151
|
Gurtovenko AA, Mukhamadiarov EI, Kostritskii AY, Karttunen M. Phospholipid–Cellulose Interactions: Insight from Atomistic Computer Simulations for Understanding the Impact of Cellulose-Based Materials on Plasma Membranes. J Phys Chem B 2018; 122:9973-9981. [DOI: 10.1021/acs.jpcb.8b07765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Andrey A. Gurtovenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect V.O. 31, St. Petersburg, 199004 Russia
| | - Evgenii I. Mukhamadiarov
- Faculty of Physics, St. Petersburg State University, Ulyanovskaya str. 3, Petrodvorets, St. Petersburg, 198504 Russia
| | - Andrei Yu. Kostritskii
- Faculty of Physics, St. Petersburg State University, Ulyanovskaya str. 3, Petrodvorets, St. Petersburg, 198504 Russia
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect V.O. 31, St. Petersburg, 199004 Russia
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 3K7
- Department of Applied Mathematics, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| |
Collapse
|
152
|
Liehn EA, Ponomariov V, Diaconu R, Streata I, Ioana M, Crespo-Avilan GE, Hernández-Reséndiz S, Cabrera-Fuentes HA. Apolipoprotein E in Cardiovascular Diseases: Novel Aspects of an Old-fashioned Enigma. Arch Med Res 2018; 49:522-529. [PMID: 30213474 DOI: 10.1016/j.arcmed.2018.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022]
Abstract
The presence of different APOE isoforms represents a well-known risk factor for cardiovascular diseases. Besides the pleiotropic effects of APOE polymorphism on heart and neurological diseases, this review summarizes the less-known functions of APOE and the possible implications for cardiovascular disorders. Beyond the role as lipid transporting protein, its involvement in lipid membrane homeostasis and signaling, as well as its nuclear transcriptional effects suggests a more complex role of APOE, receiving great interest from researchers and physicians from all medical fields. Due to the presence of different APOE isoforms in human population, understanding APOE's role in pathological processes represents not only a challenge, but a demand for further development of therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Elisa A Liehn
- Institute for Molecular Cardiovascular Research, Rheinisch Westfälische Technische Hochschule Aachen University, Aachen, Germany; Human Genomics Laboratory, University of Medicine and Pharmacy Craiova, Craiova, Romania; Department of Cardiology, Pulmonology, Angiology and Intensive Care, University Hospital, Rheinisch Westfälische Technische Hochschule, Aachen, Germany
| | - Victor Ponomariov
- Institute for Molecular Cardiovascular Research, Rheinisch Westfälische Technische Hochschule Aachen University, Aachen, Germany; Human Genomics Laboratory, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Rodica Diaconu
- Human Genomics Laboratory, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Ioana Streata
- Human Genomics Laboratory, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Mihai Ioana
- Human Genomics Laboratory, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Gustavo E Crespo-Avilan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Sauri Hernández-Reséndiz
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Hector A Cabrera-Fuentes
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Kazan Federal University, Department of Microbiology, Kazan, Russian Federation; Escuela de Ingenieria y Ciencias, Centro de Biotecnologia-FEMSA, Tecnologico de Monterrey, Nuevo Leon, México; Institute of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
153
|
Drechsler C, Markones M, Choi JY, Frieling N, Fiedler S, Voelker DR, Schubert R, Heerklotz H. Preparation of Asymmetric Liposomes Using a Phosphatidylserine Decarboxylase. Biophys J 2018; 115:1509-1517. [PMID: 30266319 DOI: 10.1016/j.bpj.2018.08.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 01/08/2023] Open
Abstract
Lipid asymmetries between the outer and inner leaflet of the lipid bilayer exist in nearly all biological membranes. Although living cells spend great effort to adjust and maintain these asymmetries, little is known about the biophysical phenomena within asymmetric membranes and their role in cellular function. One reason for this lack of insight into such a fundamental membrane property is the fact that the majority of model-membrane studies have been performed on symmetric membranes. Our aim is to overcome this problem by employing a targeted, enzymatic reaction to prepare asymmetric liposomes with phosphatidylserine (PS) primarily in the inner leaflet. To achieve this goal, we use a recombinant version of a water soluble PS decarboxylase from Plasmodium knowlesi, which selectively decarboxylates PS in the outer leaflet, converting it to phosphatidylethanolamine. The extent of decarboxylation is quantified using high-performance thin-layer chromatography, and the local concentration of anionic PS in the outer leaflet is monitored in terms of the ζ potential. Starting, for example, with 21 mol % 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine sodium salt, the assay leads to liposomes with 21 mol % in the inner and 6 mol % PS in the outer leaflet. This asymmetry persists virtually unchanged for at least 4 days at 20°C and at least 2 days at 40°C. The use of a highly specific enzyme carries the advantage that a minor component such as PS can be adjusted without affecting or being affected by the other lipid species present in the model membrane. The phenomena governing the residual outside PS content are addressed but warrant further study.
Collapse
Affiliation(s)
- Carina Drechsler
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Marie Markones
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Jae-Yeon Choi
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Niklas Frieling
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Sebastian Fiedler
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Dennis R Voelker
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Rolf Schubert
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Heiko Heerklotz
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Freiburg, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada.
| |
Collapse
|
154
|
Choi TS, Han JY, Heo CE, Lee SW, Kim HI. Electrostatic and hydrophobic interactions of lipid-associated α-synuclein: The role of a water-limited interfaces in amyloid fibrillation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1854-1862. [DOI: 10.1016/j.bbamem.2018.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
|
155
|
Roberts MF, Khan HM, Goldstein R, Reuter N, Gershenson A. Search and Subvert: Minimalist Bacterial Phosphatidylinositol-Specific Phospholipase C Enzymes. Chem Rev 2018; 118:8435-8473. [DOI: 10.1021/acs.chemrev.8b00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Rebecca Goldstein
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
156
|
Steck TL, Lange Y. Transverse distribution of plasma membrane bilayer cholesterol: Picking sides. Traffic 2018; 19:750-760. [PMID: 29896788 DOI: 10.1111/tra.12586] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 12/23/2022]
Abstract
The transverse asymmetry (sidedness) of phospholipids in plasma membrane bilayers is well characterized, distinctive, actively maintained and functionally important. In contrast, numerous studies using a variety of techniques have concluded that plasma membrane bilayer cholesterol is either mostly in the outer leaflet or the inner leaflet or is fairly evenly distributed. Sterols might simply partition according to their differing affinities for the asymmetrically disposed phospholipids, but some studies have proposed that it is actively transported to the outer leaflet. Other work suggests that the sterol is enriched in the inner leaflet, driven by either positive interactions with the phosphatidylethanolamine on that side or by its exclusion from the outer leaflet by the long chain sphingomyelin molecules therein. This uncertainty raises three questions: is plasma membrane cholesterol sidedness fixed in a given cell or cell type; is it generally the same among mammalian species; and does it serve specific physiological functions? This review grapples with these issues.
Collapse
Affiliation(s)
- Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
157
|
A synthetic enzyme built from DNA flips 107 lipids per second in biological membranes. Nat Commun 2018; 9:2426. [PMID: 29930243 PMCID: PMC6013447 DOI: 10.1038/s41467-018-04821-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Mimicking enzyme function and increasing performance of naturally evolved proteins is one of the most challenging and intriguing aims of nanoscience. Here, we employ DNA nanotechnology to design a synthetic enzyme that substantially outperforms its biological archetypes. Consisting of only eight strands, our DNA nanostructure spontaneously inserts into biological membranes by forming a toroidal pore that connects the membrane’s inner and outer leaflets. The membrane insertion catalyzes spontaneous transport of lipid molecules between the bilayer leaflets, rapidly equilibrating the lipid composition. Through a combination of microscopic simulations and fluorescence microscopy we find the lipid transport rate catalyzed by the DNA nanostructure exceeds 107 molecules per second, which is three orders of magnitude higher than the rate of lipid transport catalyzed by biological enzymes. Furthermore, we show that our DNA-based enzyme can control the composition of human cell membranes, which opens new avenues for applications of membrane-interacting DNA systems in medicine. Mimicking enzyme function and improving upon it is a challenge facing nanotechnology. Here the authors design a DNA nanostructure that catalyzes the transport of lipids between bilayers at a rate three orders of magnitude higher than biological enzymes.
Collapse
|
158
|
Burtscher V, Hotka M, Li Y, Freissmuth M, Sandtner W. A label-free approach to detect ligand binding to cell surface proteins in real time. eLife 2018; 7:e34944. [PMID: 29697048 PMCID: PMC5991833 DOI: 10.7554/elife.34944] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023] Open
Abstract
Electrophysiological recordings allow for monitoring the operation of proteins with high temporal resolution down to the single molecule level. This technique has been exploited to track either ion flow arising from channel opening or the synchronized movement of charged residues and/or ions within the membrane electric field. Here, we describe a novel type of current by using the serotonin transporter (SERT) as a model. We examined transient currents elicited on rapid application of specific SERT inhibitors. Our analysis shows that these currents originate from ligand binding and not from a long-range conformational change. The Gouy-Chapman model predicts that adsorption of charged ligands to surface proteins must produce displacement currents and related apparent changes in membrane capacitance. Here we verified these predictions with SERT. Our observations demonstrate that ligand binding to a protein can be monitored in real time and in a label-free manner by recording the membrane capacitance.
Collapse
Affiliation(s)
- Verena Burtscher
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug DevelopmentCenter of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Matej Hotka
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug DevelopmentCenter of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Yang Li
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug DevelopmentCenter of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug DevelopmentCenter of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - Walter Sandtner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug DevelopmentCenter of Physiology and Pharmacology, Medical University of ViennaViennaAustria
| |
Collapse
|
159
|
Nakao H, Hayashi C, Ikeda K, Saito H, Nagao H, Nakano M. Effects of Hydrophilic Residues and Hydrophobic Length on Flip-Flop Promotion by Transmembrane Peptides. J Phys Chem B 2018; 122:4318-4324. [PMID: 29589918 DOI: 10.1021/acs.jpcb.8b00298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Peptide-induced phospholipid flip-flop (scrambling) was evaluated using transmembrane model peptides in which the central residue was substituted with various amino acid residues (sequence: Ac-GKK(LA) nXW(LA) nLKKA-CONH2). Peptides with a strongly hydrophilic residue (X = Q, N, or H) had higher scramblase activity than that of other peptides, and the activity was also dependent on the length of the peptides. Peptides with a hydrophobic stretch of 17 residues showed high flip-promotion propensity, whereas those of 21 and 25 residues did not, suggesting that membrane thinning under negative mismatch conditions promotes the flipping. Interestingly, a hydrophobic stretch of 19 residues intensively promoted phospholipid scrambling and membrane leakage. The distinctive characteristics of the peptide were ascribed by long-term molecular dynamics simulation to the arrangement of central glutamine and terminal four lysine residues on the same side of the helix. The combination of simulated and experimental data enables understanding of the mechanisms by which transmembrane helices, and ultimately unidentified scramblases in biomembranes, cause lipid scrambling.
Collapse
Affiliation(s)
- Hiroyuki Nakao
- Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , 2630 Sugitani , Toyama 930-0194 , Japan
| | - Chihiro Hayashi
- Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , 2630 Sugitani , Toyama 930-0194 , Japan
| | - Keisuke Ikeda
- Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , 2630 Sugitani , Toyama 930-0194 , Japan
| | - Hiroaki Saito
- Institute of Science and Engineering , Kanazawa University , Kakuma , Kanazawa , Ishikawa 920-1192 , Japan.,Laboratory for Computational Molecular Design , RIKEN Quantitative Biology Center , 6-2-4 Furuedai , Suita , Osaka 565-0874 , Japan
| | - Hidemi Nagao
- Institute of Science and Engineering , Kanazawa University , Kakuma , Kanazawa , Ishikawa 920-1192 , Japan
| | - Minoru Nakano
- Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , 2630 Sugitani , Toyama 930-0194 , Japan
| |
Collapse
|
160
|
Effect of Phosphatidylserine and Cholesterol on Membrane-mediated Fibril Formation by the N-terminal Amyloidogenic Fragment of Apolipoprotein A-I. Sci Rep 2018; 8:5497. [PMID: 29615818 PMCID: PMC5882889 DOI: 10.1038/s41598-018-23920-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/22/2018] [Indexed: 01/31/2023] Open
Abstract
Here, we examined the effects of phosphatidylserine (PS) and cholesterol on the fibril-forming properties of the N-terminal 1‒83 fragment of an amyloidogenic G26R variant of apoA-I bound to small unilamellar vesicles. A thioflavin T fluorescence assay together with microscopic observations showed that PS significantly retards the nucleation step in fibril formation by apoA-I 1‒83/G26R, whereas cholesterol slightly enhances fibril formation. Circular dichroism analyses demonstrated that PS facilitates a structural transition from random coil to α-helix in apoA-I 1‒83/G26R with great stabilization of the α-helical structure upon lipid binding. Isothermal titration calorimetry measurements revealed that PS induces a marked increase in capacity for binding of apoA-I 1‒83/G26R to the membrane surface, perhaps due to electrostatic interactions of positively charged amino acids in apoA-I with PS. Such effects of PS to enhance lipid interactions and inhibit fibril formation of apoA-I were also observed for the amyloidogenic region-containing apoA-I 8‒33/G26R peptide. Fluorescence measurements using environment-sensitive probes indicated that PS induces a more solvent-exposed, membrane-bound conformation in the amyloidogenic region of apoA-I without affecting membrane fluidity. Since cell membranes have highly heterogeneous lipid compositions, our findings may provide a molecular basis for the preferential deposition of apoA-I amyloid fibrils in tissues and organs.
Collapse
|
161
|
Takada N, Naito T, Inoue T, Nakayama K, Takatsu H, Shin HW. Phospholipid-flipping activity of P4-ATPase drives membrane curvature. EMBO J 2018; 37:embj.201797705. [PMID: 29599178 DOI: 10.15252/embj.201797705] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 11/09/2022] Open
Abstract
P4-ATPases are phospholipid flippases that translocate phospholipids from the exoplasmic/luminal to the cytoplasmic leaflet of biological membranes. All P4-ATPases in yeast and some in other organisms are required for membrane trafficking; therefore, changes in the transbilayer lipid composition induced by flippases are thought to be crucial for membrane deformation. However, it is poorly understood whether the phospholipid-flipping activity of P4-ATPases can promote membrane deformation. In this study, we assessed membrane deformation induced by flippase activity via monitoring the extent of membrane tubulation using a system that allows inducible recruitment of Bin/amphiphysin/Rvs (BAR) domains to the plasma membrane (PM). Enhanced phosphatidylcholine-flippase activity at the PM due to expression of ATP10A, a member of the P4-ATPase family, promoted membrane tubulation upon recruitment of BAR domains to the PM This is the important evidence that changes in the transbilayer lipid composition induced by P4-ATPases can deform biological membranes.
Collapse
Affiliation(s)
- Naoto Takada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tomoki Naito
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takanari Inoue
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
162
|
Mioka T, Fujimura-Kamada K, Mizugaki N, Kishimoto T, Sano T, Nunome H, Williams DE, Andersen RJ, Tanaka K. Phospholipid flippases and Sfk1p, a novel regulator of phospholipid asymmetry, contribute to low permeability of the plasma membrane. Mol Biol Cell 2018. [PMID: 29540528 PMCID: PMC5935070 DOI: 10.1091/mbc.e17-04-0217] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phospholipid flippase (type 4 P-type ATPase) plays a major role in the generation of phospholipid asymmetry in eukaryotic cell membranes. Loss of Lem3p-Dnf1/2p flippases leads to the exposure of phosphatidylserine (PS) and phosphatidylethanolamine (PE) on the cell surface in yeast, resulting in sensitivity to PS- or PE-binding peptides. We isolated Sfk1p, a conserved membrane protein in the TMEM150/FRAG1/DRAM family, as a multicopy suppressor of this sensitivity. Overexpression of SFK1 decreased PS/PE exposure in lem3Δ mutant cells. Consistent with this, lem3Δ sfk1Δ double mutant cells exposed more PS/PE than the lem3Δ mutant. Sfk1p was previously implicated in the regulation of the phosphatidylinositol-4 kinase Stt4p, but the effect of Sfk1p on PS/PE exposure in lem3Δ was independent of Stt4p. Surprisingly, Sfk1p did not facilitate phospholipid flipping but instead repressed it, even under ATP-depleted conditions. We propose that Sfk1p negatively regulates transbilayer movement of phospholipids irrespective of directions. In addition, we showed that the permeability of the plasma membrane was dramatically elevated in the lem3Δ sfk1Δ double mutant in comparison with the corresponding single mutants. Interestingly, total ergosterol was decreased in the lem3Δ sfk1Δ mutant. Our results suggest that phospholipid asymmetry is required for the maintenance of low plasma membrane permeability.
Collapse
Affiliation(s)
- Tetsuo Mioka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Kita-ku, Sapporo 060-0815, Japan
| | - Konomi Fujimura-Kamada
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Kita-ku, Sapporo 060-0815, Japan
| | - Nahiro Mizugaki
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Kita-ku, Sapporo 060-0815, Japan
| | - Takuma Kishimoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Kita-ku, Sapporo 060-0815, Japan
| | - Takamitsu Sano
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Kita-ku, Sapporo 060-0815, Japan
| | - Hitoshi Nunome
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Kita-ku, Sapporo 060-0815, Japan
| | - David E Williams
- Departments of Chemistry and Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Kazuma Tanaka
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Kita-ku, Sapporo 060-0815, Japan
| |
Collapse
|
163
|
Pokhrel R, Gerstman BS, Hutcheson JD, Chapagain PP. In Silico Investigations of Calcium Phosphate Mineralization in Extracellular Vesicles. J Phys Chem B 2018. [PMID: 29519123 DOI: 10.1021/acs.jpcb.8b00169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Calcification in bone, cartilage, and cardiovascular tissues involves the release of specialized extracellular vesicles (EVs) that promote mineral nucleation. The small size of the EVs, however, makes molecular level studies difficult, and consequently uncertainty exists on the role and function of these structures in directing mineralization. The lack of mechanistic understanding associated with the initiators of ectopic mineral deposition has severely hindered the development of potential therapeutic options. Here, we used multiscale molecular dynamics simulations to investigate the calcification within the EVs. Results show that Ca2+-HPO42- and phosphatidylserine complexes facilitate the early nucleation. Use of coarse-grained simulations allows investigations of Ca2+-PO43- nucleation and crystallization in the EVs. Systematic variation in the ion-to-water ratio shows that the crystallization and growth strongly depend on the enrichment of the ions and dehydration inside the EVs. Our investigations provide insights into the role of EVs on calcium phosphate mineral nucleation and growth in both physiological and pathological mineralization.
Collapse
|
164
|
Rybczynska AA, Boersma HH, de Jong S, Gietema JA, Noordzij W, Dierckx RAJO, Elsinga PH, van Waarde A. Avenues to molecular imaging of dying cells: Focus on cancer. Med Res Rev 2018. [PMID: 29528513 PMCID: PMC6220832 DOI: 10.1002/med.21495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful treatment of cancer patients requires balancing of the dose, timing, and type of therapeutic regimen. Detection of increased cell death may serve as a predictor of the eventual therapeutic success. Imaging of cell death may thus lead to early identification of treatment responders and nonresponders, and to “patient‐tailored therapy.” Cell death in organs and tissues of the human body can be visualized, using positron emission tomography or single‐photon emission computed tomography, although unsolved problems remain concerning target selection, tracer pharmacokinetics, target‐to‐nontarget ratio, and spatial and temporal resolution of the scans. Phosphatidylserine exposure by dying cells has been the most extensively studied imaging target. However, visualization of this process with radiolabeled Annexin A5 has not become routine in the clinical setting. Classification of death modes is no longer based only on cell morphology but also on biochemistry, and apoptosis is no longer found to be the preponderant mechanism of cell death after antitumor therapy, as was earlier believed. These conceptual changes have affected radiochemical efforts. Novel probes targeting changes in membrane permeability, cytoplasmic pH, mitochondrial membrane potential, or caspase activation have recently been explored. In this review, we discuss molecular changes in tumors which can be targeted to visualize cell death and we propose promising biomarkers for future exploration.
Collapse
Affiliation(s)
- Anna A Rybczynska
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Hendrikus H Boersma
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Walter Noordzij
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Philip H Elsinga
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
165
|
Pimentel L, Fontes AL, Salsinha S, Machado M, Correia I, Gomes AM, Pintado M, Rodríguez-Alcalá LM. Suitable simple and fast methods for selective isolation of phospholipids as a tool for their analysis. Electrophoresis 2018; 39:1835-1845. [PMID: 29518261 DOI: 10.1002/elps.201700425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 12/18/2022]
Abstract
Lipids are gaining relevance over the last 20 years, as our knowledge about their role has changed from merely energy/structural molecules to compounds also involved in several biological processes. This led to the creation in 2003 of a new emerging research field: lipidomics. In particular the phospholipids have pharmacological/food applications, participate in cell signalling/homeostatic pathways while their analysis faces some challenges. Their fractionation/purification is, in fact, especially difficult, as they are amphiphilic compounds. Moreover, it usually involves SPE or TLC procedures requiring specific materials hampering their suitableness for routine analysis. Finally, they can interfere with the ionization of other molecules during mass spectrometry analysis. Thus, simple high-throughput reliable methods to selectively isolate these compounds based on the difference between chemical characteristics of lipids would represent valuable tools for their study besides that of other compounds. The current review work aims to describe the state-of-the-art related to the extraction of phospholipids using liquid-liquid methods for their targeted isolation. The technological and biological importance of these compounds and ion suppression phenomena are also reviewed. Methods by precipitation with acetone or isolation using methanol seem to be suitable for selective isolation of phospholipids in both biological and food samples.
Collapse
Affiliation(s)
- Lígia Pimentel
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
- CINTESIS - Centro de Investigação em Tecnologias e Sistemas de Informação em Saúde, Faculdade de Medicina da Universidade do Porto, Portugal
- QOPNA - Unidade de Investigação de Química Orgânica, Produtos Naturais e Agroalimentares, Universidade de Aveiro, Portugal
| | - Ana Luiza Fontes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Sofia Salsinha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Manuela Machado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Inês Correia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Luís Miguel Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Santiago de Chile, Chile
| |
Collapse
|
166
|
Mukherjee S, Kar RK, Nanga RPR, Mroue KH, Ramamoorthy A, Bhunia A. Accelerated molecular dynamics simulation analysis of MSI-594 in a lipid bilayer. Phys Chem Chem Phys 2018; 19:19289-19299. [PMID: 28702543 DOI: 10.1039/c7cp01941f] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multidrug resistance against the existing antibiotics is one of the most challenging threats across the globe. Antimicrobial peptides (AMPs), in this regard, are considered to be one of the effective alternatives that can overcome bacterial resistance. MSI-594, a 24-residue linear alpha-helical cationic AMP, has been shown to function via the carpet mechanism to disrupt bacterial membrane systems. To better understand the role of lipid composition in the function of MSI-594, in the present study, eight different model membrane systems have been studied using accelerated molecular dynamics (aMD) simulations. The simulated results are helpful in discriminating the particular effects of cationic MSI-594 against zwitterionic POPC, anionic POPG and POPS, and neutral POPE lipid moieties. Additionally, the effects of various heterogeneous POPC/POPG (7 : 3), POPC/POPS (7 : 3), and POPG/POPE (1 : 3 and 3 : 1) bilayer systems on the dynamic interaction of MSI-594 have also been investigated. The effect on the lipid bilayer due to the interaction with the peptide is characterized by lipid acyl-chain order, membrane thickness, and acyl-chain dynamics. Our simulation results show that the lipid composition affects the membrane interaction of MSI-594, suggesting that membrane selectivity is crucial to its mechanism of action. The results reported in this study are helpful to obtain accurate atomistic-level information governing MSI-594 and its membrane disruptive antimicrobial mechanism of action, and to design next generation potent antimicrobial peptides.
Collapse
Affiliation(s)
- Shruti Mukherjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.
| | - Rajiv K Kar
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.
| | - Ravi Prakash Reddy Nanga
- Biophysics Program and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA. and Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kamal H Mroue
- Biophysics Program and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.
| |
Collapse
|
167
|
Del Vecchio K, Stahelin RV. Investigation of the phosphatidylserine binding properties of the lipid biosensor, Lactadherin C2 (LactC2), in different membrane environments. J Bioenerg Biomembr 2018; 50:1-10. [PMID: 29426977 DOI: 10.1007/s10863-018-9745-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 01/07/2023]
Abstract
Lipid biosensors are robust tools used in both in vitro and in vivo applications of lipid imaging and lipid detection. Lactadherin C2 (LactC2) was described in 2000 as being a potent and specific sensor for phosphatidylserine (PS) (Andersen et al. Biochemistry 39:6200-6206, 2000). PS is an anionic phospholipid enriched in the inner leaflet of the plasma membrane and has paramount roles in apoptosis, cells signaling, and autophagy. The myriad roles PS plays in membrane dynamics make monitoring PS levels and function an important endeavor. LactC2 has functioned as a tantamount PS biosensor namely in the field of cellular imaging. While PS specificity and high affinity of LactC2 for PS containing membranes has been well established, much less is known regarding LactC2 selectivity for subcellular pools of PS or PS within different membrane environments (e.g., in the presence of cholesterol). Thus, there has been a lack of studies that have compared LactC2 PS sensitivity based upon the acyl chain length and saturation or the presence of other host lipids such as cholesterol. Here, we use surface plasmon resonance as a label-free method to quantitatively assess the apparent binding affinity of LactC2 for membranes containing PS with different acyl chains, different fluidity, as well as representative lipid vesicle mimetics of cellular membranes. Results demonstrate that LactC2 is an unbiased sensor for PS, and can sensitively interact with membranes containing PS with different acyl chain saturation and interact with PS species in a cholesterol-independent manner.
Collapse
Affiliation(s)
- Kathryn Del Vecchio
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Robert V Stahelin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
168
|
|
169
|
Nanbo A, Maruyama J, Imai M, Ujie M, Fujioka Y, Nishide S, Takada A, Ohba Y, Kawaoka Y. Ebola virus requires a host scramblase for externalization of phosphatidylserine on the surface of viral particles. PLoS Pathog 2018; 14:e1006848. [PMID: 29338048 PMCID: PMC5786336 DOI: 10.1371/journal.ppat.1006848] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/26/2018] [Accepted: 01/02/2018] [Indexed: 11/30/2022] Open
Abstract
Cell surface receptors for phosphatidylserine contribute to the entry of Ebola virus (EBOV) particles, indicating that the presence of phosphatidylserine in the envelope of EBOV is important for the internalization of EBOV particles. Phosphatidylserine is typically distributed in the inner layer of the plasma membrane in normal cells. Progeny virions bud from the plasma membrane of infected cells, suggesting that phosphatidylserine is likely flipped to the outer leaflet of the plasma membrane in infected cells for EBOV virions to acquire it. Currently, the intracellular dynamics of phosphatidylserine during EBOV infection are poorly understood. Here, we explored the role of XK-related protein (Xkr) 8, which is a scramblase responsible for exposure of phosphatidylserine in the plasma membrane of apoptotic cells, to understand its significance in phosphatidylserine-dependent entry of EBOV. We found that Xkr8 and transiently expressed EBOV glycoprotein GP often co-localized in intracellular vesicles and the plasma membrane. We also found that co-expression of GP and viral major matrix protein VP40 promoted incorporation of Xkr8 into ebolavirus-like particles (VLPs) and exposure of phosphatidylserine on their surface, although only a limited amount of phosphatidylserine was exposed on the surface of the cells expressing GP and/or VP40. Downregulating Xkr8 or blocking caspase-mediated Xkr8 activation did not affect VLP production, but they reduced the amount of phosphatidylserine on the VLPs and their uptake in recipient cells. Taken together, our findings indicate that Xkr8 is trafficked to budding sites via GP-containing vesicles, is incorporated into VLPs, and then promote the entry of the released EBOV to cells in a phosphatidylserine-dependent manner. Although Ebola virus causes severe hemorrhagic fever with a high mortality rate, there are no approved therapeutics. The viral entry process is one of the targets for antiviral development. Previous studies suggest that binding of phosphatidylserine, a component of the viral envelop, to the receptors promotes the entry of Ebola virus. Ebola virus is released from the surface membrane of infected cells. However, phosphatidylserine normally distributes in the inner layer of the cell surface membrane, suggesting that phosphatidylserine is likely flipped to the outer leaflet of the membrane in infected cells for Ebola virus to acquire it. Because the mechanism by which phosphatidylserine changes its orientation in Ebola virus-infected cells is poorly understood, we studied and identified a cellular enzyme, XK-related protein 8 (Xkr8), as a responsible factor involved in this process. We demonstrated that the Ebola virus glycoprotein promoted the incorporation of Xkr8 in viral particles, which flips phosphatidylserine on their surface, enhancing their entry to cells. Our findings provide new insights into the mechanism of Ebola virus infection, which may be exploited for the development of therapeutics against Ebola virus infection.
Collapse
Affiliation(s)
- Asuka Nanbo
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail: (AN); (YK)
| | - Junki Maruyama
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Masaki Imai
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Michiko Ujie
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shinya Nishide
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ayato Takada
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- * E-mail: (AN); (YK)
| |
Collapse
|
170
|
Quan X, Zhao D, Li L, Zhou J. Understanding the Cellular Uptake of pH-Responsive Zwitterionic Gold Nanoparticles: A Computer Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14480-14489. [PMID: 29166558 DOI: 10.1021/acs.langmuir.7b03544] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface functionalization of nanoparticles (NPs) with stealth polymers (e.g., hydrophilic and zwitterionic polymers) has become a common strategy to resist nonspecific protein adsorption recently. Understanding the role of surface decoration on NP-biomembrane interactions is of great significance to promote the application of NPs in biomedical fields. Herein, using coarse-grained molecular dynamics (CGMD) simulations, we investigate the interactions between stealth polymer-coated gold nanoparticles (AuNPs) and lipid membranes. The results show that AuNPs grafted with zwitterionic polymers can more easily approach the membrane surface than those coated with hydrophilic poly(ethylene glycol) (PEG), which can be explained by the weak dipole-dipole interaction between them. For zwitterionic AuNPs which can undergo pH-dependent charge conversion, different interaction modes which depend on the polymer protonation degree are found. When the protonation degree is low, the particles just adsorb on the membrane surface; at moderate protonation degrees, the particles can directly translocate across the lipid membrane through a transient hydrophilic pore formed on the membrane surface; the particles are fully wrapped by the curved lipid membrane at high protonation degrees, which may lead to endocytosis. Finally, the effect of polymer chain length on the cellular uptake of zwitterionic polymer-coated AuNPs is considered. The results demonstrate that longer polymer chain length will block the translocation of AuNPs across the lipid membrane when the protonation degree is not high; however, it can improve the transmembrane efficiency of AuNPs at high protonation degrees. We expect that these findings are of immediate interest to the design and synthesis of pH-responsive nanomaterials based on zwitterionic polymers and can prompt their further applications in the field of biomedicine.
Collapse
Affiliation(s)
- Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640, P. R. China
| | - Daohui Zhao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640, P. R. China
| | - Libo Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640, P. R. China
| |
Collapse
|
171
|
Rothan HA, Ambikabothy J, Ramasamy TS, Rashid NN, Yusof R. A Preliminary Study in Search of Potential Peptide Candidates for a Combinational Therapy with Cancer Chemotherapy Drug. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9646-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
172
|
Allender DW, Schick M. The Effect of Solutes on the Temperature of Miscibility Transitions in Multicomponent Membranes. Biophys J 2017; 113:1814-1821. [PMID: 29045875 DOI: 10.1016/j.bpj.2017.08.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022] Open
Abstract
We address questions posed by experiments that show small-chain alcohols reduce the miscibility transition temperature when added to giant plasma membrane vesicles (GPMVs), but increase that temperature when added to giant unilamellar vesicles. In giant unilamellar vesicles the change in temperature displays a definite minimum, between decanol and tetradecanol, as a function of alcohol chain length; in GPMVs there is no such minimum. To emphasize the competition between internal entropies of the components and the interactions between them, we model the system as consisting of three different linear polymers. Two of them are the constituents of a liquid, one that can undergo a miscibility transition. To this liquid is added the third polymer component, which represents the short-chain alcohol. We show that, within Flory-Huggins theory, the addition of alcohol causes an increase or decrease of the miscibility transition temperature depending upon the competition of two effects. The first is the dilution of the interactions between the two components of the liquid caused by the introduction of the alcohol. This tends to lower the transition temperature. The second effect is the preferential partitioning of the alcohol into one phase of the liquid or the other. This tends to raise the transition temperature irrespective of which phase the alcohol prefers. This second effect is the smallest, and the decrease in transition temperature the largest, when the alcohol partitions equally between the two phases. Such equal partitioning occurs when the effect of the entropic excluded volume interactions (which cause the alcohol to prefer one phase) just balances the effect of the direct interactions, which cause it to prefer the other. These results allow us to make several predictions, and to propose an explanation for the different behavior of the transition temperature in GPMVs and giant unilamellar vesicles that results from the addition of alcohols.
Collapse
Affiliation(s)
- David W Allender
- Department of Physics, Kent State University, Kent, Ohio; Department of Physics, University of Washington, Seattle, Washington
| | - M Schick
- Department of Physics, University of Washington, Seattle, Washington.
| |
Collapse
|
173
|
Takatsu H, Takayama M, Naito T, Takada N, Tsumagari K, Ishihama Y, Nakayama K, Shin HW. Phospholipid flippase ATP11C is endocytosed and downregulated following Ca 2+-mediated protein kinase C activation. Nat Commun 2017; 8:1423. [PMID: 29123098 PMCID: PMC5680300 DOI: 10.1038/s41467-017-01338-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/09/2017] [Indexed: 12/15/2022] Open
Abstract
We and others showed that ATP11A and ATP11C, members of the P4-ATPase family, translocate phosphatidylserine (PS) and phosphatidylethanolamine from the exoplasmic to the cytoplasmic leaflets at the plasma membrane. PS exposure on the outer leaflet of the plasma membrane in activated platelets, erythrocytes, and apoptotic cells was proposed to require the inhibition of PS-flippases, as well as activation of scramblases. Although ATP11A and ATP11C are cleaved by caspases in apoptotic cells, it remains unclear how PS-flippase activity is regulated in non-apoptotic cells. Here we report that the PS-flippase ATP11C, but not ATP11A, is sequestered from the plasma membrane via clathrin-mediated endocytosis upon Ca2+-mediated PKC activation. Importantly, we show that a characteristic di-leucine motif (SVRPLL) in the C-terminal cytoplasmic region of ATP11C becomes functional upon PKC activation. Moreover endocytosis of ATP11C is induced by Ca2+-signaling via Gq-coupled receptors. Our data provide the first evidence for signal-dependent regulation of mammalian P4-ATPase. ATP11C is a flippase that uses ATP hydrolysis to translocate phospholipids at the plasma membrane. Here, the authors show that the activation of Ca2+-dependent protein kinase C increases ATP11C endocytosis thus downregulating phospholipid translocation.
Collapse
Affiliation(s)
- Hiroyuki Takatsu
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masahiro Takayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomoki Naito
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Naoto Takada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kazuya Tsumagari
- Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yasushi Ishihama
- Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
174
|
Goh WJ, Zou S, Ong WY, Torta F, Alexandra AF, Schiffelers RM, Storm G, Wang JW, Czarny B, Pastorin G. Bioinspired Cell-Derived Nanovesicles versus Exosomes as Drug Delivery Systems: a Cost-Effective Alternative. Sci Rep 2017; 7:14322. [PMID: 29085024 PMCID: PMC5662560 DOI: 10.1038/s41598-017-14725-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/16/2017] [Indexed: 01/16/2023] Open
Abstract
Cell Derived Nanovesicles (CDNs) have been developed from the rapidly expanding field of exosomes, representing a class of bioinspired Drug Delivery Systems (DDS). However, translation to clinical applications is limited by the low yield and multi-step approach in isolating naturally secreted exosomes. Here, we show the first demonstration of a simple and rapid production method of CDNs using spin cups via a cell shearing approach, which offers clear advantages in terms of yield and cost-effectiveness over both traditional exosomes isolation, and also existing CDNs fabrication techniques. The CDNs obtained were of a higher protein yield and showed similarities in terms of physical characterization, protein and lipid analysis to both exosomes and CDNs previously reported in the literature. In addition, we investigated the mechanisms of cellular uptake of CDNs in vitro and their biodistribution in an in vivo mouse tumour model. Colocalization of the CDNs at the tumour site in a cancer mouse model was demonstrated, highlighting the potential for CDNs as anti-cancer strategy. Taken together, the results suggest that CDNs could provide a cost-effective alternative to exosomes as an ideal drug nanocarrier.
Collapse
Affiliation(s)
- Wei Jiang Goh
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), Singapore, Singapore
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Shui Zou
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Wei Yi Ong
- Department of Anatomy Yong Loo Lin School of Medicine, National University Health System (NUHS), Singapore, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING), Centre for Life Sciences (CeLS), Singapore, Singapore
| | | | - Raymond M Schiffelers
- Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Gert Storm
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) and National University Health System (NUHS), Singapore, Singapore
| | - Bertrand Czarny
- Department of Pharmacy, National University of Singapore, Singapore, Singapore.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.
| | - Giorgia Pastorin
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), Singapore, Singapore.
- Department of Pharmacy, National University of Singapore, Singapore, Singapore.
- NUSNNI-NanoCore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
175
|
Lee EY, Lee MW, Fulan BM, Ferguson AL, Wong GCL. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus 2017; 7:20160153. [PMID: 29147555 DOI: 10.1098/rsfs.2016.0153] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a diverse class of well-studied membrane-permeating peptides with important functions in innate host defense. In this short review, we provide a historical overview of AMPs, summarize previous applications of machine learning to AMPs, and discuss the results of our studies in the context of the latest AMP literature. Much work has been recently done in leveraging computational tools to design new AMP candidates with high therapeutic efficacies for drug-resistant infections. We show that machine learning on AMPs can be used to identify essential physico-chemical determinants of AMP functionality, and identify and design peptide sequences to generate membrane curvature. In a broader scope, we discuss the implications of our findings for the discovery of membrane-active peptides in general, and uncovering membrane activity in new and existing peptide taxonomies.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Michelle W Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Benjamin M Fulan
- Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew L Ferguson
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
176
|
Schick M. Strongly Correlated Rafts in Both Leaves of an Asymmetric Bilayer. J Phys Chem B 2017; 122:3251-3258. [DOI: 10.1021/acs.jpcb.7b08890] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Schick
- Department of Physics, University of Washington, Seattle, Washington 98195-1560, United States
| |
Collapse
|
177
|
Zhang Z, Lin X, Gu N. Effects of temperature and PEG grafting density on the translocation of PEGylated nanoparticles across asymmetric lipid membrane. Colloids Surf B Biointerfaces 2017; 160:92-100. [PMID: 28918189 DOI: 10.1016/j.colsurfb.2017.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/20/2017] [Accepted: 09/05/2017] [Indexed: 01/19/2023]
Abstract
Plasma membrane internalization of nanoparticles (NPs) is important for their biomedical applications such as drug-delivery carriers. On one hand, in order to improve their half-life in circulation, PEGylation has been widely used. However, it may hinder the NPs' membrane internalization ability. On the other hand, higher temperature could enhance the membrane permeability and may affect the NPs' ability to enter into or exit from cells. To make full use of their advantages, we systematically investigated the effects of temperature and PEG density on the translocation of PEGylated nanoparticles across the plasma asymmetric membrane of eukaryotic cells, using near-atom level coarse-grained molecular dynamics simulations. Our results showed that higher temperature could accelerate the translocation of NPs across membranes by making lipids more disorder and faster diffusion. On the contrary, steric hindrance effects of PEG would inhibit NPs' translocation process and promote lipids flip-flops. The PEG chains could rearrange themselves to minimize the contacts between PEG and lipid tails during the translocation, which was similar to 'snorkeling effect'. Moreover, lipid flip-flops were affected by PEGylated density as well as NPs' translocation direction. Higher PEG grafting density could promote lipid flip-flops, but inhibit lipid extraction from bilayers. The consequence of lipid flip-flop and extraction was that the membranes got more symmetric.
Collapse
Affiliation(s)
- Zuoheng Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Bio materials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies, Suzhou 215123, PR China
| | - Xubo Lin
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Bio materials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Department of Integrative Biology & Pharmacology, Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Bio materials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies, Suzhou 215123, PR China.
| |
Collapse
|
178
|
Synthesis and biological evaluation of novel aliphatic acid-conjugated antimicrobial peptides as potential agents with anti-tumor, multidrug resistance-reversing activity and enhanced stability. Amino Acids 2017; 49:1831-1841. [PMID: 28831625 DOI: 10.1007/s00726-017-2482-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/16/2017] [Indexed: 02/02/2023]
Abstract
Compared with traditional anti-tumor drugs, antimicrobial peptides as novel anti-tumor agents have prominent advantages of higher specificity and circumvention of multi-drug resistance. BP100 is a multifunctional membrane-active peptide with high antimicrobial activity. Taking BP100 as a lead peptide, we designed and synthesized a series of aliphatic chain-conjugated peptides through solid-phase synthesis. Biological evaluation revealed that these peptides exhibited better anti-cancer activity than BP100. Further investigations revealed that these peptides could disrupt the cell membrane and trigger the cytochrome C release into cytoplasm, which ultimately resulted in apoptosis. Meanwhile, these peptides also exhibited effective anti-tumor activity against multidrug resistant cells and had multidrug resistance-reversing effect. Additionally, conjugation of aliphatic acid to those peptides could enhance their stability in plasma. In conclusion, aliphatic acid-modified peptides might be promising anti-tumor agents for cancer therapy.
Collapse
|
179
|
Baker JA, Wong WC, Eisenhaber B, Warwicker J, Eisenhaber F. Charged residues next to transmembrane regions revisited: "Positive-inside rule" is complemented by the "negative inside depletion/outside enrichment rule". BMC Biol 2017; 15:66. [PMID: 28738801 PMCID: PMC5525207 DOI: 10.1186/s12915-017-0404-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 11/25/2022] Open
Abstract
Background Transmembrane helices (TMHs) frequently occur amongst protein architectures as means for proteins to attach to or embed into biological membranes. Physical constraints such as the membrane’s hydrophobicity and electrostatic potential apply uniform requirements to TMHs and their flanking regions; consequently, they are mirrored in their sequence patterns (in addition to TMHs being a span of generally hydrophobic residues) on top of variations enforced by the specific protein’s biological functions. Results With statistics derived from a large body of protein sequences, we demonstrate that, in addition to the positive charge preference at the cytoplasmic inside (positive-inside rule), negatively charged residues preferentially occur or are even enriched at the non-cytoplasmic flank or, at least, they are suppressed at the cytoplasmic flank (negative-not-inside/negative-outside (NNI/NO) rule). As negative residues are generally rare within or near TMHs, the statistical significance is sensitive with regard to details of TMH alignment and residue frequency normalisation and also to dataset size; therefore, this trend was obscured in previous work. We observe variations amongst taxa as well as for organelles along the secretory pathway. The effect is most pronounced for TMHs from single-pass transmembrane (bitopic) proteins compared to those with multiple TMHs (polytopic proteins) and especially for the class of simple TMHs that evolved for the sole role as membrane anchors. Conclusions The charged-residue flank bias is only one of the TMH sequence features with a role in the anchorage mechanisms, others apparently being the leucine intra-helix propensity skew towards the cytoplasmic side, tryptophan flanking as well as the cysteine and tyrosine inside preference. These observations will stimulate new prediction methods for TMHs and protein topology from a sequence as well as new engineering designs for artificial membrane proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0404-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Alexander Baker
- Bioinformatics Institute, Agency for Science Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix, Singapore, 138671, Singapore.,School of Chemistry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - Wing-Cheong Wong
- Bioinformatics Institute, Agency for Science Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix, Singapore, 138671, Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute, Agency for Science Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix, Singapore, 138671, Singapore
| | - Jim Warwicker
- School of Chemistry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Frank Eisenhaber
- Bioinformatics Institute, Agency for Science Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix, Singapore, 138671, Singapore. .,School of Computer Engineering (SCE), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore.
| |
Collapse
|
180
|
Membrane association and localization dynamics of the Ebola virus matrix protein VP40. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2012-2020. [PMID: 28711356 DOI: 10.1016/j.bbamem.2017.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/19/2017] [Accepted: 07/11/2017] [Indexed: 11/21/2022]
Abstract
The Ebola virus matrix protein VP40 is a major structural protein that provides the scaffolding for new Ebola virus particles. For this, VP40 is first trafficked to the lower leaflet of the plasma membrane (PM) in its dimeric form. Once associated with the PM, the VP40 dimers undergo structural rearrangements and oligomerize into hexamers and filaments that make up the virus matrix. Therefore, association of the VP40 dimers and their stabilization at the PM is a crucial step in the Ebola life-cycle. To understand the molecular details of the VP40 dimer-PM interactions, we investigated the dimer association with the inner leaflet of the PM using detailed all-atom molecular dynamics (MD) simulations. The formation of the dimer-PM complex is facilitated by the interactions of the VP40 lysine residues and the anionic lipids POPS, POPI, and PIP2 in the PM. In contrast, the dimer fails to associate with a membrane without POPS, POPI, or PIP2 lipids. We explored the mechanisms of the association and identified important residues and lipids involved in localization and stabilization of VP40 dimers at the PM. MD simulations elucidate the role of a C-terminal α-helix alignment parallel to the lipid bilayer surface as well as the creation of membrane defects that allow partial insertion of the hydrophobic residue V276 into the membrane to further stabilize the VP40 dimer-PM complex. Understanding the mechanisms of the VP40 dimer-PM association that facilitate oligomerization can be important for potentially targeting the VP40 for small molecules that can interfere with the virus life-cycle.
Collapse
|
181
|
Zhang B, Shi W, Li J, Liao C, Yang L, Huang W, Qian H. Synthesis and biological evaluation of novel peptides based on antimicrobial peptides as potential agents with antitumor and multidrug resistance-reversing activities. Chem Biol Drug Des 2017; 90:972-980. [DOI: 10.1111/cbdd.13023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Bo Zhang
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| | - Wei Shi
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| | - Jieming Li
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| | - Chen Liao
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| | - Limei Yang
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
| | - Wenlong Huang
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease; China Pharmaceutical University; Nanjing China
| | - Hai Qian
- Center of Drug Discovery; State Key Laboratory of Natural Medicines; China Pharmaceutical University; Nanjing China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease; China Pharmaceutical University; Nanjing China
| |
Collapse
|
182
|
Nakao H, Ikeda K, Ishihama Y, Nakano M. Membrane-Spanning Sequences in Endoplasmic Reticulum Proteins Promote Phospholipid Flip-Flop. Biophys J 2017; 110:2689-2697. [PMID: 27332127 DOI: 10.1016/j.bpj.2016.05.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/30/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022] Open
Abstract
The mechanism whereby phospholipids rapidly flip-flop in the endoplasmic reticulum (ER) membrane remains unknown. We previously demonstrated that the presence of a hydrophilic residue in the center of the model transmembrane peptide sequence effectively promoted phospholipid flip-flop and that hydrophilic residues composed 4.5% of the central regions of the membrane-spanning sequences of human ER membrane proteins predicted by SOSUI software. We hypothesized that ER proteins with hydrophilic residues might play a critical role in promoting flip-flop. Here, we evaluated the flip rate of fluorescently labeled lipids in vesicles containing each of the 11 synthetic peptides of membrane-spanning sequences, using a dithionite-quenching assay. Although the flippase activities of nine peptides were unexpectedly low, the peptides based on the EDEM1 and SPAST proteins showed enhanced flippase activity with three different fluorescently labeled lipids. The substitution of hydrophobic Ala with His or Arg in the central region of the EDEM1 or SPAST peptides, respectively, attenuated their ability to flip phospholipids. Interestingly, substituting Ala with Arg or His at a location outside of the central region of EDEM1 or SPAST, respectively, also affected the enhancement of flip-flop. These results indicated that both Arg and His are important for the ability of these two peptides to increase the flip rates. The EDEM1 peptide exhibited high activity at significantly low peptide concentrations, suggesting that the same side positioning of Arg and His in α-helix structure is critical for the flip-flop promotion and that the EDEM1 protein is a candidate flippase in the ER.
Collapse
Affiliation(s)
- Hiroyuki Nakao
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Keisuke Ikeda
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Minoru Nakano
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
183
|
Design, synthesis and biological evaluation of novel peptides as potential agents with anti-tumor and multidrug resistance-reversing activities. Amino Acids 2017; 49:1355-1364. [DOI: 10.1007/s00726-017-2434-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/29/2017] [Indexed: 10/19/2022]
|
184
|
Phosphatidylethanolamine dynamics are required for osteoclast fusion. Sci Rep 2017; 7:46715. [PMID: 28436434 PMCID: PMC5402267 DOI: 10.1038/srep46715] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/23/2017] [Indexed: 11/08/2022] Open
Abstract
Osteoclasts, responsible for bone resorption, are multinucleated cells formed by cell-cell fusion of mononuclear pre-osteoclasts. Although osteoclast fusion is a pivotal step for osteoclastogenesis, little is known about the mechanism involved. To clarify the underlying process, we investigated dynamics of membrane phospholipids during osteoclastogenesis in vitro. We found that the cellular content of phospholipids, phosphatidylethanolamine (PE) in particular, was increased during osteoclast differentiation. Furthermore, PE was greatly increased in the outer leaflet of the plasma membrane bilayer during osteoclastogenesis, being concentrated in filopodia involved in cell-cell fusion. Immobilisation of the cell surface PE blocked osteoclast fusion, revealing the importance of PE abundance and distribution. To identify the molecules responsible for these PE dynamics, we screened a wide array of lipid-related genes by quantitative PCR and shRNA-mediated knockdown. Among them, a PE-biosynthetic enzyme, acyl-CoA:lysophosphatidylethanolamine acyltransferase 2 (LPEAT2), and two ATP-binding cassette (ABC) transporters, ABCB4 and ABCG1, were markedly increased during osteoclastogenesis, and their knockdown in pre-osteoclasts led to reduction in PE exposure on the cell surface and subsequent osteoclast fusion. These findings demonstrate that the PE dynamics play an essential role in osteoclast fusion, in which LPEAT2, ABCB4 and ABCG1 are key players for PE biosynthesis and redistribution.
Collapse
|
185
|
Denz M, Chiantia S, Herrmann A, Mueller P, Korte T, Schwarzer R. Cell cycle dependent changes in the plasma membrane organization of mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:350-359. [DOI: 10.1016/j.bbamem.2016.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/24/2016] [Accepted: 12/14/2016] [Indexed: 11/16/2022]
|
186
|
Wijesinghe KJ, Urata S, Bhattarai N, Kooijman EE, Gerstman BS, Chapagain PP, Li S, Stahelin RV. Detection of lipid-induced structural changes of the Marburg virus matrix protein VP40 using hydrogen/deuterium exchange-mass spectrometry. J Biol Chem 2017; 292:6108-6122. [PMID: 28167534 PMCID: PMC5391744 DOI: 10.1074/jbc.m116.758300] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/30/2017] [Indexed: 11/06/2022] Open
Abstract
Marburg virus (MARV) is a lipid-enveloped virus from the Filoviridae family containing a negative sense RNA genome. One of the seven MARV genes encodes the matrix protein VP40, which forms a matrix layer beneath the plasma membrane inner leaflet to facilitate budding from the host cell. MARV VP40 (mVP40) has been shown to be a dimeric peripheral protein with a broad and flat basic surface that can associate with anionic phospholipids such as phosphatidylserine. Although a number of mVP40 cationic residues have been shown to facilitate binding to membranes containing anionic lipids, much less is known on how mVP40 assembles to form the matrix layer following membrane binding. Here we have used hydrogen/deuterium exchange (HDX) mass spectrometry to determine the solvent accessibility of mVP40 residues in the absence and presence of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate. HDX analysis demonstrates that two basic loops in the mVP40 C-terminal domain make important contributions to anionic membrane binding and also reveals a potential oligomerization interface in the C-terminal domain as well as a conserved oligomerization interface in the mVP40 N-terminal domain. Lipid binding assays confirm the role of the two basic patches elucidated with HD/X measurements, whereas molecular dynamics simulations and membrane insertion measurements complement these studies to demonstrate that mVP40 does not appreciably insert into the hydrocarbon region of anionic membranes in contrast to the matrix protein from Ebola virus. Taken together, we propose a model by which association of the mVP40 dimer with the anionic plasma membrane facilitates assembly of mVP40 oligomers.
Collapse
Affiliation(s)
- Kaveesha J Wijesinghe
- From the Department of Chemistry and Biochemistry, The Eck Institute for Global Health and The Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana 46556
| | - Sarah Urata
- the Department of Medicine, University of California, San Diego, La Jolla, California 92093-0652
| | | | - Edgar E Kooijman
- the Department of Biological Sciences, Kent State University, Kent, Ohio 44242, and
| | - Bernard S Gerstman
- the Departments of Physics and.,Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199
| | - Prem P Chapagain
- the Departments of Physics and.,Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199
| | - Sheng Li
- the Department of Medicine, University of California, San Diego, La Jolla, California 92093-0652,
| | - Robert V Stahelin
- From the Department of Chemistry and Biochemistry, The Eck Institute for Global Health and The Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana 46556, .,the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, Indiana 46617
| |
Collapse
|
187
|
Gorai B, Sivaraman T. Delineating residues for haemolytic activities of snake venom cardiotoxin 1 from Naja naja as probed by molecular dynamics simulations and in vitro validations. Int J Biol Macromol 2017; 95:1022-1036. [DOI: 10.1016/j.ijbiomac.2016.10.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/26/2016] [Indexed: 02/05/2023]
|
188
|
Fujimoto T, Parmryd I. Interleaflet Coupling, Pinning, and Leaflet Asymmetry-Major Players in Plasma Membrane Nanodomain Formation. Front Cell Dev Biol 2017; 4:155. [PMID: 28119914 PMCID: PMC5222840 DOI: 10.3389/fcell.2016.00155] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/27/2016] [Indexed: 01/26/2023] Open
Abstract
The plasma membrane has a highly asymmetric distribution of lipids and contains dynamic nanodomains many of which are liquid entities surrounded by a second, slightly different, liquid environment. Contributing to the dynamics is a continuous repartitioning of components between the two types of liquids and transient links between lipids and proteins, both to extracellular matrix and cytoplasmic components, that temporarily pin membrane constituents. This make plasma membrane nanodomains exceptionally challenging to study and much of what is known about membrane domains has been deduced from studies on model membranes at equilibrium. However, living cells are by definition not at equilibrium and lipids are distributed asymmetrically with inositol phospholipids, phosphatidylethanolamines and phosphatidylserines confined mostly to the inner leaflet and glyco- and sphingolipids to the outer leaflet. Moreover, each phospholipid group encompasses a wealth of species with different acyl chain combinations whose lateral distribution is heterogeneous. It is becoming increasingly clear that asymmetry and pinning play important roles in plasma membrane nanodomain formation and coupling between the two lipid monolayers. How asymmetry, pinning, and interdigitation contribute to the plasma membrane organization is only beginning to be unraveled and here we discuss their roles and interdependence.
Collapse
Affiliation(s)
- Toyoshi Fujimoto
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine Nagoya, Japan
| | - Ingela Parmryd
- Science for Life Laboratory, Medical Cell Biology, Uppsala University Uppsala, Sweden
| |
Collapse
|
189
|
Kurniawan J, Ventrici J, Kittleson G, Kuhl TL. Interaction Forces between Lipid Rafts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:382-387. [PMID: 28001077 DOI: 10.1021/acs.langmuir.6b03717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cellular membranes containing sphingolipids and cholesterol have been shown to self-organize into lipid rafts-specialized domains that host integral membrane proteins and modulate the bioactivity of cells. In this work, force-distance profiles between raft membranes in the liquid-ordered phase consisting of singly unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a complex mixture of brain sphingomyelin (BSM), and cholesterol were measured using the surface force apparatus (SFA). Two distinct force profiles were detected corresponding to uniform raft membranes and raft membranes with a higher level of topological membrane defects (heterogeneous) as corroborated by atomic force microscopy (AFM) scans. In all cases a weak, long-range electrostatic repulsion was observed with some variation in the surface charge density. The variation in electrostatic repulsion was attributed to charged lipid species primarily from the constituent lipids in the BSM mixture. The adhesion between the uniform raft membranes was comparable to our previous work with pure component, liquid-ordered POPC-DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine)-cholesterol membranes. Raft membranes with more topological defects adhered more strongly owing to hydrophobic attraction between exposed acyl chains. Even though the rafts were in the liquid-ordered phase and membrane defects were present in the contact region, the raft membranes were stable, and no structural rearrangement was observed throughout the measurements. Our findings demonstrate that liquid-ordered membranes are stable to mechanical loading and not particularly sensitive to compositional variation.
Collapse
Affiliation(s)
- James Kurniawan
- Department of Chemical Engineering, ‡Department of Chemistry, and §Department of Biomedical Engineering, University of California , Davis 95616, United States
| | - João Ventrici
- Department of Chemical Engineering, ‡Department of Chemistry, and §Department of Biomedical Engineering, University of California , Davis 95616, United States
| | - Gregory Kittleson
- Department of Chemical Engineering, ‡Department of Chemistry, and §Department of Biomedical Engineering, University of California , Davis 95616, United States
| | - Tonya L Kuhl
- Department of Chemical Engineering, ‡Department of Chemistry, and §Department of Biomedical Engineering, University of California , Davis 95616, United States
| |
Collapse
|
190
|
Quan X, Peng C, Zhao D, Li L, Fan J, Zhou J. Molecular Understanding of the Penetration of Functionalized Gold Nanoparticles into Asymmetric Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:361-371. [PMID: 27794619 DOI: 10.1021/acs.langmuir.6b02937] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, the interactions between surface-functionalized gold nanoparticles (AuNPs) and asymmetric membranes and the associated cytotoxicity were explored by coarse-grained molecular dynamics simulations. Simulation results show that the surface chemistry of AuNPs and the asymmetry of lipid membranes play significant roles. AuNPs with different signs of charges spontaneously adhere to the membrane surface or penetrate the membrane core. Also, the asymmetric distribution of charged lipids in membranes can facilitate the penetration of cationic AuNPs. Increasing the surface charge density (SCD) of AuNPs can not only improve the penetration efficiency but also lead to more disruption of the membrane structure. Moreover, the flip-flop of charged lipids in the inner leaflet can be observed during the translocation of AuNPs with a high SCD. The breakdown of membrane asymmetry may hinder the cellular internalization of AuNPs in a direct penetration mechanism. More importantly, we demonstrate that the hydrophobic contact between protruding solvent-exposed lipid tails and the hydrophobic moieties of ligands can mediate the insertion of AuNPs with a low SCD into cell membranes, which will exhibit less cytotoxicity in most in vivo applications. This may open a new exciting avenue to developing nanocarriers with a higher translocation efficiency and a lower toxicity simultaneously for biomedical applications.
Collapse
Affiliation(s)
- Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640, P. R. China
| | - Chunwang Peng
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640, P. R. China
| | - Daohui Zhao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640, P. R. China
| | - Libo Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640, P. R. China
| | - Jun Fan
- Department of Physics and Materials Science, City University of Hong Kong , Hong Kong, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology , Guangzhou 510640, P. R. China
| |
Collapse
|
191
|
Gronewold A, Horn M, Ranđelović I, Tóvári J, Muñoz Vázquez S, Schomäcker K, Neundorf I. Characterization of a Cell-Penetrating Peptide with Potential Anticancer Activity. ChemMedChem 2017; 12:42-49. [PMID: 27860402 PMCID: PMC5516705 DOI: 10.1002/cmdc.201600498] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/03/2016] [Indexed: 12/25/2022]
Abstract
Cell-penetrating peptides (CPPs) are still an interesting and viable alternative for drug delivery applications. CPPs contain considerably high amounts of positively charged amino acids, imparting them with cationic character. Tumor cells are characterized by an enhanced anionic nature of their membrane surface, a property that could be used by CPPs to target these cells. We recently identified a branched CPP that displays a high internalization capacity while exhibiting selectivity for certain tumor cell types. In this study we elucidated this observation in greater detail by investigating the underlying mechanism behind the cellular uptake of this peptide. An additional cytotoxicity screen against several cancer cell lines indeed demonstrates high cytotoxic activity against cancer cells over normal fibroblasts. Furthermore, we show that this feature can be used for delivering the anticancer drug actinomycin D with high efficiency in the MCF-7 cancer cell line.
Collapse
Affiliation(s)
- Anja Gronewold
- University of CologneDepartment of ChemistryInstitute of BiochemistryZuelpicher Str. 4750674CologneGermany
| | - Mareike Horn
- University of CologneDepartment of ChemistryInstitute of BiochemistryZuelpicher Str. 4750674CologneGermany
| | - Ivan Ranđelović
- National Institute of OncologyDepartment of Experimental PharmacologyRáth Gy. u. 7–9112BudapestHungary
| | - József Tóvári
- National Institute of OncologyDepartment of Experimental PharmacologyRáth Gy. u. 7–9112BudapestHungary
| | - Sergio Muñoz Vázquez
- University Hospital of CologneDepartment of Nuclear MedicineKerpener Str. 6250937CologneGermany
| | - Klaus Schomäcker
- University Hospital of CologneDepartment of Nuclear MedicineKerpener Str. 6250937CologneGermany
| | - Ines Neundorf
- University of CologneDepartment of ChemistryInstitute of BiochemistryZuelpicher Str. 4750674CologneGermany
| |
Collapse
|
192
|
Bhattarai N, Gc JB, Gerstman BS, Stahelin RV, Chapagain PP. Plasma membrane association facilitates conformational changes in the Marburg virus protein VP40 dimer. RSC Adv 2017; 7:22741-22748. [PMID: 28580138 PMCID: PMC5436087 DOI: 10.1039/c7ra02940c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 04/19/2017] [Indexed: 11/21/2022] Open
Abstract
The membrane binding interface of the Marburg virus protein mVP40 dimer differs from that of the Ebola virus eVP40 dimer but membrane binding allows conformational changes in mVP40 that makes it structurally similar to the eVP40 dimer.
Filovirus infections cause hemorrhagic fever in humans and non-human primates that often results in high fatality rates. The Marburg virus is a lipid-enveloped virus from the Filoviridae family and is closely related to the Ebola virus. The viral matrix layer underneath the lipid envelope is formed by the matrix protein VP40 (VP40), which is also involved in other functions during the viral life-cycle. As in the Ebola virus VP40 (eVP40), the recently determined X-ray crystal structure of the Marburg virus VP40 (mVP40) features loops containing cationic residues that form a lipid binding basic patch. However, the mVP40 basic patch is significantly flatter with a more extended surface than in eVP40, suggesting the possibility of differences in the plasma membrane interactions and phospholipid specificity between the VP40 dimers. In this paper, we report on molecular dynamics simulations that investigate the roles of various residues and lipid types in PM association as well as the conformational changes of the mVP40 dimer facilitated by membrane association. We compared the structural changes of the mVP40 dimer with the mVP40 dimer in both lipid free and membrane associated conditions. Despite the significant structural differences in the crystal structure, the Marburg VP40 dimer is found to adopt a configuration very similar to the Ebola VP40 dimer after associating with the membrane. This conformational rearrangement upon lipid binding allows Marburg VP40 to localize and stabilize at the membrane surface in a manner similar to the Ebola VP40 dimer. Consideration of the structural information in its lipid-interacting condition may be important in targeting mVP40 for novel drugs to inhibit viral budding from the plasma membrane.
Collapse
Affiliation(s)
- Nisha Bhattarai
- Department of Physics, Florida International University, Miami, FL 33199, USA.
| | - Jeevan B Gc
- Department of Physics, Florida International University, Miami, FL 33199, USA.
| | - Bernard S Gerstman
- Department of Physics, Florida International University, Miami, FL 33199, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Robert V Stahelin
- Department of Chemistry and Biochemistry, The Eck Institute for Global Health, The Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
193
|
Hassanin M, Kerek E, Chiu M, Anikovskiy M, Prenner EJ. Binding Affinity of Inorganic Mercury and Cadmium to Biomimetic Erythrocyte Membranes. J Phys Chem B 2016; 120:12872-12882. [DOI: 10.1021/acs.jpcb.6b10366] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohamed Hassanin
- Department
of Biological Sciences and ‡Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Evan Kerek
- Department
of Biological Sciences and ‡Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Michael Chiu
- Department
of Biological Sciences and ‡Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Max Anikovskiy
- Department
of Biological Sciences and ‡Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Elmar J. Prenner
- Department
of Biological Sciences and ‡Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
194
|
Kerek EM, Prenner EJ. Inorganic cadmium affects the fluidity and size of phospholipid based liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3169-3181. [DOI: 10.1016/j.bbamem.2016.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/21/2016] [Accepted: 10/06/2016] [Indexed: 12/13/2022]
|
195
|
Streptococcus pneumoniae disrupts pulmonary immune defence via elastase release following pneumolysin-dependent neutrophil lysis. Sci Rep 2016; 6:38013. [PMID: 27892542 PMCID: PMC5125098 DOI: 10.1038/srep38013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/04/2016] [Indexed: 11/08/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of bacterial pneumonia and is the principal cause of morbidity and mortality worldwide. Previous studies suggested that excessive activation of neutrophils results in the release of neutrophil elastase, which contributes to lung injury in severe pneumonia. Although both pneumococcal virulence factors and neutrophil elastase contribute to the development and progression of pneumonia, there are no studies analysing relationships between these factors. Here, we showed that pneumolysin, a pneumococcal pore-forming toxin, induced cell lysis in primary isolated human neutrophils, leading to the release of neutrophil elastase. Pneumolysin exerted minimal cytotoxicity against alveolar epithelial cells and macrophages, whereas neutrophil elastase induced detachment of alveolar epithelial cells and impaired phagocytic activity in macrophages. Additionally, activation of neutrophil elastase did not exert bactericidal activity against S. pneumoniae in vitro. P2X7 receptor, which belongs to a family of purinergic receptors, was involved in pneumolysin-induced cell lysis. These findings suggested that infiltrated neutrophils are the primary target cells of pneumolysin, and that S. pneumoniae exploits neutrophil-elastase leakage to induce the disruption of pulmonary immune defences, thereby causing lung injury.
Collapse
|
196
|
Falkovich SG, Martinez-Seara H, Nesterenko AM, Vattulainen I, Gurtovenko AA. What Can We Learn about Cholesterol's Transmembrane Distribution Based on Cholesterol-Induced Changes in Membrane Dipole Potential? J Phys Chem Lett 2016; 7:4585-4590. [PMID: 27791378 DOI: 10.1021/acs.jpclett.6b02123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cholesterol is abundant in the plasma membranes of animal cells and is known to regulate a variety of membrane properties. Despite decades of research, the transmembrane distribution of cholesterol is still a matter of debate. Here we consider this outstanding issue through atomistic simulations of asymmetric lipid membranes, whose composition is largely consistent with eukaryotic plasma membranes. We show that the membrane dipole potential changes in a cholesterol-dependent manner. Remarkably, moving cholesterol from the extracellular to the cytosolic leaflet increases the dipole potential on the cytosolic side, and vice versa. Biologically this implies that by altering the dipole potential, cholesterol can provide a driving force for cholesterol molecules to favor the cytosolic leaflet, in order to compensate for the intramembrane field that arises from the resting potential.
Collapse
Affiliation(s)
- Stanislav G Falkovich
- Institute of Macromolecular Compounds, Russian Academy of Sciences , Bolshoi Prospect V.O. 31, St. Petersburg 199004, Russia
| | - Hector Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences , Flemingovo náměstí 542/2, 166 10 Praha 6, Czech Republic
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Alexey M Nesterenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Leninskie Gory, 1/40, 119991 Moscow, Russia
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
- Department of Physics, University of Helsinki , P.O. Box 64, FI-00014 Helsinki, Finland
- MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark , Odense, Denmark
| | - Andrey A Gurtovenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences , Bolshoi Prospect V.O. 31, St. Petersburg 199004, Russia
- Faculty of Physics, St. Petersburg State University , Ulyanovskaya str. 3, Petrodvorets, St. Petersburg, 198504 Russia
| |
Collapse
|
197
|
Sakamoto H, Yoshida T, Sanaki T, Shigaki S, Morita H, Oyama M, Mitsui M, Tanaka Y, Nakano T, Mitsutake S, Igarashi Y, Takemoto H. Possible roles of long-chain sphingomyelines and sphingomyelin synthase 2 in mouse macrophage inflammatory response. Biochem Biophys Res Commun 2016; 482:202-207. [PMID: 27836537 DOI: 10.1016/j.bbrc.2016.11.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 12/16/2022]
Abstract
To evaluate the precise role of sphingomyelin synthase 2 (SMS2) in sphingomyelin (SM) metabolism and their anti-inflammatory properties, we analyzed species of major SM and ceramide (Cer) (18:1, 18:0 sphingoid backbone, C14 - C26 N-acyl part) in SMS2 knockout and wild-type mouse plasma and liver using HPLC-MS. SMS2 deficiency significantly decreased very long chain SM (SM (d18:1/22:0) and SM (d18:1/24:0 or d18:0/24:1)) and increased very long chain Cer (Cer (d18:1/24:0 or d18:0/24:1) and Cer (d18:1/24:1)), but not long chain SM (SM (d18:1/16:0), SM (d18:1/18:0 or d18:0/18:1) and SM (d18:1/18:1)) in plasma. To examine the effects of SM on inflammation, we studied the role of very long chain SM in macrophage activation. Addition of SM (d18:1/24:0) strongly upregulated several macrophage activation markers, SM (d18:1/6:0) and Cer (d18:1/24:0) however, did not. It was suggested that very long chain SM but not long chain SM were decreased in SMS2-deficient mice liver and plasma. And the exogenously added very long chain SM (d18:1/24:0) could activate macrophages directly, suggesting a novel role of plasma very long chain SM in modulating macrophage activation and resulting inflammation.
Collapse
Affiliation(s)
- Hideaki Sakamoto
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Japan.
| | - Tetsuya Yoshida
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Japan
| | - Takao Sanaki
- Research Laboratory for Development, Shionogi & Co., Ltd., Osaka, Japan
| | - Shuhei Shigaki
- Research Laboratory for Development, Shionogi & Co., Ltd., Osaka, Japan
| | - Hirotoshi Morita
- Research Laboratory for Development, Shionogi & Co., Ltd., Osaka, Japan
| | - Miki Oyama
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Japan
| | - Masaru Mitsui
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Japan
| | - Yoshikazu Tanaka
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Japan
| | - Toru Nakano
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Japan
| | - Susumu Mitsutake
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Igarashi
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan
| | - Hiroshi Takemoto
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo, Japan
| |
Collapse
|
198
|
Needham SR, Roberts SK, Arkhipov A, Mysore VP, Tynan CJ, Zanetti-Domingues LC, Kim ET, Losasso V, Korovesis D, Hirsch M, Rolfe DJ, Clarke DT, Winn MD, Lajevardipour A, Clayton AHA, Pike LJ, Perani M, Parker PJ, Shan Y, Shaw DE, Martin-Fernandez ML. EGFR oligomerization organizes kinase-active dimers into competent signalling platforms. Nat Commun 2016; 7:13307. [PMID: 27796308 PMCID: PMC5095584 DOI: 10.1038/ncomms13307] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 09/20/2016] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signalling is activated by ligand-induced receptor dimerization. Notably, ligand binding also induces EGFR oligomerization, but the structures and functions of the oligomers are poorly understood. Here, we use fluorophore localization imaging with photobleaching to probe the structure of EGFR oligomers. We find that at physiological epidermal growth factor (EGF) concentrations, EGFR assembles into oligomers, as indicated by pairwise distances of receptor-bound fluorophore-conjugated EGF ligands. The pairwise ligand distances correspond well with the predictions of our structural model of the oligomers constructed from molecular dynamics simulations. The model suggests that oligomerization is mediated extracellularly by unoccupied ligand-binding sites and that oligomerization organizes kinase-active dimers in ways optimal for auto-phosphorylation in trans between neighbouring dimers. We argue that ligand-induced oligomerization is essential to the regulation of EGFR signalling. Epidermal growth factor receptors have been shown to oligomerise upon binding to their cognate ligands. Here, the authors use biochemical, biophysical and cell biology techniques to analyse the structures of these oligomers, and argue that these formations are required for signalling.
Collapse
Affiliation(s)
- Sarah R Needham
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | - Selene K Roberts
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | | | | | - Christopher J Tynan
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | - Eric T Kim
- D.E. Shaw Research, New York, New York 10036, USA
| | - Valeria Losasso
- Computational Science and Engineering Department, Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD, UK
| | - Dimitrios Korovesis
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | - Michael Hirsch
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | - Daniel J Rolfe
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | - David T Clarke
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| | - Martyn D Winn
- Computational Science and Engineering Department, Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD, UK
| | - Alireza Lajevardipour
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Andrew H A Clayton
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Linda J Pike
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Michela Perani
- Division of Cancer Studies, King's College London, Guy's Medical School Campus, London SE1 1UL, UK
| | - Peter J Parker
- Division of Cancer Studies, King's College London, Guy's Medical School Campus, London SE1 1UL, UK.,The Francis Crick Institute, Protein Phosphorylation Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Yibing Shan
- D.E. Shaw Research, New York, New York 10036, USA
| | - David E Shaw
- D.E. Shaw Research, New York, New York 10036, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK
| |
Collapse
|
199
|
Gc JB, Gerstman BS, Stahelin RV, Chapagain PP. The Ebola virus protein VP40 hexamer enhances the clustering of PI(4,5)P 2 lipids in the plasma membrane. Phys Chem Chem Phys 2016; 18:28409-28417. [PMID: 27757455 PMCID: PMC5084917 DOI: 10.1039/c6cp03776c] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Ebola virus is a lipid-enveloped virus that obtains its lipid coat from the plasma membrane of the host cell it infects during the budding process. The Ebola virus protein VP40 localizes to the inner leaflet of the plasma membrane and forms the viral matrix, which provides the major structure for the Ebola virus particles. VP40 is initially a dimer that rearranges to a hexameric structure that mediates budding. VP40 hexamers and larger filaments have been shown to be stabilized by PI(4,5)P2 in the plasma membrane inner leaflet. Reduction in the plasma membrane levels of PI(4,5)P2 significantly reduce formation of VP40 oligomers and virus-like particles. We investigated the lipid-protein interactions in VP40 hexamers at the plasma membrane. We quantified lipid-lipid self-clustering by calculating the fractional interaction matrix and found that the VP40 hexamer significantly enhances the PI(4,5)P2 clustering. The radial pair distribution functions suggest a strong interaction between PI(4,5)P2 and the VP40 hexamer. The cationic Lys side chains are found to mediate the PIP2 clustering around the protein, with cholesterol filling the space between the interacting PIP2 molecules. These computational studies support recent experimental data and provide new insights into the mechanisms by which VP40 assembles at the plasma membrane inner leaflet, alters membrane curvature, and forms new virus-like particles.
Collapse
Affiliation(s)
- Jeevan B Gc
- Department of Physics, Florida International University, Miami, FL 33199, USA.
| | - Bernard S Gerstman
- Department of Physics, Florida International University, Miami, FL 33199, USA. and Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| | - Robert V Stahelin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA and Department of Chemistry and Biochemistry, The Eck Institute for Global Health, and the Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, FL 33199, USA. and Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
200
|
Tanaka Y, Ono N, Shima T, Tanaka G, Katoh Y, Nakayama K, Takatsu H, Shin HW. The phospholipid flippase ATP9A is required for the recycling pathway from the endosomes to the plasma membrane. Mol Biol Cell 2016; 27:3883-3893. [PMID: 27733620 PMCID: PMC5170610 DOI: 10.1091/mbc.e16-08-0586] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022] Open
Abstract
ATP9A is localized to phosphatidylserine-positive early and recycling endosomes, but not late endosomes, in HeLa cells. ATP9A plays a crucial role in recycling of transferrin and glucose transporter 1 from endosomes to the plasma membrane. Type IV P-type ATPases (P4-ATPases) are phospholipid flippases that translocate phospholipids from the exoplasmic (or luminal) to the cytoplasmic leaflet of lipid bilayers. In Saccharomyces cerevisiae, P4-ATPases are localized to specific subcellular compartments and play roles in compartment-mediated membrane trafficking; however, roles of mammalian P4-ATPases in membrane trafficking are poorly understood. We previously reported that ATP9A, one of 14 human P4-ATPases, is localized to endosomal compartments and the Golgi complex. In this study, we found that ATP9A is localized to phosphatidylserine (PS)-positive early and recycling endosomes, but not late endosomes, in HeLa cells. Depletion of ATP9A delayed the recycling of transferrin from endosomes to the plasma membrane, although it did not affect the morphology of endosomal structures. Moreover, depletion of ATP9A caused accumulation of glucose transporter 1 in endosomes, probably by inhibiting their recycling. By contrast, depletion of ATP9A affected neither the early/late endosomal transport and degradation of epidermal growth factor (EGF) nor the transport of Shiga toxin B fragment from early/recycling endosomes to the Golgi complex. Therefore ATP9A plays a crucial role in recycling from endosomes to the plasma membrane.
Collapse
Affiliation(s)
- Yoshiki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Natsuki Ono
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takahiro Shima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Gaku Tanaka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|