 38:1011-8. [PMID: 21982572 DOI: 10.1016/j.nucmedbio.2011.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/16/2011] [Accepted: 02/27/2011] [Indexed: 10/18/2022]
Abstract
INTRODUCTION (68)Ga is a positron-emitting nuclide that has significant imaging potential given that, unlike cyclotron-produced (18)F, the isotope can be produced on-site utilizing a (68)Ge/(68)Ga generator. We recently synthesized a novel bone-seeking agent by coupling a bisphosphonate with the (68)Ga chelator 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). This study presents a first report on the potential of this (68)Ga bone-seeking radiopharmaceutical in the detection of bone metastases. METHODS 4-Amino-1-hydroxybutylidene-1,1-bisphosphonate was conjugated with 2-[4,7-di(carboxymethyl)-1,4,7-triazonan-1-yl]pentanedioic acid, yielding 2-[4,7-di(carboxymethyl)-1,4,7-triazonan-1-yl]-5-[(4-hydroxy-4,4-diphosphonobutyl)amino]-5-oxopentanoic acid (NOTA-BP). (68)Ga-labeled NOTA-BP ([(68)Ga]NOTA-BP) was prepared by complexation of NOTA-BP with [(68)Ga] gallium chloride and evaluated in in vitro experiments, biodistribution experiments and micro-positron emission tomography (PET) imaging experiments. RESULTS The labeling of NOTA-BP with (68)Ga was completed by heating for 10 min. [(68)Ga]NOTA-BP was determined to have a radiochemical purity of over 95%, a high affinity for hydroxyapatite and a high stability in plasma. In in vivo biodistribution experiments, [(68)Ga]NOTA-BP demonstrated high bone uptake potential. Compared with (99m)Tc-labeled methylene diphosphonate ([(99m)Tc]MDP) and [(18)F]fluoride, [(68)Ga]NOTA-BP exhibited faster blood clearance and a higher bone-to-blood ratio. In addition, mouse model bone metastasis was detected by micro-PET imaging at 1 h postinjection of [(68)Ga]NOTA-BP. CONCLUSION We have developed a novel (68)Ga-radiolabeled bone-seeking agent. This [(68)Ga]NOTA-BP complex was found to have a high bone affinity and rapid blood clearance, and may thus prove to be useful as a bone-seeking agent for clinical PET.
Collapse
Affiliation(s)
- Kentaro Suzuki
- Research Department, Fujifilm RI Pharma Co., Ltd., Sammu-City, Chiba, 289-1592 Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
N⁴-[Alkyl-(hydroxyphosphono)phosphonate]-cytidine-new drugs covalently linking antimetabolites (5-FdU, araU or AZT) with bone-targeting bisphosphonates (alendronate or pamidronate). Bioorg Med Chem 2011; 19:3520-6. [PMID: 21536448 DOI: 10.1016/j.bmc.2011.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/09/2011] [Indexed: 11/23/2022]
Abstract
Amino-bisphosphonates (alendronate, pamidronate) were covalently linked in a three step synthesis, with protected and triazolylated derivatives of therapeutically used nucleoside analogs (5-FdU, araC, AZT) by substitution of their triazolyl residue. From the deprotected and chromatographically purified reaction mixtures N⁴-[alkyl-(hydroxyphosphono) phosphonate]-cytidine combining two differently cytotoxic functions were obtained. This new family of bisphosphonates (BPs) contains as novelty an alkyl side chain with a cytotoxic nucleoside. The BPs moiety allows for a high binding to hydroxyapatite which is a prerequisite for bone targeting of the drugs. In vitro binding of 5-FdU-alendronate (5-FdU-ale) to hydroxyapatite showed a sixfold increased binding of these BPs as compared to 5-FdU. Exploratory cytotoxic properties of 5-FdU-ale were tested on a panel of human tumor cell lines resulting in growth inhibition ranging between 5% and 38%. The determination of IC₅₀-concentrations of the conjugate in Lewis lung carcinoma and murine macrophages showed an incubation time dependent growth inhibition with higher sensitivity towards the tumor cells. We assume that the antimetabolite-BPs can be cleaved into different active metabolites that may exert cytotoxic and other therapeutic effects. However, the underlying mechanisms of these promising new antimetabolite-BPs conjugates remain to be evaluated in future experiments.
Collapse
|
153
|
Bala JLF, Kashemirov BA, McKenna CE. Synthesis of a Novel Bisphosphonic Acid Alkene Monomer. SYNTHETIC COMMUN 2010. [DOI: 10.1080/00397910903531706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Joy Lynn F. Bala
- a Department of Chemistry , University of Southern California , Los Angeles, California, USA
| | - Boris A. Kashemirov
- a Department of Chemistry , University of Southern California , Los Angeles, California, USA
| | - Charles E. McKenna
- a Department of Chemistry , University of Southern California , Los Angeles, California, USA
| |
Collapse
|
154
|
The Synthesis of a Multiblock Osteotropic Polyrotaxane by Copper(I)-Catalyzed Huisgen 1,3-Dipolar Cycloaddition. Macromol Biosci 2010; 10:1544-56. [DOI: 10.1002/mabi.201000205] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/20/2010] [Indexed: 11/07/2022]
|
155
|
Chen CP, Wickstrom E. Self-protecting bactericidal titanium alloy surface formed by covalent bonding of daptomycin bisphosphonates. Bioconjug Chem 2010; 21:1978-86. [PMID: 20949909 DOI: 10.1021/bc100136e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infections are a devastating complication of titanium alloy orthopedic implants. Current therapy includes antibiotic-impregnated bone cement and antibiotic-containing coatings. We hypothesized that daptomycin, a Gram-positive peptide antibiotic, could prevent bacterial colonization on titanium alloy surfaces if covalently bonded via a flexible, hydrophilic spacer. We designed and synthesized a series of daptomycin conjugates for bonding to the surface of 1.0 cm² Ti6Al4V foils through bisphosphonate groups, reaching a maximum yield of 180 pmol/cm². Daptomycin-bonded foils killed 53 ± 5% of a high challenge dose of 3 × 10⁵ cfu Staphylococcus aureus ATCC 29213.
Collapse
Affiliation(s)
- Chang-Po Chen
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | | |
Collapse
|
156
|
Reinholz MM, Zinnen SP, Dueck AC, Dingli D, Reinholz GG, Jonart LA, Kitzmann KA, Bruzek AK, Negron V, Abdalla AK, Arendt BK, Croatt AJ, Sanchez-Perez L, Sebesta DP, Lönnberg H, Yoneda T, Nath KA, Jelinek DF, Russell SJ, Ingle JN, Spelsberg TC, (Hal) Dixon HB, Karpeisky A, Lingle WL. A promising approach for treatment of tumor-induced bone diseases: utilizing bisphosphonate derivatives of nucleoside antimetabolites. Bone 2010; 47:12-22. [PMID: 20233612 PMCID: PMC2892200 DOI: 10.1016/j.bone.2010.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/29/2010] [Accepted: 03/08/2010] [Indexed: 11/19/2022]
Abstract
Despite palliative treatments, tumor-induced bone disease (TIBD) remains highly debilitating for many cancer patients and progression typically results in death within two years. Therefore, more effective therapies with enhanced anti-resorptive and cytotoxic characteristics are needed. We developed bisphosphonate-chemotherapeutic conjugates designed to bind bone and hydrolyze, releasing both compounds, thereby targeting both osteoclasts and tumor cells. This study examined the effects of our lead compound, MBC-11 (the anhydride formed between arabinocytidine (AraC)-5'-phosphate and etidronate), on bone tumor burden, bone volume, femur bone mineral density (BMD), and overall survival using two distinct mouse models of TIBD, the 4T1/luc breast cancer and the KAS-6/1-MIP1alpha multiple myeloma models. In mice orthotopically inoculated with 4T1/luc mouse mammary cells, MBC-11 (0.04 microg/day; s.c.) reduced the incidence of bone metastases to 40% (4/10), compared to 90% (9/10; p=0.057) and 100% (5/5; p=0.04) of PBS- or similarly-dosed, zoledronate-treated mice, respectively. MBC-11 also significantly decreased bone tumor burden compared to PBS- or zoledronate-treated mice (p=0.021, p=0.017, respectively). MBC-11 and zoledronate (0.04 microg/day) significantly increased bone volume by two- and four-fold, respectively, compared to PBS-treated mice (p=0.005, p<0.001, respectively). In mice systemically injected with human multiple myeloma KAS-6/1-MIP1alpha cells, 0.04 and 4.0 microg/day MBC-11 improved femur BMD by 13% and 16%, respectively, compared to PBS (p=0.025, p=0.017, respectively) at 10 weeks post-tumor cell injection and increased mean survival to 95 days compared to 77 days in mice treated with PBS (p=0.047). Similar doses of zoledronate also improved femur BMD (p< or =0.01 vs PBS) and increased mean survival to 86 days, but this was not significantly different than in PBS-treated mice (p=0.53). These results demonstrate that MBC-11 decreases bone tumor burden, maintains bone structure, and may increase overall survival, warranting further investigation as a treatment for TIBD.
Collapse
Affiliation(s)
- Monica M. Reinholz
- Departments of Laboratory Medicine and Pathology, Orthopedic Surgery, Molecular Medicine, Immunology, Nephrology, Medical Oncology, and Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | | | | | - David Dingli
- Departments of Laboratory Medicine and Pathology, Orthopedic Surgery, Molecular Medicine, Immunology, Nephrology, Medical Oncology, and Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Gregory G. Reinholz
- Departments of Laboratory Medicine and Pathology, Orthopedic Surgery, Molecular Medicine, Immunology, Nephrology, Medical Oncology, and Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Leslie A. Jonart
- Departments of Laboratory Medicine and Pathology, Orthopedic Surgery, Molecular Medicine, Immunology, Nephrology, Medical Oncology, and Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Kathleen A. Kitzmann
- Departments of Laboratory Medicine and Pathology, Orthopedic Surgery, Molecular Medicine, Immunology, Nephrology, Medical Oncology, and Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Amy K. Bruzek
- Departments of Laboratory Medicine and Pathology, Orthopedic Surgery, Molecular Medicine, Immunology, Nephrology, Medical Oncology, and Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Vivian Negron
- Departments of Laboratory Medicine and Pathology, Orthopedic Surgery, Molecular Medicine, Immunology, Nephrology, Medical Oncology, and Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Abdalla K. Abdalla
- Departments of Laboratory Medicine and Pathology, Orthopedic Surgery, Molecular Medicine, Immunology, Nephrology, Medical Oncology, and Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Bonnie K. Arendt
- Departments of Laboratory Medicine and Pathology, Orthopedic Surgery, Molecular Medicine, Immunology, Nephrology, Medical Oncology, and Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Anthony J. Croatt
- Departments of Laboratory Medicine and Pathology, Orthopedic Surgery, Molecular Medicine, Immunology, Nephrology, Medical Oncology, and Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Luis Sanchez-Perez
- Departments of Laboratory Medicine and Pathology, Orthopedic Surgery, Molecular Medicine, Immunology, Nephrology, Medical Oncology, and Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | | | - Harri Lönnberg
- Department of Chemistry, University of Turku, Turku, Finland
| | - Toshiyuki Yoneda
- Department of Medicine-Endocrinology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Karl A. Nath
- Departments of Laboratory Medicine and Pathology, Orthopedic Surgery, Molecular Medicine, Immunology, Nephrology, Medical Oncology, and Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Diane F. Jelinek
- Departments of Laboratory Medicine and Pathology, Orthopedic Surgery, Molecular Medicine, Immunology, Nephrology, Medical Oncology, and Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Stephen J. Russell
- Departments of Laboratory Medicine and Pathology, Orthopedic Surgery, Molecular Medicine, Immunology, Nephrology, Medical Oncology, and Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - James N. Ingle
- Departments of Laboratory Medicine and Pathology, Orthopedic Surgery, Molecular Medicine, Immunology, Nephrology, Medical Oncology, and Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | - Thomas C. Spelsberg
- Departments of Laboratory Medicine and Pathology, Orthopedic Surgery, Molecular Medicine, Immunology, Nephrology, Medical Oncology, and Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | | | | | - Wilma L. Lingle
- Departments of Laboratory Medicine and Pathology, Orthopedic Surgery, Molecular Medicine, Immunology, Nephrology, Medical Oncology, and Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
157
|
Mohamed S, Charmasson Y, Attolini M, Maffei M. Synthesis of cycloalkenyl geminal bisphosphonates by ring closing metathesis. HETEROATOM CHEMISTRY 2010. [DOI: 10.1002/hc.20622] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
158
|
Ironside MS, Duer MJ, Reid DG, Byard S. Bisphosphonate protonation states, conformations, and dynamics on bone mineral probed by solid-state NMR without isotope enrichment. Eur J Pharm Biopharm 2010; 76:120-6. [PMID: 20554022 DOI: 10.1016/j.ejpb.2010.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/13/2010] [Accepted: 05/25/2010] [Indexed: 11/26/2022]
Abstract
Recognition of bone mineral by bisphosphonates is crucial to their targeting, efficacy, therapeutic and diagnostic applications, and pharmacokinetics. In a search for rapid and simple NMR approaches to assessing the bone recognition characteristics of bisphosphonates, we have studied alendronate, pamidronate, neridronate, zoledronate and tiludronate, in crystalline form and bound to the surface of pure bone mineral stripped of its organic matrix by a simple chemical process. (31)P NMR chemical shift anisotropies and asymmetries in the crystalline compounds cluster strongly into groupings corresponding to fully protonated, monoprotonated, and deprotonated phosphonate states. All the mineral-bound bisphosphonates cluster in the same anisotropy-asymmetry space as the deprotonated phosphonates. In (13)C{(31)P} rotational echo double resonance (REDOR) experiments, which are sensitive to carbon-phosphorus interatomic distances, the strongly mineral-bound alendronate displays very similar conformational and side chain dynamics to its crystalline state. Pamidronate and neridronate, with shorter and longer sidechains, respectively, and generally weaker mineral binding, display more dynamical sidechains in the mineral-bound state. The REDOR experiment provides a simple rationalization of bisphosphonate-mineral affinity in terms of molecular structure and dynamics, consistent with findings from much more labour- and time-intensive isotope labelling approaches.
Collapse
Affiliation(s)
- Matthew S Ironside
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
159
|
Jahnke W, Henry C. An in vitro Assay to Measure Targeted Drug Delivery to Bone Mineral. ChemMedChem 2010; 5:770-6. [DOI: 10.1002/cmdc.201000016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
160
|
Abstract
In clinical practice the imaging of bone tissue is based almost exclusively on x-ray or radiochemical methods. Alternative methods, such as MRI and optical imaging, can provide not only anatomical, but also physiological information, due to their ability to reflect the properties of body fluids (temperature, pH and concentration of ions). In this article we review bone targeting probes for MRI and fluorescence imaging. As bone targeting is mainly associated with phosphonate and bisphosphonate derivatives, we also focus on their sorption behavior. Also discussed in detail is the limitation of using bone-targeting probes for MRI and optical imaging mainly due to their long-time retention in bone tissue and the low permeability of tissues for light.
Collapse
|
161
|
Matczak-Jon E, Kowalik-Jankowska T, Ślepokura K, Kafarski P, Rajewska A. Specificity of the zinc(ii), magnesium(ii) and calcium(ii) complexation by (pyridin-2-yl)aminomethane-1,1-diphosphonic acids and related 1,3-(thiazol-2-yl) and 1,3-(benzothiazol-2-yl) derivatives. Dalton Trans 2010; 39:1207-21. [DOI: 10.1039/b914647d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
162
|
Enders D, Mirjafary Z, Saeidian H. Efficient diastereo- and enantioselective synthesis of α,β-disubstituted γ-phosphono sulfonates. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
163
|
Casimiro S, Guise TA, Chirgwin J. The critical role of the bone microenvironment in cancer metastases. Mol Cell Endocrinol 2009; 310:71-81. [PMID: 19616059 DOI: 10.1016/j.mce.2009.07.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 07/03/2009] [Accepted: 07/08/2009] [Indexed: 01/12/2023]
Abstract
Bone metastatic disease is a late-stage event of many common cancers, such as those of prostate and breast. It is incurable and causes severe morbidity. Tumor and bone interact in a vicious cycle, where tumor-secreted factors stimulate bone cells, which in turn release growth factors and cytokines that act back on the tumor cells. Within the vicious cycle are many potential therapeutic targets for novel treatment of bone metastatic disease. Therapeutic strategies can be oriented to inhibit bone cells (osteoclasts and osteoblasts) or tumor responses to factors enriched in the bone microenvironment. Many publications, especially from pre-clinical animal models, show that this approach, especially combination treatments, can reduce tumor burden and tumor-derived bone lesions. This supports a novel paradigm: tumor growth can be effectively inhibited by targeting the bone and its microenvironment rather than the tumor itself alone.
Collapse
Affiliation(s)
- Sandra Casimiro
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal
| | | | | |
Collapse
|
164
|
Doschak MR, Kucharski CM, Wright JEI, Zernicke RF, Uludağ H. Improved bone delivery of osteoprotegerin by bisphosphonate conjugation in a rat model of osteoarthritis. Mol Pharm 2009; 6:634-40. [PMID: 19718808 DOI: 10.1021/mp8002368] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study investigated the delivery of a model therapeutic protein, namely, osteoprotegerin (OPG), to bone sites in an animal model of osteoarthritis. The OPG was chemically conjugated to a "bone seeking" thiol-bisphosphonate (thiolBP) via a disulfide linkage. The BP conjugates of OPG were shown to display a higher hydroxyapatite affinity in vitro as compared to unmodified OPG. After intravenous injection, the bone uptake of OPG-thiolBP conjugate was increased 2-fold over that of control OPG under conditions of normal bone turnover. Furthermore, the retention of the OPG-thiolBP conjugate was significantly higher after 72 h. When administered to osteoarthritic rats undergoing active bone remodeling, the delivery of OPG-thiolBP conjugate to bone was increased more than 4-fold over that of control OPG after 24 h. These results suggest a significant advantage of BP conjugation as a drug delivery strategy for therapeutic cytokines in osteopenic bone diseases.
Collapse
Affiliation(s)
- Michael R Doschak
- Faculty of Pharmacy & Pharmaceutical Sciences and Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
165
|
de Rosales RTM, Finucane C, Mather SJ, Blower PJ. Bifunctional bisphosphonate complexes for the diagnosis and therapy of bone metastases. Chem Commun (Camb) 2009:4847-9. [PMID: 19652801 PMCID: PMC7116767 DOI: 10.1039/b908652h] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Easily synthesised and structurally well-defined novel imaging/therapeutic radiopharmaceutical agents for bone metastases are described.
Collapse
Affiliation(s)
- R. Torres Martin de Rosales
- Division of Imaging Sciences, The Rayne Institute, King’s College London, 4th Floor Lambeth Wing, St. Thomas Hospital, London, UK SE1 7EH. Fax: +44 (0)2071885442; Tel: +44 (0)2071889513
| | - C. Finucane
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine, John Vane Science Centre, Charterhouse Square, London, UK EC1M 6BQ. Fax: +44 (0)2070140431; Tel: +44 (0)2070140467
| | - S. J. Mather
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine, John Vane Science Centre, Charterhouse Square, London, UK EC1M 6BQ. Fax: +44 (0)2070140431; Tel: +44 (0)2070140467
| | - P. J. Blower
- Division of Imaging Sciences, The Rayne Institute, King’s College London, 4th Floor Lambeth Wing, St. Thomas Hospital, London, UK SE1 7EH. Fax: +44 (0)2071885442; Tel: +44 (0)2071889513
| |
Collapse
|
166
|
Drahos B, Rohlík Z, Kotek J, Císarová I, Hermann P. Complexes of hydrophilic triphenylphosphines modified with gem-bis(phosphonate) moiety. An unusual simultaneous cis and trans arrangements in the Pt(II) dinuclear complex. Dalton Trans 2009:4942-53. [PMID: 19662286 DOI: 10.1039/b818259k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
New triphenylphosphines substituted with the gem-bis(phosphonate) moiety in the form of ethyl esters, tetraethyl [4-(diphenylphosphanyl)benzyl]methylene-bis(phosphonate) (2a) and octaethyl bis[4-(diphenylphosphanyl)benzyl]methylene-bis(phosphonate) (2b), and the corresponding free acids 3a and 3b were prepared by a multi-step synthesis and characterized by multinuclear NMR spectroscopy and mass spectrometry. The ester ligands 2a and 2b were conveniently purified through their borane adducts. The X-ray structure of 2b x 2BH3 x H2O was determined. Coordination properties of new ligands towards Rh(I), Pd(II) and Pt(II) ions were studied. 1H, 31P and 195Pt NMR spectroscopy showed that ligands 2a and 3a form the expected [RhCl(eta2:eta2-cod)(L)] (cod = cycloocta-1,5-diene) and [MCl2(L)2] (M = Pd, Pt) complexes. The compounds 2b and 3b behave as bridging bidentate ligands forming dinuclear complexes of the {[RhCl(eta2:eta2-cod)]2(mu-L-kappa2P,P')} and [M2Cl4(mu-L-kappa2P,P')2] (M = Pd, Pt) type. These findings are consistent with mass spectrometry and far-IR and Raman spectroscopy results. X-Ray structures of trans-[PdCl2(2a-kappaP)2] and cis,trans-[Pt2Cl4(mu-2b-kappa2P,P)2] were determined; the dinuclear complex exhibits a different arrangement on the Pt(II) centres which was observed for the first time in the solid state. Salts of complexes of the free acid 3a are highly soluble in water.
Collapse
Affiliation(s)
- Bohuslav Drahos
- Department of Inorganic Chemistry, Universita Karlova, Hlavova, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
167
|
Zhang S, Uludağ H. Nanoparticulate systems for growth factor delivery. Pharm Res 2009; 26:1561-80. [PMID: 19415467 DOI: 10.1007/s11095-009-9897-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 04/11/2009] [Indexed: 01/21/2023]
Abstract
The field of nanotechnology, which aims to control and utilize matter generally in 1-100 nm range, has been at the forefront of pharmaceutical development. Nanoparticulate delivery systems, with their potential to control drug release profiles, prolonging the presence of drugs in circulation, and to target drugs to a specific site, hold tremendous promise as delivery strategies for therapeutics. Growth factors are endogenous polypeptides that initiate intracellular signals to regulate cellular activities, such as proliferation, migration and differentiation. With improved understanding of their roles in physiopathology and expansion of their availability through recombinant technologies, growth factors are becoming leading therapeutic candidates for tissue engineering approaches. However, the outcome of growth factor therapeutics largely depends on the mode of their delivery due to their rapid degradation in vivo, and non-specific distribution after systemic administration. In order to overcome these impediments, nanoparticulate delivery systems are being harnessed for spatiotemporal controlled delivery of growth factors. This review presents recent advances and some disadvantages of various nanoparticulate systems designed for effective intact growth factor delivery. The therapeutic applications of growth factors delivered by such systems are reviewed, especially for bone, skin and nerve regeneration as well as angiogenesis. Finally, future challenges and directions in the field are presented in addition to the current limitations.
Collapse
Affiliation(s)
- Sufeng Zhang
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, #830, Chemical & Materials Engineering Building, Edmonton, Alberta T6G2G6, Canada
| | | |
Collapse
|
168
|
Clark JCM, Dass CR, Choong PFM. Current and future treatments of bone metastases. Expert Opin Emerg Drugs 2009; 13:609-27. [PMID: 19046130 DOI: 10.1517/14728210802584217] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone metastases contribute to a significant degree of morbidity in patients with common cancers through the development of skeletal related events (SRE) such as bone pain and pathological fracture. Traditional therapy has relied on surgical removal of lesions and, with the advent of adjuvant therapies, has been combined with radiotherapy, chemotherapy, and more recently osteoclast inhibiting agents like bisphosphonates. Although these therapeutic combinations can achieve a degree of local control, and rarely cure, across the vast majority of metastatic cancers they provide only palliation. Newer molecular agents currently under investigation, combined with innovations in surgery and radiation therapy offer a more targeted approach to bone metastasis. These utilise our understanding of key steps in the metastatic cascade including chemotactic attraction to bone, secretion of proteases, the cancer supporting microenvironment of bone matrix and the RANK-RANKL interaction for osteoclast activation. Direct inhibition of metastasis progression and osteolysis with less reliance on cytotoxic agents and invasive therapy should result in improved metastatic control, longer survival and less overall morbidity.
Collapse
Affiliation(s)
- J C M Clark
- University of Melbourne, St Vincent's Hospital, St Vincent's Health, Department of surgery and Orthopaedics, Level 3 Daly Wing, 41 Victoria Parade, Fitzroy, Vic, 3053, Australia
| | | | | |
Collapse
|
169
|
Development of [90Y]DOTA-conjugated bisphosphonate for treatment of painful bone metastases. Nucl Med Biol 2009; 36:129-35. [DOI: 10.1016/j.nucmedbio.2008.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 09/23/2008] [Accepted: 11/19/2008] [Indexed: 11/22/2022]
|
170
|
Iafisco M, Palazzo B, Marchetti M, Margiotta N, Ostuni R, Natile G, Morpurgo M, Gandin V, Marzano C, Roveri N. Smart delivery of antitumoral platinum complexes from biomimetic hydroxyapatite nanocrystals. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b914379c] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
171
|
Vitha T, Kubíček V, Kotek J, Hermann P, Vander Elst L, Muller RN, Lukeš I, Peters JA. Gd(iii) complex of a monophosphinate-bis(phosphonate) DOTA analogue with a high relaxivity; Lanthanide(iii) complexes for imaging and radiotherapy of calcified tissues. Dalton Trans 2009:3204-14. [DOI: 10.1039/b820705d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
172
|
Beck J, Gharbi S, Herteg-Fernea A, Vercheval L, Bebrone C, Lassaux P, Zervosen A, Marchand-Brynaert J. Aminophosphonic Acids and Aminobis(phosphonic acids) as Potential Inhibitors of Penicillin-Binding Proteins. European J Org Chem 2008. [DOI: 10.1002/ejoc.200800812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
173
|
Wang G, Uludag H. Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. Expert Opin Drug Deliv 2008; 5:499-515. [PMID: 18491978 DOI: 10.1517/17425247.5.5.499] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Drug delivery systems with nm dimensions (nanoparticles [NPs]) are attracting increasing attention because they can sequester drugs in systemic circulation, prevent non-specific biodistribution, and target to specific tissues. OBJECTIVE We reviewed the recent literature pertinent to NP-based drug delivery, primarily emphasizing NPs fabricated from proteins. METHODS A summary of common NP fabrication techniques is provided along with the range of sizes and functional properties obtained. The NP properties critical for injectable drug delivery are reviewed, as well as the attempts to design 'tissue-specific' NPs. RESULTS/CONCLUSIONS It has been possible to design > 100 nm NPs from different biomaterials, and further understanding of in vivo stability and interactions with physiologic systems will lead to improved drug delivery systems.
Collapse
Affiliation(s)
- Guilin Wang
- Faculty of Engineering University of Alberta, Department of Chemical & Materials Engineering, #526 CME Building, Edmonton, Alberta, T6G2G6, Canada
| | | |
Collapse
|
174
|
Chirgwin JM, Guise TA. Skeletal metastases: decreasing tumor burden by targeting the bone microenvironment. J Cell Biochem 2008; 102:1333-42. [PMID: 17907152 DOI: 10.1002/jcb.21556] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several common cancers often metastasize to the skeleton in advanced disease. Bone metastases are incurable and cause protracted, severe symptoms. Growth of tumor in bone is driven by a vicious cycle: tumor-secreted factors stimulate bone cells, which in turn release growth factors and cytokines. The bone-derived factors fuel the vicious cycle by acting back on the tumor cells. The vicious cycle offers novel targets for the treatment of advanced cancers. Treatments can inhibit bone cells (osteoclasts and osteoblasts) that are stimulated by tumor-secreted factors. Drugs can also inhibit tumor responses to factors enriched in the bone microenvironment, such as transforming growth factor-beta. Animal models show that these approaches, especially combination treatments, can reduce tumor burden. The results suggest a novel paradigm in which tumor growth can be effectively inhibited by drugs that target cells in the bone microenvironment and not the tumor cells themselves.
Collapse
Affiliation(s)
- John M Chirgwin
- The Aurbach Laboratory, Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22903, USA.
| | | |
Collapse
|
175
|
Vitha T, Kubícek V, Hermann P, Kolar ZI, Wolterbeek HT, Peters JA, Lukes I. Complexes of DOTA-bisphosphonate conjugates: probes for determination of adsorption capacity and affinity constants of hydroxyapatite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:1952-1958. [PMID: 18225929 DOI: 10.1021/la702753j] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The adsorption on hydroxyapatite of three conjugates of a bisphosphonate and a macrocycle having C1, C2, and C3 spacers and their terbium complexes was studied by the radiotracer method using 160Tb as the label. The radiotracer-containing complex of the conjugate with the C3 spacer was used as a probe for the determination of the adsorption parameters of other bisphosphonates that lack a DOTA unit. A physicochemical model describing the competitive adsorption was successfully applied in the fitting of the obtained data. The maximum adsorption capacity of bisphosphonates containing bulky substituents is determined mainly by their size. For bisphosphonates having no DOTA moiety, the maximum adsorption capacity is determined by the electrostatic repulsion between negatively charged bisphosphonate groups. Compounds with a hydroxy or amino group attached to the alpha-carbon atom show higher affinities. Macrocyclic compounds containing a short spacer between the different bisphosphonic acid groups and the macrocyclic unit exhibit high affinities, indicating a synergic effect of the bisphosphonic and the macrocyclic groups during adsorption. The competition method described uses a well-characterized complex and allows a simple evaluation of the adsorption behavior of bisphosphonates. The application of the macrocycle-bisphosphonate conjugates allows easy radiolabeling via complexation of a suitable metal isotope.
Collapse
Affiliation(s)
- Tomas Vitha
- Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
176
|
Yavorskyy A, Hernandez-Santana A, McCarthy G, McMahon G. Detection of calcium phosphate crystals in the joint fluid of patients with osteoarthritis - analytical approaches and challenges. Analyst 2008; 133:302-18. [PMID: 18299743 PMCID: PMC2625400 DOI: 10.1039/b716791a] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clinically, osteoarthritis (OA) is characterised by joint pain, stiffness after immobility, limitation of movement and, in many cases, the presence of basic calcium phosphate (BCP) crystals in the joint fluid. The detection of BCP crystals in the synovial fluid of patients with OA is fraught with challenges due to the submicroscopic size of BCP, the complex nature of the matrix in which they are found and the fact that other crystals can co-exist with them in cases of mixed pathology. Routine analysis of joint crystals still relies almost exclusively on the use of optical microscopy, which has limited applicability for BCP crystal identification due to limited resolution and the inherent subjectivity of the technique. The purpose of this Critical Review is to present an overview of some of the main analytical tools employed in the detection of BCP to date and the potential of emerging technologies such as atomic force microscopy (AFM) and Raman microspectroscopy for this purpose.
Collapse
Affiliation(s)
- Alexander Yavorskyy
- Bioanalytical Chemistry & Diagnostics Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland. ; Tel: +353 1 7005914
| | - Aaron Hernandez-Santana
- Bioanalytical Chemistry & Diagnostics Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland. ; Tel: +353 1 7005914
| | - Geraldine McCarthy
- Division of Rheumatology, Mater Misericordiae University Hospital, Eccles St, Dublin 7, Ireland
| | - Gillian McMahon
- Bioanalytical Chemistry & Diagnostics Group, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland. ; Tel: +353 1 7005914
| |
Collapse
|
177
|
Shakespeare WC, Wang Y, Bohacek R, Keenan T, Sundaramoorthi R, Metcalf C, Dilauro A, Roeloffzen S, Liu S, Saltmarsh J, Paramanathan G, Dalgarno D, Narula S, Pradeepan S, van Schravendijk MR, Keats J, Ram M, Liou S, Adams S, Wardwell S, Bogus J, Iuliucci J, Weigele M, Xing L, Boyce B, Sawyer TK. SAR of Carbon-Linked, 2-Substituted Purines: Synthesis and Characterization of AP23451 as a novel Bone-Targeted Inhibitor of Src Tyrosine Kinase With In Vivo Anti-Resorptive Activity. Chem Biol Drug Des 2008; 71:97-105. [DOI: 10.1111/j.1747-0285.2007.00615.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
178
|
|
179
|
Hernandez-Santana A, Yavorskyy A, Olinyole A, McCarthy GM, McMahon GP. Isolation of calcium phosphate crystals from complex biological fluids using bisphosphonate-modified superparamagnetic beads. Chem Commun (Camb) 2008:2686-8. [DOI: 10.1039/b801750f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
180
|
Ehrick RS, Capaccio M, Puleo DA, Bachas LG. Ligand-modified aminobisphosphonate for linking proteins to hydroxyapatite and bone surface. Bioconjug Chem 2007; 19:315-21. [PMID: 18001076 DOI: 10.1021/bc700196q] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An increase in bone resorption is one of the main symptoms of osteoporosis, a disease that affects more and more individuals every day. Bisphosphonates are known to inhibit bone resorption and thus are being used as a treatment for osteoporosis. Aminobisphosphonates present a functionality that can be easily used for conjugation to other molecules, such as peptides, proteins, and ligands for protein recognition. In this study, an aminobisphosphonate conjugated with biotin was used as a model linker for protein attachment to bone. With this system, the interaction of biotinylated aminobisphosphonate with hydroxyapatite, a major mineral component of bone, was investigated. Quantification of the binding of aminobisphosphonate to hydroxyapatite was performed using a fluorescently labeled antibody for biotin. Additionally, the interaction of the biotinylated aminobisphosphonate with multiple treatments of cortical bone from the midshaft of a cow femur was studied. It was demonstrated that modified aminobisphosphonate reagents can bind hydroxyapatite and bone at high levels, while the biotin functionality is free to be recognized by the fluorescently labeled antibiotin antibody, suggesting that modified aminobisphosphonates could be used to link other peptides or proteins to the bone surface.
Collapse
Affiliation(s)
- Robin S Ehrick
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | | | | | | |
Collapse
|
181
|
Capuzzi M, Perdicchia D, Jørgensen K. Highly Enantioselective Approach to Geminal Bisphosphonates by Organocatalyzed Michael-Type Addition of β-Ketoesters. Chemistry 2007; 14:128-35. [DOI: 10.1002/chem.200701317] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
182
|
Liu XM, Thakur A, Wang D. Efficient synthesis of linear multifunctional poly(ethylene glycol) by copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition. Biomacromolecules 2007; 8:2653-8. [PMID: 17688321 DOI: 10.1021/bm070430i] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(ethylene glycol) (PEG) is a versatile biocompatible polymer. Improvement of its limited functionality (two chain termini) may significantly expand its current applications. In this communication, a simple and yet highly efficient strategy for the synthesis of linear multifunctional PEGs with "click" chemistry is reported. A short acetylene-terminated PEG was linked by 2,2-bis(azidomethyl)propane-1,3-diol using Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition in water at room temperature. High-molecular-weight PEGs with pendant hydroxyl groups were obtained and characterized by 1H NMR and size-exclusion chromatography. A prototype bone-targeting polymeric drug delivery system was also successfully synthesized based on this new method. It demonstrates strong biomineral-binding ability and the ease of incorporating therapeutic agents into the delivery system. This simple "click" reaction approach provides a useful tool for the development of novel functional polymers and their conjugates for biomedical applications.
Collapse
Affiliation(s)
- Xin-Ming Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, COP 3026, Omaha, Nebraska 68198-6025, USA
| | | | | |
Collapse
|
183
|
Zhang S, Wright JEI, Ozber N, Uludağ H. The Interaction of Cationic Polymers and Their Bisphosphonate Derivatives with Hydroxyapatite. Macromol Biosci 2007; 7:656-70. [PMID: 17457941 DOI: 10.1002/mabi.200600286] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Conjugating proteins with bisphosphonates (BPs), a class of molecules with exceptional affinity to hydroxyapatite (HA), is a feasible means to impart bone affinity to protein-based therapeutic agents. To increase the targeting effectiveness while minimizing protein modification, a polymeric linker containing multiple copies of BPs could be constructed for protein conjugation and targeting to bone. Towards this goal, poly(L-lysine) (PLL) and poly(ethylenimine) (PEI) were utilized as the polymeric backbones to incorporate a BP, namely 2-(3-mercaptopropylsulfanyl)-ethyl-1,1-bisphosphonic acid (thiolBP), by using N-hydroxysuccinimidyl polyethylene glycol maleimide and succinimidyl-4-(N-maleimidomethyl)-cyclohexane-1-carboxylate, respectively. In vitro and in vivo mineral affinity of the polymer-BP conjugates were determined in comparison with the unmodified polymers. The in vitro results indicated strong binding of the cationic polymers to HA in their unmodified form. BP conjugation did not enhance the inherent mineral affinity of the polymers; in contrast, certain modifications negatively affected the polymers' binding to the HA. In vivo results from a subcutaneous implant model in rats also showed no significant difference in mineral affinity of the BP modified and unmodified PEI. We conclude that thiolBP conjugation to the cationic polymers PLL and PEI was not beneficial for increasing the mineral affinity of the polymeric molecules. The strong interaction between the cationic polymers and HA may make the polymers suitable for imparting mineral affinity to bone-acting therapeutics.
Collapse
Affiliation(s)
- Sufeng Zhang
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, T6G 2G6, Canada
| | | | | | | |
Collapse
|
184
|
Palma E, Oliveira BL, Correia JDG, Gano L, Maria L, Santos IC, Santos I. A new bisphosphonate-containing 99mTc(I) tricarbonyl complex potentially useful as bone-seeking agent: synthesis and biological evaluation. J Biol Inorg Chem 2007; 12:667-79. [PMID: 17333301 DOI: 10.1007/s00775-007-0215-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 01/28/2007] [Indexed: 10/23/2022]
Abstract
Aiming to develop new bone-seeking radiotracers based on the organometallic core fac-[(99m)Tc(CO)(3)](+) with improved radiochemical and biological properties, we have prepared new conjugates with phosphonate pendant groups. The conjugates comprise a chelating unit for metal coordination, which corresponds to a pyrazolyl-containing backbone (pz) with a N,N,N donor-atom set, and a pendant diethyl phosphonate (pz-MPOEt), phosphonic acid (pz-MPOH) or a bisphosphonic acid (pz-BPOH) group for bone targeting. Reactions of the conjugates with the precursor [(99m)Tc(H(2)O)(3)(CO)(3)](+) yielded (mote than 95%) the single and well-defined radioactive species [(99m)Tc(CO)(3)(kappa(3)-pz-MPOEt)](+) (1a), [(99m)Tc(CO)(3)(kappa(3)-pz-MPOH](+) (2a) and [(99m)Tc(CO)(3)(kappa(3)-pz-BPOH)](+) (3a), which were characterized by reversed-phase high-performance liquid chromatography . The corresponding Re surrogates (1-3), characterized by the usual analytical techniques, including X-ray diffraction analysis in the case of 1, allowed for macroscopic identification of the radioactive conjugates. These radioactive complexes revealed high stability both in vitro (phosphate-buffered saline solution and human plasma) and in vivo, without any measurable decomposition. Biodistribution studies of the complexes in mice indicated a fast rate of blood clearance and high rate of total radioactivity excretion, occurring primarily through the renal-urinary pathway in the case of complex 3a. Despite presenting moderate bone uptake (3.04 +/- 0.47% injected dose per gram of organ, 4 h after injection), the high stability presented by 3a and its adequate in vivo pharmacokinetics encourages the search for new ligands with the same chelating unit and different bisphosphonic acid pendant arms.
Collapse
Affiliation(s)
- Elisa Palma
- Departamento de Química, ITN, Estrada Nacional 10, 2686-953 Sacavém Codex, Portugal
| | | | | | | | | | | | | |
Collapse
|