151
|
Vessières A, Wang Y, McGlinchey MJ, Jaouen G. Multifaceted chemical behaviour of metallocene (M = Fe, Os) quinone methides. Their contribution to biology. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213658] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
152
|
Peter S, Morifi E, Aderibigbe BA. Hybrid Compounds Containing a Ferrocene Scaffold as Potential Antimalarials. ChemistrySelect 2021. [DOI: 10.1002/slct.202004710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sijongesonke Peter
- Department of Chemistry University of Fort Hare, Alice Campus Alice 5700, Eastern Cape South Africa
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry Division University of Witwatersrand, Johannesburg Private Bag X3 WITS 2050 South Africa
| | - Blessing A. Aderibigbe
- Department of Chemistry University of Fort Hare, Alice Campus Alice 5700, Eastern Cape South Africa
| |
Collapse
|
153
|
Theiner S, Schoeberl A, Schweikert A, Keppler BK, Koellensperger G. Mass spectrometry techniques for imaging and detection of metallodrugs. Curr Opin Chem Biol 2021; 61:123-134. [PMID: 33535112 DOI: 10.1016/j.cbpa.2020.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
Undoubtedly, metallomic approaches based on mass spectrometry have evolved into essential tools supporting the drug development of novel metal-based anticancer drugs. This article will comment on the state-of-the-art instrumentation and highlight some of the recent analytical advances beyond routine, especially focusing on the latest developments in inductively coupled plasma-mass spectrometry (ICP-MS). Mass spectrometry-based bioimaging and single-cell methods will be presented, paving the way to exciting investigations of metal-based anticancer drugs in heterogeneous and structurally, as well as functionally complex solid tumor tissues.
Collapse
Affiliation(s)
- Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Anna Schoeberl
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Andreas Schweikert
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria; Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria.
| |
Collapse
|
154
|
Savani CJ, Roy H, Verma SK, Vennapu DR, Singh VK. Synthesis, characterization and evaluation of novel ferrocenylmethylamine derivatives as cytotoxic agents. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chirag J. Savani
- Department of Chemistry, Faculty of Science The M. S. University of Baroda Vadodara India
| | - Hetal Roy
- Department of Chemistry, Faculty of Science The M. S. University of Baroda Vadodara India
| | - Sanjay K. Verma
- Department of Chemistry, Faculty of Science The M. S. University of Baroda Vadodara India
| | - Dushyanth R. Vennapu
- Department of Pharmaceutical Chemistry KLE University College of Pharmacy Belagavi India
| | - Vinay K. Singh
- Department of Chemistry, Faculty of Science The M. S. University of Baroda Vadodara India
| |
Collapse
|
155
|
Mou Q, Zhao R, Niu R, Fukagawa S, Shigeno T, Yoshino T, Matsunaga S, Sun B. Cp*Ir( iii)/chiral carboxylic acid-catalyzed enantioselective C–H alkylation of ferrocene carboxamides with diazomalonates. Org Chem Front 2021. [DOI: 10.1039/d1qo01344k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An achiral Cp*Ir(iii)/chiral carboxylic acid-catalysed enantioselective C–H alkylation of ferrocene carboxamides with diazomalonates was achieved, providing planar chiral alkylated ferrocenes in up to 94 : 6 er.
Collapse
Affiliation(s)
- Qi Mou
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| | - Ruyuan Zhao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| | - Ruihan Niu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| | - Seiya Fukagawa
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Taiki Shigeno
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| | - Bo Sun
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China
| |
Collapse
|
156
|
Muñoz-Osses M, Quiroz J, Vásquez-Martínez Y, Flores E, Navarrete E, Godoy F, Torrent C, Cortez-San Martín M, Gómez A, Mascayano C. Evaluation of cyrhetrenyl and ferrocenyl precursors as 5-lipoxygenase inhibitors – biological and computational studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj01336j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and biological evaluation of precursors derived from ferrocene and cyrhetrene as inhibitors of enzyme 5-hLOX.
Collapse
Affiliation(s)
| | - Javiera Quiroz
- Departamento Ciencias del Ambiente
- Universidad de Santiago de Chile
- Chile
| | - Yesseny Vásquez-Martínez
- Programa Centro de Investigaciones Biomédicas y Aplicadas (CIBAP)
- Escuela de Medicina
- Facultad de Ciencias Médicas
- Universidad de Santiago de Chile
- Chile
| | - Erick Flores
- Departamento Química de los Materiales
- Universidad de Santiago de Chile
- Chile
| | | | - Fernando Godoy
- Departamento Química de los Materiales
- Universidad de Santiago de Chile
- Chile
| | - Claudia Torrent
- Departamento Ciencias del Ambiente
- Universidad de Santiago de Chile
- Chile
| | | | - Alejandra Gómez
- Departamento Química de los Materiales
- Universidad de Santiago de Chile
- Chile
| | | |
Collapse
|
157
|
Tabrizi L, Nguyen TLA, Tran HDT, Pham MQ, Dao DQ. Antioxidant and Anticancer Properties of Functionalized Ferrocene with Hydroxycinnamate Derivatives-An Integrated Experimental and Theoretical Study. J Chem Inf Model 2020; 60:6185-6203. [PMID: 33233887 DOI: 10.1021/acs.jcim.0c00730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two ferrocenyl derivatives, Fc-CA and Fc-FA, were synthesized by a condensation reaction between the amino ferrocene and hydroxycinnamic acids, that is, caffeic acid (CA) and ferulic acid (FA). The structures and purity of all compounds were characterized by 1H- and 13C NMR spectroscopies, Mass spectrometry (MS), and elemental analysis. The antioxidant properties of Fc-CA and Fc-FA and of its ligand were studied for free radical scavenging activity toward DPPH•, superoxide anion (O2•-), NO•, and ABTS•+ by UV-vis and electron spin resonance spectroscopies. The cytotoxicity of Fc-CA and Fc-FA against MCF-7 and MDA-MB-231 breast cancer cells and MRC-5 human lung fibroblasts cell was higher than that of cisplatin. The geometry and electronic structures of all compounds were then simulated using density functional theory at M05-2X/6-311+G(d,p) level of theory. Thermodynamics of the free radical quenching reactions by common mechanisms reveal the higher antioxidant properties of the Fc-CA and Fc-FA in comparison to their ligands. An in-depth study of the free radical scavenging activity against HOO• and HO• radicals was performed for two of the most favorable and competitive mechanisms, the hydrogen transfer (either hydrogen atom transfer or proton-coupled electron transfer mechanisms) and the radical adduct formation. The in silico studies indicated that ferrocenyl derivatives exhibited prominent binding affinity to protein models in comparison to CA and FA. Their dock scores were notable at ligand binding sites of ERα, Erβ, and JAK2 proteins. Dock pose analysis also shed light into the possible mechanism of action for the studied compounds.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry, National University of Ireland, Galway, University Road, Galway H91 TK33, Ireland
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | | | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
158
|
Ferrocenyl Migrations and Molecular Rearrangements: The Significance of Electronic Charge Delocalization. INORGANICS 2020. [DOI: 10.3390/inorganics8120068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The enhanced stabilization of a carbocationic site adjacent to a ferrocenyl moiety was recognized within a few years of the discovery of sandwich compounds. While a detailed understanding of the phenomenon was the subject of some early debate, researchers soon took advantage of it to control the ease and direction of a wide range of molecular rearrangements. We, here, discuss the progress in this area from the pioneering studies of the 1960s, to more recent applications in chromatography and analytical detection techniques, and currently in the realm of bioactive organometallic complexes. Several classic reactions involving ferrocenyl migrations, such as the pinacol, Wolff, Beckmann, and Curtius, are discussed, as well as the influence of the ferrocenyl substituent on the mechanisms of the Nazarov, Meyer-Schuster, benzoin, and Stevens rearrangements. The preparation and isomerizations of ferrocenyl-stabilized vinyl cations and vinylcyclopropenes, together with the specific cyclization of acetylcyclopentadienyl-metal derivatives to form 1,3,5-substituted benzenes, demonstrate the versatility and generality of this approach.
Collapse
|
159
|
Gómez J, Sierra D, Cárdenas C, Guzmán F. Bio-organometallic Peptide Conjugates: Recent Advances in Their Synthesis and Prospects for Biomedical Application. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200309093938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
One area of organometallic chemistry that has attracted great interest in recent
years is the syntheses, characterization and study of organometallic complexes conjugated
to biomolecules with different steric and electronic properties as potential therapeutic
agents against cancer and malaria, as antibiotics and as radiopharmaceuticals. This minireview
focuses on the unique structural diversity that has recently been discovered in α-
amino acids and the reactions of metallocene complexes with peptides having different
chemical behavior and potential medical applications. Replacing α-amino acids with metallocene
fragments is an effective way of selectively influencing the physicochemical,
structural, electrochemical and biological properties of the peptides. Consequently, research
in the field of bioorganometallic chemistry offers the opportunity to develop bioactive
metal compounds as an innovative and promising approach in the search for pharmacological control of
different diseases.
Collapse
Affiliation(s)
- Johana Gómez
- Nucleo de Biotecnologia Curauma, Pontificia Universidad Catolica de Valparaiso, Av. Universidad 330, Valparaiso, Chile
| | - Diego Sierra
- Instituto de Quimica y Bioquimica, Facultad de Ciencias, Universidad de Valparaiso, Av. Gran Bretana 1111, Valparaíso, Chile
| | - Constanza Cárdenas
- Nucleo de Biotecnologia Curauma, Pontificia Universidad Catolica de Valparaiso, Av. Universidad 330, Valparaiso, Chile
| | - Fanny Guzmán
- Nucleo de Biotecnologia Curauma, Pontificia Universidad Catolica de Valparaiso, Av. Universidad 330, Valparaiso, Chile
| |
Collapse
|
160
|
Snegur LV, Borisov YA, Ermolenko YV, Safronova VN, Kiselev SS, Kochetkov KA, Simenel AA. Application of capillary electrophoresis technique for the enantioseparation of bioactive ferrocene-based compounds versus DFT calculated data. Electrophoresis 2020; 41:1969-1979. [PMID: 32838479 DOI: 10.1002/elps.202000154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/01/2020] [Accepted: 08/10/2020] [Indexed: 02/05/2023]
Abstract
Herein, a series of bioactive ferrocene-modified N-heterocycles with alkyl linkers was prepared in good to quantitative yields starting from easy accessible ferrocene alcohols and heterocycles under acidic or neutral (for imidazole) conditions in racemic forms. The analytical resolution of a number of bioactive racemic ferrocene azoles 1-6 (where azole = imidazole, pyrazole, and benzotriazole derivatives) into enantiomers was first carried out by CE using sulfobuthylether-β-CD (captisol) as a chiral selector. The analytical approaches to highly enantiomeric-enriched ferrocene derivatives are based on the formation of their inclusion complexes. The best chiral separation was achieved using zone CE in a quartz capillary. The ACE was used to evaluate the stability constants of captisol complexes with enantiomeric forms of two ferrocene derivatives 1, FcCHMe-imidazole, and 6, FcCHMe-benzotriazole. The optimal conditions for the resolution of the studied (R, S)-ferrocene compounds 1, 2, and 6 were predicted on the basis of the performed quantum chemical calculations and then implemented by the electrophoretic method. A high correlation between density functional theory calculation results and experimental electrophoresis data were obtained. Successful enantioseparation of racemic mixtures is of great importance for the characterization and further applications of drug candidates in enantiopure forms and in the development of clinical treatment. The advantages of the CE procedure make it possible to have important practical value and significance for determining the purity and enantiomeric excess of other ferrocene-containing compounds.
Collapse
Affiliation(s)
- Lubov V Snegur
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Yurii A Borisov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Yuliya V Ermolenko
- D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | | | - Sergey S Kiselev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin A Kochetkov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
- D. I. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Alexander A Simenel
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
161
|
Ong YC, Gasser G. Organometallic compounds in drug discovery: Past, present and future. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 37:117-124. [PMID: 34895650 DOI: 10.1016/j.ddtec.2019.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/04/2019] [Indexed: 06/14/2023]
Abstract
In this review, we present an overview of some of the medicinally-relevant organometallic drugs that have been used in the past or that are currently in clinical trials as well as an example of compounds that are currently in the initial stage of drug development. Three main classes of organometallic complexes have been chosen for discussion: antimicrobial organoarsenicals, antimalarial and anticancer ferrocene-containing compounds and anticancer catalytic organometallic complexes. The purpose of this review is to provide readers with a focus on the significant progress that has been made for each of these respective fields of medicine.
Collapse
Affiliation(s)
- Yih Ching Ong
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-75005 Paris, France.
| |
Collapse
|
162
|
Topin-Ruiz S, Mellinger A, Lepeltier E, Bourreau C, Fouillet J, Riou J, Jaouen G, Martin L, Passirani C, Clere N. p722 ferrocifen loaded lipid nanocapsules improve survival of murine xenografted-melanoma via a potentiation of apoptosis and an activation of CD8 + T lymphocytes. Int J Pharm 2020; 593:120111. [PMID: 33246045 DOI: 10.1016/j.ijpharm.2020.120111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 01/13/2023]
Abstract
Metastatic melanoma is a malignant tumor with a poor prognosis. Recent new therapeutics improved the survival of patients at a metastatic stage. However, the low response rate to immunotherapy, explained in part by resistance to apoptosis, needs to develop new strategies. The ferrocifen family represents promising bioorganometallic molecules for melanoma treatment since they show potent anticancer properties. The aim of this study is (i) to evaluate the benefits of a strategy involving encapsulated p722 in lipid nanocapsules (LNC) in B16F10 melanoma mice models and (ii) to compare the beneficial effects with an existing therapy such as anti-CTLA4 mAb. Interestingly, LNC-p722 induces a significant decrease of melanoma cell viability. In vivo data shows a significant improvement in the survival rate and a slower tumor growth with p722-loaded LNC in comparison with anti-CTLA4 mAb. Western blots confirm that LNC-p722 potentiates intrinsic apoptotic pathway. Treatment with LNC-p722 significantly activates CD8+ T lymphocytes compared to treatment with anti-CTLA4 mAb. This study uncovers a new therapeutic strategy with encapsulated p722 to prevent B16F10 melanoma growth and to improve survival of treated mice.
Collapse
Affiliation(s)
- Solène Topin-Ruiz
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France; Centre Hospitalier Universitaire, service de dermatologie, 4 rue Larrey, F-49933 Angers, France
| | - Adélie Mellinger
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Elise Lepeltier
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Clara Bourreau
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Juliette Fouillet
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Jérémie Riou
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Gérard Jaouen
- PSL, Chimie ParisTech, Paris Cedex 05, France; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM, UMR 8232), Paris Cedex 05, France
| | - Ludovic Martin
- Centre Hospitalier Universitaire, service de dermatologie, 4 rue Larrey, F-49933 Angers, France
| | - Catherine Passirani
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Nicolas Clere
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| |
Collapse
|
163
|
Łomzik M, Hanif M, Budniok A, Błauż A, Makal A, Tchoń DM, Leśniewska B, Tong KKH, Movassaghi S, Söhnel T, Jamieson SMF, Zafar A, Reynisson J, Rychlik B, Hartinger CG, Plażuk D. Metal-Dependent Cytotoxic and Kinesin Spindle Protein Inhibitory Activity of Ru, Os, Rh, and Ir Half-Sandwich Complexes of Ispinesib-Derived Ligands. Inorg Chem 2020; 59:14879-14890. [PMID: 33003697 PMCID: PMC7584371 DOI: 10.1021/acs.inorgchem.0c00957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ispinesib is a potent inhibitor of kinesin spindle protein (KSP), which has been identified as a promising target for antimitotic anticancer drugs. Herein, we report the synthesis of half-sandwich complexes of Ru, Os, Rh, and Ir bearing the ispinesib-derived N,N-bidentate ligands (R)- and (S)-2-(1-amino-2-methylpropyl)-3-benzyl-7-chloroquinazolin-4(3H)-one and studies on their chemical and biological properties. Using the enantiomerically pure (R)- and (S)-forms of the ligand, depending on the organometallic moiety, either the SM,R or RM,S diastereomers, respectively, were observed in the molecular structures of the Ru- and Os(cym) (cym = η6-p-cymene) compounds, whereas the RM,R or SM,S diastereomers were found for the Rh- and Ir(Cp*) (Cp* = η5-pentamethylcyclopentadienyl) derivatives. However, density functional theory (DFT) calculations suggest that the energy difference between the diastereomers is very small, and therefore a mixture of both will be present in solution. The organometallics exhibited varying antiproliferative activity in a series of human cancer cell lines, with the complexes featuring the (R)-enantiomer of the ligand being more potent than the (S)-configured counterparts. Notably, the Rh and Ir complexes demonstrated high KSP inhibitory activity, even at 1 nM concentration, which was independent of the chirality of the ligand, whereas the Ru and especially the Os derivatives were much less active.
Collapse
Affiliation(s)
- Michał Łomzik
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, ul. Tamka 12, 91-403 Łódź, Poland
| | - Muhammad Hanif
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Aleksandra Budniok
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Andrzej Błauż
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Anna Makal
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Daniel M Tchoń
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Barbara Leśniewska
- Faculty of Chemistry, University of Białystok, ul. K. Ciołkowskiego 1 K, 15-245 Białystok, Poland
| | - Kelvin K H Tong
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Sanam Movassaghi
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ayesha Zafar
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, United Kingdom
| | - Błażej Rychlik
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, ul. Pomorska 141/143, 90-236 Łódź, Poland
| | - Christian G Hartinger
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Damian Plażuk
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, ul. Tamka 12, 91-403 Łódź, Poland
| |
Collapse
|
164
|
Synthesis and biological evaluations of mono‐ and bis‐ferrocene uracil derivatives. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
165
|
Bertrand B, Botuha C, Forté J, Dossmann H, Salmain M. A Bis-Chelating O N O ^ / N N ^ Ligand for the Synthesis of Heterobimetallic Platinum(II)/Rhenium(I) Complexes: Tools for the Optimization of a New Class of Platinum(II) Anticancer Agents. Chemistry 2020; 26:12846-12861. [PMID: 32602602 DOI: 10.1002/chem.202001752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/23/2020] [Indexed: 01/03/2023]
Abstract
The two independent and N N ^ coordination sites of a newly synthesized bis[2-(hydroxyphenyl)-1,2,4-triazole] platform have been exploited to prepare four monometallic neutral ()PtII complexes carrying DMSO, pyridine, triphenylphosphine, or N-heterocyclic carbene as the fourth ligand. Then, the second N N ^ coordination site was used to introduce an IR-active rhenium tricarbonyl entity, affording the four corresponding heterobimetallic neutral PtII /ReI complexes, as well as a cationic PtII /ReI derivative. X-ray crystallographic studies showed that distortion of the organic platform occurred to accommodate the coordination geometry of both metal centers. No ligand exchange or transchelation occurred upon incubation of the PtII complexes in aqueous environment or in the presence of FeIII , respectively. The antiproliferative activity of the ligand and complexes was first screened on the triple-negative breast cancer cell line MDA-MB-231. Then, the IC50 values of the most active candidates were determined on a wider panel of human cancer cells (MDA-MB-231, MCF-7, and A2780), as well as on a nontumorigenic cell line (MCF-10A). Low micromolar activities were reached for the complexes carrying a DMSO ligand, making them the first examples of highly active, but hydrolytically stable, PtII complexes. Finally, the characteristic mid-IR signature of the {Re(CO)3 } fragment in the Pt/Re heterobimetallic complexes was used to quantify their uptake in breast cancer cells.
Collapse
Affiliation(s)
- Benoît Bertrand
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 75005, Paris, France
| | - Candice Botuha
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 75005, Paris, France
| | - Jérémy Forté
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 75005, Paris, France
| | - Héloïse Dossmann
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 75005, Paris, France
| | - Michèle Salmain
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 75005, Paris, France
| |
Collapse
|
166
|
Molinaro C, Martoriati A, Pelinski L, Cailliau K. Copper Complexes as Anticancer Agents Targeting Topoisomerases I and II. Cancers (Basel) 2020; 12:E2863. [PMID: 33027952 PMCID: PMC7601307 DOI: 10.3390/cancers12102863] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Organometallics, such as copper compounds, are cancer chemotherapeutics used alone or in combination with other drugs. One small group of copper complexes exerts an effective inhibitory action on topoisomerases, which participate in the regulation of DNA topology. Copper complexes inhibitors of topoisomerases 1 and 2 work by different molecular mechanisms, analyzed herein. They allow genesis of DNA breaks after the formation of a ternary complex, or act in a catalytic mode, often display DNA intercalative properties and ROS production, and sometimes display dual effects. These amplified actions have repercussions on the cell cycle checkpoints and death effectors. Copper complexes of topoisomerase inhibitors are analyzed in a broader synthetic view and in the context of cancer cell mutations. Finally, new emerging treatment aspects are depicted to encourage the expansion of this family of highly active anticancer drugs and to expend their use in clinical trials and future cancer therapy.
Collapse
Affiliation(s)
- Caroline Molinaro
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Alain Martoriati
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Lydie Pelinski
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France;
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| |
Collapse
|
167
|
Alberto R. The "Carbonyl Story" and Beyond; Experiences, Lessons and Implications. Chembiochem 2020; 21:2743-2749. [PMID: 32875690 DOI: 10.1002/cbic.202000387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/12/2020] [Indexed: 12/15/2022]
Abstract
The complex [99m Tc(OH2 )3 (CO)3 ]+ has become a versatile building block in radiopharmaceutical chemistry, applied by many groups worldwide. However, despite widespread efforts, only one compound has made it right the way through clinical trials. Along the way from its discovery to its development into an eventual product, the author experienced issues that he would handle differently in retrospect. In this article, these experiences are turned into "lessons" that might be helpful for young researchers finding themselves in similar situations. Beside issues with patenting and company strategies, the carbonyl story has provided scientific implications beyond its own story, and insights from which any future 99m Tc-based chemistry for radiopharmacy or molecular imaging might benefit.
Collapse
Affiliation(s)
- Roger Alberto
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
168
|
Notaro A, Gasser G. First Workshop on Metals in Medicine (2019): Translational Research in Medicinal Bioinorganic Chemistry. Chembiochem 2020; 21:2706-2707. [PMID: 32588495 DOI: 10.1002/cbic.202000329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 05/30/2020] [Indexed: 11/05/2022]
Abstract
On the 14-15th November 2019, the first workshop on Metals in Medicine took place in Paris at Chimie ParisTech, PSL University. Organised with the aim of having invited speakers share their experience in bringing metal-based drugs to (pre-)clinical trials, this event gathered 135 attendees from six continents to Paris. A special collection on this event has now been published in ChemBioChem, combining more than 20 articles on different topics related to metals in medicine.
Collapse
Affiliation(s)
- Anna Notaro
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| |
Collapse
|
169
|
Koh WX, Coppo L, Holmgren A, Kong JW, Leong WK. Inhibition of Thioredoxin Reductase by Triosmium Carbonyl Clusters. Chem Res Toxicol 2020; 33:2441-2445. [PMID: 32786549 DOI: 10.1021/acs.chemrestox.0c00214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tumor cells are characterized by increased reactive oxygen species production in parallel with an enhanced antioxidant system to avoid oxidative damage. The inhibition of antioxidant systems is an effective way to kill cancer cells, and the thioredoxin system or, more specifically, the cytosolic selenocysteine-containing enzyme thioredoxin reductase (TrxR) has become an interesting target for cancer therapy. We show here that the known cytotoxic and apoptosis-inducing osmium carbonyl cluster Os3(CO)10(NCCH3)2 (1) is a nonsubstrate inhibitor of mammalian TrxR, with an IC50 of 5.3 ± 0.9 μM. It inhibits TrxR selectively over the closely related glutathione reductase (GR) and in the presence of excess reduced glutathione (GSH). This inhibition has also been demonstrated in cell lysates, suggesting that TrxR inhibition is a potential apoptotic pathway for 1.
Collapse
Affiliation(s)
- Wei Xiang Koh
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, MBB/Biokemi-Floor 9A, Solnavägen 9, SE-17165 Solna, Stockholm, Sweden
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, MBB/Biokemi-Floor 9A, Solnavägen 9, SE-17165 Solna, Stockholm, Sweden
| | - Jia Wen Kong
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Weng Kee Leong
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
170
|
Yan X, Wen J, Zhou L, Fan L, Wang X, Xu Z. Current Scenario of 1,3-oxazole Derivatives for Anticancer Activity. Curr Top Med Chem 2020; 20:1916-1937. [PMID: 32579505 DOI: 10.2174/1568026620666200624161151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
Cancer, which has been cursed for human beings for long time is considered as one of the
leading causes of morbidity and mortality across the world. In spite of different types of treatments
available, chemotherapy is still deemed as a favored treatment for the cancer. Unfortunately, many currently
accessible anticancer agents have developed multidrug resistance along with fatal adverse effects.
Therefore, intensive efforts have been made to seek for new active drugs with improved anticancer efficacy
and reduced adverse effects. In recent years, the emergence of heterocyclic ring-containing anticancer
agents has gained a great deal of attention among medicinal chemists. 1,3- oxazole is a versatile
heterocyclic compound, and its derivatives possess broad-spectrum pharmacological properties, including
anticancer activity against both drug-susceptible, drug-resistant and even multidrug-resistant cancer
cell lines through multiple mechanisms. Thus, the 1,3-oxazole moiety is a useful template for the development
of novel anticancer agents. This review will provide a comprehensive overview of the recent
advances on 1,3-oxazole derivatives with potential therapeutic applications as anticancer agents, focus
on the chemical structures, anticancer activity, and mechanisms of action.
Collapse
Affiliation(s)
- Xinjia Yan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Jing Wen
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Lin Zhou
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Lei Fan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Xiaobo Wang
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Zhi Xu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
171
|
Ruthenium(II)/(III) DMSO-Based Complexes of 2-Aminophenyl Benzimidazole with In Vitro and In Vivo Anticancer Activity. Molecules 2020; 25:molecules25184284. [PMID: 32962014 PMCID: PMC7570852 DOI: 10.3390/molecules25184284] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
New anticancer ruthenium(II/III) complexes [RuCl2(DMSO)2(Hapbim)] (1) and [RuCl3(DMSO) (Hapbim)] (2) (Hapbim = 2-aminophenyl benzimidazole) have been synthesized and characterized, and their chemotherapeutic potential evaluated. The interaction of the compounds with DNA was studied by both UV-Visible and fluorescence spectroscopies, revealing intercalation of both the Hapbim ligand and the Ru complexes. The in vitro cytotoxicity of the compounds was tested on human breast cancer (MCF7), human colorectal cancer (Caco2), and normal human liver cell lines (THLE-2), with compound (2) the most potent against cancer cells. The cytotoxic effect of (2) is shown to correlate with the ability of the Ru(III) complex to induce apoptosis and to cause cell-cycle arrest in the G2/M phase. Notably, both compounds were inactive in the noncancerous cell line. The anticancer effect of (2) has also been studied in an EAC (Ehrlich Ascites Carcinoma) mouse model. Significantly, the activity of the complex was more pronounced in vivo, with removal of the cancer burden at doses that resulted in only low levels of hepatotoxicity and nephrotoxicity. An apoptosis mechanism was determined by the observation of increased Bax and caspase 3 and decreased Bcl2 expression. Furthermore, (2) decreased oxidative stress and increased the levels of antioxidant enzymes, especially SOD, suggesting the enhancement of normal cell repair. Overall, compound (2) shows great potential as a chemotherapeutic candidate, with promising activity and low levels of side effects.
Collapse
|
172
|
Toma M, Kuvek T, Vrček V. Ionization Energy and Reduction Potential in Ferrocene Derivatives: Comparison of Hybrid and Pure DFT Functionals. J Phys Chem A 2020; 124:8029-8039. [PMID: 32900203 DOI: 10.1021/acs.jpca.0c06663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hybrid density functionals have been regularly applied in state-of-the-art computational models for predicting reduction potentials. Benchmark calculations of the absolute reduction potential of ferricenium/ferrocene couple, the IUPAC-proposed reference in nonaqueous solution, include the B3LYP/6-31G(d)/LanL2TZf protocol. We used this procedure to calculate ionization energies and reduction potentials for a comprehensive set of ferrocene derivatives. The protocol works very well for a number of derivatives. However, a significant discrepancy (>1 V) between experimental and calculated data was detected for selected cases. Three variables were assessed to detect an origin of the observed failure: density functional, basis set, and solvation model. It comes out that the Hartree-Fock exchange fraction in hybrid-DFT methods is the main source of the error. The accidental errors were observed for other hybrid models like PBE0, BHandHLYP, and M06-2X. Therefore, hybrid DFT methods should be used with caution, or pure functionals (BLYP or M06L) may be used instead.
Collapse
Affiliation(s)
- Mateja Toma
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Tea Kuvek
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Valerije Vrček
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| |
Collapse
|
173
|
Huentupil Y, Chung P, Novoa N, Arancibia R, Roussel P, Oyarzo J, Klahn AH, Silva C, Calvis C, Messeguer R, Bosque R, López C. Novel multifunctional and multitarget homo- (Fe 2) and heterobimetallic [(Fe,M) with M = Re or Mn] sulfonyl hydrazones. Dalton Trans 2020; 49:12249-12265. [PMID: 32832967 DOI: 10.1039/d0dt01756f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis and characterization of the novel ferrocenyl sulfonyl hydrazide [Fe(η5-C5H5){(η5-C5H4)-S(O)2-NH-NH2}] (2) is reported. Additional studies on its reactivity using acetone or the ferrocenyl-, cyrhetrenyl- or cymantrenyl-aldehydes have allowed us to isolate and characterize [Fe(η5-C5H5){(η5-C5H4)-S(O)2-NH-N[double bond, length as m-dash]CMe2}] (3), the bis(ferrocenyl) derivative [Fe(η5-C5H5){[(η5-C5H4)-S(O)2-NH-N[double bond, length as m-dash]CH-(η5-C5H4)]Fe(η5-C5H5)}] (4) and the heterodimetallic compounds [Fe(η5-C5H5){[(η5-C5H4)-S(O)2-NH-N[double bond, length as m-dash]CH-(η5-C5H4)]M(CO)3}] with M = Re (5a) or Mn (5b). The X-ray crystal structures of compounds 3, 5a and 5b are also reported. A comparative study of their electrochemical and spectroscopic properties is also described. Additional computational calculations based on the DFT methodology have allowed us to elucidate the effect produced by the replacement of the terminal -NH2 (in 2) by the -N[double bond, length as m-dash]CMe2 (in 3) and -N[double bond, length as m-dash]CHR (in 4, 5a and 5b) moieties on the electronic distribution and to explain the differences detected in their electrochemical properties and absorption spectra. In vitro cytotoxicity studies of compounds 2, 4, 5a and 5b on the HCT-116 (colon), MCF7 and MDA-MB231 (breast) cancer cell lines reveal that compound 2 has no significant activity (IC50 > 100 μM), while its derivatives 4, 5a and 5b proved to be active in the three cancer cell lines selected in this study. The growth inhibition potency of compounds 5a and 5b against the triple negative MDA-MB231 breast cancer cell line is similar (or slightly) greater than that of cisplatin. Moreover, compounds 2, 4, 5a and 5b are less toxic than cisplatin in the normal and non-tumoral BJ fibroblasts, and the heterodimetallic complexes 5a and 5b with selective index >2.1 show an outstanding selective toxicity towards the MDA-MB231 cancer cells.
Collapse
Affiliation(s)
- Yosselin Huentupil
- Laboratorio de Química Inorgánica y Organometálica, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-c, Concepción, Chile.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Recent advances of podophyllotoxin/epipodophyllotoxin hybrids in anticancer activity, mode of action, and structure-activity relationship: An update (2010-2020). Eur J Med Chem 2020; 208:112830. [PMID: 32992133 DOI: 10.1016/j.ejmech.2020.112830] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 02/08/2023]
Abstract
Podophyllotoxins and epipodophyllotoxins, possess excellent activity against both drug-sensitive and drug-resistant even multidrug-resistant cancer cells via inhibition of tubulin polymerization. Several podophyllotoxin/epipodophyllotoxin derivatives such as etoposide and teniposide have already been applied for cancer therapy, revealing their potential as putative anticancer drugs. Hybridization of podophyllotoxin/epipodophyllotoxin moiety with other anticancer pharmacophores is a promising strategy to develop novel drug candidates so as to overcome drug resistance and improve the specificity, and numerous of podophyllotoxin/epipodophyllotoxin hybrids exhibit excellent in vitro antiproliferative and in vivo anticancer potency. This review emphasizes the recent development of podophyllotoxin/epipodophyllotoxin hybrids with potential application for cancer therapy covering articles published between 2010 and 2020. The mechanisms of action, the critical aspects of design as well as structure-activity relationships were also summarized.
Collapse
|
175
|
Bouché M, Hognon C, Grandemange S, Monari A, Gros PC. Recent advances in iron-complexes as drug candidates for cancer therapy: reactivity, mechanism of action and metabolites. Dalton Trans 2020; 49:11451-11466. [PMID: 32776052 DOI: 10.1039/d0dt02135k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this perspective, we discuss iron-complexes as drug candidates that are promising alternatives to conventional platinum-based chemotherapies owing to their broad range of reactivities and to the targeting of different biological systems. Breakthroughs in the comprehension of iron complexes' structure-activity relationship contributed to the clarification of their metabolization pathways, sub-cellular localization and influence on iron homeostasis, while enlightening the primary molecular targets of theses likely multi-target metallodrugs. Both the antiproliferative activity and elevated safety index observed among the family of iron complexes showed encouraging results as per their therapeutic potential and selectivity also with the aim of reducing chemotherapy side-effects, and facilitated more pre-clinical investigations. The purpose of this perspective is to summarize the recent advances that contributed in unveiling the intricate relationships between the structural modifications on iron-complexes and their reactivity, cellular trafficking and global mechanisms of action to broaden their use as anticancer drugs and advance to clinical evaluation.
Collapse
Affiliation(s)
- Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| | - Cécilia Hognon
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | | | - Antonio Monari
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Philippe C Gros
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| |
Collapse
|
176
|
Rocco D, Busto N, Pérez‐Arnaiz C, Biancalana L, Zacchini S, Pampaloni G, Garcia B, Marchetti F. Antiproliferative and bactericidal activity of diiron and monoiron cyclopentadienyl carbonyl complexes comprising a vinyl‐aminoalkylidene unit. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dalila Rocco
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13, I‐56124 Pisa Italy
| | - Natalia Busto
- Departamento de Química Universidad de Burgos Plaza Misael Bañuelos s/n, 09001 Burgos Spain
| | - Cristina Pérez‐Arnaiz
- Departamento de Química Universidad de Burgos Plaza Misael Bañuelos s/n, 09001 Burgos Spain
| | - Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13, I‐56124 Pisa Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari” Università di Bologna Viale Risorgimento 4, I‐40136 Bologna Italy
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13, I‐56124 Pisa Italy
| | - Begoña Garcia
- Departamento de Química Universidad de Burgos Plaza Misael Bañuelos s/n, 09001 Burgos Spain
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via G. Moruzzi 13, I‐56124 Pisa Italy
| |
Collapse
|
177
|
|
178
|
Basu U, Roy M, Chakravarty AR. Recent advances in the chemistry of iron-based chemotherapeutic agents. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213339] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
179
|
Hu B, Lian Z, Zhou Z, Shi L, Yu Z. Reactive Oxygen Species-Responsive Adaptable Self-Assembly of Peptides toward Advanced Biomaterials. ACS APPLIED BIO MATERIALS 2020; 3:5529-5551. [DOI: 10.1021/acsabm.0c00758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Zhengwen Lian
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Zhifei Zhou
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| |
Collapse
|
180
|
Chellan P, Sadler PJ. Enhancing the Activity of Drugs by Conjugation to Organometallic Fragments. Chemistry 2020; 26:8676-8688. [PMID: 32452579 PMCID: PMC7496994 DOI: 10.1002/chem.201904699] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/12/2020] [Indexed: 12/22/2022]
Abstract
Resistance to chemotherapy is a current clinical problem, especially in the treatment of microbial infections and cancer. One strategy to overcome this is to make new derivatives of existing drugs by conjugation to organometallic fragments, either by an appropriate linker, or by direct coordination of the drug to a metal. We illustrate this with examples of conjugated organometallic metallocene sandwich and half-sandwich complexes, RuII and OsII arene, and RhIII and IrIII cyclopentadienyl half-sandwich complexes. Ferrocene conjugates are particularly promising. The ferrocene-chloroquine conjugate ferroquine is in clinical trials for malaria treatment, and a ferrocene-tamoxifen derivative (a ferrocifen) seems likely to enter anticancer trails soon. Several other examples illustrate that organometallic conjugation can restore the activity of drugs to which resistance has developed.
Collapse
Affiliation(s)
- Prinessa Chellan
- Department of Chemistry and Polymer ScienceStellenbosch University7600Matieland, Western CapeSouth Africa
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
181
|
Allison M, Wilson D, Pask CM, McGowan PC, Lord RM. β-Diketonate versus β-Ketoiminate: The Importance of a Ferrocenyl Moiety in Improving the Anticancer Potency. Chembiochem 2020; 21:1988-1996. [PMID: 32176811 PMCID: PMC7496474 DOI: 10.1002/cbic.202000028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/23/2020] [Indexed: 12/01/2022]
Abstract
Herein we present a library of fully characterized β-diketonate and β-ketoiminate compounds that are functionalized with a ferrocenyl moiety. Their cytotoxic potential has been determined by screening against human breast adenocarcinomas (MCF-7 and MDA-MB-231), human colorectal carcinoma p53 wild type (HCT116 p53+/+ ) and normal human prostate (PNT2) cell lines. The ferrocenyl β-diketonate compounds are more than 18 times more cytotoxic than the ferrocenyl β-ketoiminate analogues. Against MCF-7, compounds functionalized at the meta position are up to nine times more cytotoxic than when functionalized at the para position. The ferrocenyl β-diketonate compounds have increased selectivity towards MCF-7 and MDA-MB-231, with several complexes having selectivity index (SI) values that are more than nine times (MCF-7) and more than six times (MDA-MB-231) that of carboplatin. The stability of these compounds in dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) has been assessed by NMR spectroscopy and mass spectrometry studies, and the compounds show no oxidation of the iron center from FeII to FeIII . Cytotoxicity screening was performed in both DMSO and DMF, with no significant differences observedin their potency.
Collapse
Affiliation(s)
| | - Daniel Wilson
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
| | | | | | - Rianne M. Lord
- School of ChemistryUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
- School of Chemistry and BiosciencesUniversity of BradfordBradfordBD7 1DPUK
| |
Collapse
|
182
|
Flores E, Muñoz-Osses M, Torrent C, Vásquez-Martínez Y, Gómez A, Cortez-San Martin M, Vega A, Martí AA, Godoy F, Mascayano C. Design, Synthesis and Biological Evaluation of Ferrocenyl Thiazole and Thiazolo[5,4-d]thiazole Catechols as Inhibitors of 5-hLOX and as Antibacterials against Staphylococcus aureus. Structural Relationship and Computational Studies. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | | | - Yesseny Vásquez-Martínez
- Programa-Centro de Investigaciones Biomédicas y Aplicadas (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| | | | | | - Andrés Vega
- Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Nacional Andrés Bello, República 275, Santiago Chile
| | - Angel A. Martí
- Department of Chemistry, Bioengineering and Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | | | | |
Collapse
|
183
|
Cunningham L, Wang Y, Nottingham C, Pagsulingan J, Jaouen G, McGlinchey MJ, Guiry PJ. Enantioselective Synthesis of Planar Chiral Ferrocifens that Show Chiral Discrimination in Antiproliferative Activity on Breast Cancer Cells. Chembiochem 2020; 21:2974-2981. [PMID: 32453493 DOI: 10.1002/cbic.202000311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/25/2020] [Indexed: 11/09/2022]
Abstract
The design and first enantioselective synthesis of a series of chiral ferrocifens and ferrociphenols was realised by enantioselective palladium-catalysed intramolecular direct C-H bond activation followed by McMurry coupling. Biological evaluation revealed moderate anticancer activities on breast cancer cells and evidence of chiral discrimination between enantiomers. Treatment of the novel ferrocifens with Ag2 O revealed that these systems are unable to form a neutral quinone methide, yet still demonstrate marked antiproliferative properties against both the hormone-dependent MCF-7 and hormone-independent MDA-MB-231 cell lines. This bioactivity arises from two mechanisms: Fenton-type chemistry and the anti-estrogenic activity associated with the tamoxifen-like structure.
Collapse
Affiliation(s)
- Laura Cunningham
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin Belfield, Dublin, 4, Ireland.,Synthesis and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
| | - Yong Wang
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005, Paris, France.,Sorbonne Université, UPMC Univ. Paris 6, UMR 8232 CNRS IPCM, Place Jussieu, 75005, Paris, France
| | - Chris Nottingham
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin Belfield, Dublin, 4, Ireland
| | - Jammah Pagsulingan
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin Belfield, Dublin, 4, Ireland
| | - Gérard Jaouen
- PSL, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005, Paris, France.,Sorbonne Université, UPMC Univ. Paris 6, UMR 8232 CNRS IPCM, Place Jussieu, 75005, Paris, France
| | - Michael J McGlinchey
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin Belfield, Dublin, 4, Ireland
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin Belfield, Dublin, 4, Ireland.,Synthesis and Solid-State Pharmaceutical Centre (SSPC), School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
| |
Collapse
|
184
|
Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213255
expr 886172045 + 931245952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
185
|
Gomes LM, Bataglioli JC, Storr T. Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
186
|
Ismail MK, Armstrong KA, Hodder SL, Horswell SL, Male L, Nguyen HV, Wilkinson EA, Hodges NJ, Tucker JHR. Organometallic nucleoside analogues: effect of the metallocene metal atom on cancer cell line toxicity. Dalton Trans 2020; 49:1181-1190. [PMID: 31897458 DOI: 10.1039/c9dt04174e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new chiral organometallic nucleoside analogue containing ruthenocene is reported, in which alkylthymine and alkylhydroxyl groups are attached in adjacent positions on one cyclopentadienyl ring. The synthetic procedures for this metallocene derivative and two control compounds are described, along with their characterisation by cyclic voltammetry and X-ray crystallography. Their biological activities in a human pancreatic cancer cell line (MIA-Pa-Ca-2) were significantly lower than those of three previously reported analogous ferrocene compounds, indicating that the choice of metallocene metal atom (Fe or Ru) plays a pivotal role in determining the anticancer properties of these nucleoside analogues, which in turn suggests a different mode of action from that of a conventional nucleoside analogue.
Collapse
Affiliation(s)
- Media K Ismail
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Katie A Armstrong
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Samantha L Hodder
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Sarah L Horswell
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Huy V Nguyen
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Edward A Wilkinson
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Nikolas J Hodges
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - James H R Tucker
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
187
|
Reshetnikov V, Özkan HG, Daum S, Janko C, Alexiou C, Sauer C, Heinrich MR, Mokhir A. N-Alkylaminoferrocene-Based Prodrugs Targeting Mitochondria of Cancer Cells. Molecules 2020; 25:molecules25112545. [PMID: 32486084 PMCID: PMC7321169 DOI: 10.3390/molecules25112545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 11/16/2022] Open
Abstract
Intracellular concentration of reactive oxygen species (e.g., H2O2) in cancer cells is elevated over 10-fold as compared to normal cells. This feature has been used by us and several other research groups to design cancer specific prodrugs, for example, N-alkylaminoferrocene (NAAF)-based prodrugs. Further improvement of the efficacy of these prodrugs can be achieved by their targeting to intracellular organelles containing elevated reactive oxygen species (ROS) amounts. For example, we have previously demonstrated that lysosome-targeted NAAF-prodrugs exhibit higher anticancer activity in cell cultures, in primary cells and in vivo (Angew. Chem. Int. Ed. 2017, 56, 15545). Mitochondrion is an organelle, where electrons can leak from the respiratory chain. These electrons can combine with O2, generating O2-• that is followed by dismutation with the formation of H2O2. Thus, ROS can be generated in excess in mitochondria and targeting of ROS-sensitive prodrugs to these organelles could be a sensible possibility for enhancing their efficacy. We have previously reported on NAAF-prodrugs, which after their activation in cells, are accumulated in mitochondria (Angew. Chem. Int. Ed. 2018, 57, 11943). Now we prepared two hybrid NAAF-prodrugs directly accumulated in mitochondria and activated in these organelles. We studied their anticancer activity and mode of action. Based on these data, we concluded that ROS produced by mitochondria is not available in sufficient quantities for activation of the ROS-responsive prodrugs. The reason for this can be efficient scavenging of ROS by antioxidants. Our data are important for the understanding of the mechanism of action of ROS-activatable prodrugs and will facilitate their further development.
Collapse
Affiliation(s)
- Viktor Reshetnikov
- Organic Chemistry Chair II, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (V.R.); (H.G.Ö.); (S.D.)
| | - Hülya Gizem Özkan
- Organic Chemistry Chair II, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (V.R.); (H.G.Ö.); (S.D.)
| | - Steffen Daum
- Organic Chemistry Chair II, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (V.R.); (H.G.Ö.); (S.D.)
- Merck, Im Laternenacker 5, 8200 Schaffhausen, Switzerland
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Glückstraße 10a, 91054 Erlangen, Germany; (C.J.); (C.A.)
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Glückstraße 10a, 91054 Erlangen, Germany; (C.J.); (C.A.)
| | - Caroline Sauer
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (C.S.); (M.R.H.)
| | - Markus R. Heinrich
- Medicinal Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (C.S.); (M.R.H.)
| | - Andriy Mokhir
- Organic Chemistry Chair II, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany; (V.R.); (H.G.Ö.); (S.D.)
- Correspondence:
| |
Collapse
|
188
|
The Cytotoxic Effect of Newly Synthesized Ferrocenes against Cervical Carcinoma Cells Alone and in Combination with Radiotherapy. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10113728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cervical cancer is one of the most common types of cancer in women, with approximately 500,000 new cases and 250,000 deaths every year. Radiotherapy combined with chemotherapy represents the treatment of choice for advanced cervical carcinomas. The role of the chemotherapy is to increase the sensitivity of the cancer cells to irradiation. Cisplatin, the most commonly used drug for this purpose, has its limitations. Thus, we used a family of ferrocene derivatives (in addition, one new species was prepared using standard Schlenk techniques) and studied their effects on cervical cancer cells alone and in combination with irradiation. We applied colorimetric assay to determine the cytotoxicity of the compounds; flow cytometry to analyze the production of reactive oxygen species (ROS), cell cycle, and mitochondrial membrane potential (MMP); immunochemistry to study protein expression; and colony forming assay to evaluate changes in radiosensitivity. Treatment with ferrocenes exhibited significant cytotoxicity against cervical cancer cells, associated with increasing ROS production and MMP changes, suggesting the induction of apoptosis. The combined activity of ferrocenes and ionizing radiation highlighted ferrocenes as potential radiosensitizing drugs, while their higher single-agent toxicity in comparison with routinely used cisplatin could also be promising. Our results demonstrate antitumor activity of several tested ferrocenes both alone and in combination with radiotherapy.
Collapse
|
189
|
Mbaba M, Dingle LMK, Swart T, Cash D, Laming D, de la Mare JA, Taylor D, Hoppe HC, Biot C, Edkins AL, Khanye SD. The in Vitro Antiplasmodial and Antiproliferative Activity of New Ferrocene-Based α-Aminocresols Targeting Hemozoin Inhibition and DNA Interaction. Chembiochem 2020; 21:2643-2658. [PMID: 32307798 DOI: 10.1002/cbic.202000132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/15/2020] [Indexed: 01/30/2023]
Abstract
The conjugation of organometallic complexes to known bioactive organic frameworks is a proven strategy revered for devising new drug molecules with novel modes of action. This approach holds great promise for the generation of potent drug leads in the quest for therapeutic chemotypes with the potential to overcome the development of clinical resistance. Herein, we present the in vitro antiplasmodial and antiproliferative investigation of ferrocenyl α-aminocresol conjugates assembled by amalgamation of the organometallic ferrocene unit and an α-aminocresol scaffold possessing antimalarial activity. The compounds pursued in the study exhibited higher toxicity towards the chemosensitive (3D7) and -resistant (Dd2) strains of the Plasmodium falciparum parasite than to the human HCC70 triple-negative breast cancer cell line. Indication of cross-resistance was absent for the compounds evaluated against the multi-resistant Dd2 strain. Structure-activity analysis revealed that the phenolic hydroxy group and rotatable σ bond between the α-carbon and NH group of the α-amino-o-cresol skeleton are crucial for the biological activity of the compounds. Spectrophotometric techniques and in silico docking simulations performed on selected derivatives suggest that the compounds show a dual mode of action involving hemozoin inhibition and DNA interaction via minor-groove binding. Lastly, compound 9 a, identified as a possible lead, exhibited preferential binding for the plasmodial DNA isolated from 3D7 P. falciparum trophozoites over the mammalian calf thymus DNA, thereby substantiating the enhanced antiplasmodial activity of the compounds. The presented research demonstrates the strategy of incorporating organometallic complexes into known biologically active organic scaffolds as a viable avenue to fashion novel multimodal compounds with potential to counter the development drug resistance.
Collapse
Affiliation(s)
- Mziyanda Mbaba
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa
| | - Laura M K Dingle
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa
| | - Tarryn Swart
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Devon Cash
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa
| | - Dustin Laming
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Jo-Anne de la Mare
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Dale Taylor
- Faculty of Medicine, Division of Clinical Pharmacology, University of Cape Town Observatory, Cape Town, 7925, South Africa
| | - Heinrich C Hoppe
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Christophe Biot
- Université de Lille, CNRS, UMR 8576 UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Adrienne L Edkins
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Setshaba D Khanye
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa.,Faculty of Pharmacy, Division of Pharmaceutical Chemistry, Rhodes University, Grahamstown, 6140, South Africa
| |
Collapse
|
190
|
Lepeltier E, Rijo P, Rizzolio F, Popovtzer R, Petrikaite V, Assaraf YG, Passirani C. Nanomedicine to target multidrug resistant tumors. Drug Resist Updat 2020; 52:100704. [PMID: 32512316 DOI: 10.1016/j.drup.2020.100704] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/21/2019] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Nanomedicine employs nanotechnologies to develop innovative applications, and more specifically nano-objects in the field of human health, through exploitation of the physical, chemical and biological properties of materials at the nanoscale. The use of nanovehicles capable of transporting and releasing the active therapeutic payload into target cells, particularly in the case of cancer or inflammatory diseases, can also enhance diagnosis. Therefore, nanomedicines improve the benefit/risk ratio of drugs by increasing their bioavailability, selectivity, and efficacy in the target tissue, while reducing the necessary doses and hence diminishing untoward toxicity to healthy tissues. Overcoming multidrug resistance (MDR) to antitumor agents is a central goal of cancer research and therapeutics, making it possible to treat these diseases more accurately and effectively. The adaptability of nanomedicines e.g. modulation of their components, surface functionalization, encapsulation of various active therapeutics as well as the possibility of combining several treatments using a single nanoparticle platform, are characteristics which are perfectly poised to address classical chemoresistance, a major obstacle towards curative cancer therapy. In this review, we discuss an assortment of nanomedicines along with those that should be developed in order to surmount cancer MDR; these include exosomes, natural compounds, lipid nanocapsules, prodrug self-assemblies, and gold nanoparticles.
Collapse
Affiliation(s)
- Elise Lepeltier
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France
| | - Patricia Rijo
- Research Center for Biosciences & Health Technologies (CBIOS), Lisboa, Portugal; iMed.ULisboa - Research Institute for Medicines, Lisboa, Portugal
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30123 Venezia, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology & Advanced Materials Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Av. 13, LT-50161 Kaunas, Lithuania; Institute of Physiology and Pharmacology, Faculty of Medicine, Lithuanian University of Health Sciences, A. Mickevičiaus 9, LT-44307 Kaunas, Lithuania
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Catherine Passirani
- Micro et Nanomédecines Translationnelles, MINT, UNIV Angers, UMR INSERM 1066, UMR CNRS 6021, Angers, France.
| |
Collapse
|
191
|
Zhou J, Zhu X, Cheng Q, Wang Y, Wang R, Cheng X, Xu J, Liu K, Li L, Li X, He M, Wang J, Xu H, Jing S, Huang L. Ferrocene Functionalized Upconversion Nanoparticle Nanosystem with Efficient Near-Infrared-Light-Promoted Fenton-Like Reaction for Tumor Growth Suppression. Inorg Chem 2020; 59:9177-9187. [DOI: 10.1021/acs.inorgchem.0c01073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | - Yuxuan Wang
- Department of Chemistry, University of Calgary, 2500 University Drive, Calgary T2N 1N4, Canada
| | | | - Xingwen Cheng
- Institute of Advanced Materials, Nanjing Tech University, Nanjing 210009, China
| | - Jiajia Xu
- Institute of Advanced Materials, Nanjing Tech University, Nanjing 210009, China
| | | | - Lin Li
- Institute of Advanced Materials, Nanjing Tech University, Nanjing 210009, China
| | | | | | - Jian Wang
- Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | - Ling Huang
- Institute of Advanced Materials, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
192
|
Ismail MK, Khan Z, Rana M, Horswell SL, Male L, Nguyen HV, Perotti A, Romero-Canelón I, Wilkinson EA, Hodges NJ, Tucker JHR. Effect of Regiochemistry and Methylation on the Anticancer Activity of a Ferrocene-Containing Organometallic Nucleoside Analogue. Chembiochem 2020; 21:2487-2494. [PMID: 32255248 DOI: 10.1002/cbic.202000124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/06/2020] [Indexed: 12/20/2022]
Abstract
Four new bis-substituted ferrocene derivatives containing either a hydroxyalkyl or methoxyalkyl group and either a thyminyl or methylthyminyl group have been synthesised and characterised by a range of spectroscopic and analytical techniques. They were included in a structure-activity-relationship (SAR) study probing anticancer activities in osteosarcoma (bone cancer) cell lines and were compared with a known lead compound, 1-(S,Rp ), a nucleoside analogue that is highly toxic to cancer cells. Biological studies using the MTT assay revealed that a regioisomer of ferronucleoside 1-(S,Rp ), which only differs from the lead compound in being substituted on two cyclopentadienyl rings rather than one, was over 20 times less cytotoxic. On the other hand, methylated derivatives of 1-(S,Rp ) showed comparable cytotoxicities to the lead compound. Overall these studies indicate that a mechanism of action for 1-(S,Rp ) cannot proceed through alcohol phosphorylation and that its geometry and size, rather than any particular functional group, are crucial factors in explaining its high anticancer activity.
Collapse
Affiliation(s)
- Media K Ismail
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Zahra Khan
- School of Biosciences, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Marium Rana
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Sarah L Horswell
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Louise Male
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Huy V Nguyen
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Alessio Perotti
- School of Biosciences, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Isolda Romero-Canelón
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Edward A Wilkinson
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Nikolas J Hodges
- School of Biosciences, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - James H R Tucker
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
193
|
Ye R, Tan C, Chen B, Li R, Mao Z. Zinc-Containing Metalloenzymes: Inhibition by Metal-Based Anticancer Agents. Front Chem 2020; 8:402. [PMID: 32509730 PMCID: PMC7248183 DOI: 10.3389/fchem.2020.00402] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 01/13/2023] Open
Abstract
DNA is considered to be the primary target of platinum-based anticancer drugs which have gained great success in clinics, but DNA-targeted anticancer drugs cause serious side-effects and easily acquired drug resistance. This has stimulated the search for novel therapeutic targets. In the past few years, substantial research has demonstrated that zinc-containing metalloenzymes play a vital role in the occurrence and development of cancer, and they have been identified as alternative targets for metal-based anticancer agents. Metal complexes themselves have also exhibited a lot of appealing features for enzyme inhibition, such as: (i) the facile construction of 3D structures that can increase the enzyme-binding selectivity and affinity; (ii) the intriguing photophysical and photochemical properties, and redox activities of metal complexes can offer possibilities to design enzyme inhibitors with multiple modes of action. In this review, we discuss recent examples of zinc-containing metalloenzyme inhibition of metal-based anticancer agents, especially three zinc-containing metalloenzymes overexpressed in tumors, including histone deacetylases (HDACs), carbonic anhydrases (CAs), and matrix metalloproteinases (MMPs).
Collapse
Affiliation(s)
- Ruirong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Caiping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Bichun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zongwan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
194
|
Elmuradov B, Dräger G, Butenschön H. Novel π‐Extended Quinazoline‐Ferrocene Conjugates: Synthesis, Structure, and Redox Behavior. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Burkhon Elmuradov
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
- Institute of the Chemistry of Plant Substances Academy of Sciences of Uzbekistan Mirzo‐Ulugbek str. 77 100170 Tashkent Uzbekistan
| | - Gerald Dräger
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| | - Holger Butenschön
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| |
Collapse
|
195
|
Gelle D, Lamač M, Mach K, Šimková L, Gyepes R, Sommerová L, Martišová A, Bartošík M, Vaculovič T, Kanický V, Hrstka R, Pinkas J. Enhanced Intracellular Accumulation and Cytotoxicity of Ferrocene‐Ruthenium Arene Conjugates. Chempluschem 2020. [DOI: 10.1002/cplu.202000022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Donát Gelle
- J. Heyrovský Institute of Physical ChemistryAcademy of Sciences of the Czech Republic v.v.i. Dolejškova 2155/3 182 23 Prague 8 Czech Republic
- Department of ChemistryFaculty of EducationJ. Selye University Bratislavská cesta 3322 945 01 Komárno Slovak Republic
| | - Martin Lamač
- J. Heyrovský Institute of Physical ChemistryAcademy of Sciences of the Czech Republic v.v.i. Dolejškova 2155/3 182 23 Prague 8 Czech Republic
| | - Karel Mach
- J. Heyrovský Institute of Physical ChemistryAcademy of Sciences of the Czech Republic v.v.i. Dolejškova 2155/3 182 23 Prague 8 Czech Republic
| | - Ludmila Šimková
- J. Heyrovský Institute of Physical ChemistryAcademy of Sciences of the Czech Republic v.v.i. Dolejškova 2155/3 182 23 Prague 8 Czech Republic
| | - Róbert Gyepes
- J. Heyrovský Institute of Physical ChemistryAcademy of Sciences of the Czech Republic v.v.i. Dolejškova 2155/3 182 23 Prague 8 Czech Republic
- Department of ChemistryFaculty of EducationJ. Selye University Bratislavská cesta 3322 945 01 Komárno Slovak Republic
| | - Lucia Sommerová
- Regional Centre for Applied Molecular OncologyMasaryk Memorial Cancer Institute Žlutý kopec 7 65653 Brno Czech Republic
| | - Andrea Martišová
- Regional Centre for Applied Molecular OncologyMasaryk Memorial Cancer Institute Žlutý kopec 7 65653 Brno Czech Republic
| | - Martin Bartošík
- Regional Centre for Applied Molecular OncologyMasaryk Memorial Cancer Institute Žlutý kopec 7 65653 Brno Czech Republic
| | - Tomáš Vaculovič
- Department of ChemistryFaculty of ScienceMasaryk University Kamenice 753/5 62500 Brno Czech Republic
| | - Viktor Kanický
- Department of ChemistryFaculty of ScienceMasaryk University Kamenice 753/5 62500 Brno Czech Republic
| | - Roman Hrstka
- Regional Centre for Applied Molecular OncologyMasaryk Memorial Cancer Institute Žlutý kopec 7 65653 Brno Czech Republic
| | - Jiří Pinkas
- J. Heyrovský Institute of Physical ChemistryAcademy of Sciences of the Czech Republic v.v.i. Dolejškova 2155/3 182 23 Prague 8 Czech Republic
| |
Collapse
|
196
|
Taner B, Sevgi F, Göver T. Synthesis and Anti-Biofilm Activity of New Ferrocene Schiff
Bases. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220050254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
197
|
Borisov YA, Snegur LV, Rogatkina EY, Kuzmenko YV, Kiselev SS, Korlyukov AA, Simenel AA. Molecular structures of Ugi’s amine ferrocene-conjugates with R,R-tartaric acid and DFT calculations versus experimental resolution of their diastereomers. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
198
|
Dey S, Buzsáki D, Bruhn C, Kelemen Z, Pietschnig R. Bulky 1,1'-bisphosphanoferrocenes and their coordination behaviour towards Cu(i). Dalton Trans 2020; 49:6668-6681. [PMID: 32342065 DOI: 10.1039/d0dt00941e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Two bulky mesityl substituted dppf-analogues Fe(C5H4PMes2)2 (Mes = 2,4,6-Me3C6H2, 1) and Fe(C5H4PMes2)(C5H4PPh2) (Mes = 2,4,6-Me3C6H2, Ph = C6H5, 3) have been prepared and their properties as donor ligands have been explored using heteronuclear NMR spectroscopy and in particular via1JP-Se coupling, cyclic voltammetry and DFT calculations. Based on the results obtained, a series of mono- and dinuclear Cu(i) complexes have been prepared with these new diphosphane ligands using Br-, I-, and BF4- as counter anions. For the very bulky ligand 1 rare and unprecedented double bridging complexation modes have been observed containing two non-planar Cu2Br2 units, while for the other dinuclear complexes planar Cu2Br2 units have been found. The Cu(i) complexes of 1 and 3 were then used as catalysts for CO2-fixation reaction with terminal alkynes, and complexes with ligand 3 were found to be more efficient than those with 1. DFT calculations performed on compounds 1, 3 and their Cu(i) complexes were able to verify the trend of these catalytic reactions.
Collapse
Affiliation(s)
- Subhayan Dey
- Institut für Chemie und CINSaT, University of Kassel, Heinrich Plett-Straße 40, 34132 Kassel, Germany.
| | - Daniel Buzsáki
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, and MTA-BME Computation Driven Chemistry Research Group, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Clemens Bruhn
- Institut für Chemie und CINSaT, University of Kassel, Heinrich Plett-Straße 40, 34132 Kassel, Germany.
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, and MTA-BME Computation Driven Chemistry Research Group, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Rudolf Pietschnig
- Institut für Chemie und CINSaT, University of Kassel, Heinrich Plett-Straße 40, 34132 Kassel, Germany.
| |
Collapse
|
199
|
Lewandowski EM, Szczupak Ł, Kowalczyk A, Mendoza G, Arruebo M, Jacobs LMC, Stączek P, Chen Y, Kowalski K. Metallocenyl 7‐ACA Conjugates: Antibacterial Activity Studies and Atomic‐Resolution X‐ray Crystal Structure with CTX‐M β‐Lactamase. Chembiochem 2020; 21:2187-2195. [DOI: 10.1002/cbic.202000054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/13/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Eric M. Lewandowski
- Department of Molecular Medicine University of South Florida, >Morsani College of Medicine 12901 Bruce B. Downs Boulevard Tampa FL 33612 US
| | - Łukasz Szczupak
- Department of Organic Chemistry, Faculty of Chemistry University of Łódź Tamka 12 91-403 Łódź Poland
| | - Aleksandra Kowalczyk
- Department of Microbial Genetics, Faculty of Biology and Environmental Protection University of Łódź Banacha 12/16 90-237 Łódź Poland
| | - Gracia Mendoza
- Department of Chemical Engineering Aragon Health Research Institute (IIS Aragón) University of Zaragoza Campus Río Ebro-Edificio I+D, c/ Poeta Mariano Esquillor s/n 5018 Zaragoza Spain
| | - Manuel Arruebo
- Department of Chemical Engineering Aragon Health Research Institute (IIS Aragón) University of Zaragoza Campus Río Ebro-Edificio I+D, c/ Poeta Mariano Esquillor s/n 5018 Zaragoza Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine CIBER-BBN 28029 Madrid Spain
| | - Lian M. C. Jacobs
- Department of Molecular Medicine University of South Florida, >Morsani College of Medicine 12901 Bruce B. Downs Boulevard Tampa FL 33612 US
| | - Paweł Stączek
- Department of Microbial Genetics, Faculty of Biology and Environmental Protection University of Łódź Banacha 12/16 90-237 Łódź Poland
| | - Yu Chen
- Department of Molecular Medicine University of South Florida, >Morsani College of Medicine 12901 Bruce B. Downs Boulevard Tampa FL 33612 US
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry University of Łódź Tamka 12 91-403 Łódź Poland
| |
Collapse
|
200
|
Agonigi G, Batchelor LK, Ferretti E, Schoch S, Bortoluzzi M, Braccini S, Chiellini F, Biancalana L, Zacchini S, Pampaloni G, Sarkar B, Dyson PJ, Marchetti F. Mono-, Di- and Tetra-iron Complexes with Selenium or Sulphur Functionalized Vinyliminium Ligands: Synthesis, Structural Characterization and Antiproliferative Activity. Molecules 2020; 25:E1656. [PMID: 32260272 PMCID: PMC7180837 DOI: 10.3390/molecules25071656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
A series of diiron/tetrairon compounds containing a S- or a Se-function (2a-d, 4a-d, 5a-b, 6), and the monoiron [FeCp(CO){SeC1(NMe2)C2HC3(Me)}] (3) were prepared from the diiron μ-vinyliminium precursors [Fe2Cp2(CO)( μ-CO){ μ-η1: η3-C3(R')C2HC1N(Me)(R)}]CF3SO3 (R = R' = Me, 1a; R = 2,6-C6H3Me2 = Xyl, R' = Ph, 1b; R = Xyl, R' = CH2OH, 1c), via treatment with S8 or gray selenium. The new compounds were characterized by elemental analysis, IR and multinuclear NMR spectroscopy, and structural aspects were further elucidated by DFT calculations. The unprecedented metallacyclic structure of 3 was ascertained by single crystal X-ray diffraction. The air-stable compounds (3, 4a-d, 5a-b, 6) display fair to good stability in aqueous media, and thus were assessed for their cytotoxic activity towards A2780, A2780cisR, and HEK-293 cell lines. Cyclic voltammetry, ROS production and NADH oxidation studies were carried out on selected compounds to give insights into their mode of action.
Collapse
Affiliation(s)
- Gabriele Agonigi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.A.); (S.S.); (S.B.); (F.C.); (L.B.); (G.P.)
| | - Lucinda K. Batchelor
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; (L.K.B.); (P.J.D.)
| | - Eleonora Ferretti
- Institut für Chemie und Biochemie, Fabeckstr 34-36, 14195 Berlin, Germany; (E.F.); (B.S.)
| | - Silvia Schoch
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.A.); (S.S.); (S.B.); (F.C.); (L.B.); (G.P.)
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi, Ca’ Foscari Università di Venezia, Via Torino 155, I-30170 Mestre (VE), Italy;
| | - Simona Braccini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.A.); (S.S.); (S.B.); (F.C.); (L.B.); (G.P.)
| | - Federica Chiellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.A.); (S.S.); (S.B.); (F.C.); (L.B.); (G.P.)
| | - Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.A.); (S.S.); (S.B.); (F.C.); (L.B.); (G.P.)
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy;
| | - Guido Pampaloni
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.A.); (S.S.); (S.B.); (F.C.); (L.B.); (G.P.)
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Fabeckstr 34-36, 14195 Berlin, Germany; (E.F.); (B.S.)
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; (L.K.B.); (P.J.D.)
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy; (G.A.); (S.S.); (S.B.); (F.C.); (L.B.); (G.P.)
| |
Collapse
|