151
|
Zhao G, Dong R, Teng J, Yang L, Liu T, Wu X, He Y, Wang Z, Pu H, Wang Y. N-Acetyl-l-cysteine Enhances the Effect of Selenium Nanoparticles on Cancer Cytotoxicity by Increasing the Production of Selenium-Induced Reactive Oxygen Species. ACS OMEGA 2020; 5:11710-11720. [PMID: 32478262 PMCID: PMC7254790 DOI: 10.1021/acsomega.0c01034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/04/2020] [Indexed: 05/27/2023]
Abstract
Peritoneal carcinomatosis (PC) has an extremely poor prognosis, which leads to a significantly decreased overall survival in patients with peritoneal implantation of cancer cells. Administration of sodium selenite by intraperitoneal injection is highly effective in inhibiting PC. Our previous study found that selenium nanoparticles (SeNPs) have higher redox activity and safety than sodium selenite. In the present study, we examined the therapeutic effect of SeNPs on PC and elucidated the potential mechanism. Our results revealed that intraperitoneal delivery of SeNPs to cancer cells in the peritoneal cavity of mice at a tolerable dose was beneficial for prolonging the survival time of mice, even better than the optimal dose of cisplatin. The underlying mechanism involved in SeNP-induced reactive oxygen species (ROS) production caused protein degradation and apoptotic response in cancer cells. Interestingly, N-acetyl-l-cysteine (NAC), recognized as a ROS scavenger, without reducing the efficacy of SeNPs, enhanced ROS production and cytotoxicity. The effect of NAC was associated with the following mechanisms: (1) the thiol groups in NAC can increase the biosynthesis of endogenous glutathione (GSH), thus increasing the production of SeNP-induced ROS and cytotoxicity and (2) redox cycling of SeNPs was directly driven by thiol groups in NAC to produce ROS. Moreover, NAC, without increasing the systematic toxicity of SeNPs, decreased SeNP-induced lethality in healthy mice. Overall, we demonstrated that SeNPs exert a potential cytotoxicity effect by inducing ROS production in cancer cells; NAC effectively heightens the property of SeNPs in vitro and in vivo.
Collapse
Affiliation(s)
- Guangshan Zhao
- Biology
Postdoctoral Research Station, Guangzhou Jinan Biomedicine Research
and Development Center, Institute of Biomedicine, College of Life
Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Ruixia Dong
- Department
of Forestry and Technology, Lishui Vocational
and Technical College, Lishui, Zhejiang 323000, P. R. China
| | - Jianyuan Teng
- Biology
Postdoctoral Research Station, Guangzhou Jinan Biomedicine Research
and Development Center, Institute of Biomedicine, College of Life
Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Lian Yang
- Guangdong
Provincial Engineering Center of Topical Precise Drug Delivery System,
School of Pharmacy, Guangdong Pharmaceutical
University, Guangzhou, Guangdong 510006, P. R. China
| | - Tao Liu
- Biology
Postdoctoral Research Station, Guangzhou Jinan Biomedicine Research
and Development Center, Institute of Biomedicine, College of Life
Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Ximing Wu
- Laboratory
of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization,
School of Tea & Food Science, Anhui
Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Yufeng He
- Laboratory
of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization,
School of Tea & Food Science, Anhui
Agricultural University, Hefei, Anhui 230036, P. R. China
| | - Zhiping Wang
- Guangdong
Provincial Engineering Center of Topical Precise Drug Delivery System,
School of Pharmacy, Guangdong Pharmaceutical
University, Guangzhou, Guangdong 510006, P. R. China
| | - Hanlin Pu
- Biology
Postdoctoral Research Station, Guangzhou Jinan Biomedicine Research
and Development Center, Institute of Biomedicine, College of Life
Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Yifei Wang
- Biology
Postdoctoral Research Station, Guangzhou Jinan Biomedicine Research
and Development Center, Institute of Biomedicine, College of Life
Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
152
|
Huang HW, Bow YD, Wang CY, Chen YC, Fu PR, Chang KF, Wang TW, Tseng CH, Chen YL, Chiu CC. DFIQ, a Novel Quinoline Derivative, Shows Anticancer Potential by Inducing Apoptosis and Autophagy in NSCLC Cell and In Vivo Zebrafish Xenograft Models. Cancers (Basel) 2020; 12:cancers12051348. [PMID: 32466291 PMCID: PMC7281296 DOI: 10.3390/cancers12051348] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the deadliest cancers worldwide due to chemoresistance in patients with late-stage disease. Quinoline derivatives show biological activity against HIV, malaria, bacteriuria, and cancer. DFIQ is a novel synthetic quinoline derivative that induces cell death in both in vitro and in vivo zebrafish xenograft models. DFIQ induced cell death, including apoptosis, and the IC50 values were 4.16 and 2.31 μM at 24 and 48 h, respectively. DFIQ was also found to induce apoptotic protein cleavage and DNA damage, reduce cell cycle-associated protein expression, and disrupt reactive oxygen species (ROS) reduction, thus resulting in the accumulation of superoxide radicals. Autophagy is also a necessary process associated with chemotherapy-induced cell death. Lysosome accumulation and lysosome-associated membrane protein-2 (LAMP2) depletion were observed after DFIQ treatment, and cell death induction was restored upon treatment with the autophagy inhibitor 3-methyladenine (3-MA). Nevertheless, ROS production was found to be involved in DFIQ-induced autophagy activation and LAMP2 depletion. Our data provide the first evidence for developing DFIQ for clinical usage and show the regulatory mechanism by which DFIQ affects ROS, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan;
| | - Yung-Ding Bow
- Ph.D Program in Life Sciences, Kaohsiung Medical University; Kaohsiung 807, Taiwan;
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Yen-Chun Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.C.); (P.-R.F.); (K.-F.C.); (T.-W.W.)
| | - Pei-Rong Fu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.C.); (P.-R.F.); (K.-F.C.); (T.-W.W.)
| | - Kuo-Feng Chang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.C.); (P.-R.F.); (K.-F.C.); (T.-W.W.)
| | - Tso-Wen Wang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.C.); (P.-R.F.); (K.-F.C.); (T.-W.W.)
| | - Chih-Hua Tseng
- School of Pharmacy, College of Pharmacy, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yeh-Long Chen
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (Y.-L.C.); (C.-C.C.); Tel.: +886-7-312-1101 (ext. 2684) (Y.-L.C.); +886-7-312-1101 (ext. 2368) (C.-C.C.); Fax: +886-7-312-5339 (Y.-L.C. & C.-C.C.)
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.C.); (P.-R.F.); (K.-F.C.); (T.-W.W.)
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- The Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (Y.-L.C.); (C.-C.C.); Tel.: +886-7-312-1101 (ext. 2684) (Y.-L.C.); +886-7-312-1101 (ext. 2368) (C.-C.C.); Fax: +886-7-312-5339 (Y.-L.C. & C.-C.C.)
| |
Collapse
|
153
|
Lippmann J, Petri K, Fulda S, Liese J. Redox Modulation and Induction of Ferroptosis as a New Therapeutic Strategy in Hepatocellular Carcinoma. Transl Oncol 2020; 13:100785. [PMID: 32416440 PMCID: PMC7283515 DOI: 10.1016/j.tranon.2020.100785] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 01/20/2023] Open
Abstract
Ferroptosis, a newly discovered form of cell death mediated by reactive oxygen species (ROS) and lipid peroxidation, has recently been shown to have an impact on various cancer types; however, so far there are only few studies about its role in hepatocellular carcinoma (HCC). The delicate equilibrium of ROS in cancer cells has found to be crucial for cell survival, thus increased levels may trigger ferroptosis in HCC. In our study, we investigated the effect of different ROS modulators and ferroptosis inducers on a human HCC cell line and a human hepatoblastoma cell line. We identified a novel synergistic cell death induction by the combination of Auranofin and buthionine sulfoxime (BSO) or by Erastin and BSO at subtoxic concentrations. We found a caspase-independent, redox-regulated cell death, which could be rescued by different inhibitors of ferroptosis. Both cotreatments stimulated lipid peroxidation. All these findings indicated ferroptotic cell death. Both cotreatments affected the canonical ferroptosis pathway through GPX4 downregulation. We also found an accumulation of Nrf2 and HO-1, indicating an additional effect on the non-canonical pathway. Our results implicate that targeting these two main ferroptotic pathways simultaneously can overcome chemotherapy resistance in HCC.
Collapse
Affiliation(s)
- Jana Lippmann
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, 60528, Frankfurt, Germany; Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Kathrin Petri
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen Germany; Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen University, Giessen, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, 60528, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Juliane Liese
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, 60528, Frankfurt, Germany; Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen Germany; Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen University, Giessen, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
154
|
Blueberry-Derived Exosome-Like Nanoparticles Counter the Response to TNF-α-Induced Change on Gene Expression in EA.hy926 Cells. Biomolecules 2020; 10:biom10050742. [PMID: 32397678 PMCID: PMC7277966 DOI: 10.3390/biom10050742] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Exosome-like nanoparticles (ELNs) are attracting interest as important vehicles of intercellular communication, both in prokaryotes and eukaryotes. Recently, dietary nanoparticles similar to mammalian exosomes have attracted attention for these features. In particular they appear to be relevant in the modulation of several cellular processes as well as candidate carriers of bioactive molecules (proteins, lipids, and nucleic acids, including miRNAs) with therapeutic value. Herein, we investigated the cellular uptake of blueberry-derived ELNs (B-ELNs) by a human stabilized endothelial cell line (EA.hy926) and the ability of B-ELNs to modulate the expression of inflammatory genes as the response of tumor necrosis factor-α (TNF-α). Our results indicate that 1) EA.hy926 cells internalize B-ELNs in a dose-dependent manner; 2) pretreatment with B-ELNs counters TNF-α-induced reactive oxygen species (ROS) generation and loss of cell viability and modulates the differential expression of 29 genes (fold change > 1.5) induced by TNF-α compared to control; 3) pathway analysis reveals their involvement in a total of 340 canonical pathways, 121 KEGG pathways, and 121 GO Biological processes; and 4) the intersection between differentially expressed (DE) genes and miRNAs contained in B-ELNs unveils a set of candidate target genes, such as prostaglandin I2 synthase (PTGIS), mitogen-activated protein kinase 14 (MAPK14), and phosphodiesterase 7A (PDE7A), for ELNs-contained cargo. In conclusion, our study indicates that B-ELNs can be considered candidate therapeutic carriers of bioactive compounds potentially able to protect vascular system against various stressors.
Collapse
|
155
|
Wang Y, Zhang D, Li Y, Fang F. MiR-138 Suppresses the PDK1 Expression to Decrease the Oxaliplatin Resistance of Colorectal Cancer. Onco Targets Ther 2020; 13:3607-3618. [PMID: 32431512 PMCID: PMC7198439 DOI: 10.2147/ott.s242929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/29/2020] [Indexed: 12/25/2022] Open
Abstract
Background Oxaliplatin is one kind of platinum-based drug. It is effective and commonly used in the treatment of colorectal cancer (CRC). However, development of acquired drug resistance is still a big obstacle during the oxaliplatin therapy. It is urgent to take strategies to decrease the oxaliplatin resistance of CRC. Materials and Methods Oxaliplatin-resistant HT29 and SW480 (HT29/R and SW480/R) cells were acquired through long-term exposure to oxaliplatin by using the routine HT29 and SW480 cells. Relative glucose consumption, lactate generation and LDH activity were tested to evaluate the glycolysis of CRC cell lines. MTT assays were conducted to evaluate the differences of oxaliplatin sensitivity between HT29/R (SW480/R) cells and their parental HT29 (SW480) cells. Regulation of miR-138 on PDK1 was confirmed through qRT-PCR, Western blot and dual-luciferase reporter assays. Reactive oxygen species (ROS) levels were measured by flow cytometry. Results HT29/R and SW480/R cells exhibited higher glucose consumption, lactate production and LDH activity compared to their parental HT29 and SW480 cells. However, oxygen consumption rate (OCR) in HT29/R and SW480/R cells is lower than that in HT29 and SW480 cells, respectively. Results of MTT assays showed that treatment with miR-138 can increase the cytotoxicity of oxaliplatin to HT29/R and SW480/R cells. Research on mechanisms showed that PDK1 was the target of miR-138. Overexpression of miR-138 can inhibit the expression of PDK1, and thus increase the OCR of HT29/R and SW480/R cells. Under the treatment of oxaliplatin, the miR-138-overexpressed HT29/R and SW480/R cells generated more amount of ROS to get into the apoptosis process. Conclusion Overexpression of miR-138 suppressed the PDK1 expression to decrease the oxaliplatin resistance of CRC.
Collapse
Affiliation(s)
- Yao Wang
- Inspection Institute, Jilin Medical University, Jilin City, Jilin Province 132013, People's Republic of China
| | - Duo Zhang
- Inspection Institute, Jilin Medical University, Jilin City, Jilin Province 132013, People's Republic of China
| | - Yao Li
- Inspection Institute, Jilin Medical University, Jilin City, Jilin Province 132013, People's Republic of China
| | - Fang Fang
- Inspection Institute, Jilin Medical University, Jilin City, Jilin Province 132013, People's Republic of China
| |
Collapse
|
156
|
Hu PF, Huang J, Chen L, Ding Z, Liu L, Molnár I, Zhang BB. Oxidative Stress Induction Is a Rational Strategy to Enhance the Productivity of Antrodia cinnamomea Fermentations for the Antioxidant Secondary Metabolite Antrodin C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3995-4004. [PMID: 32133853 PMCID: PMC7351023 DOI: 10.1021/acs.jafc.9b07965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Antioxidant metabolites contribute to alleviating oxidative stress caused by reactive oxygen species (ROS) in microorganisms. We utilized oxidative stressors such as hydrogen peroxide supplementation to increase the yield of the bioactive secondary metabolite antioxidant antrodin C in submerged fermentations of the medicinal mushroom Antrodia cinnamomea. Changes in the superoxide dismutase and catalase activities of the cells indicate that ROS are critical to promote antrodin C biosynthesis, while the ROS production inhibitor diphenyleneiodonium cancels the productivity-enhancing effects of H2O2. Transcriptomic analysis suggests that key enzymes in the mitochondrial electron transport chain are repressed during oxidative stress, leading to ROS accumulation and triggering the biosynthesis of antioxidants such as antrodin C. Accordingly, rotenone, an inhibitor of the electron transport chain complex I, mimics the antrodin C productivity-enhancing effects of H2O2. Delineating the steps connecting oxidative stress with increased antrodin C biosynthesis will facilitate the fine-tuning of strategies for rational fermentation process improvement.
Collapse
Affiliation(s)
- Peng-Fei Hu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, P.R. China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Jing Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - István Molnár
- Southwest Center for Natural Products Research, The University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA
| | - Bo-Bo Zhang
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, P.R. China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| |
Collapse
|
157
|
Anti-oxidant and anti-inflammatory effects of auraptene on phytohemagglutinin (PHA)-induced inflammation in human lymphocytes. Pharmacol Rep 2020; 73:154-162. [PMID: 32166733 DOI: 10.1007/s43440-020-00083-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Inflammation is characterized as a defensive response of our body against endogenous or exogenous stimuli. Chronic inflammation and oxidative stress play an important role in the pathogenesis of various disorders such as asthma, cancers, and multiple sclerosis. Recently, diverse pharmacological activities of auraptene, a natural prenyloxycoumarin, were reported. In the present study, we aimed to evaluate the anti-oxidative and anti-inflammatory effects of auraptene on human isolated lymphocytes. METHOD The effects of auraptene (10, 30 and 90 μM) and dexamethasone (0.1 mM) were evaluated on cell viability, reactive oxygen species (ROS), and malondialdehyde (MDA) levels, superoxide dismutase (SOD) and catalase (CAT) activities, and total glutathione content (GSH) as well as the secretion of interleukin 6 (IL-6) and tumor necrosis factor (TNF)-α in phytohemagglutinin (PHA)-stimulated human lymphocytes. RESULTS Auraptene (10-90 μM) did not affect lymphocytes' viability after 48 h incubation. PHA markedly elevated ROS, MDA, IL-6, and TNF-α levels, while diminished the GSH content, and CAT and SOD activities in human lymphocytes (p < 0.001 for all cases). Treatment with auraptene (10-90 µM) significantly ameliorated ROS, MDA, IL-6, and TNF-α levels, and markedly increased GSH content, and CAT and SOD activities (p < 0.5-0.001). CONCLUSION Auraptene may possess promising healing effects in the different inflammatory disorders associated with activation of the acquired immune system such as multiple sclerosis and asthma.
Collapse
|
158
|
Wang L, Wang M, Dou H, Lin W, Zou L. Sirtuin 1 inhibits lipopolysaccharide-induced inflammation in chronic myelogenous leukemia k562 cells through interacting with the Toll-like receptor 4-nuclear factor κ B-reactive oxygen species signaling axis. Cancer Cell Int 2020; 20:73. [PMID: 32165863 PMCID: PMC7059700 DOI: 10.1186/s12935-020-1152-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background Chronic myelogenous leukemia (CML) is a clonal myeloproliferative neoplasm resulting from BCR–ABL-transformed hematopoietic stem cells. Previous research has implicated multifunctional proinflammatory cytokines in CML development. It has been reported that Sirtuin 1 (SIRT1) as well as ADP-ribosyltransferase and deacetylase may influence CML cell viability and inflammation. Methods This study was directed toward exploring the SIRT1-involved in the mechanism of lipopolysaccharide (LPS)-triggered inflammation in CML k562 cells. Results In our study, the LPS-induced inflammation in k562 cells was reflected by increases in levels of diverse inflammatory cytokines, including interleukin (IL)-10, IL-1β, IL-6, interferon-γ, tumor necrosis factor (TNF)-α and TNF-β. LPS also decreased SIRT1 expression and nuclear location in k562 cells. Furthermore, SIRT1 overexpression inhibited the release of the above mentioned cytokines in LPS-treated cells. We also determined that LPS stimulation could activate Toll-like receptor 4 (TLR4), the nuclear factor κ B (NFκB) subunit, and p65 and produce reactive oxygen species (ROS) in k562 cells. Nevertheless, SIRT1 overexpression decreased TLR4 expression, thereby repressing the phosphorylation of the NFκB subunit and p65 and decreasing ROS production. Conclusions These findings suggest that SIRT1 is a latent therapeutic target for mitigating LPS-induced inflammation via the TLR4–NFκB–ROS signaling axis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Hematology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 639, Manufacturing Bureau Road, Shanghai, 200011 China
| | - Mingming Wang
- Department of Hematology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 639, Manufacturing Bureau Road, Shanghai, 200011 China
| | - Hongju Dou
- Department of Hematology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 639, Manufacturing Bureau Road, Shanghai, 200011 China
| | - Wenjie Lin
- Department of Hematology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 639, Manufacturing Bureau Road, Shanghai, 200011 China
| | - Lifang Zou
- Department of Hematology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 639, Manufacturing Bureau Road, Shanghai, 200011 China
| |
Collapse
|
159
|
Jäger E, Sincari V, Albuquerque LJC, Jäger A, Humajova J, Kucka J, Pankrac J, Paral P, Heizer T, Janouskova O, Konefał R, Pavlova E, Sedlacek O, Giacomelli FC, Pouckova P, Sefc L, Stepanek P, Hruby M. Reactive Oxygen Species (ROS)-Responsive Polymersomes with Site-Specific Chemotherapeutic Delivery into Tumors via Spacer Design Chemistry. Biomacromolecules 2020; 21:1437-1449. [PMID: 32083473 DOI: 10.1021/acs.biomac.9b01748] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The lack of cellular and tissue specificities in conventional chemotherapies along with the generation of a complex tumor microenvironment (TME) limits the dosage of active agents that reaches tumor sites, thereby resulting in ineffective responses and side effects. Therefore, the development of selective TME-responsive nanomedicines is of due relevance toward successful chemotherapies, albeit challenging. In this framework, we have synthesized novel, ready-to-use ROS-responsive amphiphilic block copolymers (BCs) with two different spacer chemistry designs to connect a hydrophobic boronic ester-based ROS sensor to the polymer backbone. Hydrodynamic flow focusing nanoprecipitation microfluidics (MF) was used in the preparation of well-defined ROS-responsive PSs; these were further characterized by a combination of techniques [1H NMR, dynamic light scattering (DLS), static light scattering (SLS), transmission electron microscopy (TEM), and cryogenic TEM (cryo-TEM)]. The reaction with hydrogen peroxide releases an amphiphilic phenol or a hydrophilic carboxylic acid, which affects polymersome (PS) stability and cargo release. Therefore, the importance of the spacer chemistry in BC deprotection and PS stability and cargo release is herein highlighted. We have also evaluated the impact of spacer chemistry on the PS-specific release of the chemotherapeutic drug doxorubicin (DOX) into tumors in vitro and in vivo. We demonstrate that by spacer chemistry design one can enhance the efficacy of DOX treatments (decrease in tumor growth and prolonged animal survival) in mice bearing EL4 T cell lymphoma. Side effects (weight loss and cardiotoxicity) were also reduced compared to free DOX administration, highlighting the potential of the well-defined ROS-responsive PSs as TME-selective nanomedicines. The PSs could also find applications in other environments with high ROS levels, such as chronic inflammations, aging, diabetes, cardiovascular diseases, and obesity.
Collapse
Affiliation(s)
- Eliézer Jäger
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Vladimir Sincari
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Lindomar J C Albuquerque
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, Santo André 09210-580, Brazil
| | - Alessandro Jäger
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Jana Humajova
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic
| | - Jan Kucka
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Jan Pankrac
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, 120 00 Prague, Czech Republic
| | - Petr Paral
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, 120 00 Prague, Czech Republic
| | - Tomas Heizer
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, 120 00 Prague, Czech Republic
| | - Olga Janouskova
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Ondrej Sedlacek
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, Santo André 09210-580, Brazil
| | - Pavla Pouckova
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Salmovska 1, 120 00 Prague, Czech Republic
| | - Ludek Sefc
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovská 3, Prague 2, 120 00 Prague, Czech Republic
| | - Petr Stepanek
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| | - Martin Hruby
- Institute of Macromolecular Chemistry, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic
| |
Collapse
|
160
|
Mota F, Ordonez AA, Firth G, Ruiz-Bedoya CA, Ma MT, Jain SK. Radiotracer Development for Bacterial Imaging. J Med Chem 2020; 63:1964-1977. [PMID: 32048838 DOI: 10.1021/acs.jmedchem.9b01623] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bacterial infections remain a major threat to humanity and are a leading cause of death and disability. Antimicrobial resistance has been declared as one of the top ten threats to human health by the World Health Organization, and new technologies are urgently needed for the early diagnosis and monitoring of deep-seated and complicated infections in hospitalized patients. This review summarizes the radiotracers as applied to imaging of bacterial infections. We summarize the recent progress in the development of pathogen-specific imaging and the application of radiotracers in understanding drug pharmacokinetics as well as the local biology at the infection sites. We also highlight the opportunities for medicinal chemists in radiotracer development for bacterial infections, with an emphasis on target selection and radiosynthetic approaches. Imaging of infections is an emerging field. Beyond clinical applications, these technologies could provide unique insights into disease pathogenesis and expedite bench-to-bedside translation of new therapeutics.
Collapse
Affiliation(s)
- Filipa Mota
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - George Firth
- School of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Camilo A Ruiz-Bedoya
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Michelle T Ma
- School of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
161
|
Gain C, Malik S, Bhattacharjee S, Ghosh A, Robertson ES, Das BB, Saha A. Proteasomal inhibition triggers viral oncoprotein degradation via autophagy-lysosomal pathway. PLoS Pathog 2020; 16:e1008105. [PMID: 32092124 PMCID: PMC7058366 DOI: 10.1371/journal.ppat.1008105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/05/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear oncoprotein EBNA3C is essential for B-cell transformation and development of several B-cell lymphomas particularly those are generated in an immuno-compromised background. EBNA3C recruits ubiquitin-proteasome machinery for deregulating multiple cellular oncoproteins and tumor suppressor proteins. Although EBNA3C is found to be ubiquitinated at its N-terminal region and interacts with 20S proteasome, the viral protein is surprisingly stable in growing B-lymphocytes. EBNA3C can also circumvent autophagy-lysosomal mediated protein degradation and subsequent antigen presentation for T-cell recognition. Recently, we have shown that EBNA3C enhances autophagy, which serve as a prerequisite for B-cell survival particularly under growth deprivation conditions. We now demonstrate that proteasomal inhibition by MG132 induces EBNA3C degradation both in EBV transformed B-lymphocytes and ectopic-expression systems. Interestingly, MG132 treatment promotes degradation of two EBNA3 family oncoproteins-EBNA3A and EBNA3C, but not the viral tumor suppressor protein EBNA3B. EBNA3C degradation induced by proteasomal inhibition is partially blocked when autophagy-lysosomal pathway is inhibited. In response to proteasomal inhibition, EBNA3C is predominantly K63-linked polyubiquitinated, colocalized with the autophagy-lysosomal fraction in the cytoplasm and participated within p62-LC3B complex, which facilitates autophagy-mediated degradation. We further show that the degradation signal is present at the first 50 residues of the N-terminal region of EBNA3C. Proteasomal inhibition reduces the colony formation ability of this important viral oncoprotein, induces apoptotic cell death and increases transcriptional activation of both latent and lytic gene expression which further promotes viral reactivation from EBV transformed B-lymphocytes. Altogether, this study offers rationale to use proteasome inhibitors as potential therapeutic strategy against multiple EBV associated B-cell lymphomas, where EBNA3C is expressed.
Collapse
Affiliation(s)
- Chandrima Gain
- Department of Life Sciences, Presidency University, West Bengal, India
| | - Samaresh Malik
- Department of Life Sciences, Presidency University, West Bengal, India
| | | | - Arijit Ghosh
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Erle S. Robertson
- Department of Otorhinolaryngology Head and Neck Surgery, and the Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Abhik Saha
- Department of Life Sciences, Presidency University, West Bengal, India
| |
Collapse
|
162
|
Appidi T, Pemmaraju DB, Khan RA, Alvi SB, Srivastava R, Pal M, Khan N, Rengan AK. Light-triggered selective ROS-dependent autophagy by bioactive nanoliposomes for efficient cancer theranostics. NANOSCALE 2020; 12:2028-2039. [PMID: 31912859 DOI: 10.1039/c9nr05211a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Light-responsive nanoliposomes are being reported to induce cancer cell death through heat and reactive oxygen species (ROS). Nanoliposomes (CIR NLPs) encapsulating a near-infrared (NIR) light-sensitive dye, IR780, and a bioactive chlorophyll-rich fraction of Anthocephalus cadamba (CfAc) were synthesized and characterized. These CIR NLPs, when activated by NIR light, displayed localized synergistic cancer cell death under in vitro and in vivo conditions. We demonstrated a NIR light-mediated release of CfAc in cancer cells. The bioactive CfAc was selective in causing ROS generation (leading to autophagic cell death) in cancer cells, while normal healthy cells were unaffected. An increase in the intracellular ROS leading to enhanced lipidation of microtubule-associated protein light chain 3 (LC3-II) was observed only in cancer cells, while normal cells showed no increase in either ROS or LC3-II. In vivo analysis of CIR NLPs in an orthotopic mouse model showed better anti-tumorigenic potential through a combined effect (i.e. via heat and CfAc). We reported for the first time induction of selective and localized, bioactive phyto fraction-mediated autophagic cancer cell death through an NIR light trigger. The synergistic activation of ROS-mediated autophagy by light-triggered nanoliposomes can be a useful strategy for enhancing the anticancer potential of combinational therapies.
Collapse
Affiliation(s)
- Tejaswini Appidi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, India.
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Ayala Orozco C, Liu D, Li Y, Alemany LB, Pal R, Krishnan S, Tour JM. Visible-Light-Activated Molecular Nanomachines Kill Pancreatic Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:410-417. [PMID: 31815419 DOI: 10.1021/acsami.9b21497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, synthetic molecular nanomachines (MNMs) that rotate unidirectionally in response to UV light excitation have been used to produce nanomechanical action on live cells to kill them through the drilling of holes in their cell membranes. In the work here, visible-light-absorbing MNMs are designed and synthesized to enable nanomechanical activation by 405 nm light, thereby using a wavelength of light that is less phototoxic than the previously employed UV wavelengths. Visible-light-absorbing MNMs that kill pancreatic cancer cells upon response to light activation are demonstrated. Evidence is presented to support the conclusion that MNMs do not kill cancer cells by the photothermal effect when used at low optical density. In addition, MNMs suppress the formation of reactive oxygen species, leaving nanomechanical action as the most plausible working mechanism for cell killing under the experimental conditions.
Collapse
Affiliation(s)
- Ciceron Ayala Orozco
- Department of Radiation Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | | - Yongjiang Li
- Department of Radiation Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | | - Robert Pal
- Department of Chemistry , Durham University , South Road , Durham DH1 3LE , U.K
| | - Sunil Krishnan
- Department of Radiation Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | |
Collapse
|
164
|
Morris G, Puri BK, Walker AJ, Berk M, Walder K, Bortolasci CC, Marx W, Carvalho AF, Maes M. The compensatory antioxidant response system with a focus on neuroprogressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109708. [PMID: 31351160 DOI: 10.1016/j.pnpbp.2019.109708] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
Major antioxidant responses to increased levels of inflammatory, oxidative and nitrosative stress (ONS) are detailed. In response to increasing levels of nitric oxide, S-nitrosylation of cysteine thiol groups leads to post-transcriptional modification of many cellular proteins and thereby regulates their activity and allows cellular adaptation to increased levels of ONS. S-nitrosylation inhibits the function of nuclear factor kappa-light-chain-enhancer of activated B cells, toll-like receptor-mediated signalling and the activity of several mitogen-activated protein kinases, while activating nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2 or NFE2L2); in turn, the redox-regulated activation of Nrf2 leads to increased levels and/or activity of key enzymes and transporter systems involved in the glutathione system. The Nrf2/Kelch-like ECH-associated protein-1 axis is associated with upregulation of NAD(P)H:quinone oxidoreductase 1, which in turn has anti-inflammatory effects. Increased Nrf2 transcriptional activity also leads to activation of haem oxygenase-1, which is associated with upregulation of bilirubin, biliverdin and biliverdin reductase as well as increased carbon monoxide signalling, anti-inflammatory and antioxidant activity. Associated transcriptional responses, which may be mediated by retrograde signalling owing to elevated hydrogen peroxide, include the unfolded protein response (UPR), mitohormesis and the mitochondrial UPR; the UPR also results from increasing levels of mitochondrial and cytosolic reactive oxygen species and reactive nitrogen species leading to nitrosylation, glutathionylation, oxidation and nitration of crucial cysteine and tyrosine causing protein misfolding and the development of endoplasmic reticulum stress. It is shown how these mechanisms co-operate in forming a co-ordinated rapid and prolonged compensatory antioxidant response system.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Adam J Walker
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry, The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ken Walder
- CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Chiara C Bortolasci
- CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Wolfgang Marx
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| | - Michael Maes
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
165
|
Li F, Song L, Yang X, Huang Z, Mou X, Syed A, Bahkali AH, Zheng L. Anticancer and genotoxicity effect of (Clausena lansium (Lour.) Skeels) Peel ZnONPs on neuroblastoma (SH-SY5Y) cells through the modulation of autophagy mechanism. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111748. [PMID: 31918235 DOI: 10.1016/j.jphotobiol.2019.111748] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
Abstract
Nanotechnology is an emerged field to develop the plant mediated metal based nanodrugs by green method. In this current study, the zinc oxide metal based nanoparticles were developed using (Clausena lansium (Lour.) Skeels) Peel aqueous extracts and zinc nitrate. The C.L extract zinc nanoparticleswere indicated by the sharp peak seen at 350 nm utilizing the Ultraviolet-Visible spectroscopy (UV-Vis). The high peaks indicate the presence of phytochemicals and its functional groups in ZnONPs were studied by the Fourier Transform Infrared Spectroscopy (FT-IR). The X-Ray Diffraction analysis (XRD) explores the pattern and structure of ZnONPs as spherical and base-centered monoclinic crystalline shapes. The C.L extract with Zn nanoparticles were spherical in nature and the size of the synthesized particles were about 28.42 nm respectively. The autophagy (Beclin-1, LC3-I, LC3-II and ATG4B) and apoptotic (Bax, Bcl-2 and Caspase-3) proteins were regulated by the treatment with ZnONPs in SH-SY5Y neuroblastoma cells. The DNA loss or damage was occurred in the ZnONPs treatment and it was performed using Comet assay. The ZnONPs treatment generates the ROS in the cells and decreased its stability and viability. Addition of NAC prevents ROS in the cultured SH-SY5Y cells and prevents the cells from the apoptosis. We concluded that the ZnONPs potentially kills the neuroblastoma cells by producing the intracellular ROS.
Collapse
Affiliation(s)
- Fu Li
- Department of Hematology and Oncology, Qilu Children's Hospital of Shandong University, No.23976, Jingshi Road, Jinan, Shandong Province 250022, China.
| | - Li Song
- Department of Hematology and Oncology, Qilu Children's Hospital of Shandong University, No.23976, Jingshi Road, Jinan, Shandong Province 250022, China
| | - Xiaomei Yang
- Department of Hematology and Oncology, Qilu Children's Hospital of Shandong University, No.23976, Jingshi Road, Jinan, Shandong Province 250022, China
| | - Zhiwei Huang
- Department of Hematology and Oncology, Qilu Children's Hospital of Shandong University, No.23976, Jingshi Road, Jinan, Shandong Province 250022, China
| | - Xiao Mou
- Department of Hematology and Oncology, Qilu Children's Hospital of Shandong University, No.23976, Jingshi Road, Jinan, Shandong Province 250022, China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia
| | - Libo Zheng
- Department of Hematology and Oncology, Qilu Children's Hospital of Shandong University, No.23976, Jingshi Road, Jinan, Shandong Province 250022, China
| |
Collapse
|
166
|
Uchihara Y, Ohe T, Mashino T, Kidokoro T, Tago K, Tamura H, Funakoshi-Tago M. N-Acetyl cysteine prevents activities of STAT3 inhibitors, Stattic and BP-1-102 independently of its antioxidant properties. Pharmacol Rep 2019; 71:1067-1078. [PMID: 31627175 DOI: 10.1016/j.pharep.2019.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/26/2019] [Accepted: 05/24/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Inhibitors for signal transducer and activator of transcription 3 (STAT3), Stattic, BP-1-102, and LLL12 significantly induce apoptosis in transformed Ba/F3 cells expressing an oncogenic fusion protein, nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) that induces the activation of STAT3. We found that the antioxidant reagent, N-acetyl cysteine (NAC) prevented the abilities of Stattic and BP-1-102, but not LLL12 to induce apoptosis in transformed cells expressing NPM-ALK, providing a novel problem in use of STAT3 inhibitors. We herein investigated the mechanisms how NAC prevented the effects of Sttatic and BP-1-102. METHODS Ba/F3 cells expressing NPM-ALK and SUDHL-1 cells were treated with antioxidants such as NAC, Trolox or edaravone in combination with STAT3 inhibitors. Phosphorylation of STAT3, cell proliferation rate, cell viability, cell cycle, internucleosomal DNA fragmentation and the intracellular accumulation of reactive oxygen species (ROS) was investigated. The binding of STAT3 inhibitors and NAC was analyzed by LC-MS. RESULTS NAC but not Trolox and edaravone diminished the abilities of Stattic and BP-1-102 to induce apoptosis in cells expressing NPM-ALK. The ROS levels in cells expressing NPM-ALK were not markedly affected by the treatments with Stattic and BP-1-102 in combination with NAC, suggesting that NAC inhibited the activity of Stattic and BP-1-102 independent of its antioxidant activity. LC-MS analysis revealed that NAC directly bound to Stattic and BP-1-102. Furthermore, these NAC adducts exhibited no cytotoxicity, and failed to affect the activity of STAT3. CONCLUSIONS NAC antagonizes the activities of Stattic and BP-1-102, which inhibit STAT3 activation by interacting with cysteine residues in STAT3.
Collapse
Affiliation(s)
- Yuki Uchihara
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
| | - Tomoyuki Ohe
- Division of Bioorganic and Medicinal Chemistry, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
| | - Tadahiko Mashino
- Division of Bioorganic and Medicinal Chemistry, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
| | - Takayuki Kidokoro
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
| | - Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Hiroomi Tamura
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan
| | - Megumi Funakoshi-Tago
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo, Japan.
| |
Collapse
|
167
|
Lee DU, Park JY, Kwon S, Park JY, Kim YH, Khang D, Hong JH. Apoptotic lysosomal proton sponge effect in tumor tissue by cationic gold nanorods. NANOSCALE 2019; 11:19980-19993. [PMID: 31603160 DOI: 10.1039/c9nr04323c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite the lysosomal "proton sponge hypothesis" being considered to be an additional factor for stimulating the cellular toxicity of nanoparticle-based drug delivery systems, a clear relationship between the massive influx of calcium ions and the proton sponge effect, both of which are associated with cancer cell apoptosis, has still not been elucidated. Cetrimonium bromide (CTAB: cationic quaternary amino group based) gold nanorods possessed a more effective electric surface charge for inducing the lysosomal proton sponge effect than anionic gold nanoparticles. In this aspect, identifying released cytoplasmic Cl-, arising from the ruptured lysosomal compartment, in the cytoplasm is critical for supporting the "proton sponge hypothesis". This study clarified that the burst release of Cl-, as a result of lysosomal swelling by CTAB gold nanorods, stimulates the transient receptor potential channels melastatin 2 (TRPM2) channels, and subsequently induces a massive Ca2+ influx, which independently increases apoptosis of cancer cells. Although the previous concept of elevated cancer apoptosis acting through the proton sponge effect is unclear, this study supports the evidence that a massive Ca2+ influx mediated in response to a burst release of Cl- significantly influenced cytotoxicity of cancer cells in tumor tissues.
Collapse
Affiliation(s)
- Dong Un Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea.
| | - Jun-Young Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea. and Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea
| | - Song Kwon
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea.
| | - Jun Young Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea. and Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea
| | - Yong Ho Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea. and Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea and Department of Physiology, Gachon University, Incheon 21999, South Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea. and Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea and Department of Physiology, Gachon University, Incheon 21999, South Korea
| | - Jeong Hee Hong
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea. and Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, South Korea and Department of Physiology, Gachon University, Incheon 21999, South Korea
| |
Collapse
|
168
|
Zou Y, Sarem M, Xiang S, Hu H, Xu W, Shastri VP. Autophagy inhibition enhances Matrine derivative MASM induced apoptosis in cancer cells via a mechanism involving reactive oxygen species-mediated PI3K/Akt/mTOR and Erk/p38 signaling. BMC Cancer 2019; 19:949. [PMID: 31615459 PMCID: PMC6794878 DOI: 10.1186/s12885-019-6199-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 09/24/2019] [Indexed: 12/26/2022] Open
Abstract
Background In the quest for new anti-cancer drugs, the drug discovery process has shifted to screening of active ingredients in traditional eastern medicine. Matrine is an active alkaloid isolated from plants of the Sophora genus used in traditional Chinese herbal medicine that exhibits a wide spectrum of biological properties and has a potential as an anti-proliferative agent. In this study, we investigated the anticancer property of MASM, ([(6aS, 10S, 11aR, 11bR, 11cS)210-Methylamino-dodecahydro-3a, 7a-diaza-benzo (de)anthracene-8-thione]), a potent derivative of matrine. Methods Four epithelial cancer cell lines representing the dominant cancers, namely: A549 (non-small-cell lung cancer cell line), MCF-7 and MDA-MB-231 (breast cancer cell lines), and Hela (cervical cancer cell line) were employed, and the mechanistic underpinning of MASM-induced apoptosis was investigated using flow cytometry, western blot and immunofluorescence. Results MASM, induced apoptosis via caspase 3 dependent and independent pathways, and autophagy in all the four cancer cell lines, but post-EMT (epithelial mesenchymal transition) cells showed greater sensitivity to MASM. Scavenging reactive oxygen species using N-acetylcysteine rescued all cancer cell lines from apoptosis and autophagy. Mechanistic analysis revealed that MASM induced autophagy involves inhibition of Akt signaling and the activation of Erk and p38 signaling, and inhibition of autophagy further enhanced the apoptosis induced by MASM. Conclusions These results indicate that MASM possesses potency against cancer cells and modulating autophagy during MASM administration could be used to further enhance its therapeutic effects.
Collapse
Affiliation(s)
- Yuming Zou
- Institute for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany.,Department of Orthopaedics, Department of Orthopaedics, People's Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.,Department of Orthopaedics, Changhai hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China.,Department of Orthopaedics, the 904th Hospital of Joint Logistic Support Force, Chinese People's Liberation Army, Wuxi, Jiangsu Province, People's Republic of China
| | - Melika Sarem
- Institute for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Shengnan Xiang
- Institute for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Honggang Hu
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Weidong Xu
- Department of Orthopaedics, Changhai hospital, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - V Prasad Shastri
- Institute for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
169
|
Wang L, Guo X, Guo X, Zhang X, Ren J. Decitabine promotes apoptosis in mesenchymal stromal cells isolated from patients with myelodysplastic syndromes by inducing reactive oxygen species generation. Eur J Pharmacol 2019; 863:172676. [PMID: 31542488 DOI: 10.1016/j.ejphar.2019.172676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 10/26/2022]
Abstract
Myelodysplastic syndromes (MDSs) are a group of clonal disorders of hematopoietic stem cells, resulting in ineffective hematopoiesis. Previous studies have reported that decitabine (DAC) plays an essential role in cell cycle arrest and cell death induction in multiple cell types. Nevertheless, the effect of decitabine on mesenchymal stromal cells derived from bone marrow of patients with MDSs is not completely clarified. Here, we explored the apoptotic and anti-proliferative effect of DAC on MSCs isolated from patients with MDSs. Treatment with DAC inhibited cell growth in a concentration- and time-dependent manner by inducing apoptosis. We found a positive relationship between cell death triggered by DAC in MSCs and the death receptor family members Fas and FasL mRNA and protein levels (***P < 0.00085), cleaved caspase (-3, -8, and -9) activity, and mitochondrial membrane potential reduction. Additionally, DAC-induced apoptosis was inhibited by Kp7-6, a FasL/Fas antagonist, indicating a crucial role of FasL/Fas, a cell death receptor, in mediating the apoptotic effect of DAC. DAC also induced reactive oxygen species (ROS) generation in MSCs derived from MDSs patients (*P = 0.038). Furthermore, N-acetyl-L-cysteine (NAC), a widely accepted ROS scavenger, efficiently reversed DAC-induced apoptosis by inhibiting ROS generation (***P < 0.00051) in mitochondria and restoring mitochondrial membrane potential. Furthermore, ROS production was found to be a consequence of caspase activation via caspases inhibition. Our data imply that DAC triggers ROS production in human MSCs, which serves as a crucial factor for mitochondrial membrane potential reduction, and DAC induces cell death prior to FasL/Fas stimulation.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xiaonan Guo
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xiaoling Guo
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xiaolei Zhang
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Jinhai Ren
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
170
|
Zhu Y, Tong L, Nie K, Wiwatanaratanabutr I, Sun P, Li Q, Yu X, Wu P, Wu T, Yu C, Liu Q, Bian Z, Wang P, Cheng G. Host serum iron modulates dengue virus acquisition by mosquitoes. Nat Microbiol 2019; 4:2405-2415. [DOI: 10.1038/s41564-019-0555-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022]
|
171
|
Alzahrani FM, Katubi KMS, Ali D, Alarifi S. Apoptotic and DNA-damaging effects of yttria-stabilized zirconia nanoparticles on human skin epithelial cells. Int J Nanomedicine 2019; 14:7003-7016. [PMID: 31564862 PMCID: PMC6733180 DOI: 10.2147/ijn.s212255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background Yttria-stabilized zirconia (Y2O3/ZrO2) nanoparticles are one of the important nanoparticles extensively used in manufacturing of plastics, textiles, catalyst, etc. Still, the cytotoxic and apoptotic effects of yttria-stabilized zirconia nanoparticles have not been well identified on human skin keratinocyte (HaCaT) cells. Therefore, in this study, we have designed to examine the cytotoxic potential of yttria-stabilized zirconia nanoparticles in HaCaT cells. Methods Prior to treatment, the yttria-stabilized zirconia nanoparticles were characterized by using different advanced instruments viz. dynamic light scattering (DLS), scanning electron microscope (SEM) and transmission electron microscope (TEM). Cell viability of HaCaT cells was measured by using MTS and NRU assays and viability of cells was reduced in a dose- and time-dependent manner. Results Reduction in the viability of cells was correlated with the rise of reactive oxygen species generation, increased caspase-3, mitochondria membrane potential and evidence of DNA strand breakage. These were consistent with the possibility that mitochondria damage can play a significant role in the cytotoxic response. Moreover, the activity of oxidative enzymes such as lipid peroxide (LPO) was increased and glutathione was reduced in HaCaT cells exposed with yttria-stabilized zirconia nanoparticles. It is also important to indicate that HaCaT cells appear to be more susceptible to yttria-stabilized zirconia nanoparticles exposure after 24 hrs. Conclusion This result provides a dose- and time-dependent apoptosis and genotoxicity of yttria-stabilized zirconia nanoparticles in HaCaT cells.
Collapse
Affiliation(s)
- Fatimah Mohammed Alzahrani
- Chemistry Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
172
|
Chen Q, Zhou J, Chen Z, Luo Q, Xu J, Song G. Tumor-Specific Expansion of Oxidative Stress by Glutathione Depletion and Use of a Fenton Nanoagent for Enhanced Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30551-30565. [PMID: 31397998 DOI: 10.1021/acsami.9b09323] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amplifying intracellular oxidative stress effectively destroys cancer cells. In addition, iron-mediated Fenton reaction converts endogenous H2O2 to produce hypertoxic hydroxyl radical (•OH), resulting in irreversible oxidative damage to combat tumor cells. This method is known as chemodynamic therapy (CDT). Overexpressed glutathione (GSH) in tumor cells efficiently scavenges •OH, significantly reducing the curative effects of CDT. To overcome this challenge and enhance intracellular oxidative stress, iron oxide nanocarriers loaded with β-lapachone (Lapa) drugs (Fe3O4-HSA@Lapa) were constructed and had both Fenton-like agents and GSH depletion properties to amplify intracellular oxidative stress. Release of Lapa selectively increases tumor site-specific generation of H2O2 via NAD(P)H: quinone oxidoreductase 1 (NQO1) catalysis. Subsequently, the iron ions released from the ionization of Fe3O4 in the acidic environment selectively convert H2O2 into highly toxic •OH by Fenton reaction, dramatically improving CDT with minimal systemic toxicity due to low NQO1 expression in normal tissues. Meanwhile, released Lapa consumes GSH in the tumor, amplifying oxidative stress and enhancing the efficacy of CDT. Designed Fe3O4-HSA@Lapa nanoparticles (NPs) exhibit perfect targeting capability, prolonged blood circulation, and increased tumor accumulation. Furthermore, Fe3O4-HSA@Lapa NPs effectively enhance the inhibition of tumor growth and reduce the side effects of anticancer drugs. This work establishes a remarkably enhanced tumor-selective CDT against NQO1-overexpressing tumors by significantly inducing intratumoral oxidative stress with minimal side effects.
Collapse
|
173
|
Kim DH, Jung IH, Kim DH, Park SW. Knockout of longevity gene Sirt1 in zebrafish leads to oxidative injury, chronic inflammation, and reduced life span. PLoS One 2019; 14:e0220581. [PMID: 31386694 PMCID: PMC6684063 DOI: 10.1371/journal.pone.0220581] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/18/2019] [Indexed: 11/19/2022] Open
Abstract
Sirt1, a member of the sirtuin gene family, encodes the most conserved mammalian NAD+-dependent deacetylase enzyme responsible for removing acetyl groups from many proteins. The Sirt1 gene is known as a longevity gene whose knockout in mice leads to decreased lifespan relative to the wild type. This study aimed to explore phenotypic changes in zebrafish Sirt1-knockouts and to investigate the function of the Sirt1 gene. Targeted knockout of Sirt1 in zebrafish (Danio rerio) was achieved using the CRISPR-Cas9 genome editing system. We created a 4-bp insertion-homozygote Sirt1-knockout zebrafish. Although there was no evident difference in appearance in the early stages of development, a significant increase in reactive oxygen species and in the extent of apoptosis in Sirt1-knockout zebrafish was observed. Sirt1 knockout caused inflammatory genes, including IL-1b, IL-6 and TNF-α to be highly expressed. Additionally, the lack of Sirt1 caused chronic inflammation and intestinal atrophy, thereby increasing pro-apoptotic events, which ultimately reduced the lifespan of transgenic zebrafish. Overall, our data demonstrate that lack of Sirt1 caused a significantly increased generation of reactive oxygen species that resulted in chronic inflammation and regeneration. Continuous repetition of these events played an important role in accelerating aging, thereby decreasing lifespan. Our findings using the knockout zebrafish model confirmed the association of the Sirt1 gene to aging processes and lifespan. Furthermore, the Sirt1-knockout mutant zebrafish developed in our study will surely be a valuable model to explore the mechanism of chronic inflammation.
Collapse
Affiliation(s)
- Do Hee Kim
- Postgraduate School of Nano Science and Technology, Yonsei University, Seoul, Korea
| | - In Hye Jung
- Department of Internal Medicine, Yonsei University College of Medicine, Institute of Gastroenterology, Severance Hospital, Seoul, Korea
| | - Dong Hee Kim
- Postgraduate School of Nano Science and Technology, Yonsei University, Seoul, Korea
| | - Seung Woo Park
- Department of Internal Medicine, Yonsei University College of Medicine, Institute of Gastroenterology, Severance Hospital, Seoul, Korea
- * E-mail:
| |
Collapse
|
174
|
Wijnker PJ, Sequeira V, Kuster DW, van der Velden J. Hypertrophic Cardiomyopathy: A Vicious Cycle Triggered by Sarcomere Mutations and Secondary Disease Hits. Antioxid Redox Signal 2019; 31:318-358. [PMID: 29490477 PMCID: PMC6602117 DOI: 10.1089/ars.2017.7236] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023]
Abstract
Significance: Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by left ventricular hypertrophy, diastolic dysfunction, and myocardial disarray. Disease onset occurs between 20 and 50 years of age, thus affecting patients in the prime of their life. HCM is caused by mutations in sarcomere proteins, the contractile building blocks of the heart. Despite increased knowledge of causal mutations, the exact path from genetic defect leading to cardiomyopathy is complex and involves additional disease hits. Recent Advances: Laboratory-based studies indicate that HCM development not only depends on the primary sarcomere impairment caused by the mutation but also on secondary disease-related alterations in the heart. Here we propose a vicious mutation-induced disease cycle, in which a mutation-induced energy depletion alters cellular metabolism with increased mitochondrial work, which triggers secondary disease modifiers that will worsen disease and ultimately lead to end-stage HCM. Critical Issues: Evidence shows excessive cellular reactive oxygen species (ROS) in HCM patients and HCM animal models. Oxidative stress markers are increased in the heart (oxidized proteins, DNA, and lipids) and serum of HCM patients. In addition, increased mitochondrial ROS production and changes in endogenous antioxidants are reported in HCM. Mutant sarcomeric protein may drive excessive levels of cardiac ROS via changes in cardiac efficiency and metabolism, mitochondrial activation and/or dysfunction, impaired protein quality control, and microvascular dysfunction. Future Directions: Interventions restoring metabolism, mitochondrial function, and improved ROS balance may be promising therapeutic approaches. We discuss the effects of current HCM pharmacological therapies and potential future therapies to prevent and reverse HCM. Antioxid. Redox Signal. 31, 318-358.
Collapse
Affiliation(s)
- Paul J.M. Wijnker
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Vasco Sequeira
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Diederik W.D. Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
175
|
Selvaraju K, Mofers A, Pellegrini P, Salomonsson J, Ahlner A, Morad V, Hillert EK, Espinosa B, Arnér ESJ, Jensen L, Malmström J, Turkina MV, D'Arcy P, Walters MA, Sunnerhagen M, Linder S. Cytotoxic unsaturated electrophilic compounds commonly target the ubiquitin proteasome system. Sci Rep 2019; 9:9841. [PMID: 31285509 PMCID: PMC6614553 DOI: 10.1038/s41598-019-46168-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/18/2019] [Indexed: 01/01/2023] Open
Abstract
A large number of natural products have been advocated as anticancer agents. Many of these compounds contain functional groups characterized by chemical reactivity. It is not clear whether distinct mechanisms of action can be attributed to such compounds. We used a chemical library screening approach to demonstrate that a substantial fraction (~20%) of cytotoxic synthetic compounds containing Michael acceptor groups inhibit proteasome substrate processing and induce a cellular response characteristic of proteasome inhibition. Biochemical and structural analyses showed binding to and inhibition of proteasome-associated cysteine deubiquitinases, in particular ubiquitin specific peptidase 14 (USP14). The results suggested that compounds bind to a crevice close to the USP14 active site with modest affinity, followed by covalent binding. A subset of compounds was identified where cell death induction was closely associated with proteasome inhibition and that showed significant antineoplastic activity in a zebrafish embryo model. These findings suggest that proteasome inhibition is a relatively common mode of action by cytotoxic compounds containing Michael acceptor groups and help to explain previous reports on the antineoplastic effects of natural products containing such functional groups.
Collapse
Affiliation(s)
- Karthik Selvaraju
- Department of Medical and Health Sciences, Linköping University, SE-58183, Linköping, Sweden
| | - Arjan Mofers
- Department of Medical and Health Sciences, Linköping University, SE-58183, Linköping, Sweden
| | - Paola Pellegrini
- Department of Medical and Health Sciences, Linköping University, SE-58183, Linköping, Sweden
| | - Johannes Salomonsson
- Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
| | - Alexandra Ahlner
- Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
| | - Vivian Morad
- Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
| | | | - Belen Espinosa
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Lasse Jensen
- Department of Medical and Health Sciences, Linköping University, SE-58183, Linköping, Sweden
| | | | - Maria V Turkina
- Department of Clinical and Experimental Medicine SE-58185 Linköping University, Linköping, Sweden
| | - Padraig D'Arcy
- Department of Medical and Health Sciences, Linköping University, SE-58183, Linköping, Sweden
| | - Michael A Walters
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minnesota, United States
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
| | - Stig Linder
- Department of Medical and Health Sciences, Linköping University, SE-58183, Linköping, Sweden.
- Department of Oncology-Pathology, Karolinska Institutet, SE-17176, Stockholm, Sweden.
| |
Collapse
|
176
|
Lee J, Jang HJ, Chun H, Pham TH, Bak Y, Shin JW, Jin H, Kim YI, Ryu HW, Oh SR, Yoon DY. Calotropis gigantea extract induces apoptosis through extrinsic/intrinsic pathways and reactive oxygen species generation in A549 and NCI-H1299 non-small cell lung cancer cells. Altern Ther Health Med 2019; 19:134. [PMID: 31215445 PMCID: PMC6582476 DOI: 10.1186/s12906-019-2561-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/11/2019] [Indexed: 12/25/2022]
Abstract
Background Calotropis gigantea (CG) is a tall and waxy flower that is used as a traditional remedy for fever, indigestion, rheumatism, leprosy, and leukoderma. However, the precise mechanisms of its anticancer effects have not yet been examined in human non-small cell lung cancer (NSCLC) cells. In this study, we investigated whether CG extract exerted an apoptotic effect in A549 and NCI-H1299 NSCLC cells. Methods The ethanol extract of CG was prepared, and its apoptotic effects on A549 and NCI-H1299 NSCLC cells were assessed by using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining, cell cycle analysis, real-time polymerase chain reaction (RT-PCR), western blotting, JC-1 staining, and ROS detection assay. Results The CG extract induced apoptosis through the stimulation of intrinsic and extrinsic signaling pathways in A549 and NCI-H1299 lung cancer cells. Cell cycle arrest was induced by the CG extract in both cell lines. Reactive oxygen species (ROS), which can induce cell death, were also generated in the CG-treated A549 and NCI-H1299 cells. Conclusions These data confirmed that CG caused apoptosis through the activation of extrinsic and intrinsic pathways, cell cycle arrest, and ROS generation in A549 and NCI-H1299 lung cancer cells. Thus, CG can be suggested as a potential agent for lung cancer therapy. Electronic supplementary material The online version of this article (10.1186/s12906-019-2561-1) contains supplementary material, which is available to authorized users.
Collapse
|
177
|
Huang F, Sheng XX, Zhang HJ. DUSP26 regulates podocyte oxidative stress and fibrosis in a mouse model with diabetic nephropathy through the mediation of ROS. Biochem Biophys Res Commun 2019; 515:410-416. [PMID: 31155289 DOI: 10.1016/j.bbrc.2019.05.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 05/03/2019] [Indexed: 01/02/2023]
Abstract
Diabetic nephropathy (DN) is a leading cause of renal failure worldwide. Unfortunately, the pathogenetic mechanism of DN is far from to be understood. Dual-specificity phosphatase 26 (DUSP26) is a member of the Dusp protein family, and is suggested to be involved in divers biological and pathological processes, such as cell growth, differentiation, inflammation and apoptosis. However, its role in the development of DN is still vague. In this study, we found that DUSP26 expression was increased in kidney of DN patients. Then, the wild type (DUSP26+/+) and gene knockout (DUSP26-/-) mice were used to further explore the effects of DUSP26 on DN development induced by streptozotocin (STZ). DUSP26 deficiency accelerated renal injury and dysfunction, as evidenced by the elevated glomerulosclerosis, reduced expression of Nephrin and promoted glomerular basement membrane thickness. In addition, STZ treatment resulted in reactive oxygen species (ROS) accumulation, H2O2 overproduction and superoxide dismutase (SOD) reduction in renal cortex or glomeruli of mice. The ROS production caused the activation of mitogen-activated protein kinase (MAPKs) signaling in kidney glomeruli of STZ-induced mice. These in vivo pathological processes were further confirmed in the differentiated podocytes stimulated by glucose (GLU). Intriguingly, we found that STZ-induced DN as mentioned above was further accelerated by DUSP26-/- in mice following STZ injection. Moreover, STZ-induced fibrosis in kidney glomeruli of DN mice was markedly prolonged in DUSP26-knockout mice through potentiating transforming growth factor-β1 (TGF-β1) expression. More importantly, reducing ROS generation could significantly abolish DUSP26 knockdown-exacerbated TGF-β1 expression and MAPKs activation, thereby protecting podocytes from GLU-induced podocyte injury. Thus, DUSP26-regulated DN development was largely dependent on ROS generation. Taken together, we concluded that DUSP26 might be a promising therapeutic target for developing effective treatments against DN progression.
Collapse
Affiliation(s)
- Feng Huang
- Department of Nephrology, Linyi City People Hospital, Linyi, Shandong, 276003, China
| | - Xu-Xiang Sheng
- Department of Nephrology, Linyi City People Hospital, Linyi, Shandong, 276003, China
| | - Hong-Juan Zhang
- Department of Nephrology, Linyi City People Hospital, Linyi, Shandong, 276003, China.
| |
Collapse
|
178
|
Samluk L, Urbanska M, Kisielewska K, Mohanraj K, Kim MJ, Machnicka K, Liszewska E, Jaworski J, Chacinska A. Cytosolic translational responses differ under conditions of severe short-term and long-term mitochondrial stress. Mol Biol Cell 2019; 30:1864-1877. [PMID: 31116686 PMCID: PMC6727742 DOI: 10.1091/mbc.e18-10-0628] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous studies demonstrated that cells inhibit protein synthesis as a compensatory mechanism for mitochondrial dysfunction. Protein synthesis can be attenuated by 1) the inhibition of mTOR kinase, which results in a decrease in the phosphorylation of S6K1 and 4E-BP1 proteins, and 2) an increase in the phosphorylation of eIF2α protein. The present study investigated both of these pathways under conditions of short-term acute and long-term mitochondrial stress. Short-term responses were triggered in mammalian cells by treatment with menadione, antimycin A, or CCCP. Long-term mitochondrial stress was induced by prolonged treatment with menadione or rotenone and expression of genetic alterations, such as knocking down the MIA40 oxidoreductase or knocking out NDUFA11 protein. Short-term menadione, antimycin A, or CCCP cell treatment led to the inhibition of protein synthesis, accompanied by a decrease in mTOR kinase activity, an increase in the phosphorylation of eIF2α (Ser51), and an increase in the level of ATF4 transcription factor. Conversely, long-term stress led to a decrease in eIF2α (Ser51) phosphorylation and ATF4 expression and to an increase in S6K1 (Thr389) phosphorylation. Thus, under long-term mitochondrial stress, cells trigger long-lasting adaptive responses for protection against excessive inhibition of protein synthesis.
Collapse
Affiliation(s)
- Lukasz Samluk
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.,International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Malgorzata Urbanska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw 04-730, Poland
| | | | - Karthik Mohanraj
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.,ReMedy International Research Agenda Unit, University of Warsaw, Warsaw 02-097, Poland
| | - Min-Ji Kim
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland
| | - Katarzyna Machnicka
- International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Ewa Liszewska
- International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Agnieszka Chacinska
- Centre of New Technologies, University of Warsaw, Warsaw 02-097, Poland.,International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland.,ReMedy International Research Agenda Unit, University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
179
|
Kuznietsova H, Lynchak O, Dziubenko N, Herheliuk T, Prylutskyy Y, Rybalchenko V, Ritter U. Water-soluble pristine C 60 fullerene attenuates acetaminophen-induced liver injury. ACTA ACUST UNITED AC 2019; 9:227-237. [PMID: 31799159 PMCID: PMC6879707 DOI: 10.15171/bi.2019.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/19/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022]
Abstract
![]()
Introduction: Oxidative stress has been suggested as the main trigger and pathological mechanism of toxic liver injury. Effects of powerful free radical scavenger С60 fullerene on rat liver injury and liver cells (HepG2 line) were aimed to be discovered.
Methods: Acute liver injury (ALI) was simulated by single acetaminophen (APAP, 1000 mg/kg) administration, on a chronic CLI, by 4 weekly APAP administrations. Pristine C60 fullerene aqueous colloid solution (C60FAS; initial concentration 0.15 mg/mL) was administered per os or intraperitoneally at a dose of 0.5 mg/kg (ALI) or 0.25 mg/kg (CLI) daily for 2 or 28 days, respectively, after first APAP dose. Animals were sacrificed at 24th hour after the last dose. Biochemical markers of blood serum and liver autopsies were analyzed. EGFR expression in HepG2 cells after 48-hour incubation with C60FAS was assessed.
Results: Increase of serum conjugated and unconjugated bilirubin (up to 1.4-3.7 times), ALT (by 31-37%), and AST (by 18%) in non-treated ALI and CLI rats were observed, suggesting the hepatitis (confirmed by histological analysis). Liver morphological state (ALI, CLI), ALT (ALI and CLI), bilirubin (CLI), α-amylase, and creatinine (ALI) were normalized with C60FAS administration in both ways, which may indicate its protective impact on liver. However, unconjugated bilirubin sharply increased in ALI animals receiving C60FAS (up to 12 times compared to control), suggesting the augmentation of bilirubin metabolism. Furthermore, C60FAS inhibited EGFR expression in HepG2 cells in a dose-dependent manner.
Conclusion: C60FAS could partially correct acute and chronic toxic liver injury, however, it could not normalize bilirubin metabolism after acute exposure.
Collapse
Affiliation(s)
- Halyna Kuznietsova
- Taras Shevchenko National University of Kyiv, Institute of Biology and Medicine, 64 Volodymyrska Str., 01601 Kyiv, Ukraine
| | - Oksana Lynchak
- Taras Shevchenko National University of Kyiv, Institute of Biology and Medicine, 64 Volodymyrska Str., 01601 Kyiv, Ukraine
| | - Natalia Dziubenko
- Taras Shevchenko National University of Kyiv, Institute of Biology and Medicine, 64 Volodymyrska Str., 01601 Kyiv, Ukraine
| | - Tetyana Herheliuk
- Taras Shevchenko National University of Kyiv, Institute of Biology and Medicine, 64 Volodymyrska Str., 01601 Kyiv, Ukraine
| | - Yuriy Prylutskyy
- Taras Shevchenko National University of Kyiv, Institute of Biology and Medicine, 64 Volodymyrska Str., 01601 Kyiv, Ukraine
| | - Volodymyr Rybalchenko
- Taras Shevchenko National University of Kyiv, Institute of Biology and Medicine, 64 Volodymyrska Str., 01601 Kyiv, Ukraine
| | - Uwe Ritter
- Technical University of Ilmenau, Institute of Chemistry and Biotechnology, 25 Weimarer Str., 98693 Ilmenau, Germany
| |
Collapse
|
180
|
Paz JL, Levy D, Oliveira BA, de Melo TC, de Freitas FA, Reichert CO, Rodrigues A, Pereira J, Bydlowski SP. 7-Ketocholesterol Promotes Oxiapoptophagy in Bone Marrow Mesenchymal Stem Cell from Patients with Acute Myeloid Leukemia. Cells 2019; 8:E482. [PMID: 31117185 PMCID: PMC6562391 DOI: 10.3390/cells8050482] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
7-Ketocholesterol (7-KC) is a cholesterol oxidation product with several biological functions. 7-KC has the capacity to cause cell death depending on the concentration and specific cell type. Mesenchymal stem cells (MSCs) are multipotent cells with the ability to differentiate into various types of cells, such as osteoblasts and adipocytes, among others. MSCs contribute to the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases, such as leukemia, to a yet unknown extent. Here, we describe the effect of 7-KC on the death of bone marrow MSCs from patients with acute myeloid leukemia (LMSCs). LMSCs were less susceptible to the death-promoting effect of 7-KC than other cell types. 7-KC exposure triggered the extrinsic pathway of apoptosis with an increase in activated caspase-8 and caspase-3 activity. Mechanisms other than caspase-dependent pathways were involved. 7-KC increased ROS generation by LMSCs, which was related to decreased cell viability. 7-KC also led to disruption of the cytoskeleton of LMSCs, increased the number of cells in S phase, and decreased the number of cells in the G1/S transition. Autophagosome accumulation was also observed. 7-KC downregulated the SHh protein in LMSCs but did not change the expression of SMO. In conclusion, oxiapoptophagy (OXIdative stress + APOPTOsis + autophagy) seems to be activated by 7-KC in LMSCs. More studies are needed to better understand the role of 7-KC in the death of LMSCs and the possible effects on the SHh pathway.
Collapse
Affiliation(s)
- Jessica Liliane Paz
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Debora Levy
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Beatriz Araujo Oliveira
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Thatiana Correia de Melo
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Fabio Alessandro de Freitas
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Cadiele Oliana Reichert
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Alessandro Rodrigues
- Departmento de Ciencias Exactas e da Terra, Universidade Federal de Sao Paulo, Diadema 09972-270, SP, Brazil.
| | - Juliana Pereira
- Center of Innovation and Translational Medicine, Department of Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Sergio Paulo Bydlowski
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
- Center of Innovation and Translational Medicine, Department of Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
- National Institute of Science and Technology for Regenerative Medicine (INCT Regenera), CNPq, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
181
|
Solingapuram Sai KK, Bashetti N, Chen X, Norman S, Hines JW, Meka O, Kumar JVS, Devanathan S, Deep G, Furdui CM, Mintz A. Initial biological evaluations of 18F-KS1, a novel ascorbate derivative to image oxidative stress in cancer. EJNMMI Res 2019; 9:43. [PMID: 31101996 PMCID: PMC6525227 DOI: 10.1186/s13550-019-0513-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS)-induced oxidative stress damages many cellular components such as fatty acids, DNA, and proteins. This damage is implicated in many disease pathologies including cancer and neurodegenerative and cardiovascular diseases. Antioxidants like ascorbate (vitamin C, ascorbic acid) have been shown to protect against the deleterious effects of oxidative stress in patients with cancer. In contrast, other data indicate potential tumor-promoting activity of antioxidants, demonstrating a potential temporal benefit of ROS. However, quantifying real-time tumor ROS is currently not feasible, since there is no way to directly probe global tumor ROS. In order to study this ROS-induced damage and design novel therapeutics to prevent its sequelae, the quantitative nature of positron emission tomography (PET) can be harnessed to measure in vivo concentrations of ROS. Therefore, our goal is to develop a novel translational ascorbate-based probe to image ROS in cancer in vivo using noninvasive PET imaging of tumor tissue. The real-time evaluations of ROS state can prove critical in developing new therapies and stratifying patients to therapies that are affected by tumor ROS. METHODS We designed, synthesized, and characterized a novel ascorbate derivative (E)-5-(2-chloroethylidene)-3-((4-(2-fluoroethoxy)benzyl)oxy)-4-hydroxyfuran-2(5H)-one (KS1). We used KS1 in an in vitro ROS MitoSOX-based assay in two different head and neck squamous cancer cells (HNSCC) that express different ROS levels, with ascorbate as reference standard. We radiolabeled 18F-KS1 following 18F-based nucleophilic substitution reactions and determined in vitro reactivity and specificity of 18F-KS1 in HNSCC and prostate cancer (PCa) cells. MicroPET imaging and standard biodistribution studies of 18F-KS1 were performed in mice bearing PCa cells. To further demonstrate specificity, we performed microPET blocking experiments using nonradioactive KS1 as a blocker. RESULTS KS1 was synthesized and characterized using 1H NMR spectra. MitoSOX assay demonstrated good correlations between increasing concentrations of KS1 and ascorbate and increased reactivity in SCC-61 cells (with high ROS levels) versus rSCC-61cells (with low ROS levels). 18F-KS1 was radiolabeled with high radiochemical purity (> 94%) and specific activity (~ 100 GBq/μmol) at end of synthesis (EOS). Cell uptake of 18F-KS1 was high in both types of cancer cells, and the uptake was significantly blocked by nonradioactive KS1, and the ROS blocker, superoxide dismutase (SOD) demonstrating specificity. Furthermore, 18F-KS1 uptake was increased in PCa cells under hypoxic conditions, which have been shown to generate high ROS. Initial in vivo tumor uptake studies in PCa tumor-bearing mice demonstrated that 18F-KS1 specifically bound to tumor, which was significantly blocked (threefold) by pre-injecting unlabeled KS1. Furthermore, biodistribution studies in the same tumor-bearing mice showed high tumor to muscle (target to nontarget) ratios. CONCLUSION This work demonstrates the strong preliminary support of 18F-KS1, both in vitro and in vivo for imaging ROS in cancer. If successful, this work will provide a new paradigm to directly probe real-time oxidative stress levels in vivo. Our work could enhance precision medicine approaches to treat cancer, as well as neurodegenerative and cardiovascular diseases affected by ROS.
Collapse
Affiliation(s)
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh 522502 India
| | - Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Skylar Norman
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Justin W. Hines
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Omsai Meka
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - J. V. Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh 522502 India
| | | | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032 USA
| |
Collapse
|
182
|
Rahman A, Pallichankandy S, Thayyullathil F, Galadari S. Critical role of H 2O 2 in mediating sanguinarine-induced apoptosis in prostate cancer cells via facilitating ceramide generation, ERK1/2 phosphorylation, and Par-4 cleavage. Free Radic Biol Med 2019; 134:527-544. [PMID: 30735839 DOI: 10.1016/j.freeradbiomed.2019.01.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
Natural products are a major source of potential anticancer agents, and in order to develop improved and more effective cancer treatments, there is an immense need in exploring and elucidating their mechanism of action. Sanguinarine (SNG), a quaternary benzophenanthridine alkaloid, has been shown to induce cytotoxicity in various human cancers and suppresses various pro-tumorigenic processes such as invasion, angiogenesis, and metastasis in different cancers. Lack of understanding the anticancer mechanism(s) of SNG has impeded the development of this molecule as a potential anticancer agent. Earlier, we have reported that SNG induces reactive oxygen species (ROS)-dependent ceramide (Cer) generation and Akt dephosphorylation, leading to the induction of apoptosis in human leukemic cells. In the present study, we demonstrate that SNG has potent anti-proliferative activity against prostate cancer cells. Our data suggest that SNG induces Cer generation via inhibiting acid ceramidase and glucosylceramide synthase, two important enzymes involved in Cer metabolism. Furthermore, we demonstrate that SNG induces ROS-depended extracellular signal-regulated kinase1/2 (ERK1/2) phosphorylation, and prostate apoptosis response-4 (Par-4) cleavage, leading to the induction of apoptosis in human prostate cancer cells. Overall, our findings provide molecular insight into the role of ROS signaling in the anticancer mechanism(s) of SNG. This may provide the basis for its use as a nontoxic and an effective therapeutic agent in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Anees Rahman
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Faisal Thayyullathil
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Sehamuddin Galadari
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
183
|
De Grandis RA, Santos PWDSD, Oliveira KMD, Machado ART, Aissa AF, Batista AA, Antunes LMG, Pavan FR. Novel lawsone-containing ruthenium(II) complexes: Synthesis, characterization and anticancer activity on 2D and 3D spheroid models of prostate cancer cells. Bioorg Chem 2019; 85:455-468. [DOI: 10.1016/j.bioorg.2019.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022]
|
184
|
Prabhu KS, Siveen KS, Kuttikrishnan S, Jochebeth A, Ali TA, Elareer NR, Iskandarani A, Quaiyoom Khan A, Merhi M, Dermime S, El-Elimat T, Oberlies NH, Alali FQ, Steinhoff M, Uddin S. Greensporone A, a Fungal Secondary Metabolite Suppressed Constitutively Activated AKT via ROS Generation and Induced Apoptosis in Leukemic Cell Lines. Biomolecules 2019; 9:biom9040126. [PMID: 30934922 PMCID: PMC6523683 DOI: 10.3390/biom9040126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
Greensporone A is a fungal secondary metabolite that has exhibited potential in vitro for anti-proliferative activity in vitro. We studied the anticancer activity of greensporone A in a panel of leukemic cell lines. Greensporone A-mediated inhibition of proliferation is found to be associated with the induction of apoptotic cell death. Greensporone A treatment of leukemic cells causes inactivation of constitutively activated AKT and its downstream targets, including members GSK3 and FOXO1, and causes downregulation of antiapoptotic genes such as Inhibitor of Apoptosis (IAPs) and Bcl-2. Furthermore, Bax, a proapoptotic member of the Bcl-2 family, was found to be upregulated in leukemic cell lines treated with greensporone A. Interestingly, gene silencing of AKT using AKT specific siRNA suppressed the expression of Bcl-2 with enhanced expression of Bax. Greensporone A-mediated increase in Bax/Bcl-2 ratio causes permeabilization of the mitochondrial membrane leading to the accumulation of cytochrome c in the cytoplasm. Greensporone A-induced cytochrome c accumulation causes the activation of caspase cascade and cleavage of its effector, poly(ADP-ribose) polymerase (PARP), leading to apoptosis. Greensporone A-mediated apoptosis in leukemic cells occurs through the generation of reactive oxygen species (ROS) due to depletion of glutathione (GSH) levels. Finally, greensporone A potentiated the anticancer activity of imatinib in leukemic cells. In summary, our study showed that greensporone A suppressed the growth of leukemic cells via induction of apoptotic cell death. The apoptotic cell death occurs by inhibition of AKT signaling and activation of the intrinsic apoptotic/caspase pathways. These results raise the possibility that greensporone A could be developed as a therapeutic agent for the treatment of leukemia and other hematological malignancies.
Collapse
Affiliation(s)
- Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Kodappully S Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Anh Jochebeth
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Tayyiba A Ali
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Noor R Elareer
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Ahmad Iskandarani
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Abdul Quaiyoom Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Said Dermime
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Tamam El-Elimat
- Departent of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| | - Feras Q Alali
- Qatar College of Pharmacy, Qatar University, Doha 3050, Qatar.
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
- Department of Dermatology Venereology, Hamad Medical Corporation, Doha 3050, Qatar.
- Weill Cornell-Medicine, Doha 3050, Qatar.
- Weill Cornell University, New York, NY 10065, United States.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| |
Collapse
|
185
|
Soares MPR, Silva DP, Uehara IA, Ramos ES, Alabarse PVG, Fukada SY, da Luz FC, Vieira LQ, Oliveira APL, Silva MJB. The use of apocynin inhibits osteoclastogenesis. Cell Biol Int 2019; 43:466-475. [DOI: 10.1002/cbin.11110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/02/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Mariana Pena Ribeiro Soares
- Institute of Biomedical ScienceFederal University of Uberlandia2B, Room, 211, Campus UmuaramaUberlandiaBrazil
- School of Pharmaceutical Sciences of Ribeirao PretoDepartment of Physics and ChemistryUniversity of São PauloRibeirao PretoBrazil
| | - Danielle Pereira Silva
- Institute of Biomedical ScienceFederal University of Uberlandia2B, Room, 211, Campus UmuaramaUberlandiaBrazil
| | - Isadora Akemi Uehara
- Institute of Biomedical ScienceFederal University of Uberlandia2B, Room, 211, Campus UmuaramaUberlandiaBrazil
| | - Erivan Schnaider Ramos
- School of Pharmaceutical Sciences of Ribeirao PretoDepartment of Physics and ChemistryUniversity of São PauloRibeirao PretoBrazil
- University of the PacificArthur A. Dugoni School of DentistrySan FranciscoCalifornia
| | - Paulo Vinicius Gil Alabarse
- School of Pharmaceutical Sciences of Ribeirao PretoDepartment of Physics and ChemistryUniversity of São PauloRibeirao PretoBrazil
| | - Sandra Yasuyo Fukada
- School of Pharmaceutical Sciences of Ribeirao PretoDepartment of Physics and ChemistryUniversity of São PauloRibeirao PretoBrazil
| | - Felipe Cordero da Luz
- Institute of Biomedical ScienceFederal University of Uberlandia2B, Room, 211, Campus UmuaramaUberlandiaBrazil
| | - Leda Quercia Vieira
- Department of Biochemistry and ImmunologyUniversity of Minas GeraisBelo HorizonteBrazil
| | - Ana Paula Lima Oliveira
- Institute of Biomedical ScienceFederal University of Uberlandia2B, Room, 211, Campus UmuaramaUberlandiaBrazil
| | - Marcelo José Barbosa Silva
- Institute of Biomedical ScienceFederal University of Uberlandia2B, Room, 211, Campus UmuaramaUberlandiaBrazil
| |
Collapse
|
186
|
Jelinek M, Kocourek T, Jurek K, Jelinek M, Smolková B, Uzhytchak M, Lunov O. Preliminary Study of Ge-DLC Nanocomposite Biomaterials Prepared by Laser Codeposition. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E451. [PMID: 30889797 PMCID: PMC6474194 DOI: 10.3390/nano9030451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
This paper deals with the synthesis and study of the properties of germanium-doped diamond-like carbon (DLC) films. For deposition of doped DLC films, hybrid laser technology was used. Using two deposition lasers, it was possible to arrange the dopant concentrations by varying the laser repetition rate. Doped films of Ge concentrations from 0 at.% to 12 at.% were prepared on Si (100) and fused silica (FS) substrates at room temperature. Film properties, such as growth rate, roughness, scanning electron microscopy (SEM) morphology, wavelength dependent X-ray spectroscopy (WDS) composition, VIS-near infrared (IR) transmittance, and biological properties (cytotoxicity, effects on cellular morphology, and ability to produce reactive oxygen species (ROS)) were studied in relation to codeposition conditions and dopant concentrations. The analysis showed that Ge-DLC films exhibit cytotoxicity for higher Ge doping.
Collapse
Affiliation(s)
- Miroslav Jelinek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic.
- Faculty of Biomedical Engineering, Czech Technical University in Prague, nam. Sitna 3105, 27 201 Kladno, Czech Republic.
| | - Tomáš Kocourek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic.
- Faculty of Biomedical Engineering, Czech Technical University in Prague, nam. Sitna 3105, 27 201 Kladno, Czech Republic.
| | - Karel Jurek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic.
| | - Michal Jelinek
- Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, Brehova 7, 115 19 Prague 1, Czech Republic.
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic.
| | - Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic.
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic.
| |
Collapse
|
187
|
Hindman B, Ma Q. Carbon nanotubes and crystalline silica stimulate robust ROS production, inflammasome activation, and IL-1β secretion in macrophages to induce myofibroblast transformation. Arch Toxicol 2019; 93:887-907. [PMID: 30847537 DOI: 10.1007/s00204-019-02411-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
Pulmonary exposure to inhaled particulates elicits complex inflammatory and fibrotic responses that may progress to chronic fibrosis. The fibrogenic potentials of respirable particulates are influenced by their physicochemical properties and their interactions with major pathways to drive fibrotic development in the lung. Macrophages were exposed to six carbon nanotubes (CNTs) of varying dimensions, crystalline silica, or carbon black (CB), with lipopolysaccharide (LPS) and transforming growth factor (TGF)-β1 as positive controls. Macrophage-conditioned media was collected and applied to cultures of human pulmonary fibroblast line WI38-VA13 to induce myofibroblast transformation. Multi-walled and single-walled CNTs (MWCNTs and SWCNTs, respectively) and silica, but not CB, stimulated robust myofibroblast transformation through macrophage-conditioned media. On an equal weight basis, MWCNTs induced higher induction than SWCNTs. High induction was observed for MWCNTs with a long and slender or a short and rigid shape, and silica, at levels comparable to those by LPS and TGF-β1. Fibrogenic particulates induced high levels of IL-1β mRNA expression and protein secretion that are required for macrophage-guided myofibroblast transformation. Induction of IL-1β is dependent on the activation of the NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome and ROS (reactive oxygen species) production in macrophages, as inhibition of NLRP3 by MCC950 and reduction of ROS production by N-acetylcysteine blocked NLRP3 activation, IL-1β induction, and fibroblast activation and differentiation. Therefore, fibrogenic CNTs and silica, but not CB, elicit robust macrophage-guided myofibroblast transformation, which depends on the induction of IL-1β through the NLRP3 inflammasome pathway and the increased production of ROS in macrophages.
Collapse
Affiliation(s)
- Bridget Hindman
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, 26505, USA
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, 26505, USA.
| |
Collapse
|
188
|
Hou J, Chen L, Liu Z, Li J, Yang J, Zhong A, Zhou M, Sun Y, Guo L, Yang Y, Sun J, Wang Z. Sustained release of N-acetylcysteine by sandwich structured polycaprolactone/collagen scaffolds for wound healing. J Biomed Mater Res A 2019; 107:1414-1424. [PMID: 30737888 DOI: 10.1002/jbm.a.36656] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/17/2019] [Accepted: 02/04/2019] [Indexed: 12/24/2022]
Abstract
PCL (poly-caprolactone) nanofibers have good biocompatibility and high porosity, which are usually utilized for application in wound dressings. However, wound healing could be hindered by the overproduction of reactive oxygen species (ROS) and different factors. Pure nanofibers cannot satisfy these requirements of wound healing. N-acetylcysteine (NAC), as an antioxidant, meets the requirements for wound healing by resisting the overproduction of ROS and by promoting angiogenesis and maturation of the epidermis. In this study, we prepared a sandwich structured PCL-Col/NAC scaffold using the molding method, which consisted of PCL nanofibers at the core and NAC-loaded collagen on both sides. The hydroscopicity and tensile modulus of PCL-Col/NAC scaffolds showed best performance of these properties among groups. Meanwhile, the drug release profiles of PCL-Col/NAC scaffolds were investigated using the HPLC method and the results suggested a sustained drug release of NAC for PCL-Col/NAC scaffolds. In addition, PCL-Col/NAC scaffolds presented better properties than the control groups in cell migration and proliferation. The in vivo wound healing therapy effect was studied using an oval (2 × 1 cm) full-thickness skin defect wound model for SD rats. After 21 days, gross view and histological analysis showed a favorable beneficial therapeutic effect as well as better epidermal maturation compared with the control groups. CD31 immunohistology results revealed relatively more new vessels in the PCL-Col/NAC group than the control groups. This study developed novel PCL-Col/NAC scaffolds with an excellent hydroscopicity, tensile modulus and the ability to promote epidermal maturation and angiogenesis, demonstrating its promising potential in wound healing treatment. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2019.
Collapse
Affiliation(s)
- Jinfei Hou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lifeng Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhirong Liu
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jialun Li
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jie Yang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Aimei Zhong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Muran Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang Sun
- Department of Medical Records Management and Statistics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanqing Yang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
189
|
Rong X, Rao J, Li D, Jing Q, Lu Y, Ji Y. TRIM69 inhibits cataractogenesis by negatively regulating p53. Redox Biol 2019; 22:101157. [PMID: 30844644 PMCID: PMC6402377 DOI: 10.1016/j.redox.2019.101157] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/17/2019] [Accepted: 03/01/2019] [Indexed: 01/19/2023] Open
Abstract
Ultraviolet B (UVB) irradiation can induce reactive oxygen species (ROS) production and apoptosis in human lens epithelial cells (HLECs), thus leading to the formation of cataracts. We studied the role of tripartite motif 69 (TRIM69) in cataract formation. The expression of TRIM69 protein was down-regulated in both human cataract capsule tissues and HLECs treated with UVB, whereas the expression of p53 protein exhibited an opposite trend. Ectopic expression of TRIM69 in HLECs significantly suppressed UVB-induced apoptosis and ROS production, whereas knockdown of TRIM69 promoted apoptosis and ROS production. TRIM69 can interact with p53 and induce its ubiquitination. The effects of TRIM69 overexpression in UVB-induced cell apoptosis and ROS production was clearly weakened by p53 overexpression, thus suggesting a role for p53 in TRIM69 functions. Furthermore, inhibition of ROS mitigated the effects of UVB irradiation on ROS production, cell apoptosis, forkhead box protein 3a (Foxo3a) phosphorylation, and TRIM69 expression. Additionally, Foxo3a overexpression significantly enhanced TRIM69 promoter activity, whereas Foxo3a knockdown had the opposite effect. In conclusion, we provide the first demonstration that Foxo3a is a potential transcription factor for TRIM69, and TRIM69 induces p53 ubiquitination. These results suggest that the Foxo3a/TRIM69/p53 regulatory network may be involved in cataract formation. TRIM69 significantly suppressed UVB-induced apoptosis and ROS production. TRIM69 can interact with p53 and induce its ubiquitination. Foxo3a overexpression significantly enhanced TRIM69 promoter activity. The Foxo3a/TRIM69/p53 regulatory network may be involved in cataract formation.
Collapse
Affiliation(s)
- Xianfang Rong
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; Eye Institute, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), No. 83 Fenyang Road, Shanghai, 200031, China; Laboratory of Myopia, Chinese Academy of Medical Sciences, No. 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Visual Impairment and Restoration of Shanghai, No. 83 Fenyang Road, Shanghai, 200031, China
| | - Jun Rao
- Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer Center, Nanchang, 330029, China
| | - Dan Li
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; Eye Institute, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), No. 83 Fenyang Road, Shanghai, 200031, China; Laboratory of Myopia, Chinese Academy of Medical Sciences, No. 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Visual Impairment and Restoration of Shanghai, No. 83 Fenyang Road, Shanghai, 200031, China
| | - Qinghe Jing
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; Eye Institute, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), No. 83 Fenyang Road, Shanghai, 200031, China; Laboratory of Myopia, Chinese Academy of Medical Sciences, No. 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Visual Impairment and Restoration of Shanghai, No. 83 Fenyang Road, Shanghai, 200031, China
| | - Yi Lu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; Eye Institute, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), No. 83 Fenyang Road, Shanghai, 200031, China; Laboratory of Myopia, Chinese Academy of Medical Sciences, No. 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Visual Impairment and Restoration of Shanghai, No. 83 Fenyang Road, Shanghai, 200031, China
| | - Yinghong Ji
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; Eye Institute, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), No. 83 Fenyang Road, Shanghai, 200031, China; Laboratory of Myopia, Chinese Academy of Medical Sciences, No. 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Visual Impairment and Restoration of Shanghai, No. 83 Fenyang Road, Shanghai, 200031, China.
| |
Collapse
|
190
|
McCambridge G, Agrawal M, Keady A, Kern PA, Hasturk H, Nikolajczyk BS, Bharath LP. Saturated Fatty Acid Activates T Cell Inflammation Through a Nicotinamide Nucleotide Transhydrogenase (NNT)-Dependent Mechanism. Biomolecules 2019; 9:biom9020079. [PMID: 30823587 PMCID: PMC6406569 DOI: 10.3390/biom9020079] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 01/17/2023] Open
Abstract
Circulating fatty acids (FAs) increase with obesity and can drive mitochondrial damage and inflammation. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial protein that positively regulates nicotinamide adenine dinucleotide phosphate (NADPH), a key mediator of energy transduction and redox homeostasis. The role that NNT-regulated bioenergetics play in the inflammatory response of immune cells in obesity is untested. Our objective was to determine how free fatty acids (FFAs) regulate inflammation through impacts on mitochondria and redox homeostasis of peripheral blood mononuclear cells (PBMCs). PBMCs from lean subjects were activated with a T cell-specific stimulus in the presence or absence of generally pro-inflammatory palmitate and/or non-inflammatory oleate. Palmitate decreased immune cell expression of NNT, NADPH, and anti-oxidant glutathione, but increased reactive oxygen and proinflammatory Th17 cytokines. Oleate had no effect on these outcomes. Genetic inhibition of NNT recapitulated the effects of palmitate. PBMCs from obese (BMI >30) compared to lean subjects had lower NNT and glutathione expression, and higher Th17 cytokine expression, none of which were changed by exogenous palmitate. Our data identify NNT as a palmitate-regulated rheostat of redox balance that regulates immune cell function in obesity and suggest that dietary or therapeutic strategies aimed at increasing NNT expression may restore redox balance to ameliorate obesity-associated inflammation.
Collapse
Affiliation(s)
- Grace McCambridge
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA 01845, USA.
| | - Madhur Agrawal
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40506, USA.
| | - Alanna Keady
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA 01845, USA.
| | - Philip A Kern
- Department of Medicine, University of Kentucky, Lexington, KY 40506, USA.
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY 40506, USA.
| | | | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40506, USA.
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY 40506, USA.
| | - Leena P Bharath
- Department of Nutrition and Public Health, Merrimack College, North Andover, MA 01845, USA.
| |
Collapse
|
191
|
Theppawong A, Van de Walle T, Grootaert C, Van Hecke K, Catry N, Desmet T, Van Camp J, D'hooghe M. Synthesis of Non-Symmetrical Nitrogen-Containing Curcuminoids in the Pursuit of New Anticancer Candidates. ChemistryOpen 2019; 8:236-247. [PMID: 30847262 PMCID: PMC6392825 DOI: 10.1002/open.201800287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/05/2019] [Indexed: 01/03/2023] Open
Abstract
Curcumin is known to display pronounced anticancer effects and a variety of other biological activities. However, the low bioavailability and fast metabolism of this molecule present an issue of concern with respect to its medicinal applications. To address this issue, structural modifications of the curcumin scaffold can be envisioned as a strategy to improve both the solubility and stability of this chemical entity, without compromising its biological activities. Previous work in our group targeted the synthesis of symmetrical azaheteroaromatic curcuminoids, which showed better solubility and cytotoxicity profiles compared to curcumin. In continuation of that work, we now focused on the synthesis of non-symmetrical nitrogen-containing curcuminoids bearing both a phenolic and an azaheteroaromatic moiety. In that way, we aimed to combine good solubility, antioxidant potential and cytotoxic properties into one molecule. Some derivatives were selected for further chemical modification of their rather labile β-diketone scaffold to the corresponding pyrazole moiety. In this way, thirteen new non-symmetrical aza-aromatic curcuminoids and four pyrazole-based analogues were successfully synthesized in a yield of 11-69 %. All newly synthesized analogues were evaluated for their antioxidant properties, reactive oxygen species (ROS) production, water solubility and anticancer activities. Several novel derivatives displayed good cytotoxicity profiles compared to curcumin, in combination with an improved water solubility and stability, and were thus identified as potential hit scaffolds for further optimization studies.
Collapse
Affiliation(s)
- Atiruj Theppawong
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653B-9000GhentBelgium
| | - Tim Van de Walle
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653B-9000GhentBelgium
| | - Charlotte Grootaert
- Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653B-9000GhentBelgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Faculty of ScienceGhent UniversityKrijgslaan 281, S3B-9000GhentBelgium
| | - Nathalie Catry
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653B-9000GhentBelgium
| | - Tom Desmet
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent University Coupure Links 653, 9000GhentBelgium
| | - John Van Camp
- Department of Food Technology, Safety and Health, Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653B-9000GhentBelgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653B-9000GhentBelgium
| |
Collapse
|
192
|
Thu PM, Zheng ZG, Zhou YP, Wang YY, Zhang X, Jing D, Cheng HM, Li J, Li P, Xu X. Phellodendrine chloride suppresses proliferation of KRAS mutated pancreatic cancer cells through inhibition of nutrients uptake via macropinocytosis. Eur J Pharmacol 2019; 850:23-34. [PMID: 30716311 DOI: 10.1016/j.ejphar.2019.01.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Despite the massive efforts to develop the treatment of pancreatic cancers, no effective application exhibits satisfactory clinical outcome. Macropinocytosis plays a critical role for continuous proliferation of pancreatic ductal adenocarcinoma (PDAC). In this study, we generated a screening method and identified phellodendrine chloride (PC) as a potential macropinocytosis inhibitor. PC significantly inhibited the viability of KRAS mutant pancreatic cancer cells (PANC-1 and MiaPaCa-2) in a dose-dependent manner; however, it did not affect the wild type KRAS pancreatic cancer cells (BxPC-3). Further experiments indicated that PC reduced the growth of PANC-1 cells through inhibition of macropinocytosis and diminishing the intracellular glutamine level. Disruption of glutamine metabolism led to enhance the reactive oxygen species level and induce mitochondrial membrane potential depolarization in PANC-1 cells. PC treatment caused increased Bax and decreased Bcl-2 expression, along with the activation of cleaved caspase-3, 7, 9 and cleaved-PARP, thus induced mitochondrial apoptosis. Moreover, PC inhibited macropinocytosis in vivo and effectively reduced the growth of PANC-1 xenograft tumors. All together, we demonstrated that inhibition of macropinocytosis might be an effective strategy to treat pancreatic cancers. Thus, PC could be a potential compound with improved therapeutic efficacy in patients with pancreatic cancers.
Collapse
Affiliation(s)
- Pyone Myat Thu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Ya-Ping Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Yan-Yan Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Xin Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Dan Jing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Hui-Min Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China
| | - Ji Li
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, 200040 Shanghai, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China.
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, 210009 Nanjing, Jiangsu, China.
| |
Collapse
|
193
|
Carvalho PHPR, Correa JR, Paiva KLR, Baril M, Machado DFS, Scholten JD, de Souza PEN, Veiga-Souza FH, Spencer J, Neto BAD. When the strategies for cellular selectivity fail. Challenges and surprises in the design and application of fluorescent benzothiadiazole derivatives for mitochondrial staining. Org Chem Front 2019. [DOI: 10.1039/c9qo00428a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Design, synthesis, molecular architecture and the unexpected behavior of fluorescent benzothiadiazole for selective mitochondrial and plasma membrane staining are investigated.
Collapse
|
194
|
Ma E, Jeong SJ, Choi JS, Nguyen TH, Jeong CH, Joo SH. MS-5, a Naphthalene Derivative, Induces the Apoptosis of an Ovarian Cancer Cell CAOV-3 by Interfering with the Reactive Oxygen Species Generation. Biomol Ther (Seoul) 2019; 27:48-53. [PMID: 29605989 PMCID: PMC6319555 DOI: 10.4062/biomolther.2018.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 11/23/2022] Open
Abstract
Reactive oxygen species (ROS) are widely generated in biological processes such as normal metabolism and response to xenobiotic exposure. While ROS can be beneficial or harmful to cells and tissues, generation of ROS by diverse anti-cancer drugs or phytochemicals plays an important role in the induction of apoptosis. We recently identified a derivative of naphthalene, MS-5, that induces apoptosis of an ovarian cell, CAOV-3. Interestingly, MS-5 induced apoptosis by down-regulating the ROS. Cell viability was evaluated by water-soluble tetrazolium salt (WST-1) assay. Apoptosis was evaluated by flow cytometry analysis. Intracellular ROS (H2O2), mitochondrial superoxide, mitochondrial membrane potential (MMP) and effect on cycle were determined by flow cytometry. Protein expression was assessed by western blotting. The level of ATP was measured using ATP Colorimetric/Fluorometric Assay kit. MS-5 inhibited growth of ovarian cancer cell lines, CAOV-3, in a concentration- and time-dependent manner. MS-5 also induced G1 cell cycle arrest in CAOV-3 cells, while MS-5 decreased intracellular ROS generation. In addition, cells treated with MS-5 showed the decrease in MMP and ATP production. In this study, we found that treatment with MS-5 in CAOV-3 cells induced apoptosis but decreased ROS level. We suspect that MS-5 might interfere with the minimum requirements of ROS for survival. These perturbations appear to be concentration-dependent, suggesting that MS-5 may induce apoptosis by interfering with ROS generation. We propose that MS-5 may be a potent therapeutic agent for inducing apoptosis in ovarian cancer cell through regulation of ROS.
Collapse
Affiliation(s)
- Eunsook Ma
- Department of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Seon-Ju Jeong
- Department of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Joon-Seok Choi
- Department of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Thi Ha Nguyen
- Department of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Sang Hoon Joo
- Department of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| |
Collapse
|
195
|
Nag S, Manna K, Saha KD. Tannic acid-stabilized gold nano-particles are superior to native tannic acid in inducing ROS-dependent mitochondrial apoptosis in colorectal carcinoma cells via the p53/AKT axis. RSC Adv 2019; 9:8025-8038. [PMID: 35547831 PMCID: PMC9087445 DOI: 10.1039/c9ra00808j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Tannic acid and AuNP-TA lead to death of colon cancer cells via the ROS/p53/Akt pathway, and AuNP-TA is more potent.
Collapse
Affiliation(s)
- Sayoni Nag
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Krishnendu Manna
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| |
Collapse
|
196
|
Moniruzzaman R, Rehman MU, Zhao QL, Jawaid P, Mitsuhashi Y, Imaue S, Fujiwara K, Ogawa R, Tomihara K, Saitoh JI, Noguchi K, Kondo T, Noguchi M. Roles of intracellular and extracellular ROS formation in apoptosis induced by cold atmospheric helium plasma and X-irradiation in the presence of sulfasalazine. Free Radic Biol Med 2018; 129:537-547. [PMID: 30355525 DOI: 10.1016/j.freeradbiomed.2018.10.434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/11/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
Sulfasalazine (SSZ) is a well-known anti-inflammatory drug and also an inhibitor of the cystine-glutamate antiporter that is known to reduce intracellular glutathione (GSH) level and increase cellular oxidative stress, indicating its anti-tumor potential. However, the combination of SSZ with other physical modalities remains unexplored. Here, the effects of SSZ on cold atmospheric helium plasma (He-CAP), which produces approximately 24 x higher concentration of hydroxyl radicals (. OH) compared to X-irradiation (IR) in aqueous solution, and on IR-induced apoptosis in human leukemia Molt-4 cells were studied to elucidate the mechanism of apoptosis enhancement. Both the Annexin V-FITC/PI and DNA fragmentation assay revealed that pre-treatment of cells with SSZ significantly enhanced He-CAP and IR-induced apoptosis. Similar enhancement was observed during the loss of mitochondrial membrane potential, intracellular Ca2+ ions, and mitochondria- and endoplasmic reticulum-related proteins. The concentration of intracellular reactive oxygen species (ROS) was much higher in He-CAP treated cells than in X-irradiated cells. On the other hand, strong enhancement of Fas expression and caspase-8 and -3 activities were only observed in X-irradiated cells. It might be possible that the higher concentration of intracellular and extracellular ROS suppressed caspase activities and Fas expression in He-CAP-treated cells. Notably, pretreating the cells with an antioxidant N-acetyl-L-cysteine (NAC) dramatically decreased apoptosis in cells treated by He-CAP, but not by IR. These results suggest that IR-induced apoptosis is due to specific and effective ROS distribution since intracellular ROS formation is marginal and the high production of ROS inside and outside of cells plays unique roles in He-CAP induced apoptosis. We conclude that our data provides efficacy and mechanistic insights for SSZ, which might be helpful for establishing SSZ as a future sensitizer in He-CAP or IR therapy for cancer.
Collapse
Affiliation(s)
- Rohan Moniruzzaman
- Department of Oral & Maxillofacial Surgery, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Department of Radiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Mati Ur Rehman
- Department of Radiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Qing-Li Zhao
- Department of Radiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Paras Jawaid
- Department of Radiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yohei Mitsuhashi
- Department of Radiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shuichi Imaue
- Department of Oral & Maxillofacial Surgery, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kumiko Fujiwara
- Department of Oral & Maxillofacial Surgery, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ryohei Ogawa
- Department of Radiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kei Tomihara
- Department of Oral & Maxillofacial Surgery, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Jun-Ichi Saitoh
- Department of Radiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kyo Noguchi
- Department of Radiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takashi Kondo
- Department of Radiology, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Makoto Noguchi
- Department of Oral & Maxillofacial Surgery, Graduate School of Medicine & Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
197
|
Nam E, Derrick JS, Lee S, Kang J, Han J, Lee SJC, Chung SW, Lim MH. Regulatory Activities of Dopamine and Its Derivatives toward Metal-Free and Metal-Induced Amyloid-β Aggregation, Oxidative Stress, and Inflammation in Alzheimer's Disease. ACS Chem Neurosci 2018; 9:2655-2666. [PMID: 29782798 DOI: 10.1021/acschemneuro.8b00122] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A catecholamine neurotransmitter, dopamine (DA), is suggested to be linked to the pathology of dementia; however, the involvement of DA and its structural analogues in the pathogenesis of Alzheimer's disease (AD), the most common form of dementia, composed of multiple pathogenic factors has not been clear. Herein, we report that DA and its rationally designed structural derivatives (1-6) based on DA's oxidative transformation are able to modulate multiple pathological elements found in AD [i.e., metal ions, metal-free amyloid-β (Aβ), metal-bound Aβ (metal-Aβ), and reactive oxygen species (ROS)], with demonstration of detailed molecular-level mechanisms. Our multidisciplinary studies validate that the protective effects of DA and its derivatives on Aβ aggregation and Aβ-mediated toxicity are induced by their oxidative transformation with concomitant ROS generation under aerobic conditions. In particular, DA and the derivatives (i.e., 3 and 4) show their noticeable anti-amyloidogenic ability toward metal-free Aβ and/or metal-Aβ, verified to occur via their oxidative transformation that facilitates Aβ oxidation. Moreover, in primary pan-microglial marker (CD11b)-positive cells, the major producers of inflammatory mediators in the brain, DA and its derivatives significantly diminish inflammation and oxidative stress triggered by lipopolysaccharides and Aβ through the reduced induction of inflammatory mediators as well as upregulated expression of heme oxygenase-1, the enzyme responsible for production of antioxidants. Collectively, we illuminate how DA and its derivatives could prevent multiple pathological features found in AD. The overall studies could advance our understanding regarding distinct roles of neurotransmitters in AD and identify key interactions for alleviation of AD pathology.
Collapse
Affiliation(s)
- Eunju Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeffrey S. Derrick
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seunghee Lee
- School of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jiyeon Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin Jung C. Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Su Wol Chung
- School of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
198
|
Almeer RS, Ali D, Alarifi S, Alkahtani S, Almansour M. Green Platinum Nanoparticles Interaction With HEK293 Cells: Cellular Toxicity, Apoptosis, and Genetic Damage. Dose Response 2018; 16:1559325818807382. [PMID: 30479585 PMCID: PMC6247496 DOI: 10.1177/1559325818807382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
Metal nanoparticles are widely used in industry, agriculture, textiles, drugs, and so on. The adverse effect of green platinum nanoparticles on human embryonic kidney (HEK293) cells is not well established. In the current study, green platinum nanoparticles were synthesized using leaf extract of Azadirachta indica L. Green platinum nanoparticles were characterized by dynamic light scattering and transmission electron microscope. The cytotoxicity of green platinum nanoparticle was observed in HEK293 cells by applying 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and Neutral red uptake (NRU) assays. Cell viability of the cells was decreased in a concentration and duration-dependent manner. Generation of reactive oxygen species (ROS) in HEK293 cells due to green platinum nanoparticles was examined using fluorescent dye 2,7-dichlorofluorescein diacetate (DCFDA), and ROS was increased according to exposure pattern. The cytotoxicity of HEK293 cells was correlated with increased caspase 3, depolarization of mitochondrial membrane potential, and DNA fragmentation. The abovementioned finding confirmed that mitochondria play an important role in genotoxicity and cytotoxicity induced by nanoparticles in HEK293 cells. Further, we determined other oxidative stress biomarkers, lipid peroxide (LPO) and glutathione (GSH); LPO was increased and GSH was decreased in HEK293 cells. It is also important to indicate that HEK293 cells appear to be more susceptible to green platinum nanoparticles exposure after 24 hours. This result provides a dose- and time-dependent apoptosis and genotoxicity of green nanoparticles on HEK293 cells.
Collapse
Affiliation(s)
- Rafa S Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mansour Almansour
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
199
|
Wang J, Li M, Zhang W, Gu A, Dong J, Li J, Shan A. Protective Effect of N-Acetylcysteine against Oxidative Stress Induced by Zearalenone via Mitochondrial Apoptosis Pathway in SIEC02 Cells. Toxins (Basel) 2018; 10:E407. [PMID: 30304829 PMCID: PMC6215273 DOI: 10.3390/toxins10100407] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 01/06/2023] Open
Abstract
Zearalenone (ZEN), a nonsteroidal estrogen mycotoxin, is widely found in feed and foodstuffs. Intestinal cells may become the primary target of toxin attack after ingesting food containing ZEN. Porcine small intestinal epithelial (SIEC02) cells were selected to assess the effect of ZEN exposure on the intestine. Cells were exposed to ZEN (20 µg/mL) or pretreated with (81, 162, and 324 µg/mL) N-acetylcysteine (NAC) prior to ZEN treatment. Results indicated that the activities of glutathione peroxidase (Gpx) and glutathione reductase (GR) were reduced by ZEN, which induced reactive oxygen species (ROS) and malondialdehyde (MDA) production. Moreover, these activities increased apoptosis and mitochondrial membrane potential (ΔΨm), and regulated the messenger RNA (mRNA) expression of Bax, Bcl-2, caspase-3, caspase-9, and cytochrome c (cyto c). Additionally, NAC pretreatment reduced the oxidative damage and inhibited the apoptosis induced by ZEN. It can be concluded that ZEN-induced oxidative stress and damage may further induce mitochondrial apoptosis, and pretreatment of NAC can degrade this damage to some extent.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Mengmeng Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Wei Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Aixin Gu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Jiawen Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Jianping Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
200
|
Zhang X, Pellegrini P, Saei AA, Hillert EK, Mazurkiewicz M, Olofsson MH, Zubarev RA, D'Arcy P, Linder S. The deubiquitinase inhibitor b-AP15 induces strong proteotoxic stress and mitochondrial damage. Biochem Pharmacol 2018; 156:291-301. [DOI: 10.1016/j.bcp.2018.08.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/22/2018] [Indexed: 12/14/2022]
|