151
|
Musa A, Ghoraie LS, Zhang SD, Glazko G, Yli-Harja O, Dehmer M, Haibe-Kains B, Emmert-Streib F. A review of connectivity map and computational approaches in pharmacogenomics. Brief Bioinform 2018; 19:506-523. [PMID: 28069634 PMCID: PMC5952941 DOI: 10.1093/bib/bbw112] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Large-scale perturbation databases, such as Connectivity Map (CMap) or Library of Integrated Network-based Cellular Signatures (LINCS), provide enormous opportunities for computational pharmacogenomics and drug design. A reason for this is that in contrast to classical pharmacology focusing at one target at a time, the transcriptomics profiles provided by CMap and LINCS open the door for systems biology approaches on the pathway and network level. In this article, we provide a review of recent developments in computational pharmacogenomics with respect to CMap and LINCS and related applications.
Collapse
Affiliation(s)
- Aliyu Musa
- Predictive Medicine and Analytics Lab, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Laleh Soltan Ghoraie
- Bioinformatics and Computational Genomics Laboratory, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Galina Glazko
- University of Rochester Department of Biostatistics and Computational Biology, Rochester, New York, USA
| | - Olli Yli-Harja
- Computational Systems Biology, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Matthias Dehmer
- Institute for Bioinformatics and Translational Research, UMIT- The Health and Life Sciences University, Eduard Wallnoefer Zentrum 1, Hall in Tyrol, Austria
| | - Benjamin Haibe-Kains
- Bioinformatics and Computational Genomics Laboratory, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Ontario Institute of Cancer Research, Toronto, ON, Canada
| | - Frank Emmert-Streib
- Predictive Medicine and Analytics Lab, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
152
|
Musa A, Ghoraie LS, Zhang SD, Glazko G, Yli-Harja O, Dehmer M, Haibe-Kains B, Emmert-Streib F. A review of connectivity map and computational approaches in pharmacogenomics. Brief Bioinform 2018. [PMID: 28069634 DOI: 10.1093/bib] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Large-scale perturbation databases, such as Connectivity Map (CMap) or Library of Integrated Network-based Cellular Signatures (LINCS), provide enormous opportunities for computational pharmacogenomics and drug design. A reason for this is that in contrast to classical pharmacology focusing at one target at a time, the transcriptomics profiles provided by CMap and LINCS open the door for systems biology approaches on the pathway and network level. In this article, we provide a review of recent developments in computational pharmacogenomics with respect to CMap and LINCS and related applications.
Collapse
Affiliation(s)
- Aliyu Musa
- Predictive Medicine and Analytics Lab, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Laleh Soltan Ghoraie
- Bioinformatics and Computational Genomics Laboratory, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Derry/Londonderry BT47 6SB, Northern Ireland, UK
| | - Galina Glazko
- University of Rochester Department of Biostatistics and Computational Biology, Rochester, New York 14642, USA
| | - Olli Yli-Harja
- Computational Systems Biology, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Matthias Dehmer
- Institute for Bioinformatics and Translational Research, UMIT- The Health and Life Sciences University, Eduard Wallnoefer Zentrum 1, 6060 Hall in Tyrol, Austria
| | - Benjamin Haibe-Kains
- Bioinformatics and Computational Genomics Laboratory, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Ontario Institute of Cancer Research, Toronto, ON, Canada
| | - Frank Emmert-Streib
- Predictive Medicine and Analytics Lab, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
153
|
Bijvelds MJC, Tresadern G, Hellemans A, Smans K, Nieuwenhuijze NDA, Meijsen KF, Bongartz JP, Ver Donck L, de Jonge HR, Schuurkes JAJ, De Maeyer JH. Selective inhibition of intestinal guanosine 3',5'-cyclic monophosphate signaling by small-molecule protein kinase inhibitors. J Biol Chem 2018; 293:8173-8181. [PMID: 29653944 PMCID: PMC5971447 DOI: 10.1074/jbc.ra118.002835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/11/2018] [Indexed: 11/06/2022] Open
Abstract
The guanosine 3',5'-cyclic monophosphate (cGMP)-dependent protein kinase II (cGKII) serine/threonine kinase relays signaling through guanylyl cyclase C (GCC) to control intestinal fluid homeostasis. Here, we report the discovery of small-molecule inhibitors of cGKII. These inhibitors were imidazole-aminopyrimidines, which blocked recombinant human cGKII at submicromolar concentrations but exhibited comparatively little activity toward the phylogenetically related protein kinases cGKI and cAMP-dependent protein kinase (PKA). Whereas aminopyrimidyl motifs are common in protein kinase inhibitors, molecular modeling of these imidazole-aminopyrimidines in the ATP-binding pocket of cGKII indicated an unconventional binding mode that directs their amine substituent into a narrow pocket delineated by hydrophobic residues of the hinge and the αC-helix. Crucially, this set of residues included the Leu-530 gatekeeper, which is not conserved in cGKI and PKA. In intestinal organoids, these compounds blocked cGKII-dependent phosphorylation of the vasodilator-stimulated phosphoprotein (VASP). In mouse small intestinal tissue, cGKII inhibition significantly attenuated the anion secretory response provoked by the GCC-activating bacterial heat-stable toxin (STa), a frequent cause of infectious secretory diarrhea. In contrast, both PKA-dependent VASP phosphorylation and intestinal anion secretion were unaffected by treatment with these compounds, whereas experiments with T84 cells indicated that they weakly inhibit the activity of cAMP-hydrolyzing phosphodiesterases. As these protein kinase inhibitors are the first to display selective inhibition of cGKII, they may expedite research on cGMP signaling and may aid future development of therapeutics for managing diarrheal disease and other pathogenic syndromes that involve cGKII.
Collapse
Affiliation(s)
- Marcel J C Bijvelds
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, P. O. Box 2040, 3000CA Rotterdam, The Netherlands.
| | - Gary Tresadern
- Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Ann Hellemans
- Shire-Movetis NV, Veedijk 58, B-2300 Turnhout, Belgium
| | - Karine Smans
- Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Natascha D A Nieuwenhuijze
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, P. O. Box 2040, 3000CA Rotterdam, The Netherlands
| | - Kelly F Meijsen
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, P. O. Box 2040, 3000CA Rotterdam, The Netherlands
| | - Jean-Pierre Bongartz
- Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Luc Ver Donck
- Janssen Research and Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Hugo R de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, P. O. Box 2040, 3000CA Rotterdam, The Netherlands
| | | | | |
Collapse
|
154
|
Lork M, Kreike M, Staal J, Beyaert R. Importance of Validating Antibodies and Small Compound Inhibitors Using Genetic Knockout Studies-T Cell Receptor-Induced CYLD Phosphorylation by IKKε/TBK1 as a Case Study. Front Cell Dev Biol 2018; 6:40. [PMID: 29755980 PMCID: PMC5932415 DOI: 10.3389/fcell.2018.00040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/23/2018] [Indexed: 12/16/2022] Open
Abstract
CYLD is a deubiquitinating enzyme that plays a crucial role in immunity and inflammation as a negative regulator of NF-κB transcription factor and JNK kinase signaling. Defects in either of these pathways contribute to the progression of numerous inflammatory and autoimmune disorders. Therefore, we set out to unravel molecular mechanisms that control CYLD activity in the context of T cell receptor (TCR) signaling. More specifically, we focused on CYLD phosphorylation at Ser418, which can be detected upon immunoblotting of cell extracts with phospho(Ser418)-CYLD specific antibodies. Jurkat T cells stimulated with either anti-CD3/anti-CD28 or PMA/Ionomycin (to mimic TCR signaling) were used as a model system. The role of specific kinases was analyzed using pharmacological as well as genetic approaches. Our initial data indicated that CYLD is directly phosphorylated by the noncanonical IκB kinases (IKKs) IKKε and TANK Binding Kinase 1 (TBK1) at Ser418 upon TCR stimulation. Treatment with MRT67307, a small compound inhibitor for IKKε and TBK1, inhibited TCR-induced CYLD phosphorylation. However, the phospho(Ser418)-CYLD immunoreactive band was still present in CRISPR/Cas9 generated IKKε/TBK1 double knockout cell lines, where it could still be prevented by MRT67307, indicating that the initially observed inhibitory effect of MRT67307 on TCR-induced CYLD phosphorylation is IKKε/TBK1-independent. Most surprisingly, the phospho(Ser418)-CYLD immunoreactive band was still detectable upon immunoblotting of cell extracts obtained from CYLD deficient cells. These data demonstrate the non-specificity of MRT67307 and phospho(Ser418)-CYLD specific antibodies, implying that previously published results based on these tools may also have led to wrong conclusions. We therefore advise to use genetic knockout studies or alternative approaches for a better validation of antibodies and small compound inhibitors. Interestingly, immunoprecipitation with the phospho(Ser418)-CYLD antibody, followed by immunoblotting with anti-CYLD, revealed that CYLD is phosphorylated by IKKε/TBK1 at Ser418 upon T cell stimulation, but that its direct detection with the phospho(Ser418)-CYLD-specific antibody in a western blot is masked by another inducible protein of the same size that is recognized by the same antibody.
Collapse
Affiliation(s)
- Marie Lork
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Marja Kreike
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Department of Biomedical Molecular Biology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| |
Collapse
|
155
|
Guo XX, An S, Yang Y, Liu Y, Hao Q, Tang T, Xu TR. Emerging role of the Jun N-terminal kinase interactome in human health. Cell Biol Int 2018; 42:756-768. [DOI: 10.1002/cbin.10948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/03/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Xi Guo
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Su An
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Yang Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Ying Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Qian Hao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tao Tang
- Faculty of Medicine; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| |
Collapse
|
156
|
Neumann F, Gourdain S, Albac C, Dekker AD, Bui LC, Dairou J, Schmitz-Afonso I, Hue N, Rodrigues-Lima F, Delabar JM, Potier MC, Le Caër JP, Touboul D, Delatour B, Cariou K, Dodd RH. DYRK1A inhibition and cognitive rescue in a Down syndrome mouse model are induced by new fluoro-DANDY derivatives. Sci Rep 2018; 8:2859. [PMID: 29434250 PMCID: PMC5809559 DOI: 10.1038/s41598-018-20984-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023] Open
Abstract
Inhibition of DYRK1A kinase, produced by chromosome 21 and consequently overproduced in trisomy 21 subjects, has been suggested as a therapeutic approach to treating the cognitive deficiencies observed in Down syndrome (DS). We now report the synthesis and potent DYRK1A inhibitory activities of fluoro derivatives of 3,5-di(polyhydroxyaryl)-7-azaindoles (F-DANDYs). One of these compounds (3-(4-fluorophenyl)-5-(3,4-dihydroxyphenyl)-1H-pyrrolo[2,3-b]pyridine, 5a) was selected for in vivo studies of cognitive rescuing effects in a standard mouse model of DS (Ts65Dn line). Using the Morris water maze task, Ts65Dn mice treated i.p. with 20 mg/kg of 5a performed significantly better than Ts65Dn mice treated with placebo, confirming the promnesiant effect of 5a in the trisomic mice. Overall, these results demonstrate for the first time that selective and competitive inhibition of DYRK1A kinase by the F-DANDY derivative 5a may provide a viable treatment strategy for combating the memory and learning deficiencies encountered in DS.
Collapse
Affiliation(s)
- Fernanda Neumann
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Stéphanie Gourdain
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Christelle Albac
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, Institut National de la Santé et de la Recherche Médicale (INSERM) and Centre National de la Recherche Scientifique (CNRS) Unités de Recherche U75, U1127, U7225, and Institut du Cerveau et de la Moelle Epinière (ICM), 75013, Paris, France
| | - Alain D Dekker
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, Institut National de la Santé et de la Recherche Médicale (INSERM) and Centre National de la Recherche Scientifique (CNRS) Unités de Recherche U75, U1127, U7225, and Institut du Cerveau et de la Moelle Epinière (ICM), 75013, Paris, France
- Department of Neurology, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Linh Chi Bui
- Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013, Paris, France
| | - Julien Dairou
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes-Sorbonne Paris Cité, 75270, Paris, France
| | - Isabelle Schmitz-Afonso
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Nathalie Hue
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Fernando Rodrigues-Lima
- Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013, Paris, France
| | - Jean M Delabar
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, Institut National de la Santé et de la Recherche Médicale (INSERM) and Centre National de la Recherche Scientifique (CNRS) Unités de Recherche U75, U1127, U7225, and Institut du Cerveau et de la Moelle Epinière (ICM), 75013, Paris, France
| | - Marie-Claude Potier
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, Institut National de la Santé et de la Recherche Médicale (INSERM) and Centre National de la Recherche Scientifique (CNRS) Unités de Recherche U75, U1127, U7225, and Institut du Cerveau et de la Moelle Epinière (ICM), 75013, Paris, France
| | - Jean-Pierre Le Caër
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Benoît Delatour
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Université Paris 06, Institut National de la Santé et de la Recherche Médicale (INSERM) and Centre National de la Recherche Scientifique (CNRS) Unités de Recherche U75, U1127, U7225, and Institut du Cerveau et de la Moelle Epinière (ICM), 75013, Paris, France
| | - Kevin Cariou
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Robert H Dodd
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
157
|
Meurer SK, Weiskirchen R. Usage of Mitogen-Activated Protein Kinase Small Molecule Inhibitors: More Than Just Inhibition! Front Pharmacol 2018; 9:98. [PMID: 29483873 PMCID: PMC5816342 DOI: 10.3389/fphar.2018.00098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
We have identified a phenomenon occurring in the usage of proposed “specific” Mitogen-activated protein kinase (MAPK) inhibitors. We found that especially inhibitors of p38 potentiate the activation of other MAPKs in various cell types. This finding will have tremendous impact on the interpretation of all former studies using MAPK inhibitors.
Collapse
Affiliation(s)
- Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene, and Clinical Chemistry, RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene, and Clinical Chemistry, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
158
|
Zhang J, Yin K, Sun J, Gao J, Du Q, Li H, Qiu J. Direct and tunable modulation of protein levels in rice and wheat with a synthetic small molecule. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:472-481. [PMID: 28682500 PMCID: PMC5787845 DOI: 10.1111/pbi.12787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/24/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Direct control of protein level enables rapid and efficient analyses of gene functions in crops. Previously, we developed the RDDK-Shield1 (Shld1) system in the model plant Arabidopsis thaliana for direct modulation of protein stabilization using a synthetic small molecule. However, it was unclear whether this system is applicable to economically important crops. In this study, we show that the RDDK-Shld1 system enables rapid and tunable control of protein levels in rice and wheat. Accumulation of RDDK fusion proteins can be reversibly and spatio-temporally controlled by the synthetic small-molecule Shld1. Moreover, RDDK-Bar and RDDK-Pid3 fusions confer herbicide and rice blast resistance, respectively, in a Shld1-dependent manner. Therefore, the RDDK-Shld1 system provides a reversible and tunable technique for controlling protein functions and conditional expression of transgenes in crops.
Collapse
Affiliation(s)
- Jingbo Zhang
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kangquan Yin
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Juan Sun
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Jinlan Gao
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Qiuli Du
- Department of Life Science and EngineeringJining UniversityQufuChina
- National Center for Soybean ImprovementNational Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Huali Li
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Jin‐Long Qiu
- State Key Laboratory of Plant GenomicsInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
159
|
Al-Shboul OA, Al-Dwairi AN, Alqudah MA, Mustafa AG. Gender differences in the regulation of MLC 20 phosphorylation and smooth muscle contraction in rat stomach. Biomed Rep 2018; 8:283-288. [PMID: 29599980 DOI: 10.3892/br.2018.1053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/19/2018] [Indexed: 01/03/2023] Open
Abstract
Evidence of sex-related differences in gastrointestinal (GI) functions has been reported in the literature. In addition, various GI disorders have disproportionate prevalence between the sexes. An essential step in the initiation of smooth muscle contraction is the phosphorylation of the 20-kDa regulatory myosin light chain (MLC20) by the Ca2+/calmodulin-dependent myosin light chain kinase (MLCK). However, whether male stomach smooth muscle inherits different contractile signaling mechanisms for the regulation of MLC20 phosphorylation from that in females has not been established. The present study was designed to investigate sex-associated differences in the regulation of MLC20 phosphorylation and thus muscle contraction in gastric smooth muscle cells (GSMCs). Experiments were performed on GSMCs freshly isolated from male and female rats. Contraction of the GSMCs in response to acetylcholine (ACh), a muscarinic agonist, was measured via scanning micrometry in the presence or absence of the MLCK inhibitor, ML-7. Additionally, the protein levels of MLC20, MLCK and phosphorylated MLC20 were measured by ELISA. The protein levels of MLC20 and MLCK were indifferent between the sexes. ACh induced greater contraction (P<0.05) as well as greater MLC20 phosphorylation (P<0.05) in male GSMCs compared with female. Pretreatment of GSMCs with ML-7 significantly reduced the ACh-induced contraction (P<0.05) and MLC20 phosphorylation (P<0.05) in the male and female cells, and notably, abolished the contractile differences between the sexes. In conclusion, MLC20 phosphorylation and thus muscle contraction may be activated to a greater extent in male rat stomach compared with that in females.
Collapse
Affiliation(s)
- Othman A Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmed N Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammad A Alqudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ayman G Mustafa
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
160
|
Hannaford MR, Ramat A, Loyer N, Januschke J. aPKC-mediated displacement and actomyosin-mediated retention polarize Miranda in Drosophila neuroblasts. eLife 2018; 7:29939. [PMID: 29364113 PMCID: PMC5783611 DOI: 10.7554/elife.29939] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/14/2018] [Indexed: 02/07/2023] Open
Abstract
Cell fate assignment in the nervous system of vertebrates and invertebrates often hinges on the unequal distribution of molecules during progenitor cell division. We address asymmetric fate determinant localization in the developing Drosophila nervous system, specifically the control of the polarized distribution of the cell fate adapter protein Miranda. We reveal a step-wise polarization of Miranda in larval neuroblasts and find that Miranda’s dynamics and cortical association are differently regulated between interphase and mitosis. In interphase, Miranda binds to the plasma membrane. Then, before nuclear envelope breakdown, Miranda is phosphorylated by aPKC and displaced into the cytoplasm. This clearance is necessary for the subsequent establishment of asymmetric Miranda localization. After nuclear envelope breakdown, actomyosin activity is required to maintain Miranda asymmetry. Therefore, phosphorylation by aPKC and differential binding to the actomyosin network are required at distinct phases of the cell cycle to polarize fate determinant localization in neuroblasts.
Collapse
Affiliation(s)
- Matthew Robert Hannaford
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Anne Ramat
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nicolas Loyer
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jens Januschke
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
161
|
Wong RW, Lingwood CA, Ostrowski MA, Cabral T, Cochrane A. Cardiac glycoside/aglycones inhibit HIV-1 gene expression by a mechanism requiring MEK1/2-ERK1/2 signaling. Sci Rep 2018; 8:850. [PMID: 29339801 PMCID: PMC5770468 DOI: 10.1038/s41598-018-19298-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
The capacity of HIV-1 to develop resistance to current drugs calls for innovative strategies to control this infection. We aimed at developing novel inhibitors of HIV-1 replication by targeting viral RNA processing—a stage dependent on conserved host processes. We previously reported that digoxin is a potent inhibitor of this stage. Herein, we identify 12 other cardiac glycoside/aglycones or cardiotonic steroids (CSs) that impede HIV growth in HIV-infected T cells from clinical patients at IC50s (1.1–1.3 nM) that are 2–26 times below concentrations used in patients with heart conditions. We subsequently demonstrate that CSs inhibit HIV-1 gene expression in part through modulation of MEK1/2-ERK1/2 signaling via interaction with the Na+/K+-ATPase, independent of alterations in intracellular Ca2+. Supporting this hypothesis, depletion of the Na+/K+-ATPase or addition of a MEK1/2-ERK1/2 activator also impairs HIV-1 gene expression. Similar to digoxin, all CSs tested induce oversplicing of HIV-1 RNAs, reducing unspliced (Gag) and singly spliced RNAs (Env/p14-Tat) encoding essential HIV-1 structural/regulatory proteins. Furthermore, all CSs cause nuclear retention of genomic/unspliced RNAs, supporting viral RNA processing as the underlying mechanism for their disruption of HIV-1 replication. These findings call for further in vivo validation and supports the targeting of cellular processes to control HIV-1 infection.
Collapse
Affiliation(s)
- Raymond W Wong
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Clifford A Lingwood
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S1A8, Canada.,Division of Molecular Structure and Function, Hospital for Sick Children, Toronto, ON, M5G1X8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Mario A Ostrowski
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital Toronto, Toronto, ON, M5B1W8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, M5S1A8, Canada.,Department of Immunology, University of Toronto, Toronto, ON, M5S1A8, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Tyler Cabral
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Alan Cochrane
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S1A8, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada.
| |
Collapse
|
162
|
Inhibition of neddylation facilitates cell migration through enhanced phosphorylation of caveolin-1 in PC3 and U373MG cells. BMC Cancer 2018; 18:30. [PMID: 29301501 PMCID: PMC5755266 DOI: 10.1186/s12885-017-3942-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 12/19/2017] [Indexed: 11/26/2022] Open
Abstract
Background Protein neddylation is a post-translational modification by a covalent conjugation with the neural precursor cell expressed, developmentally downregulated 8 (NEDD8). Although this process has been reported to participate in diverse cellular signaling, little is known about its role in cancer cell migration. Given a recent proteomics report showing that NEDD8 is downregulated in prostate cancer tissues versus normal prostate tissues, we tested the possibility that neddylation plays a role in cancer evolution, and then tried to identify target proteins of the neddylation. Methods The neddylation process was inhibited by transfecting cancer cells with NEDD8-targeting siRNAs or by treating the cells with a NAE1 inhibitor MLN4924. Cell migration was evaluated by an in vitro wound-healing assay and a Transwell migration assay. His/NEDD8-conjugated proteins were pulled down with nickel-affinity beads under a denaturing condition, and identified by Western blotting. All data were processed using the Microsoft Excel program and analyzed statistically by two-sided, unpaired Student’s t-test. Results Caveolin-1, which plays a critical role in cell migration, was identified to be conjugated with NEDD8. When the neddylation was inhibited, the phosphorylation of caveolin-1 at Tyr14 was augmented in PC3 and U373MG cells, thereby leading to increased cell migration. Such consequences by neddylation inhibition were abolished in the presence of a Src family kinase inhibitor PP2. Conclusions NEDD8 seems to inhibit the Src-mediated phosphorylation of caveolin-1 by modifying the structure of caveolin-1 protein, which blocks the migration of cancer cells. Although the neddylation process is currently regarded as an emerging target for cancer therapy, our results suggest the possibility that the inhibition of neddylation could facilitate cancer invasion or metastasis at least in some types of cancers. Electronic supplementary material The online version of this article (doi: 10.1186/s12885-017-3942-9) contains supplementary material, which is available to authorized users.
Collapse
|
163
|
Buckley A, Turner JR. Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029314. [PMID: 28507021 DOI: 10.1101/cshperspect.a029314] [Citation(s) in RCA: 432] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mucosal surfaces are lined by epithelial cells. In the intestine, the epithelium establishes a selectively permeable barrier that supports nutrient absorption and waste secretion while preventing intrusion by luminal materials. Intestinal epithelia therefore play a central role in regulating interactions between the mucosal immune system and luminal contents, which include dietary antigens, a diverse intestinal microbiome, and pathogens. The paracellular space is sealed by the tight junction, which is maintained by a complex network of protein interactions. Tight junction dysfunction has been linked to a variety of local and systemic diseases. Two molecularly and biophysically distinct pathways across the intestinal tight junction are selectively and differentially regulated by inflammatory stimuli. This review discusses the mechanisms underlying these events, their impact on disease, and the potential of using these as paradigms for development of tight junction-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Aaron Buckley
- Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Jerrold R Turner
- Departments of Pathology and Medicine (Gastroenterology), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
164
|
Ganduri R, Singh V, Biswas A, Karothu DP, Sekar K, Balaji KN, Guru Row TN. Structural and biological evaluation of halogen derivatives of 1,9-pyrazoloanthrones towards the design of a specific potent inhibitor of c-Jun-N-terminal kinase (JNK). NEW J CHEM 2018. [DOI: 10.1039/c8nj00852c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A specifically designed halogen derivatives of anthrapyrazolone for the selective inhibition of JNKs at lower concentrations with minimal off-target effects on MAPKs.
Collapse
Affiliation(s)
- Ramesh Ganduri
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore 560012
- India
| | - Vikas Singh
- Department of Microbiology and Cell Biology
- Indian Institute of Science
- Bangalore 560012
- India
| | - Ansuman Biswas
- Department of Physics
- Indian Institute of Science
- Bangalore 560012
- India
| | - Durga Prasad Karothu
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore 560012
- India
| | - Kanagaraj Sekar
- Department of Computational and Data Sciences
- Indian Institute of Science
- Bangalore 560012
- India
| | | | - Tayur N. Guru Row
- Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore 560012
- India
| |
Collapse
|
165
|
Anello L, Cavalieri V, Di Bernardo M. Developmental effects of the protein kinase inhibitor kenpaullone on the sea urchin embryo. Comp Biochem Physiol C Toxicol Pharmacol 2018; 204:36-44. [PMID: 29128602 DOI: 10.1016/j.cbpc.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/06/2023]
Abstract
The selection and validation of bioactive compounds require multiple approaches, including in-depth analyses of their biological activity in a whole-animal context. We exploited the sea urchin embryo in a rapid, medium-scale range screening to test the effects of the small synthetic kinase inhibitor kenpaullone. We show that sea urchin embryos specifically respond to this molecule depending on both dose and timing of administration. Phenotypic effects of kenpaullone are not immediately visible, since this molecule affects neither the fertilization nor the spatial arrangement of blastomeres at early developmental stages. Nevertheless, kenpaullone exposure from the beginning of embryogenesis profoundly perturbs specification, detachment from the epithelium, and migration of the primary mesenchyme cells, thus affecting the whole embryonic epithelial mesenchymal transition process. Our results reaffirm the sea urchin embryo as an excellent and sensitive in vivo system, which provides straightforward and rapid response to external stimuli.
Collapse
Affiliation(s)
- Letizia Anello
- Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Vincenzo Cavalieri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze Edificio 16, 90128 Palermo, Italy; Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze Edificio 18, 90128 Palermo, Italy
| | - Maria Di Bernardo
- Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
166
|
Przybyla T, Wesserling M, Sakowicz-Burkiewicz M, Maciejewska I, Pawelczyk T. The Level of TWIST1 expression determines the response of colon cancer cells to mitogen-activated protein kinases inhibitors. Saudi J Gastroenterol 2018; 24:37-45. [PMID: 29451183 PMCID: PMC5848323 DOI: 10.4103/sjg.sjg_270_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIM Currently, it has been proposed that combination of 5-fluorouracil (5FU) with inhibitors of the mitogen-activated protein kinases (MAPKs) signaling pathway might enhance the efficacy of 5FU-based chemotherapy in colon cancer. Our study aimed to investigate an impact of TWIST1 silencing on the sensitivity of cancer cells to 5FU and selected MAPK inhibitors. MATERIALS AND METHODS The suppression of TWIST1 expression in human colon cancer HT29 and HCT116 cell lines was achieved by transduction with lentiviral vector carrying the TWIST1 silencing sequence (pLL3.7-sh TWIST1). The statistical calculation was performed with analysis of variance or Dunnett's test for comparison to control group. Paired Student's t-test was performed when two groups were analyzed. RESULTS Suppression of TWIST1 reduced the proliferation rate of colon cancer cells and enhanced their sensitivity to 5FU and MAPKs inhibitors. The sensitivity of HT29 cells to examined compounds was more dependent on TWIST1 expression level compared to HCT116 cells. The most noticeable effect of TWIST1 suppression on sensitivity of both colon cancer cell lines to combined treatment of 5FU and the MAPKs inhibitors was observed for inhibitors of p38α/β and JNK1-3. We also noted that the suppression of TWIST1 significantly sensitized both cell lines to combined treatment of 5FU and Rac inhibitor. CONCLUSIONS Our observations point to TWIST1 expression level as a marker of colon cancer sensitivity to combined treatment of 5FU and MAPKs inhibitors.
Collapse
Affiliation(s)
- Tomasz Przybyla
- Department of Molecular Medicine, Medical University of Gdansk, Gdansk, Poland,Address for correspondence: Dr. Tomasz Przybyla, Department of Molecular Medicine, Medical University of Gdansk, Gdansk, Poland. E-mail:
| | - Martyna Wesserling
- Department of Molecular Medicine, Medical University of Gdansk, Gdansk, Poland
| | | | - Izabela Maciejewska
- Department of Molecular Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Tadeusz Pawelczyk
- Department of Molecular Medicine, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
167
|
Nakajima W, Sharma K, Lee JY, Maxim NT, Hicks MA, Vu TT, Luu A, Yeudall WA, Tanaka N, Harada H. DNA damaging agent-induced apoptosis is regulated by MCL-1 phosphorylation and degradation mediated by the Noxa/MCL-1/CDK2 complex. Oncotarget 2017; 7:36353-36365. [PMID: 27166195 PMCID: PMC5095005 DOI: 10.18632/oncotarget.9217] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/24/2016] [Indexed: 02/04/2023] Open
Abstract
Noxa, a BH3-only pro-apoptotic BCL-2 family protein, causes apoptosis by specifically interacting with the anti-apoptotic protein MCL-1 to induce its proteasome-mediated degradation. We show here that the DNA damaging agents cisplatin and etoposide upregulate Noxa expression, which is required for the phosphorylation of MCL-1 at Ser64/Thr70 sites, proteasome-dependent degradation, and apoptosis. Noxa-induced MCL-1 phosphorylation at these sites occurs at the mitochondria and is primarily regulated by CDK2. MCL-1 and CDK2 form a stable complex and Noxa binds to this complex to facilitate the phosphorylation of MCL-1. When Ser64 and Thr70 of MCL-1 are substituted with alanine, the mutated MCL-1 is neither phosphorylated nor ubiquitinated, and becomes more stable than the wild-type protein. As a consequence, this mutant can inhibit apoptosis induced by Noxa overexpression or cisplatin treatment. These results indicate that Noxa-mediated MCL-1 phosphorylation followed by MCL-1 degradation is critical for apoptosis induced by DNA damaging agents through regulation of the Noxa/MCL-1/CDK2 complex.
Collapse
Affiliation(s)
- Wataru Nakajima
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Japan
| | - Kanika Sharma
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - June Young Lee
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Nicolas T Maxim
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mark A Hicks
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Thien-Trang Vu
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Angela Luu
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - W Andrew Yeudall
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki, Japan
| | - Hisashi Harada
- Phillips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
168
|
Bu F, Wang Y, Jiang L, Ma D, Quinn JP, Wang M. Sarcoma family kinase activity is required for cortical spreading depression. Cephalalgia 2017; 38:1748-1758. [PMID: 29239212 DOI: 10.1177/0333102417748572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives Sarcoma family kinase activity is associated with multiple diseases including ischemia and cancer; however, its role in the mechanism of migraine aura has been less well characterised. This study aims to investigate whether sarcoma family kinase is required for cortical spreading depression. Methods Cortical spreading depression was induced by topical application of K+ to the cerebral cortex and was monitored using electrophysiology in rats, and intrinsic optical signal in mouse brain slices. Drugs were perfused into the contralateral cerebral ventricle for pharmacological manipulations in rats. Western blot analysis was used for detecting the level of phosphorylated, and total, sarcoma family kinase in the ipsilateral cortex of rats. Key results The data demonstrate that a single cortical spreading depression in rats induced ipsilateral cortical sarcoma family kinase phosphorylation at the Y416 site. Deactivation of sarcoma family kinase by its inhibitor (3-(4-chlorophenyl) 1-(1,1-dimethylethyl)-1 H-pyrazolo[3,4- dpyrimidin-4-amine) suppressed the elevated enzyme activity and cortical susceptibility to cortical spreading depression. Interestingly, the inhibitory effect of the N-methyl-D-aspartate receptor antagonist NVP-AAM077 on cortical spreading depression was reversed by the sarcoma family kinase activator pYEEI (EPQY(PO3H2)EEEIPIYL), suggesting a link between this enzyme and N-methyl-D-aspartate receptors. Similarly, after deactivation of sarcoma family kinase, a reduction of sarcoma family kinase phosphorylation and cortical susceptibility to cortical spreading depression was observed with NVP-AAM077. Conclusions We conclude that activation of sarcoma family kinase is required for cortical spreading depression, and this process is regulated by recruiting N-methyl-D-aspartate receptors. This study provides novel insight for sarcoma family kinase function in the mechanism of migraine aura.
Collapse
Affiliation(s)
- Fan Bu
- 1 Department of Biological Sciences, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China.,2 Centre for Neuroscience, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| | - Yan Wang
- 2 Centre for Neuroscience, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| | - Liwen Jiang
- 1 Department of Biological Sciences, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China.,2 Centre for Neuroscience, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| | - Dongqing Ma
- 1 Department of Biological Sciences, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China.,2 Centre for Neuroscience, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| | - John P Quinn
- 3 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Minyan Wang
- 1 Department of Biological Sciences, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China.,2 Centre for Neuroscience, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| |
Collapse
|
169
|
Tanabe K. Microtubule Depolymerization by Kinase Inhibitors: Unexpected Findings of Dual Inhibitors. Int J Mol Sci 2017; 18:ijms18122508. [PMID: 29168788 PMCID: PMC5751111 DOI: 10.3390/ijms18122508] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
Microtubule-targeting agents are widely used as clinical drugs in the treatment of cancer. However, some kinase inhibitors can also disrupt microtubule organization by directly binding to tubulin. These unexpected effects may result in a plethora of harmful events and/or a misinterpretation of the experimental results. Thus, further studies are needed to understand these dual inhibitors. In this review, I discuss the roles of dual inhibitors of kinase activity and microtubule function as well as describe the properties underlining their dual roles. Since both kinase and microtubule inhibitors cause cell toxicity and cell cycle arrest, it is difficult to determine which inhibitor is responsible for each phenotype. A discrimination of cell cycle arrest at G0/G1 or G2/M and/or image analyses of cellular phenotype may eventually lead to new insights on drug duality. Because of the indispensable roles of microtubules in mitosis and vesicle transport, I propose a simple and easy method to identify microtubule depolymerizing compounds.
Collapse
Affiliation(s)
- Kenji Tanabe
- Medical Research Institute, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
170
|
Wang J, Guo Z, Fu Y, Wu Z, Huang C, Zheng C, Shar PA, Wang Z, Xiao W, Wang Y. Weak-binding molecules are not drugs?-toward a systematic strategy for finding effective weak-binding drugs. Brief Bioinform 2017; 18:321-332. [PMID: 26962012 DOI: 10.1093/bib/bbw018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Indexed: 12/16/2022] Open
Abstract
Designing maximally selective ligands that act on individual drug targets with high binding affinity has been the central dogma of drug discovery and development for the past two decades. However, many low-affinity drugs that aim for several targets at the same time are found more effective than the high-affinity binders when faced with complex disease conditions, such as cancers, Alzheimer's disease and cardiovascular diseases. The aim of this study was to appreciate the importance and reveal the features of weak-binding drugs and propose an integrated strategy for discovering them. Weak-binding drugs can be characterized by their high dissociation rates and transient interactions with their targets. In addition, network topologies and dynamics parameters involved in the targets of weak-binding drugs also influence the effects of the drugs. Here, we first performed a dynamics analysis for 33 elementary subgraphs to determine the desirable topology and dynamics parameters among targets. Then, by applying the elementary subgraphs to the mitogen-activated protein kinase (MAPK) pathway, several optimal target combinations were obtained. Combining drug-target interaction prediction with molecular dynamics simulation, we got two potential weak-binding drug candidates, luteolin and tanshinone IIA, acting on these targets. Further, the binding affinity of these two compounds to their targets and the anti-inflammatory effects of them were validated through in vitro experiments. In conclusion, weak-binding drugs have real opportunities for maximum efficiency and may show reduced adverse reactions, which can offer a bright and promising future for new drug discovery.
Collapse
Affiliation(s)
- Jinan Wang
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Zihu Guo
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Yingxue Fu
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ziyin Wu
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Chao Huang
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Chunli Zheng
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Piar Ali Shar
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, 712100, China; Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, PR China
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, China
| | - Yonghua Wang
- Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China and School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| |
Collapse
|
171
|
Doytcheva P, Bächler T, Tarasco E, Marzolla V, Engeli M, Pellegrini G, Stivala S, Rohrer L, Tona F, Camici GG, Vanhoutte PM, Matter CM, Lutz TA, Lüscher TF, Osto E. Inhibition of Vascular c-Jun N-Terminal Kinase 2 Improves Obesity-Induced Endothelial Dysfunction After Roux-en-Y Gastric Bypass. J Am Heart Assoc 2017; 6:JAHA.117.006441. [PMID: 29138180 PMCID: PMC5721746 DOI: 10.1161/jaha.117.006441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Roux‐en‐Y gastric bypass (RYGB) reduces obesity‐associated comorbidities and cardiovascular mortality. RYGB improves endothelial dysfunction, reducing c‐Jun N‐terminal kinase (JNK) vascular phosphorylation. JNK activation links obesity with insulin resistance and endothelial dysfunction. Herein, we examined whether JNK1 or JNK2 mediates obesity‐induced endothelial dysfunction and if pharmacological JNK inhibition can mimic RYGB vascular benefits. Methods and Results After 7 weeks of a high‐fat high‐cholesterol diet, obese rats underwent RYGB or sham surgery; sham–operated ad libitum–fed rats received, for 8 days, either the control peptide D‐TAT or the JNK peptide inhibitor D‐JNKi‐1 (20 mg/kg per day subcutaneous). JNK peptide inhibitor D‐JNKi‐1 treatment improved endothelial vasorelaxation in response to insulin and glucagon‐like peptide‐1, as observed after RYGB. Obesity increased aortic phosphorylation of JNK2, but not of JNK1. RYGB and JNK peptide inhibitor D‐JNKi‐1 treatment blunted aortic JNK2 phosphorylation via activation of glucagon‐like peptide‐1–mediated signaling. The inhibitory phosphorylation of insulin receptor substrate‐1 was reduced, whereas the protein kinase B/endothelial NO synthase pathway was increased and oxidative stress was decreased, resulting in improved vascular NO bioavailability. Conclusions Decreased aortic JNK2 phosphorylation after RYGB rapidly improves obesity‐induced endothelial dysfunction. Pharmacological JNK inhibition mimics the endothelial protective effects of RYGB. These findings highlight the therapeutic potential of novel strategies targeting vascular JNK2 against the severe cardiovascular disease associated with obesity.
Collapse
Affiliation(s)
- Petia Doytcheva
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Thomas Bächler
- Department of Surgery, Cantonal Hospital Fribourg, Fribourg, Switzerland
| | - Erika Tarasco
- Institute of Veterinary Physiology, Vetsuisse Faculty University of Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Vincenzo Marzolla
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Pisana, Rome, Italy
| | - Michael Engeli
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland
| | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology, Institute for Veterinary Pathology, Vetsuisse Faculty University of Zurich, Switzerland
| | - Simona Stivala
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Lucia Rohrer
- Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Francesco Tona
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Italy
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Paul M Vanhoutte
- State Key Laboratory for Pharmaceutical Biotechnologies & Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Schwerzenbach, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Thomas A Lutz
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Elena Osto
- Center for Molecular Cardiology, University of Zurich, Switzerland .,University Heart Center, Cardiology, University Hospital Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.,Laboratory of Translational Nutrition Biology Federal Institute of Technology Zurich (ETHZ), Schwerzenbach, Switzerland
| |
Collapse
|
172
|
Nguyen TL, Fruit C, Hérault Y, Meijer L, Besson T. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) inhibitors: a survey of recent patent literature. Expert Opin Ther Pat 2017; 27:1183-1199. [PMID: 28766366 DOI: 10.1080/13543776.2017.1360285] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a eukaryotic serine-threonine protein kinase belonging to the CMGC group. DYRK1A hyperactivity appears to contribute to the development of a number of human malignancies and to cognitive deficits observed in Down syndrome and Alzheimer's disease. As a result, the DYRK1A kinase represents an attractive target for the synthesis and optimization of pharmacological inhibitors of potential therapeutic interest. Like most tyrosine kinase inhibitors developed up to the market, DYRK1A inhibitors are essentially acting by competing with ATP for binding at the catalytic site of the kinase. Areas covered: This paper reviews patent activity associated with the discovery of synthetic novel heterocyclic molecules inhibiting the catalytic activity of DYRK1A. Expert opinion: Despite the important role of DYRK1A in biological processes and the growing interest in the design of new therapeutic drugs, there are only few patented synthetic DYRK1A inhibitors and most of them were and are still developed by academic research groups, sometimes with industrial partners.
Collapse
Affiliation(s)
- Thu Lan Nguyen
- a Manros Therapeutics , Centre de Perharidy , Roscoff , France
- b Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch , Illkirch , France
- c Centre National de la Recherche Scientifique, UMR7104 , Illkirch , France
- d Institut National de la Santé et de la Recherche Médicale, U964 , Illkirch , France
- e Université de Strasbourg , Illkirch , France
| | - Corinne Fruit
- f Normandie Univ , UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014 , Rouen , France
| | - Yann Hérault
- a Manros Therapeutics , Centre de Perharidy , Roscoff , France
- b Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch , Illkirch , France
- c Centre National de la Recherche Scientifique, UMR7104 , Illkirch , France
- d Institut National de la Santé et de la Recherche Médicale, U964 , Illkirch , France
- e Université de Strasbourg , Illkirch , France
| | - Laurent Meijer
- a Manros Therapeutics , Centre de Perharidy , Roscoff , France
| | - Thierry Besson
- f Normandie Univ , UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014 , Rouen , France
| |
Collapse
|
173
|
Lee HW, Arif E, Altintas MM, Quick K, Maheshwari S, Plezia A, Mahmood A, Reiser J, Nihalani D, Gupta V. High-content screening assay-based discovery of paullones as novel podocyte-protective agents. Am J Physiol Renal Physiol 2017; 314:F280-F292. [PMID: 29046299 DOI: 10.1152/ajprenal.00338.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Podocyte dysfunction and loss is an early event and a hallmark of proteinuric kidney diseases. A podocyte's normal function is maintained via its unique cellular architecture that relies on an intracellular network of filaments, including filamentous actin (F-actin) and microtubules, that provides mechanical support. Damage to this filamentous network leads to changes in cellular morphology and results in podocyte injury, dysfunction, and death. Conversely, stabilization of this network protects podocytes and ameliorates proteinuria. This suggests that stabilization of podocyte architecture via its filamentous network could be a key therapeutic strategy for proteinuric kidney diseases. However, development of podocyte-directed therapeutics, especially those that target the cell's filamentous network, is still lacking, partly because of unavailability of appropriate cellular assays for use in a drug discovery environment. Here, we describe a new high-content screening-based methodology and its implementation on podocytes to identify paullone derivatives as a novel group of podocyte-protective compounds. We find that three compounds, i.e., kenpaullone, 1-azakenpaullone, and alsterpaullone, dose dependently protect podocytes from puromycin aminonucleoside (PAN)-mediated injury in vitro by reducing PAN-induced changes in both the filamentous actin and microtubules, with alsterpaullone providing maximal protection. Mechanistic studies further show that alsterpaullone suppressed PAN-induced activation of signaling downstream of GSK3β and p38 mitogen-activated protein kinase. In vivo it reduced ADR-induced glomerular injury in a zebrafish model. Together, these results identify paullone derivatives as novel podocyte-protective agents for future therapeutic development.
Collapse
Affiliation(s)
- Ha Won Lee
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Ehtesham Arif
- Department of Medicine, Nephrology Division, Medical University of South Carolina , Charleston, South Carolina
| | - Mehmet M Altintas
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Kevin Quick
- PerkinElmer Life Sciences, Waltham, Massachusetts
| | - Shrey Maheshwari
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Alexandra Plezia
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Aqsa Mahmood
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Jochen Reiser
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Deepak Nihalani
- Department of Medicine, Nephrology Division, Medical University of South Carolina , Charleston, South Carolina
| | - Vineet Gupta
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| |
Collapse
|
174
|
Deng SL, Wang ZP, Jin C, Kang XL, Batool A, Zhang Y, Li XY, Wang XX, Chen SR, Chang CS, Cheng CY, Lian ZX, Liu YX. Melatonin promotes sheep Leydig cell testosterone secretion in a co-culture with Sertoli cells. Theriogenology 2017; 106:170-177. [PMID: 29073541 DOI: 10.1016/j.theriogenology.2017.10.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
Leydig cells synthesize and secrete testosterone, and are regulated by Sertoli cells. These two cell types may work together to regulate testicular androgen production. Studies have shown that Leydig cell androgen synthesis can be dramatically enhanced by Sertoli cells in the presence of melatonin, which can regulate the secretory function of Leydig and Sertoli cells. However, the molecular mechanism of melatonin-regulated Leydig cell androgen production via Sertoli cells remains unclear. Here, we found that 10-7 M melatonin increased testosterone production in co-cultured Leydig and Sertoli cells isolated from sheep. Melatonin increased the expression of stem cell factor and insulin-like growth factor-1 and decreased estrogen synthesis in Sertoli cells. Melatonin promoted insulin-like growth factor-1 and decreased estrogen content via the membrane melatonin receptor 1. It also enhanced stem cell factor expression via the retinoic acid receptor-related orphan receptor alpha. Addition of PD98059, a MEK inhibitor, to Sertoli cell culture demonstrated that the melatonin upregulation of insulin-like growth factor-1 and downregulation of estrogen may be through the MEK/extracellular signal-regulated kinase pathway. Together, these results suggest that melatonin may function through modulating melatonin receptor 1-regulated insulin-like growth factor-1 expression, as well as melatonin receptor 1-induced suppression of estrogen synthesis to increase androgen production in co-cultured Leydig and Sertoli cells.
Collapse
Affiliation(s)
- Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhi-Peng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Cheng Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiao-Long Kang
- College of Agriculture, Ningxia University, Yinchuan 750021, PR China
| | - Aalia Batool
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiao-Yu Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; University of the Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xiu-Xia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Chawn-Shang Chang
- George Whipple Laboratory for Cancer Research, Departments of Pathology, The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, NY 10065, USA
| | - Zheng-Xing Lian
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
175
|
Wagman AS, Boyce RS, Brown SP, Fang E, Goff D, Jansen JM, Le VP, Levine BH, Ng SC, Ni ZJ, Nuss JM, Pfister KB, Ramurthy S, Renhowe PA, Ring DB, Shu W, Subramanian S, Zhou XA, Shafer CM, Harrison SD, Johnson KW, Bussiere DE. Synthesis, Binding Mode, and Antihyperglycemic Activity of Potent and Selective (5-Imidazol-2-yl-4-phenylpyrimidin-2-yl)[2-(2-pyridylamino)ethyl]amine Inhibitors of Glycogen Synthase Kinase 3. J Med Chem 2017; 60:8482-8514. [DOI: 10.1021/acs.jmedchem.7b00922] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Allan S. Wagman
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Rustum S. Boyce
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Sean P. Brown
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Eric Fang
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Dane Goff
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Johanna M. Jansen
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Vincent P. Le
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Barry H. Levine
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Simon C. Ng
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Zhi-Jie Ni
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - John M. Nuss
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Keith B. Pfister
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Savithri Ramurthy
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Paul A. Renhowe
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - David B. Ring
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Wei Shu
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Sharadha Subramanian
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Xiaohui A. Zhou
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Cynthia M. Shafer
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Stephen D. Harrison
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Kirk W. Johnson
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Dirksen E. Bussiere
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| |
Collapse
|
176
|
Stringer M, Goodlett CR, Roper RJ. Targeting trisomic treatments: optimizing Dyrk1a inhibition to improve Down syndrome deficits. Mol Genet Genomic Med 2017; 5:451-465. [PMID: 28944229 PMCID: PMC5606891 DOI: 10.1002/mgg3.334] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022] Open
Abstract
Overexpression of Dual-specificity tyrosine-phosphorylated regulated kinase 1A (DYRK1A), located on human chromosome 21, may alter molecular processes linked to developmental deficits in Down syndrome (DS). Trisomic DYRK1A is a rational therapeutic target, and although reductions in Dyrk1a genetic dosage have shown improvements in trisomic mouse models, attempts to reduce Dyrk1a activity by pharmacological mechanisms and correct these DS-associated phenotypes have been largely unsuccessful. Epigallocatechin-3-gallate (EGCG) inhibits DYRK1A activity in vitro and this action has been postulated to account for improvement of some DS-associated phenotypes that have been reported in preclinical studies and clinical trials. However, the beneficial effects of EGCG are inconsistent and there is no direct evidence that any observed improvement actually occurs through Dyrk1a inhibition. Inconclusive outcomes likely reflect a lack of knowledge about the tissue-specific patterns of spatial and temporal overexpression and elevated activity of Dyrk1a that may contribute to emerging DS traits during development. Emerging evidence indicates that Dyrk1a expression varies over the life span in DS mouse models, yet preclinical therapeutic treatments targeting Dyrk1a have largely not considered these developmental changes. Therapies intended to improve DS phenotypes through normalizing trisomic Dyrk1a need to optimize the timing and dose of treatment to match the spatiotemporal patterning of excessive Dyrk1a activity in relevant tissues. This will require more precise identification of developmental periods of vulnerability to enduring adverse effects of elevated Dyrk1a, representing the concurrence of increased Dyrk1a expression together with hypothesized tissue-specific-sensitive periods when Dyrk1a regulates cellular processes that shape the long-term functional properties of the tissue. Future efforts targeting inhibition of trisomic Dyrk1a should identify these putative spatiotemporally specific developmental sensitive periods and determine whether normalizing Dyrk1a activity then can lead to improved outcomes in DS phenotypes.
Collapse
Affiliation(s)
- Megan Stringer
- Department of PsychologyIUPUI402 North Blackford Street, LD 124IndianapolisIndiana46202-3275
| | - Charles R Goodlett
- Department of PsychologyIUPUI402 North Blackford Street, LD 124IndianapolisIndiana46202-3275
| | - Randall J Roper
- Department of BiologyIUPUI723 West Michigan Street SL 306IndianapolisIndiana46202-3275
| |
Collapse
|
177
|
Diaz JE, Morgan CW, Minogue CE, Hebert AS, Coon JJ, Wells JA. A Split-Abl Kinase for Direct Activation in Cells. Cell Chem Biol 2017; 24:1250-1258.e4. [PMID: 28919041 DOI: 10.1016/j.chembiol.2017.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/15/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
Abstract
To dissect the cellular roles of individual kinases, it is useful to design tools for their selective activation. We describe the engineering of a split-cAbl kinase (sKin-Abl) that is rapidly activated in cells with rapamycin and allows temporal, dose, and compartmentalization control. Our design strategy involves an empirical screen in mammalian cells and identification of split site in the N lobe. This split site leads to complete loss of activity, which can be restored upon small-molecule-induced dimerization in cells. Remarkably, the split site is transportable to the related Src Tyr kinase and the distantly related Ser/Thr kinase, AKT, suggesting broader applications to kinases. To quantify the fold induction of phosphotyrosine (pTyr) modification, we employed quantitative proteomics, NeuCode SILAC. We identified a number of known Abl substrates, including autophosphorylation sites and novel pTyr targets, 432 pTyr sites in total. We believe that this split-kinase technology will be useful for direct activation of protein kinases in cells.
Collapse
Affiliation(s)
- Juan E Diaz
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Charles W Morgan
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | - Joshua J Coon
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA; Genome Center of Wisconsin, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53706, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
178
|
Hart SJ, Visootsak J, Tamburri P, Phuong P, Baumer N, Hernandez MC, Skotko BG, Ochoa-Lubinoff C, Liogier D'Ardhuy X, Kishnani PS, Spiridigliozzi GA. Pharmacological interventions to improve cognition and adaptive functioning in Down syndrome: Strides to date. Am J Med Genet A 2017; 173:3029-3041. [PMID: 28884975 DOI: 10.1002/ajmg.a.38465] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/02/2017] [Accepted: 08/10/2017] [Indexed: 12/21/2022]
Abstract
Although an increasing number of clinical trials have been developed for cognition in Down syndrome, there has been limited success to date in identifying effective interventions. This review describes the progression from pre-clinical studies with mouse models to human clinical trials research using pharmacological interventions to improve cognition and adaptive functioning in Down syndrome. We also provide considerations for investigators when conducting human clinical trials and describe strategies for the pharmaceutical industry to advance the field in drug discovery for Down syndrome. Future research focusing on earlier pharmaceutical interventions, development of appropriate outcome measures, and greater collaboration between industry, academia, advocacy, and regulatory groups will be important for addressing limitations from prior studies and developing potential effective interventions for cognition in Down syndrome.
Collapse
Affiliation(s)
- Sarah J Hart
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Jeannie Visootsak
- F. Hoffmann-La Roche, Roche Pharma Research and Early Development, Neuroscience, Roche Innovation Center New York, New York, New York
| | - Paul Tamburri
- F. Hoffmann-La Roche, Roche Pharma Research and Early Development, Neuroscience, Roche Innovation Center New York, New York, New York
| | - Patrick Phuong
- F. Hoffmann-La Roche, Roche Pharma Research and Early Development, Neuroscience, Roche Innovation Center New York, New York, New York
| | - Nicole Baumer
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Down Syndrome Program, Developmental Medicine Center, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Maria-Clemencia Hernandez
- F. Hoffmann-La Roche, Roche Pharma Research and Early Development, Neuroscience, Roche Innovation Center Basel, Basel, Switzerland
| | - Brian G Skotko
- Harvard Medical School, Boston, Massachusetts.,Down Syndrome Program, Division of Medical Genetics, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Cesar Ochoa-Lubinoff
- Section of Developmental-Behavioral Pediatrics, Department of Pediatrics, Rush University Medical Center, Chicago, Illinois
| | - Xavier Liogier D'Ardhuy
- F. Hoffmann-La Roche, Roche Pharma Research and Early Development, Neuroscience, Roche Innovation Center Basel, Basel, Switzerland
| | - Priya S Kishnani
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Gail A Spiridigliozzi
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
179
|
Ebelt ND, Kaoud TS, Edupuganti R, Van Ravenstein S, Dalby KN, Van Den Berg CL. A c-Jun N-terminal kinase inhibitor, JNK-IN-8, sensitizes triple negative breast cancer cells to lapatinib. Oncotarget 2017; 8:104894-104912. [PMID: 29285221 PMCID: PMC5739608 DOI: 10.18632/oncotarget.20581] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Triple negative breast cancers (TNBC) have poor prognosis compared to other breast cancer subtypes and represent 15-20% of breast cancers diagnosed. Unique targets and new molecularly-targeted therapies are urgently needed for this subtype. Despite high expression of Epidermal Growth Factor Receptor, inhibitors such as lapatinib have not shown therapeutic efficacy in TNBC patients. Herein, we report that treatment with the covalent JNK inhibitor, JNK-IN-8, synergizes with lapatinib to cause cell death, while these compounds as single agents have little effect. The combination significantly increases survival of mice bearing xenografts of MDA-MB-231 human TNBC cells. Our studies demonstrate that lapatinib treatment increases c-Jun and JNK phosphorylation indicating a mechanism of resistance. Combined, these compounds significantly reduce transcriptional activity of Nuclear Factor kappa B, Activating Protein 1, and Nuclear factor erythroid 2-Related Factor 2. As master regulators of antioxidant response, their decreased activity induces a 10-fold increase in reactive oxygen species that is cytotoxic, and is rescued by addition of exogenous antioxidants. Over expression of p65 or Nrf2 also significantly rescues viability during JNK-IN-8 and lapatinib treatment. Further studies combining JNK-IN-8 and lapatinib may reveal a benefit for patients with TNBC, fulfilling a critical medical need.
Collapse
Affiliation(s)
- Nancy D Ebelt
- Institute of Cellular & Molecular Biology, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA.,Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Tamer S Kaoud
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA.,Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, El-Minia 61519, Egypt
| | - Ramakrishna Edupuganti
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Sabrina Van Ravenstein
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Carla L Van Den Berg
- Institute of Cellular & Molecular Biology, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA.,Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| |
Collapse
|
180
|
Jalouli M, Mokas S, Turgeon CA, Lamalice L, Richard DE. Selective HIF-1 Regulation under Nonhypoxic Conditions by the p42/p44 MAP Kinase Inhibitor PD184161. Mol Pharmacol 2017; 92:510-518. [DOI: 10.1124/mol.117.108654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022] Open
|
181
|
Screening for small molecule inhibitors of HIV-1 Gag expression. Methods 2017; 126:201-208. [DOI: 10.1016/j.ymeth.2017.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/08/2017] [Accepted: 06/05/2017] [Indexed: 01/03/2023] Open
|
182
|
Stringer M, Abeysekera I, Thomas J, LaCombe J, Stancombe K, Stewart RJ, Dria KJ, Wallace JM, Goodlett CR, Roper RJ. Epigallocatechin-3-gallate (EGCG) consumption in the Ts65Dn model of Down syndrome fails to improve behavioral deficits and is detrimental to skeletal phenotypes. Physiol Behav 2017; 177:230-241. [PMID: 28478033 PMCID: PMC5525541 DOI: 10.1016/j.physbeh.2017.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 12/17/2022]
Abstract
Down syndrome (DS) is caused by three copies of human chromosome 21 (Hsa21) and results in phenotypes including intellectual disability and skeletal deficits. Ts65Dn mice have three copies of ~50% of the genes homologous to Hsa21 and display phenotypes associated with DS, including cognitive deficits and skeletal abnormalities. DYRK1A is found in three copies in humans with Trisomy 21 and in Ts65Dn mice, and is involved in a number of critical pathways including neurological development and osteoclastogenesis. Epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, inhibits Dyrk1a activity. We have previously shown that EGCG treatment (~10mg/kg/day) improves skeletal abnormalities in Ts65Dn mice, yet the same dose, as well as ~20mg/kg/day did not rescue deficits in the Morris water maze spatial learning task (MWM), novel object recognition (NOR) or balance beam task (BB). In contrast, a recent study reported that an EGCG-containing supplement with a dose of 2-3mg per day (~40-60mg/kg/day) improved hippocampal-dependent task deficits in Ts65Dn mice. The current study investigated if an EGCG dosage similar to that study would yield similar improvements in either cognitive or skeletal deficits. Ts65Dn mice and euploid littermates were given EGCG [0.4mg/mL] or a water control, with treatments yielding average daily intakes of ~50mg/kg/day EGCG, and tested on the multivariate concentric square field (MCSF)-which assesses activity, exploratory behavior, risk assessment, risk taking, and shelter seeking-and NOR, BB, and MWM. EGCG treatment failed to improve cognitive deficits; EGCG also produced several detrimental effects on skeleton in both genotypes. In a refined HPLC-based assay, its first application in Ts65Dn mice, EGCG treatment significantly reduced kinase activity in femora but not in the cerebral cortex, cerebellum, or hippocampus. Counter to expectation, 9-week-old Ts65Dn mice exhibited a decrease in Dyrk1a protein levels in Western blot analysis in the cerebellum. The lack of beneficial therapeutic behavioral effects and potentially detrimental skeletal effects of EGCG found in Ts65Dn mice emphasize the importance of identifying dosages of EGCG that reliably improve DS phenotypes and linking those effects to actions of EGCG (or EGCG-containing supplements) in specific targets in brain and bone.
Collapse
Affiliation(s)
- Megan Stringer
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Irushi Abeysekera
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States
| | - Jared Thomas
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States
| | - Jonathan LaCombe
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States
| | - Kailey Stancombe
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Robert J Stewart
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Karl J Dria
- IUPUI, Department of Chemistry and Chemical Biology, 402 North Blackford Street, LD 326, Indianapolis, IN 46202-3275, United States
| | - Joseph M Wallace
- IUPUI, Department of Biomedical Engineering, 723 West Michigan Street, SL 220B, Indianapolis, IN 46202-3275, United States
| | - Charles R Goodlett
- IUPUI, Department of Psychology, 402 North Blackford Street, LD 124, Indianapolis, IN 46202-3275, United States
| | - Randall J Roper
- IUPUI, Department of Biology, 723 West Michigan Street, SL 306, Indianapolis, IN 46202-3275, United States.
| |
Collapse
|
183
|
Kung A, Schimpl M, Ekanayake A, Chen YC, Overman R, Zhang C. A Chemical-Genetic Approach to Generate Selective Covalent Inhibitors of Protein Kinases. ACS Chem Biol 2017; 12:1499-1503. [PMID: 28459525 DOI: 10.1021/acschembio.6b01083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although a previously developed bump-hole approach has proven powerful in generating specific inhibitors for mapping functions of protein kinases, its application is limited by the intolerance of the large-to-small mutation by certain kinases and the inability to control two kinases separately in the same cells. Herein, we describe the development of an alternative chemical-genetic approach to overcome these limitations. Our approach features the use of an engineered cysteine residue at a particular position as a reactive feature to sensitize a kinase of interest to selective covalent blockade by electrophilic inhibitors and is thus termed the Ele-Cys approach. We successfully applied the Ele-Cys approach to identify selective covalent inhibitors of a receptor tyrosine kinase EphB1 and solved cocrystal structures to determine the mode of covalent binding. Importantly, the Ele-Cys and bump-hole approaches afforded orthogonal inhibition of two distinct kinases in the cell, opening the door to their combined use in the study of multikinase signaling pathways.
Collapse
Affiliation(s)
| | - Marianne Schimpl
- Discovery
Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Building 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, United Kingdom
| | | | | | - Ross Overman
- Discovery
Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Alderley Park, Macclesfield,
Cheshire, SK10 4TG, United Kingdom
| | | |
Collapse
|
184
|
Bates DO, Morris JC, Oltean S, Donaldson LF. Pharmacology of Modulators of Alternative Splicing. Pharmacol Rev 2017; 69:63-79. [PMID: 28034912 PMCID: PMC5226212 DOI: 10.1124/pr.115.011239] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
More than 95% of genes in the human genome are alternatively spliced to form multiple transcripts, often encoding proteins with differing or opposing function. The control of alternative splicing is now being elucidated, and with this comes the opportunity to develop modulators of alternative splicing that can control cellular function. A number of approaches have been taken to develop compounds that can experimentally, and sometimes clinically, affect splicing control, resulting in potential novel therapeutics. Here we develop the concepts that targeting alternative splicing can result in relatively specific pathway inhibitors/activators that result in dampening down of physiologic or pathologic processes, from changes in muscle physiology to altering angiogenesis or pain. The targets and pharmacology of some of the current inhibitors/activators of alternative splicing are demonstrated and future directions discussed.
Collapse
Affiliation(s)
- David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| | - Jonathan C Morris
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| | - Sebastian Oltean
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| | - Lucy F Donaldson
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (D.O.B.); School of Chemistry, UNSW Australia, Sydney, Australia (J.C.M.); School of Physiology, Pharmacology and Neurosciences, School of Clinical Sciences/Bristol Renal, University of Bristol, Bristol, United Kingdom (S.O.); and School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom (L.F.D.)
| |
Collapse
|
185
|
ElHady AK, Abdel-Halim M, Abadi AH, Engel M. Development of Selective Clk1 and -4 Inhibitors for Cellular Depletion of Cancer-Relevant Proteins. J Med Chem 2017; 60:5377-5391. [PMID: 28561591 DOI: 10.1021/acs.jmedchem.6b01915] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In cancer cells, kinases of the Clk family control the supply of full-length, functional mRNAs coding for a variety of proteins essential to cell growth and survival. Thus, inhibition of Clks might become a novel anticancer strategy, leading to a selective depletion of cancer-relevant proteins after turnover. On the basis of a Weinreb amide hit compound, we designed and synthesized a diverse set of methoxybenzothiophene-2-carboxamides, of which the N-benzylated derivative showed enhanced Clk1 inhibitory activity. Introduction of a m-fluorine in the benzyl moiety eventually led to the discovery of compound 21b, a potent inhibitor of Clk1 and -4 (IC50 = 7 and 2.3 nM, respectively), exhibiting an unprecedented selectivity over Dyrk1A. 21b triggered the depletion of EGFR, HDAC1, and p70S6 kinase from the cancer cells, with potencies in line with the measured GI50 values. In contrast, the cellular effects of congener 21a, which inhibited Clk1 only weakly, were substantially lower.
Collapse
Affiliation(s)
- Ahmed K ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo 11835, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo 11835, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo , Cairo 11835, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C2.3, D-66123 Saarbrücken, Germany
| |
Collapse
|
186
|
Ahmed MM, Block A, Tong S, Davisson MT, Gardiner KJ. Age exacerbates abnormal protein expression in a mouse model of Down syndrome. Neurobiol Aging 2017. [PMID: 28641136 DOI: 10.1016/j.neurobiolaging.2017.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Ts65Dn is a popular mouse model of Down syndrome (DS). It displays DS-relevant features of learning/memory deficits and age-related loss of functional markers in basal forebrain cholinergic neurons. Here we describe protein expression abnormalities in brain regions of 12-month-old male Ts65Dn mice. We show that the magnitudes of abnormalities of human chromosome 21 and non-human chromosome 21 orthologous proteins are greater at 12 months than at ∼6 months. Age-related exacerbations involve the number of components affected in the mechanistic target of rapamycin pathway, the levels of components of the mitogen-activated protein kinase pathway, and proteins associated with Alzheimer's disease. Among brain regions, the number of abnormalities in cerebellum decreased while the number in cortex greatly increased with age. The Ts65Dn is being used in preclinical evaluations of drugs for cognition in DS. Most commonly, drug evaluations are tested in ∼4- to 6-month-old mice. Data on age-related changes in magnitude and specificity of protein perturbations can be used to understand the molecular basis of changes in cognitive ability and to predict potential age-related specificities in drug efficacies.
Collapse
Affiliation(s)
| | - Aaron Block
- Linda Crnic Institute for Down Syndrome, Aurora, CO, USA
| | - Suhong Tong
- School of Public Health, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | | | - Katheleen J Gardiner
- Linda Crnic Institute for Down Syndrome, Aurora, CO, USA; Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, CO, USA; Human Medical Genetics and Genomics, and Neuroscience Programs, University of Colorado Denver School of Medicine, Aurora, CO, USA.
| |
Collapse
|
187
|
Novel tumor-suppressor function of KLF4 in pediatric T-cell acute lymphoblastic leukemia. Exp Hematol 2017; 53:16-25. [PMID: 28479419 DOI: 10.1016/j.exphem.2017.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 02/07/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common hematological malignancy in pediatric patients. Despite advances in the treatment of this disease, many children with T-cell ALL (T-ALL) die from disease relapse due to low responses to standard chemotherapy and the lack of a targeted therapy that selectively eradicates the chemoresistant leukemia-initiating cells (LICs) responsible for disease recurrence. We reported recently that the reprogramming factor Krüppel-like factor 4 (KLF4) has a tumor-suppressive function in children with T-ALL. KLF4 silencing by promoter deoxyribonucleic acid (DNA) methylation in patients with T-ALL leads to aberrant activation of the mitogen-activated protein kinase kinase MAP2K7 and the downstream c-Jun NH2-terminal kinase (JNK) pathway that controls the expansion of leukemia cells via c-Jun and activating transcription factor 2. This pathway can be inhibited with small molecules and therefore has the potential to eliminate LICs and eradicate disease in combination with standard therapy for patients with refractory and relapsed disease. The present review summarizes the role of the KLF4-MAP2K7 pathway in T-ALL pathogenesis and the function of JNK and MAP2K7 in carcinogenesis and therapy.
Collapse
|
188
|
Lesch A, Rössler OG, Thiel G. Extracellular Signal-Regulated Protein Kinase, c-Jun N-Terminal Protein Kinase, and Calcineurin Regulate Transient Receptor Potential M3 (TRPM3) Induced Activation of AP-1. J Cell Biochem 2017; 118:2409-2419. [PMID: 28112420 DOI: 10.1002/jcb.25904] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/20/2017] [Indexed: 12/27/2022]
Abstract
Stimulation of transient receptor potential M3 (TRPM3) cation channels with pregnenolone sulfate induces an influx of Ca2+ ions into the cells and a rise in the intracellular Ca2+ concentration, leading to the activation of the activator protein-1 (AP-1) transcription factor. Here, we show that expression of a constitutively active mutant of the Ca2+ /calmodulin-dependent protein phosphatase calcineurin attenuated pregnenolone sulfate-induced AP-1 activation in TRPM3-expressing cells. Likewise, expression of the regulatory B subunit of calcineurin reduced AP-1 activity in the cells following stimulation of TRPM3 channels. MAP kinase phosphatase-1 has been shown to attenuate TRPM3-mediated AP-1 activation. Here, we show that pregnenolone sulfate-induced stimulation of TRPM3 triggers the phosphorylation and activation of the MAP kinase extracellular signal-regulated protein kinase (ERK1/2). Pharmacological and genetic experiments revealed that stimulation of ERK1/2 is essential for the activation of AP-1 in cells expressing stimulated TRPM3 channels. ERK1/2 is required for the activation of the transcription factor c-Jun, a key component of the AP-1 transcription factor, and regulates c-Fos promoter activity. In addition, we identified c-Jun N-terminal protein kinase (JNK1/2) as a second signal transducer of activated TRPM3 channels. Together, the data show that calcineurin and the protein kinases ERK1/2 and JNK1/2 are important regulators within the signaling cascade connecting TRPM3 channel stimulation with increased AP-1-regulated transcription. J. Cell. Biochem. 118: 2409-2419, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrea Lesch
- Saarland University, Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Saarland University, Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Gerald Thiel
- Saarland University, Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| |
Collapse
|
189
|
Abstract
Supplemental Digital Content is Available in the Text. A novel and potent protein kinase G-1α (PKG-1α) inhibitor is used to demonstrate the important roles of PKG in capsaicin-induced acute pain and in persistent inflammatory pain. Activating PKG-1α induces a long-term hyperexcitability (LTH) in nociceptive neurons. Since the LTH correlates directly with chronic pain in many animal models, we tested the hypothesis that inhibiting PKG-1α would attenuate LTH-mediated pain. We first synthesized and characterized compound N46 (N-((3R,4R)-4-(4-(2-fluoro-3-methoxy-6-propoxybenzoyl)benzamido)pyrrolidin-3-yl)-1H-indazole-5-carboxamide). N46 inhibits PKG-1α with an IC50 of 7.5 nmol, was highly selective when tested against a panel of 274 kinases, and tissue distribution studies indicate that it does not enter the CNS. To evaluate its antinociceptive potential, we used 2 animal models in which the pain involves both activated PKG-1α and LTH. Injecting complete Freund's adjuvant (CFA) into the rat hind paw causes a thermal hyperalgesia that was significantly attenuated 24 hours after a single intravenous injection of N46. Next, we used a rat model of osteoarthritic knee joint pain and found that a single intra-articular injection of N46 alleviated the pain 14 days after the pain was established and the relief lasted for 7 days. Thermal hyperalgesia and osteoarthritic pain are also associated with the activation of the capsaicin-activated transient receptor protein vanilloid-1 (TRPV1) channel. We show that capsaicin activates PKG-1α in nerves and that a subcutaneous delivery of N46 attenuated the mechanical and thermal hypersensitivity elicited by exposure to capsaicin. Thus, PKG-1α appears to be downstream of the transient receptor protein vanilloid-1. Our studies provide proof of concept in animal models that a PKG-1α antagonist has a powerful antinociceptive effect on persistent, already existing inflammatory pain. They further suggest that N46 is a valid chemotype for the further development of such antagonists.
Collapse
|
190
|
Wnt5a Signaling in Normal and Cancer Stem Cells. Stem Cells Int 2017; 2017:5295286. [PMID: 28491097 PMCID: PMC5405594 DOI: 10.1155/2017/5295286] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/07/2017] [Indexed: 01/31/2023] Open
Abstract
Wnt5a is involved in activating several noncanonical Wnt signaling pathways, which can inhibit or activate canonical Wnt/β-catenin signaling pathway in a receptor context-dependent manner. Wnt5a signaling is critical for regulating normal developmental processes, including stem cell self-renewal, proliferation, differentiation, migration, adhesion, and polarity. Moreover, the aberrant activation or inhibition of Wnt5a signaling is emerging as an important event in cancer progression, exerting both oncogenic and tumor suppressive effects. Recent studies show the involvement of Wnt5a signaling in regulating normal and cancer stem cell self-renewal, cancer cell proliferation, migration, and invasion. In this article, we review recent findings regarding the molecular mechanisms and roles of Wnt5a signaling in stem cells in embryogenesis and in the normal or neoplastic breast or ovary, highlighting that Wnt5a may have different effects on target cells depending on the surface receptors expressed by the target cell.
Collapse
|
191
|
Yin X, Jin N, Shi J, Zhang Y, Wu Y, Gong CX, Iqbal K, Liu F. Dyrk1A overexpression leads to increase of 3R-tau expression and cognitive deficits in Ts65Dn Down syndrome mice. Sci Rep 2017; 7:619. [PMID: 28377597 PMCID: PMC5428843 DOI: 10.1038/s41598-017-00682-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/08/2017] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing of tau exon 10 generates tau isoforms with three or four microtubule-binding repeats, 3R-tau and 4R-tau, which is equally expressed in adult human brain. Imbalanced expression in 3R-tau and 4R-tau has been found in several sporadic and inherited tauopathies, suggesting that dysregulation of tau exon 10 is sufficient to cause neurodegenerative diseases. We previously reported that Dyrk1A, which is overexpressed in Down syndrome brains, regulates alternative splicing of exogenous tau exon 10. In the present study, we investigated the regulation of endogenous tau exon 10 splicing by Dyrk1A. We found that inhibition of Dyrk1A enhanced tau exon 10 inclusion, leading to an increase in 4R-tau/3R-tau ratio in differentiated-human neuronal progenitors and in the neonatal rat brains. Accompanied with overexpression of Dyrk1A, 3R-tau was increased and 4R-tau was decreased in the neonatal brains of Ts65Dn mice, a model of Down syndrome. Treatment with Dyrk1A inhibitor, green tea flavonol epigallocatechin-gallate (EGCG), from gestation to adulthood suppressed 3R-tau expression and rescued anxiety and memory deficits in Ts65Dn mouse brains. Thus, Dyrk1A might be an ideal therapeutic target for Alzheimer's disease, especially for Down syndrome and EGCG which inhibits Dyrk1A may have potential effect on the treatment or prevention of this disease.
Collapse
Affiliation(s)
- Xiaomin Yin
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, 10314, USA
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, P. R. China
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, P. R. China
| | - Nana Jin
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, 10314, USA
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, P. R. China
| | - Jianhua Shi
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, 10314, USA
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, P. R. China
| | - Yanchong Zhang
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, 10314, USA
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, P. R. China
| | - Yue Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, P. R. China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, 10314, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, 10314, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, 10314, USA.
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, P. R. China.
| |
Collapse
|
192
|
Grassi ES, Vezzoli V, Negri I, Lábadi Á, Fugazzola L, Vitale G, Persani L. SP600125 has a remarkable anticancer potential against undifferentiated thyroid cancer through selective action on ROCK and p53 pathways. Oncotarget 2017; 6:36383-99. [PMID: 26415230 PMCID: PMC4742184 DOI: 10.18632/oncotarget.5799] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/11/2015] [Indexed: 12/11/2022] Open
Abstract
Thyroid cancer is the most common endocrine malignancy with increasing incidence worldwide. The majority of thyroid cancer cases are well differentiated with favorable outcome. However, undifferentiated thyroid cancers are one of the most lethal human malignancies because of their invasiveness, metastatization and refractoriness even to the most recently developed therapies. In this study we show for the first time a significant hyperactivation of ROCK/HDAC6 pathway in thyroid cancer tissues, and its negative correlation with p53 DNA binding ability. We demonstrate that a small compound, SP600125 (SP), is able to induce cell death selectively in undifferentiated thyroid cancer cell lines by specifically acting on the pathogenic pathways of cancer development. In detail, SP acts on the ROCK/HDAC6 pathway involved in dedifferentiation and invasiveness of undifferentiated human cancers, by restoring its physiological activity level. As main consequence, cancer cell migration is inhibited and, at the same time, cell death is induced through the mitotic catastrophe. Moreover, SP exerts a preferential action on the mutant p53 by increasing its DNA binding ability. In TP53-mutant cells that survive mitotic catastrophe this process results in p21 induction and eventually lead to premature senescence. In conclusion, SP has been proved to be able to simultaneously block cell replication and migration, the two main processes involved in cancer development and dissemination, making it an ideal candidate for developing new drugs against anaplastic thyroid cancer.
Collapse
Affiliation(s)
- Elisa Stellaria Grassi
- DISCCO, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Valeria Vezzoli
- DISCCO, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Irene Negri
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy.,Current address: IRIBHM, Institute of Interdisciplinary Research in Molecular Human Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Árpád Lábadi
- Department of Laboratory Medicine, University of Pécs, Pécs, Hungary
| | - Laura Fugazzola
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Endocrine Unit-Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Giovanni Vitale
- DISCCO, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy.,Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Luca Persani
- DISCCO, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Cusano Milanino, Italy.,Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
| |
Collapse
|
193
|
Abstract
Originally thought to be nondruggable, kinases represent attractive drug targets for pharmaceutical companies and academia. To date, there are over 40 kinase inhibitors approved by the US FDA, with 32 of these being small molecules, in addition to the three mammalian target of rapamycin inhibitor macrolides (sirolimus, temsirolimus and everolimus). Despite the rapid development of kinase inhibitors for cancer, presently none of these agents are approved for CNS indications. This mini perspective highlights selected kinase targets for CNS disorders, of which brain-permeable small-molecule inhibitors are reported, with demonstrated preclinical proof-of-concept efficacy. This is followed by a brief discussion on the key challenges of blood–brain barrier penetration and selectivity profiles in developing kinase inhibitors for CNS disorders.
Collapse
|
194
|
Shah M, Smolko CM, Kinicki S, Chapman ZD, Brautigan DL, Janes KA. Profiling Subcellular Protein Phosphatase Responses to Coxsackievirus B3 Infection of Cardiomyocytes. Mol Cell Proteomics 2017; 16:S244-S262. [PMID: 28174228 DOI: 10.1074/mcp.o116.063487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/31/2017] [Indexed: 01/23/2023] Open
Abstract
Cellular responses to stimuli involve dynamic and localized changes in protein kinases and phosphatases. Here, we report a generalized functional assay for high-throughput profiling of multiple protein phosphatases with subcellular resolution and apply it to analyze coxsackievirus B3 (CVB3) infection counteracted by interferon signaling. Using on-plate cell fractionation optimized for adherent cells, we isolate protein extracts containing active endogenous phosphatases from cell membranes, the cytoplasm, and the nucleus. The extracts contain all major classes of protein phosphatases and catalyze dephosphorylation of plate-bound phosphosubstrates in a microtiter format, with cellular activity quantified at the end point by phosphospecific ELISA. The platform is optimized for six phosphosubstrates (ERK2, JNK1, p38α, MK2, CREB, and STAT1) and measures specific activities from extracts of fewer than 50,000 cells. The assay was exploited to examine viral and antiviral signaling in AC16 cardiomyocytes, which we show can be engineered to serve as susceptible and permissive hosts for CVB3. Phosphatase responses were profiled in these cells by completing a full-factorial experiment for CVB3 infection and type I/II interferon signaling. Over 850 functional measurements revealed several independent, subcellular changes in specific phosphatase activities. During CVB3 infection, we found that type I interferon signaling increases subcellular JNK1 phosphatase activity, inhibiting nuclear JNK1 activity that otherwise promotes viral protein synthesis in the infected host cell. Our assay provides a high-throughput way to capture perturbations in important negative regulators of intracellular signal-transduction networks.
Collapse
Affiliation(s)
- Millie Shah
- From the ‡Department of Biomedical Engineering
| | | | | | | | - David L Brautigan
- the ‖Center for Cell Signaling and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | | |
Collapse
|
195
|
Luo M, Yeruva S, Liu Y, Chodisetti G, Riederer B, Menon MB, Tachibana K, Doi T, Seidler UE. IL-1β-Induced Downregulation of the Multifunctional PDZ Adaptor PDZK1 Is Attenuated by ERK Inhibition, RXRα, or PPARα Stimulation in Enterocytes. Front Physiol 2017; 8:61. [PMID: 28223944 PMCID: PMC5293818 DOI: 10.3389/fphys.2017.00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/23/2017] [Indexed: 12/21/2022] Open
Abstract
Background: The PDZ adaptor protein PDZK1 modulates the membrane expression and function of a variety of intestinal receptors and ion/nutrient transporters. Its expression is strongly decreased in inflamed intestinal mucosa of mice and IBD patients. Aim and Methods: We investigated whether the inflammation-associated PDZK1 downregulation is a direct consequence of proinflammatory cytokine release by treating intestinal Caco-2BBE cells with TNF-α, IFN-γ, and IL-1β, and analysing PDZK1 promotor activity, mRNA and protein expression. Results: IL-1β was found to significantly decrease PDZK1 promoter activity, mRNA and protein expression in Caco-2BBE cells. A distal region of the hPDZK1 promoter was identified to be important for basal expression and IL-1β-responsiveness. This region harbors the retinoid acid response element RARE as well as binding sites for transcription factors involved in IL-β downstream signaling. ERK1/2 inhibition by the specific MEK1/2 inhibitors PD98059/U0126 significantly attenuated the IL-1β mediated downregulation of PDZK1, while NF-κB, p38 MAPK, and JNK inhibition did not. Expression of the nuclear receptors RXRα and PPARα was decreased in inflamed colonic-mucosa of ulcerative colitis patients and in IL-1β-treated Caco2-BBE cells. Moreover, the RAR/RXR ligand 9-cis retinoic acid and the PPARα-agonist GW7647 stimulated PDZK1 mRNA and protein expression and attenuated IL-1β-mediated inhibition. Conclusions: The strong decrease in PDZK1 expression during intestinal inflammation may be in part a consequence of IL-1β-mediated RXRα and PPARα repression and can be attenuated by agonists for either nuclear receptor, or by ERK1/2 inhibition. The negative consequences of inflammation-induced PDZK1 downregulation on epithelial transport-function may thus be amenable to pharmacological therapy.
Collapse
Affiliation(s)
- Min Luo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical SchoolHannover, Germany; Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Sunil Yeruva
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School Hannover, Germany
| | - Yongjian Liu
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical SchoolHannover, Germany; Department of Endocrinology, the Second Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Giriprakash Chodisetti
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School Hannover, Germany
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School Hannover, Germany
| | - Manoj B Menon
- Department of Biochemistry, Hannover Medical School Hannover, Germany
| | - Keisuke Tachibana
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University Osaka, Japan
| | - Takefumi Doi
- Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University Osaka, Japan
| | - Ursula E Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School Hannover, Germany
| |
Collapse
|
196
|
Willemsen-Seegers N, Uitdehaag JC, Prinsen MB, de Vetter JR, de Man J, Sawa M, Kawase Y, Buijsman RC, Zaman GJ. Compound Selectivity and Target Residence Time of Kinase Inhibitors Studied with Surface Plasmon Resonance. J Mol Biol 2017; 429:574-586. [DOI: 10.1016/j.jmb.2016.12.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/11/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
|
197
|
|
198
|
Liu Y, Adayev T, Hwang YW. An ELISA DYRK1A non-radioactive kinase assay suitable for the characterization of inhibitors. F1000Res 2017; 6:42. [PMID: 28163906 PMCID: PMC5270589 DOI: 10.12688/f1000research.10582.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/22/2017] [Indexed: 01/15/2023] Open
Abstract
The DYRK1A (dual specificity tyrosine phosphorylation-regulated kinase 1A) gene encodes a proline-directed Ser/Thr kinase. Elevated expression and/or altered distribution of the kinase have been implicated in the neurological impairments associated with Down syndrome (DS) and Alzheimer’s disease (AD). Consequently, DYRK1A inhibition has been of significant interest as a potential strategy for therapeutic intervention of DS and AD. Many classes of novel inhibitors have been described in the past decade. Although non-radioactive methods for analyzing DYRK1A inhibition have been developed, methods employing radioactive tracers are still commonly used for quantitative characterization of DYRK1A inhibitors. Here, we present a non-radioactive ELISA assay based on the detection of DYRK1A-phosphorylated dynamin 1a fragment using a phosphorylation site-specific antibody. The assay was verified by the use of two well-characterized DYRK1A inhibitors, epigallocatechin gallate (EGCG) and harmine. The IC
50s for EGCG and harmine determined by the ELISA method were found to be comparable to those previously measured by radioactive tracing methods. Furthermore, we determined the mode of inhibition for EGCG and harmine by a modification of the ELISA assay. This assay confirms the mode of inhibition of EGCG (non-ATP-competitive) and harmine (ATP-competitive), as previously determined. We conclude that the ELISA platform demonstrated here is a viable alternative to the traditional radioactive tracer assays for analyzing DYRK1A inhibitors.
Collapse
Affiliation(s)
- Yong Liu
- Molecular Biology Department, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Tatyana Adayev
- Molecular Biology Department, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yu-Wen Hwang
- Molecular Biology Department, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
199
|
JNK activation is essential for activation of MEK/ERK signaling in IL-1β-induced COX-2 expression in synovial fibroblasts. Sci Rep 2017; 7:39914. [PMID: 28054591 PMCID: PMC5215076 DOI: 10.1038/srep39914] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/29/2016] [Indexed: 11/08/2022] Open
Abstract
The proinflammatory cytokine interleukin 1β (IL-1β) induces prostaglandin E2 (PGE2) production via upregulation of cyclooxygenase-2 (COX-2) expression in synovial fibroblasts. This effect of IL-1β is involved in osteoarthritis. We investigated MAPK signaling pathways in IL-1β-induced COX-2 expression in feline synovial fibroblasts. In the presence of MAPK inhibitors, IL-1β-induced COX-2 expression and PGE2 release were both attenuated. IL-1β induced the phosphorylation of p38, JNK, MEK, and ERK1/2. A JNK inhibitor prevented not only JNK phosphorylation but also MEK and ERK1/2 phosphorylation in IL-1β-stimulated cells, but MEK and ERK1/2 inhibitors had no effect on JNK phosphorylation. A p38 inhibitor prevented p38 phosphorylation, but had no effect on MEK, ERK1/2, and JNK phosphorylation. MEK, ERK1/2, and JNK inhibitors had no effect on p38 phosphorylation. We also observed that in IL-1β-treated cells, phosphorylated MEK, ERK1/2, and JNK were co-precipitated with anti-phospho-MEK, ERK1/2, and JNK antibodies. The silencing of JNK1 in siRNA-transfected fibroblasts prevented IL-1β to induce phosphorylation of MEK and ERK1/2 and COX-2 mRNA expression. These observations suggest that JNK1 phosphorylation is necessary for the activation of the MEK/ERK1/2 pathway and the subsequent COX-2 expression for PGE2 release, and p38 independently contributes to the IL-1β effect in synovial fibroblasts.
Collapse
|
200
|
Shim HJ, Kim HI, Lee ST. The associated pyrazolopyrimidines PP1 and PP2 inhibit protein tyrosine kinase 6 activity and suppress breast cancer cell proliferation. Oncol Lett 2017; 13:1463-1469. [PMID: 28454278 DOI: 10.3892/ol.2017.5564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/17/2016] [Indexed: 01/01/2023] Open
Abstract
Protein tyrosine kinase (PTK)6, also known as breast tumor kinase, is a non-receptor tyrosine kinase. It is closely associated with, but evolutionarily distinct from, the Src family members. PTK6 has a role in proliferation, migration and invasion in various cancers, and therefore has been suggested as a potentially valuable therapeutic target. In an attempt to develop PTK6 inhibitors, chemicals known to inhibit various kinases were screened for their ability to inhibit PTK6. Pyrazolopyrimidine (PP)1, PP2 and a lymphocyte-specific protein tyrosine kinase inhibitor strongly inhibited the catalytic activity of PTK6 in vitro. These chemicals suppressed the phosphorylation of PTK6 substrate proteins, including signal transducer and activator of transcription 3, in human embryonic kidney (HEK) 293 cells expressing hyperactive PTK6. They also expressed selectivity towards PTK6 over other PTK members in HEK 293 cells. PP1 and PP2 specifically inhibited the PTK6-dependent proliferation of human breast carcinoma T-47D cells. PP1 and PP2 were more selective for PTK6 than for Src family kinases, and may be useful for the treatment of PTK6-positive malignant diseases such as breast cancer.
Collapse
Affiliation(s)
- Hyun Jae Shim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Han Ie Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Taek Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|