151
|
Jin J, Woodgett JR. Chronic activation of protein kinase Bβ/Akt2 leads to multinucleation and cell fusion in human epithelial kidney cells: events associated with tumorigenesis. Oncogene 2005; 24:5459-70. [PMID: 16007218 DOI: 10.1038/sj.onc.1208704] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most cancers arise from the stepwise accumulation of genetic changes. There is also evidence for defects in the machinery and checkpoints for maintenance of normal diploid chromosome complements, resulting in genetic instability that helps fuel the accumulation of mutations that contribute to the development of cancer. The proto-oncogene protein kinase B (PKB/Akt), and its regulators including phosphatidylinositol 3' kinase and PTEN, has been shown to play critical roles in the regulation of multiple cellular functions such as transcription, cell survival, cell cycle progression, angiogenesis and cell motility--all of which are important to the malignant process. Here, we report the use of a membrane targeted PKBbeta, the activation of which is under the control of a 4-hydroxy-Tamoxifen-responsive estrogen-receptor (ER) ligand binding domain. Induction of PKBbeta-ER activity in human kidney epithelial cells (HEK293) resulted in changes in cellular growth, size, and in the appearance of aneuploid cells. Over time, in a PKBbeta-dependent manner, cells also underwent extensive multinucleation caused due to a combination of both endomitosis and cell fusion. These findings suggest that chronic activation of PKBbeta may contribute to genetic instability and autophagy, properties commonly found in tumor cells.
Collapse
Affiliation(s)
- Jing Jin
- Department of Medical Biophysics and Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | | |
Collapse
|
152
|
Furukawa-Hibi Y, Kobayashi Y, Chen C, Motoyama N. FOXO transcription factors in cell-cycle regulation and the response to oxidative stress. Antioxid Redox Signal 2005; 7:752-60. [PMID: 15890021 DOI: 10.1089/ars.2005.7.752] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mammalian forkhead members of the class O (FOXO) transcription factors, including FOXO1, FOXO3a, and FOXO4, are implicated in the regulation of a variety of cellular processes, including the cell cycle, apoptosis, DNA repair, stress resistance, and metabolism. FOXO proteins are negatively regulated by the phosphatidylinositol 3-kinase-Akt signaling pathway, which is activated by growth factors and cytokines. Recent studies indicate that the activities of FOXO proteins are also regulated by oxidative stress, which induces their phosphorylation, translocation to the nucleus, and acetylation-deacetylation. Similar to the tumor suppressor p53, FOXO is activated by stress and induces the expression of genes that contribute to cell-cycle arrest, suggesting that it also functions as a tumor suppressor.
Collapse
Affiliation(s)
- Yoko Furukawa-Hibi
- Department of Geriatric Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Morioka, Obu, Aichi, Japan
| | | | | | | |
Collapse
|
153
|
Abstract
There is increasing evidence that Forkhead box 'Other' (FoxO) proteins, a subgroup of the Forkhead transcription factor family, have an important role in mediating the effects of insulin and growth factors on diverse physiological functions, including cell proliferation, apoptosis and metabolism. Genetic studies in Caenorhabditis (Caenorhabditis elegans) and Drosophila demonstrate that FoxO proteins are ancient targets of insulin-like signaling involved in the regulation of metabolism and longevity. Studies in mammalian cells reveal that FoxO proteins regulate cell cycle progression and promote resistance to oxidative stress; both in vivo and cell culture studies support the concept that FoxO proteins have an important role in mediating the effects of insulin on metabolism, including its effects on hepatic glucose production. Phosphorylation and acetylation modulate FoxO function and control nuclear-cytoplasmic shuttling, DNA binding and protein-protein interactions. FoxO transcription factors exert positive and negative effects on gene expression, through direct binding to DNA target sites and protein-protein interactions with other transcription factors and coactivators. This paper provides an overview of studies leading to the identification of FoxO proteins as targets of insulin action and the mechanisms mediating the effects of insulin-like signaling on FoxO function, emphasizing the role of FoxO proteins in mediating the effects of insulin on metabolism.
Collapse
Affiliation(s)
- Andreas Barthel
- Department of Endocrinology, Diabetes and Rheumatology, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
154
|
Gan L, Zheng W, Chabot JG, Unterman TG, Quirion R. Nuclear/cytoplasmic shuttling of the transcription factor FoxO1 is regulated by neurotrophic factors. J Neurochem 2005; 93:1209-19. [PMID: 15934941 DOI: 10.1111/j.1471-4159.2005.03108.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
FoxO1, a member of the FoxO subfamily of forkhead transcription factors, is an important target for insulin and growth factor signaling in the regulation of metabolism, cell cycle and proliferation, and survival in peripheral tissues. However, its role in the central nervous system is mostly unknown. In this study, we examined the effect of neurotrophic factors on nuclear/cytoplasmic shuttling of FoxO1. We showed that insulin-like growth factor-1 (IGF-1) and nerve growth factor (NGF) potently induced the nuclear exclusion of FoxO1-green fluorescent protein (GFP) while neurotrophin (NT)-3 and NT-4 were much weaker and brain-derived neurotrophic factor (BDNF) failed to induce FoxO1 translocation in PC12 cells. FoxO1 translocation was inhibited by LY294002, a well-established PI3K/Akt kinase inhibitor. Moreover, FoxO1 was phosphorylated at Thr24 and Ser256 residues by the above neurotrophic factors, with the exception of BDNF. Triple mutant FoxO1, in which three Akt/PKB phosphorylation sites (Thr24, Ser256 and Ser319) were mutated to alanine, resulted in the complete nuclear targeting of the expressed FoxO1-GFP fusion protein in the presence of the above neurotrophic factors in both PC12 cells and cultured hippocampal and cortical neurons. Taken together, these findings demonstrate that neurotrophic factors are able to regulate nuclear/cytoplasmic shuttling of FoxO1 via the PI3K/Akt pathway in neuronal cells.
Collapse
Affiliation(s)
- Lixia Gan
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | | | | | | | | |
Collapse
|
155
|
Bescond M, Rahmani Z. Dual-specificity tyrosine-phosphorylated and regulated kinase 1A (DYRK1A) interacts with the phytanoyl-CoA alpha-hydroxylase associated protein 1 (PAHX-AP1), a brain specific protein. Int J Biochem Cell Biol 2005; 37:775-83. [PMID: 15694837 DOI: 10.1016/j.biocel.2004.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 12/08/2004] [Accepted: 12/14/2004] [Indexed: 11/18/2022]
Abstract
Down syndrome (DS) is the most common genetic defect correlated with mental retardation and delayed development. The specific genes responsible for these phenotypic alterations have not yet been defined. Dyrk1A (dual-specificity tyrosine-phosphorylated and regulated kinase 1A), the human ortholog of the Drosophila minibrain gene (mnb), maps to the Down syndrome critical region of human chromosome 21 and is overexpressed in Down syndrome fetal brain. In Drosophila, minibrain is involved in postembryonic neurogenesis. In human, DYRK1A encodes a serine-threonine kinase but despite its potential involvement in the neurobiological alterations associated with Down syndrome, its physiological function has not yet been defined. To gain some insight into its biological function, we used the yeast two-hybrid approach to identify binding partners of DYRK1A. We found that the C-terminal region of DYRK1A interacts with a brain specific protein, phytanoyl-CoA alpha-hydroxylase-associated protein 1 (PAHX-AP1, also named PHYHIP) which was previously shown to interact with phytanoyl-CoA alpha-hydroxylase (PAHX, also named PHYH), a Refsum disease gene product. This interaction was confirmed by co-immunoprecipitation of PC12 cells co-transfected with DYRK1A and PAHX-AP1. Furthermore, immunofluorescence analysis of PC12 cells co-transfected with both plasmids showed a re-distribution of DYRK1A from the nucleus to the cytoplasm where it co-localized with PAHX-AP1. Finally, in PC12 cells co-transfected with both plasmids, DYRK1A was no longer able to interact with the nuclear transcription factor CREB, thereby confirming that the intracellular localization of DYRK1A was changed from the nucleus to the cytoplasm in the presence of PAHX-AP1. Therefore, these data indicate that by inducing a re-localization of DYRK1A into the cytoplasm, PAHX-AP1 may contribute to new cellular functions of DYRK1A and suggest that PAHX-AP1 may be involved in the development of neurological abnormalities observed in Down syndrome patients.
Collapse
Affiliation(s)
- Marilyne Bescond
- CNRS UMR 8602, Faculté de Médecine Necker-Enfants Malades, 75730 Paris Cedex 15, France
| | | |
Collapse
|
156
|
Cai D, McCarron RM, Hallenbeck J. Cloning and characterization of a forkhead transcription factor gene, FoxO1a, from thirteen-lined ground squirrel. Gene 2005; 343:203-9. [PMID: 15563846 DOI: 10.1016/j.gene.2004.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 07/06/2004] [Accepted: 09/10/2004] [Indexed: 11/21/2022]
Abstract
This research analyzes the regulation of ischemic tolerance in hibernating thirteen-lined ground squirrels (Spermophilus tridecemlineatus). Hibernation is studied because it represents a unique state of reversible suspended animation associated with tolerance to an otherwise lethal reduction of core body temperature and metabolism. An integral aspect of hibernation is the profound decrease of cerebral perfusion without neurological damage. As such, hibernation serves as a model for studying natural tolerance to brain ischemia. Identification of regulatory mechanisms that control hibernation in ground squirrels may guide efforts to develop improved treatments for stroke and brain trauma. It was previously shown that phosphorylation of Akt (protein kinase B), an insulin-like growth factor-regulated serine/threonine kinase, was significantly reduced as was its kinase activity in hibernating thirteen-lined ground squirrels. Here we studied the forkhead (FH) in rhabdomyosarcoma (FKHR) transcription factor, which is controlled by Akt signaling and is involved in regulating cell cycle progression and cell death. A cDNA derived from brains of S. tridecemlineatus, encoding a specific FKHR transcription factor, FoxO1a, was cloned and sequenced, and the amino acid sequence of the protein was deduced. FoxO1a is composed of 653 amino acids and has a predicted molecular mass of 69.4 kilodaltons (kDa). Here, for the first time, we report the contrary expression of phosphorylation of two members in the insulin-like growth factor signaling pathway during hibernation (i.e., phosphorylated FKHR was significantly up-regulated as phosphorylation of its upstream kinase, Akt, was significantly down-regulated). Further study is required to identify the possible connection between FoxO1a and Akt activity and the possible of such interactions in hibernation.
Collapse
Affiliation(s)
- Decheng Cai
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
157
|
Yang Y, Hou H, Haller EM, Nicosia SV, Bai W. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J 2005; 24:1021-32. [PMID: 15692560 PMCID: PMC554122 DOI: 10.1038/sj.emboj.7600570] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Accepted: 01/07/2005] [Indexed: 11/09/2022] Open
Abstract
Forkhead box class O (FOXO) proteins are transcription factors that function downstream of the PTEN tumor suppressor and directly control the expression of genes involved in apoptosis, cell cycle progression, and stress responses. In the present study, we show that FOXO1 interacts with four and a half LIM 2 (FHL2) in prostate cancer cells. This interaction occurred in the nucleus and was enhanced by lysophosphatic acid. FHL2 decreased the transcriptional activity of FOXO1 and the expression of known FOXO target genes and inhibited FOXO1-induced apoptosis. Interestingly, SIRT1, a mammalian homolog of yeast Sir2, bound to and deacetylated FOXO1 and inhibited its transcriptional activity. FHL2 enhanced the interaction of FOXO1 and SIRT1 and the deacetylation of FOXO1 by Sirtuin-1 (SIRT1). Overall, our data show that FHL2 inhibits FOXO1 activity in prostate cancer cells by promoting the deacetylation of FOXO1 by SIRT1.
Collapse
Affiliation(s)
- Yonghua Yang
- Departments of Pathology and Interdisciplinary Oncology, University of South Florida College of Medicine and Programs of Molecular Oncology, Drug Discovery and Experimental Therapeutics, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Huayan Hou
- Departments of Pathology and Interdisciplinary Oncology, University of South Florida College of Medicine and Programs of Molecular Oncology, Drug Discovery and Experimental Therapeutics, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Edward M Haller
- Departments of Pathology and Interdisciplinary Oncology, University of South Florida College of Medicine and Programs of Molecular Oncology, Drug Discovery and Experimental Therapeutics, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Santo V Nicosia
- Departments of Pathology and Interdisciplinary Oncology, University of South Florida College of Medicine and Programs of Molecular Oncology, Drug Discovery and Experimental Therapeutics, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Wenlong Bai
- Departments of Pathology and Interdisciplinary Oncology, University of South Florida College of Medicine and Programs of Molecular Oncology, Drug Discovery and Experimental Therapeutics, H Lee Moffitt Cancer Center, Tampa, FL, USA
- Department of Pathology, University of South Florida, College of Medicine, 12901 Bruce B Downs Blvd, MDC 11, Tampa, FL 33612-4799, USA. Tel.: +1 813 974 0563; Fax: +1 813 974 5536; E-mail:
| |
Collapse
|
158
|
Fukunaga K, Ishigami T, Kawano T. Transcriptional Regulation of Neuronal Genes and Its Effect on Neural Functions: Expression and Function of Forkhead Transcription Factors in Neurons. J Pharmacol Sci 2005; 98:205-11. [PMID: 16006742 DOI: 10.1254/jphs.fmj05001x3] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Forkhead box transcription factor, class O (FOXO) is a mammalian homologue of DAF-16, which is known to regulate the lifespan of Caenorhabditis elegans and includes subfamilies of forkhead transcription factors such as AFX, FKHRL1, and FKHR. FKHR is phosphorylated on three sites (Thr-24, Ser-256, and Ser-319) in a phosphatidylinositol 3-kinase (PI3K)/Akt-dependent manner, thereby inhibiting death signals. We here documented dephosphorylation of FKHR following transient forebrain ischemia with its concomitant translocation into the nucleus in neurons in gerbil and mouse brains. The activation of FKHR preceded delayed neuronal death in the vulnerable hippocampal regions following ischemic brain injury. The FKHR activation was accompanied by an increase in DNA binding activity for FKHR-responsive element on the Fas ligand promoter. We also defined FKHR-induced downstream targets such as Fas ligand and Bim in brain ischemia. Therefore, we propose a new strategy to rescue neurons from delayed neuronal death by promoting the survival signaling. Sodium orthovanadate, a protein tyrosine phosphatase inhibitor, up-regulated Akt activity in the brain and in turn rescue neurons from delayed neuronal death by inhibiting FKHR-dependent or -independent death signals in neurons.
Collapse
Affiliation(s)
- Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | | | | |
Collapse
|
159
|
Rena G, Bain J, Elliott M, Cohen P. D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Rep 2004; 5:60-5. [PMID: 14710188 PMCID: PMC1298959 DOI: 10.1038/sj.embor.7400048] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Revised: 09/18/2003] [Accepted: 10/10/2003] [Indexed: 12/11/2022] Open
Abstract
The protein kinase CK1 phosphorylates serine residues that are located close to another phosphoserine in the consensus pSer-Xaa-Xaa-Ser. This specificity generates regions in its target proteins containing two or more neighbouring phosphoserine residues, termed here multisite phosphorylation domains (MPDs). In this paper, we demonstrate that D4476 is a potent and rather selective inhibitor of CK1 in vitro and in cells. In H4IIE hepatoma cells, D4476 specifically inhibits the phosphorylation of endogenous forkhead box transcription factor O1a (FOXO1a) on Ser322 and Ser325 within its MPD, without affecting the phosphorylation of other sites. Our results indicate that these residues are targeted by CK1 in vivo and that the CK1-mediated phosphorylation of the MPD is required for accelerated nuclear exclusion of FOXO1a in response to IGF-1 and insulin. D4476 is much more potent and specific than IC261 or CKI-7, and is therefore the most useful CK1 inhibitor currently available for identifying physiological substrates of CK1.
Collapse
Affiliation(s)
- Graham Rena
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Present address: Neurosciences Institute, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Tel: +44 1382 345768; Fax: +44 1382 223778; E-mail:
| | - Jenny Bain
- Division of Signal Transduction Therapy, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Matthew Elliott
- Division of Signal Transduction Therapy, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Philip Cohen
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Division of Signal Transduction Therapy, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Tel: +44 1382 345768; Fax: +44 1382 223778; E-mail:
| |
Collapse
|
160
|
Van Der Heide LP, Hoekman MFM, Smidt MP. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 2004; 380:297-309. [PMID: 15005655 PMCID: PMC1224192 DOI: 10.1042/bj20040167] [Citation(s) in RCA: 539] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 03/03/2004] [Accepted: 03/09/2004] [Indexed: 12/15/2022]
Abstract
FoxO (forkhead box O; forkhead members of the O class) are transcription factors that function under the control of insulin/insulin-like signalling. FoxO factors have been associated with a multitude of biological processes, including cell-cycle, cell death, DNA repair, metabolism and protection from oxidative stress. Central to the regulation of FoxO factors is a shuttling system, which confines FoxO factors to either the nucleus or the cytosol. Shuttling of FoxO requires protein phosphorylation within several domains, and association with 14-3-3 proteins and the nuclear transport machinery. Description of the FoxO-shuttling mechanism contributes to the understanding of FoxO function in relation to signalling and gene regulation.
Collapse
Affiliation(s)
- Lars P Van Der Heide
- Department of Pharmacology and Anatomy, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | | | | |
Collapse
|
161
|
Kim D, Won J, Shin DW, Kang J, Kim YJ, Choi SY, Hwang MK, Jeong BW, Kim GS, Joe CO, Chung SH, Song WJ. Regulation of Dyrk1A kinase activity by 14-3-3. Biochem Biophys Res Commun 2004; 323:499-504. [PMID: 15369779 DOI: 10.1016/j.bbrc.2004.08.102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Indexed: 11/16/2022]
Abstract
Dual-specificity tyrosine(Y) regulated kinase 1A (DYRK1A) is a serine/threonine protein kinase implicated in mental retardation resulting from Down syndrome. In this study, we carried out yeast two-hybrid screening to find proteins regulating DYRK1A kinase activity. We identified 14-3-3 as a Dyrk1A interacting protein, which is consistent with the previous finding of the interaction between the yeast orthologues Yak1p and Bmh1/2p. We showed the interaction between Dyrk1A and 14-3-3 in vitro and in vivo. The binding required the N-terminus of Dyrk1A and was independent of the Dyrk1A phosphorylation status. Functionally, 14-3-3 binding increased Dyrk1A kinase activity in a dose dependent manner in vitro. In vivo, a small peptide inhibiting 14-3-3 binding, sc138, decreased Dyrk1A kinase activity in COS7. In summary, these results suggest that DYRK1A kinase activity could be regulated by the interaction of 14-3-3.
Collapse
Affiliation(s)
- Doyeun Kim
- Division of CNS, Hanwha Chemical R&D Center, Daejon 305-345, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Sitz JH, Tigges M, Baumgärtel K, Khaspekov LG, Lutz B. Dyrk1A potentiates steroid hormone-induced transcription via the chromatin remodeling factor Arip4. Mol Cell Biol 2004; 24:5821-34. [PMID: 15199138 PMCID: PMC480880 DOI: 10.1128/mcb.24.13.5821-5834.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 03/26/2004] [Indexed: 11/20/2022] Open
Abstract
Dyrk1A, a mammalian homolog of the Drosophila minibrain gene, encodes a dual-specificity kinase, involved in neuronal development and in adult brain physiology. In humans, a third copy of DYRK1A is present in Down syndrome (trisomy 21) and has been implicated in the etiology of mental retardation. To further understand this pathology, we searched for Dyrk1A-interacting proteins and identified Arip4 (androgen receptor-interacting protein 4), a SNF2-like steroid hormone receptor cofactor. Mouse hippocampal and cerebellar neurons coexpress Dyrk1A and Arip4. In HEK293 cells and hippocampal neurons, both proteins are colocalized in a speckle-like nuclear subcompartment. The functional interaction of Dyrk1A with Arip4 was analyzed in a series of transactivation assays. Either Dyrk1A or Arip4 alone displays an activating effect on androgen receptor- and glucocorticoid receptor-mediated transactivation, and Dyrk1A and Arip4 together act synergistically. These effects are independent of the kinase activity of Dyrk1A. Inhibition of endogenous Dyrk1A and Arip4 expression by RNA interference showed that both proteins are necessary for the efficient activation of androgen receptor- and glucocorticoid receptor-dependent transcription. As Dyrk1A is an activator of steroid hormone-regulated transcription, the overexpression of DYRK1A in persons with Down syndrome may cause rather broad changes in the homeostasis of steroid hormone-controlled cellular events.
Collapse
Affiliation(s)
- Jan Hendrik Sitz
- Molecular Genetics of Behavior, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | |
Collapse
|
163
|
Zhao X, Gan L, Pan H, Kan D, Majeski M, Adam SA, Unterman TG. Multiple elements regulate nuclear/cytoplasmic shuttling of FOXO1: characterization of phosphorylation- and 14-3-3-dependent and -independent mechanisms. Biochem J 2004; 378:839-49. [PMID: 14664696 PMCID: PMC1224024 DOI: 10.1042/bj20031450] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 12/01/2003] [Accepted: 12/10/2003] [Indexed: 12/18/2022]
Abstract
FOXO1, a Forkhead transcription factor, is an important target of insulin and growth factor action. Phosphorylation of Thr-24, Ser-256 and Ser-319 promotes nuclear exclusion of FOXO1, yet the mechanisms regulating nuclear/cytoplasmic shuttling of FOXO1 are poorly understood. Previous studies have identified an NLS (nuclear localization signal) in the C-terminal basic region of the DBD (DNA-binding domain), and a leucine-rich, leptomycin-B sensitive NES (nuclear export signal) located further downstream. Here, we find that other elements in the DBD also contribute to nuclear localization, and that multiple mechanisms contribute to nuclear exclusion of FOXO1. Phosphorylation of Ser-319 and a cluster of nearby residues (Ser-322, Ser-325 and Ser-329) functions co-operatively with the nearby NES to promote nuclear exclusion. The N-terminal region of FOXO1 (amino acids 1-149) also is sufficient to promote nuclear exclusion, and does so through multiple mechanisms. Amino acids 1-50 are sufficient to promote nuclear exclusion of green fluorescent protein fusion proteins, and the phosphorylation of Thr-24 is required for this effect. A leucine-rich, leptomycin B-sensitive export signal is also present nearby. Phosphorylated FOXO1 binds 14-3-3 proteins, and co-precipitation studies with tagged proteins indicate that 14-3-3 binding involves co-operative interactions with both Thr-24 and Ser-256. Ser-256 is located in the C-terminal region of the DBD, where 14-3-3 proteins may interfere both with DNA-binding and with nuclear-localization functions. Together, these studies demonstrate that multiple elements contribute to nuclear/cytoplasmic shuttling of FOXO1, and that phosphorylation and 14-3-3 binding regulate the cellular distribution and function of FOXO1 through multiple mechanisms. The presence of these redundant mechanisms supports the concept that the regulation of FOXO1 function plays a critical role in insulin and growth factor action.
Collapse
Affiliation(s)
- Xiangshan Zhao
- Department of Medicine, University of Illinois at Chicago College of Medicine, and Medical Research Unit, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Wegiel J, Kuchna I, Nowicki K, Frackowiak J, Dowjat K, Silverman WP, Reisberg B, DeLeon M, Wisniewski T, Adayev T, Chen-Hwang MC, Hwang YW. Cell type- and brain structure-specific patterns of distribution of minibrain kinase in human brain. Brain Res 2004; 1010:69-80. [PMID: 15126119 DOI: 10.1016/j.brainres.2004.03.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2004] [Indexed: 01/12/2023]
Abstract
The minibrain kinase (Mnb/Dyrk1A) gene is localized in the Down syndrome (DS) critical region of chromosome 21. This gene encodes a proline-directed serine/threonine protein kinase (minibrain kinase-Mnb/Dyrk1A), which is required for the proliferation of distinct neuronal cell types during postembryonic neurogenesis. To study the distribution of Mnb/Dyrk1A during human brain development and aging, we raised Mnb/Dyrk1A-specific antibody (mAb 7F3) and examined 22 brains of normal subjects from 8 months to 90 years of age. We found that neurons were the only cells showing the presence of 7F3-positive product in both cell nucleus and cytoplasm. Nuclear localization supports the concept that Mnb/Dyrk1A may be involved in control of gene expression. Synaptic localization of Mnb/Dyrk1A also supports our previous studies suggesting that Mnb/Dyrk1A is a regulator of assembly of endocytic apparatus and appears to be involved in synaptic vesicle recycling and synaptic signal transmission. Accumulation of numerous 7F3-positive corpora amylacea in the memory and motor system subdivisions in subjects older than 33 years of age indicates that Mnb/Dyrk1A is colocalized with markers of astrocyte and neuron degeneration. Differences in the topography and the amount of Mnb/Dyrk1A in neurons, astrocytes, and ependymal and endothelial cells appear to reflect cell type- and brain structure-specific patterns in trafficking and utilization of Mnb/Dyrk1A.
Collapse
Affiliation(s)
- Jerzy Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Branchi I, Bichler Z, Minghetti L, Delabar JM, Malchiodi-Albedi F, Gonzalez MC, Chettouh Z, Nicolini A, Chabert C, Smith DJ, Rubin EM, Migliore-Samour D, Alleva E. Transgenic mouse in vivo library of human Down syndrome critical region 1: association between DYRK1A overexpression, brain development abnormalities, and cell cycle protein alteration. J Neuropathol Exp Neurol 2004; 63:429-40. [PMID: 15198122 DOI: 10.1093/jnen/63.5.429] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Down syndrome is the most frequent genetic cause of mental retardation, having an incidence of 1 in 700 live births. In the present study we used a transgenic mouse in vivo library consisting of 4 yeast artificial chromosome (YAC) transgenic mouse lines, each bearing a different fragment of the Down syndrome critical region 1 (DCR-1), implicated in brain abnormalities characterizing this pathology. The 152F7 fragment, in addition to genes also located on the other DCR-1 fragments, bears the DYRK1A gene, encoding for a serine-threonine kinase. The neurobehavioral analysis of these mouse lines showed that DYRK1A overexpressing 152F7 mice but not the other lines display learning impairment and hyperactivity during development. Additionally, 152F7 mice display increased brain weight and neuronal size. At a biochemical level we found DYRK1A overexpression associated with a development-dependent increase in phosphorylation of the transcription factor FKHR and with high levels of cyclin B1, suggesting for the first time in vivo a correlation between DYRK1A overexpression and cell cycle protein alteration. In addition, we found an altered phosphorylation of transcription factors of CREB family. Our findings support a role of DYRK1A overexpression in the neuronal abnormalities seen in Down syndrome and suggest that this pathology is linked to altered levels of proteins involved in the regulation of cell cycle.
Collapse
Affiliation(s)
- Igor Branchi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Scheijen B, Ngo HT, Kang H, Griffin JD. FLT3 receptors with internal tandem duplications promote cell viability and proliferation by signaling through Foxo proteins. Oncogene 2004; 23:3338-49. [PMID: 14981546 DOI: 10.1038/sj.onc.1207456] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In about 30% of the patients with acute myeloid leukemia, activating FLT3 receptor mutations have been identified, often as in-frame internal tandem duplications (ITD) at the juxtamembrane domain of the receptor. FLT3-ITD receptors exhibit constitutive tyrosine kinase activity in the absence of FLT3 ligand (FL) binding, and when expressed in cytokine-dependent cell lines and primary hematopoietic cells suppress programmed cell death and increase cell division. However, the signaling pathways important for transformation, in particular the nuclear targets, are unknown. Here we demonstrate that FLT3-ITD expression in Ba/F3 cells results in activation of Akt and concomitant phosphorylation of the Forkhead family member Foxo3a. Phosphorylation of Foxo proteins through FLT3-ITD signaling promotes their translocation from the nucleus into the cytoplasm, which requires the presence of conserved Akt phosphorylation sites in Forkhead transcription factors and PI3K activity. Induction of Foxo3a phosphorylation by FLT3-ITD receptors in Ba/F3 cells correlates with the suppression of Foxo-target genes p27Kip1 and the proapoptotic Bcl-2 family member Bim. Specifically, FLT3-ITD expression prevents Foxo3a-mediated apoptosis and upregulation of p27Kip1 and Bim gene expression. These data indicate that the oncogenic tyrosine kinase FLT3 can negatively regulate Foxo transcription factors, thereby promoting cell survival and proliferation.
Collapse
Affiliation(s)
- Blanca Scheijen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Mayer 540, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
167
|
de Graaf K, Hekerman P, Spelten O, Herrmann A, Packman LC, Büssow K, Müller-Newen G, Becker W. Characterization of cyclin L2, a novel cyclin with an arginine/serine-rich domain: phosphorylation by DYRK1A and colocalization with splicing factors. J Biol Chem 2004; 279:4612-24. [PMID: 14623875 DOI: 10.1074/jbc.m310794200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A novel method employing filter arrays of a cDNA expression library for the identification of substrates for protein kinases was developed. With this technique, we identified a new member of the cyclin family, cyclin L2, as a substrate of the nuclear protein kinase DYRK1A. Cyclin L2 contains an N-terminal cyclin domain and a C-terminal arginine/serine-rich domain (RS domain), which is a hallmark of many proteins involved in pre-mRNA processing. The gene for cyclin L2 encodes the full-length cyclin L2, which is predominantly expressed in testis, as well as a truncated splicing variant (cyclin L2S) that lacks the RS domain and is ubiquitously expressed in human tissues. Full-length cyclin L2, but not cyclin L2S, was associated with the cyclin-dependent kinase PITSLRE. Cyclin L2 interacted with splicing factor 2 in vitro and was co-localized with the splicing factor SC35 in the nuclear speckle compartment. Photobleaching experiments showed that a fusion protein of green fluorescent protein and cyclin L2 in nuclear speckles rapidly exchanged with unbleached molecules in the nucleus, similar to other RS domain-containing proteins. In striking contrast, the closely related green fluorescent protein-cyclin L1 was immobile in the speckle compartment. DYRK1A interacted with cyclin L2 in pull-down assays, and overexpression of DYRK1A stimulated phosphorylation of cyclin L2 in COS-7 cells. These data characterize cyclin L2 as a highly mobile component of nuclear speckles and suggest that DYRK1A may regulate splicing by phosphorylation of cyclin L2.
Collapse
Affiliation(s)
- Katrin de Graaf
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät der RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany, Institut für Biochemie, Medizinische Fakultät der RWTH Aachen, Pauwelstrasse 30, 52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Affiliation(s)
- Tweeny R Kau
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
169
|
Skurat AV, Dietrich AD. Phosphorylation of Ser640 in muscle glycogen synthase by DYRK family protein kinases. J Biol Chem 2004; 279:2490-8. [PMID: 14593110 DOI: 10.1074/jbc.m301769200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycogen synthase, a key enzyme in the regulation of glycogen synthesis by insulin, is controlled by multisite phosphorylation. Glycogen synthase kinase-3 (GSK-3) phosphorylates four serine residues in the COOH terminus of glycogen synthase. Phosphorylation of one of these residues, Ser(640) (site 3a), causes strong inactivation of glycogen synthase. In previous work, we demonstrated in cell models that site 3a can be phosphorylated by an as yet unidentified protein kinase (3a-kinase) distinct from GSK-3. In the present study, we purified the 3a-kinase from rabbit skeletal muscle and identified one constituent polypeptide as HAN11, a WD40 domain protein with unknown function. Another polypeptide was identified as DYRK1A, a member of the dual-specificity tyrosine phosphorylated and regulated protein kinase (DYRK) family. Two isoforms of DYRK, DYRK1A and DYRK1B, co-immunoprecipitate with HAN11 when coexpressed in COS cells indicating that the proteins interact in mammalian cells. Co-expression of DYRK1A, DYRK1B, or DYRK2 with a series of glycogen synthase mutants with Ser/Ala substitutions at the phosphorylation sites in COS cells revealed that protein kinases cause phosphorylation of site 3a in glycogen synthase. To confirm that DYRKs directly phosphorylate glycogen synthase, recombinant DYRK1A, DYRK2, and glycogen synthase were produced in bacterial cells. In the presence of Mg-ATP, both DYRKs inactivated glycogen synthase by more than 10-fold. The inactivation correlated with phosphorylation of site 3a in glycogen synthase. These results indicate that protein kinase(s) from the DYRK family may be involved in a new mechanism for the regulation of glycogen synthesis.
Collapse
Affiliation(s)
- Alexander V Skurat
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | |
Collapse
|
170
|
Kau TR, Schroeder F, Ramaswamy S, Wojciechowski CL, Zhao JJ, Roberts TM, Clardy J, Sellers WR, Silver PA. A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell 2003; 4:463-76. [PMID: 14706338 DOI: 10.1016/s1535-6108(03)00303-9] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The PI3K/PTEN/Akt signal transduction pathway plays a key role in many tumors. Downstream targets of this pathway include the Forkhead family of transcription factors (FOXO1a, FOXO3a, FOXO4). In PTEN null cells, FOXO1a is inactivated by PI3K-dependent phosphorylation and mislocalization to the cytoplasm, yet still undergoes nucleocytoplasmic shuttling. Since forcible localization of FOXO1a to the nucleus can reverse tumorigenicity of PTEN null cells, a high-content, chemical genetic screen for inhibitors of FOXO1a nuclear export was performed. The compounds detected in the primary screen were retested in secondary assays, and structure-function relationships were identified. Novel general export inhibitors were found that react with CRM1 as well as a number of compounds that inhibit PI3K/Akt signaling, among which are included multiple antagonists of calmodulin signaling.
Collapse
Affiliation(s)
- Tweeny R Kau
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Dowell P, Otto TC, Adi S, Lane MD. Convergence of peroxisome proliferator-activated receptor gamma and Foxo1 signaling pathways. J Biol Chem 2003; 278:45485-91. [PMID: 12966085 DOI: 10.1074/jbc.m309069200] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The forkhead factor Foxo1 (or FKHR) was identified in a yeast two-hybrid screen as a peroxisome proliferator-activated receptor (PPAR) gamma-interacting protein. Foxo1 antagonized PPARgamma activity and vice versa indicating that these transcription factors functionally interact in a reciprocal antagonistic manner. One mechanism by which Foxo1 antagonizes PPARgamma activity is through disruption of DNA binding as Foxo1 inhibited the DNA binding activity of a PPARgamma/retinoid X receptor alpha heterodimeric complex. The Caenorhabditis elegans nuclear hormone receptor, DAF-12, interacted with the C. elegans forkhead factor, DAF-16, paralleling the interaction between PPARgamma and Foxo1. daf-12 and daf-16 have been implicated in C. elegans insulin-like signaling pathways, and PPARgamma and Foxo1 likewise have been linked to mammalian insulin signaling pathways. These results suggest a convergence of PPARgamma and Foxo1 signaling that may play a role in insulin action and the insulinomimetic properties of PPARgamma ligands. A more general convergence of nuclear hormone receptor and forkhead factor pathways may be important for multiple biological processes and this convergence may be evolutionarily conserved.
Collapse
Affiliation(s)
- Paul Dowell
- Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
172
|
Jacobs FMJ, van der Heide LP, Wijchers PJEC, Burbach JPH, Hoekman MFM, Smidt MP. FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem 2003; 278:35959-67. [PMID: 12857750 DOI: 10.1074/jbc.m302804200] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Forkhead transcription factors of the FoxO-group are associated with cellular processes like cell cycle progression and DNA-repair. FoxO function is regulated by protein kinase B (PKB) via the phosphatidylinositol 3-kinase/PKB survival pathway. Phosphorylation of serine and threonine residues in specific PKB phosphorylation motifs leads to exclusion of FoxO-proteins from the nucleus, which excludes them from exerting transactivating activity. Members of the FoxO-group have three highly conserved regions containing a PKB phosphorylation motif. This study describes the cloning and characterization of a novel forkhead domain gene from mouse that appeared to be highly related to the FoxO group of transcription factors and was therefore designated FoxO6. The FoxO6 gene was mapped in region D1 on mouse chromosome 4. In humans, FOXO6 is located on chromosomal region 1p34.1. Embryonic expression of FoxO6 is most apparent in the developing brain, and FoxO6 is expressed in a specific temporal and spatial pattern. Therefore it is probably involved in regulation of specific cellular differentiation. In the adult animal FoxO6 expression is maintained in areas of the nucleus accumbens, cingulate cortex, parts of the amygdala, and in the hippocampus. Structure function analysis of FoxO6 compared with its group members shows that the overall homology is high, but surprisingly a highly conserved region containing multiple phosphorylation sites is lacking. In transfection studies, FoxO6 coupled to GFP showed an unexpected high nuclear localization after stimulation with growth factors, in contrast to the predominant cytosolic localization of FoxO1 and FoxO3. We also show that nuclear export of FoxO6 is mediated through the phosphatidylinositol 3-kinase/PKB pathway. Furthermore, we show using a chimeric approach that we can fully restore the ability of FoxO6 to shuttle between nucleus and cytosol. In conclusion, the data presented here gives a new view on regulation of FoxO-function through multiple phosphorylation events and other mechanisms involved in the nuclear exclusion of FoxO-proteins.
Collapse
Affiliation(s)
- Frank M J Jacobs
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
173
|
Funakoshi E, Hori T, Haraguchi T, Hiraoka Y, Kudoh J, Shimizu N, Ito F. Overexpression of the human MNB/DYRK1A gene induces formation of multinucleate cells through overduplication of the centrosome. BMC Cell Biol 2003; 4:12. [PMID: 12964950 PMCID: PMC212362 DOI: 10.1186/1471-2121-4-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Accepted: 09/10/2003] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Previously we cloned the human MNB/DYRK1A gene from the "Down syndrome critical region" on chromosome 21. This gene encodes a dual specificity protein kinase that catalyzes its autophosphorylation on serine/threonine and tyrosine residues. But, the functions of the MNB/DYRK1A gene in cellular processes are unknown. RESULTS In this study, we examined HeLa cells transfected with cDNA encoding a green fluorescent protein (GFP)-MNB/DYRK1A fusion protein and found 2 patterns of expression: In one group of transfected cells, GFP-MNB/DYRK1A was localized as dots within the nucleus; and in the other group, it was overexpressed and had accumulated all over the nucleus. In the cells overexpressing GFP-MNB/DYRK1A, multinucleation was clearly observed; whereas in those with the nuclear dots, such aberrant nuclei were not found. Furthermore, in the latter cells, essential processes such as mitosis and cytokinesis occurred normally. Multinucleation was dependent on the kinase activity of MNB/DYRK1A, because it was not observed in cells overexpressing kinase activity-negative mutants, GFP-MNB/DYRK1A (K179R) and GFP-MNB/DYRK1A (Y310F/Y312F). Immunostaining of GFP-MNB/DYRK1A-overexpressing cells with specific antibodies against alpha- and gamma-tubulin revealed that multiple copies of centrosomes and aberrant multipolar spindles were generated in these cells. CONCLUSIONS These results indicate that overexpression of MNB/DYRK1A induces multinucleation in HeLa cells through overduplication of the centrosome during interphase and production of aberrant spindles and missegregation of chromosomes during mitosis.
Collapse
Affiliation(s)
- Eishi Funakoshi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - Takamitsu Hori
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - Tokuko Haraguchi
- Kansai Advanced Research Center, Communications Research Laboratory, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
- Department of Biology, Graduate School of Science, Osaka University, 1-16 Machikaneyama, Osaka 560-0043, Japan
| | - Yasushi Hiraoka
- Kansai Advanced Research Center, Communications Research Laboratory, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
- Department of Biology, Graduate School of Science, Osaka University, 1-16 Machikaneyama, Osaka 560-0043, Japan
| | - Jun Kudoh
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobuyoshi Shimizu
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Fumiaki Ito
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| |
Collapse
|
174
|
Lochhead PA, Sibbet G, Kinstrie R, Cleghon T, Rylatt M, Morrison DK, Cleghon V. dDYRK2: a novel dual-specificity tyrosine-phosphorylation-regulated kinase in Drosophila. Biochem J 2003; 374:381-91. [PMID: 12786602 PMCID: PMC1223608 DOI: 10.1042/bj20030500] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2003] [Revised: 05/28/2003] [Accepted: 06/04/2003] [Indexed: 11/17/2022]
Abstract
Dual-specificity tyrosine-phosphorylation-regulated kinases (DYRKs) are an emerging family of protein kinases that have been identified in all eukaryotic organisms examined to date. DYRK family members are involved in regulating key developmental and cellular processes such as neurogenesis, cell proliferation, cytokinesis and cellular differentiation. Two distinct subgroups exist, nuclear and cytosolic. In Drosophila, the founding family member minibrain, whose human orthologue maps to the Down syndrome critical region, belongs to the nuclear subclass and affects post-embryonic neurogenesis. In the present paper, we report the isolation of dDYRK2, a cytosolic DYRK and the putative product of the smell-impaired smi35A gene. This is the second such kinase described in Drosophila, but the first to be characterized at the molecular and biochemical level. dDYRK2 is an 81 kDa dual-specificity kinase that autophosphorylates on tyrosine and serine/threonine residues, but appears to phosphorylate exogenous substrates only on serine/threonine residues. It contains a YXY motif in the activation loop of the kinase domain in the same location as the TXY motif in mitogen-activated protein kinases. dDYRK2 is tyrosine-phosphorylated in vivo, and mutational analysis reveals that the activation loop tyrosines are phosphorylated and are essential for kinase activity. Finally, dDYRK2 is active at all stages of fly development, with elevated levels observed during embryogenesis and pupation.
Collapse
Affiliation(s)
- Pamela A Lochhead
- The Beatson Institute for Cancer Research, Cancer Research UK, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | | | | | | | | | | |
Collapse
|
175
|
Alvarez M, Estivill X, de la Luna S. DYRK1A accumulates in splicing speckles through a novel targeting signal and induces speckle disassembly. J Cell Sci 2003; 116:3099-107. [PMID: 12799418 DOI: 10.1242/jcs.00618] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein kinase DYRK1A is distributed throughout the nucleoplasm, accumulating in speckle-like regions. We have found that this punctuated nuclear distribution is determined by the contribution of several elements. Although the nuclear import is mediated by two distinct nuclear localization signals, one at the N-terminus and the other located in the linker region, between subdomains X and XI of the catalytic domain, the accumulation in speckles that are SC35 positive depends on a sequence motif that is located C-terminal to the kinase domain and comprises a histidine tail. A similar sequence is also responsible for the targeting of cyclin T1. Therefore the histidine-rich region represents a novel splicing speckle targeting signal. Moreover, overexpression of DYRK1A induces speckle disassembly. Such disassembly is DYRK1A activity specific, since the overexpression of a DYRK1A kinase inactive mutant, the paralogous DYRK1B or a chimeric protein DYRK1B that has been directed to the speckles via the DYRK1A targeting signal, leaves the SC35 speckle pattern untouched. Thus DYRK1A protein kinase may play a role in regulating the biogenesis of the splicing speckle compartment.
Collapse
Affiliation(s)
- Monica Alvarez
- Program in Genes and Disease, Centre de Regulació Genòmica-CRG, Passeig Marítim 37-49, 08003-Barcelona, Spain
| | | | | |
Collapse
|
176
|
Kramer JM, Davidge JT, Lockyer JM, Staveley BE. Expression of Drosophila FOXO regulates growth and can phenocopy starvation. BMC DEVELOPMENTAL BIOLOGY 2003; 3:5. [PMID: 12844367 PMCID: PMC183841 DOI: 10.1186/1471-213x-3-5] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Accepted: 07/05/2003] [Indexed: 01/04/2023]
Abstract
BACKGROUND Components of the insulin signaling pathway are important regulators of growth. The FOXO (forkhead box, sub-group "O") transcription factors regulate cellular processes under conditions of low levels of insulin signaling. Studies in mammalian cell culture show that activation of FOXO transcription factors causes cell death or cell cycle arrest. The Caenorhabditis elegans homologue of FOXO, Daf-16, is required for the formation of dauer larvae in response to nutritional stress. In addition, FOXO factors have been implicated in stress resistance and longevity. RESULTS We have identified the Drosophila melanogaster homologue of FOXO (dFOXO), which is conserved in amino acid sequence compared with the mammalian FOXO homologues and Daf-16. Expression of dFOXO during early larval development causes inhibition of larval growth and alterations in feeding behavior. Inhibition of larval growth is reversible upon discontinuation of dFOXO expression. Expression of dFOXO during the third larval instar or at low levels during development leads to the generation of adults that are reduced in size. Analysis of the wings and eyes of these small flies indicates that the reduction in size is due to decreases in cell size and cell number. Overexpression of dFOXO in the developing eye leads to a characteristic phenotype with reductions in cell size and cell number. This phenotype can be rescued by co-expression of upstream insulin signaling components, dPI3K and dAkt, however, this rescue is not seen when FOXO is mutated to a constitutively active form. CONCLUSIONS dFOXO is conserved in both sequence and regulatory mechanisms when compared with other FOXO homologues. The establishment of Drosophila as a model for the study of FOXO transcription factors should prove beneficial to determining the biological role of these signaling molecules. The alterations in larval development seen upon overexpression of dFOXO closely mimic the phenotypic effects of starvation, suggesting a role for dFOXO in the response to nutritional adversity. This work has implications in the understanding of cancer and insulin related disorders, such as diabetes and obesity.
Collapse
Affiliation(s)
- Jamie M Kramer
- Department of Biology,
Memorial University of Newfoundland, St. John's, Newfoundland, (A1B
3X9), Canada
| | - Jason T Davidge
- Department of Biology,
Memorial University of Newfoundland, St. John's, Newfoundland, (A1B
3X9), Canada
| | - Joseph M Lockyer
- Department of Biology,
Memorial University of Newfoundland, St. John's, Newfoundland, (A1B
3X9), Canada
| | - Brian E Staveley
- Department of Biology,
Memorial University of Newfoundland, St. John's, Newfoundland, (A1B
3X9), Canada
| |
Collapse
|
177
|
Leder S, Czajkowska H, Maenz B, De Graaf K, Barthel A, Joost HG, Becker W. Alternative splicing variants of dual specificity tyrosine phosphorylated and regulated kinase 1B exhibit distinct patterns of expression and functional properties. Biochem J 2003; 372:881-8. [PMID: 12633499 PMCID: PMC1223441 DOI: 10.1042/bj20030182] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2003] [Revised: 03/10/2003] [Accepted: 03/13/2003] [Indexed: 01/12/2023]
Abstract
The dual specificity tyrosine phosphorylated and regulated kinase (DYRK) family of protein kinases is a group of evolutionarily conserved protein kinases that have been characterized as regulators of growth and development in mammals, Drosophila and lower eukaryotes. In the present study, we have characterized three splicing variants of DYRK1B (DYRK1B-p65, DYRK1B-p69 and DYRK1B-p75) with different expression patterns and enzymic activities. DYRK1B-p65 and DYRK1B-p69 exhibited similar, but not identical, patterns of expression in mouse tissues, with the highest protein levels found in the spleen, lung, brain, bladder, stomach and testis. In contrast, DYRK1B-p75 was detected specifically in skeletal muscles, in the neuronal cell line GT1-7 and also in differentiated, adipocyte-like 3T3-L1 cells, but not in undifferentiated 3T3-L1 preadipocytes. A comparison of the mouse and human Dyrk1b genomic and cDNA sequences defined the alternative splicing events that produce the variants of DYRK1B. In DYRK1B-p75, transcription starts with exon 1B instead of exon 1A, generating a new translation start, which extends the open reading frame by 60 codons. This gene structure suggests that alternative promoters direct the expression of DYRK1B-p69 and DYRK1B-p75. Both splicing variants exhibited kinase activity in vitro and contained phosphotyrosine when expressed in COS-7 cells. Owing to differential recognition of the 3'-splice site in exon 9, DYRK1B-p65 differs from DYRK1B-p69 by the absence of 40 amino acids within the catalytic domain. DYRK1B-p65 lacked kinase activity in vitro and did not contain phosphotyrosine. DYRK1B-p69 and DYRK1B-p75 stimulated reporter gene activity driven by the f or kh ead in r habdosarcoma (FKHR)-dependent glucose-6-phosphatase promoter more strongly when compared with DYRK1B-p65, indicating that the DYRK1B splicing variants exhibit functional differences.
Collapse
Affiliation(s)
- Susanne Leder
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät der RWTH Aachen, Wendlingweg 2, Germany
| | | | | | | | | | | | | |
Collapse
|
178
|
Burgering BMT, Medema RH. Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol 2003; 73:689-701. [PMID: 12773501 DOI: 10.1189/jlb.1202629] [Citation(s) in RCA: 322] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Forkhead transcription factors of the FOXO family are important downstream targets of protein kinase B (PKB)/Akt, a kinase shown to play a decisive role in cell proliferation and cell survival. Direct phosphorylation by PKB/Akt inhibits transcriptional activation by FOXO factors, causing their displacement from the nucleus into the cytoplasm. Work from recent years has shown that this family of transcription factors regulates the expression of a number of genes that are crucial for the proliferative status of a cell, as well as a number of genes involved in programmed cell death. As such, these transcription factors appear to play an essential role in many of the effects of PKB/Akt on cell proliferation and survival. Indeed, in cells of the hematopoietic system, mere activation of a FOXO factor is sufficient to activate a variety of proapoptotic genes and to trigger apoptosis. In contrast, in most other cell types, activation of FOXO blocks cellular proliferation and drives cells into a quiescent state. In such cell types, FOXO factors also provide the protective mechanisms that are required to adapt to the altered metabolic state of quiescent cells. Thus, as PKB/Akt signaling is switched off, FOXO factors take over to determine the fate of a cell, long-term survival in a quiescent state, or programmed cell death. This review summarizes our current understanding of the mechanisms by which PKB/Akt and FOXO factors regulate these decisions.
Collapse
Affiliation(s)
- Boudewijn M T Burgering
- Department of Physiological Chemistry and Center for Biomedical Genetics, University Medical Center Utrecht, The Netherlands.
| | | |
Collapse
|
179
|
Hirota K, Daitoku H, Matsuzaki H, Araya N, Yamagata K, Asada S, Sugaya T, Fukamizu A. Hepatocyte nuclear factor-4 is a novel downstream target of insulin via FKHR as a signal-regulated transcriptional inhibitor. J Biol Chem 2003; 278:13056-60. [PMID: 12519792 DOI: 10.1074/jbc.c200553200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that FKHR, a member of the forkhead family of transcription factors, acts as a DNA binding-independent cofactor of nuclear receptors, including estrogen, retinoid, and thyroid hormone receptors, in addition to the original function as a DNA binding transcription factor that redistributes from the nucleus to the cytoplasm by insulin-induced phosphorylation. Here, we demonstrated the physical interaction of FKHR with hepatocyte nuclear factor (HNF)-4, a member of steroid/thyroid nuclear receptor superfamily, and the repression of HNF-4 transactivation by FKHR. FKHR interacted with the DNA binding domain of HNF-4 and inhibited HNF-4 binding to the cognate DNA. Furthermore, the binding affinity of HNF-4 with phosphorylated FKHR significantly decreased in comparison to that with unphosphorylated FKHR. Therefore, a phosphorylation of FKHR by insulin followed by its dissociation from HNF-4 and the redistribution of FKHR from the nucleus to the cytoplasm would expect to induce the transcriptional activation of HNF-4 by facilitating to the access of HNF-4 to its DNA element. Indeed, most intriguingly, insulin stimulation reversed the repression of HNF-4 transcriptional activity by phosphorylation-sensitive (wild-type) FKHR, but not by phosphorylation-deficient FKHR. These results suggest that insulin regulates the transcriptional activity of HNF-4 via FKHR as a signal-regulated transcriptional inhibitor.
Collapse
Affiliation(s)
- Keiko Hirota
- Center of Tsukuba Advanced Research Alliance, Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Vander Kooi BT, Streeper RS, Svitek CA, Oeser JK, Powell DR, O'Brien RM. The three insulin response sequences in the glucose-6-phosphatase catalytic subunit gene promoter are functionally distinct. J Biol Chem 2003; 278:11782-93. [PMID: 12556524 DOI: 10.1074/jbc.m212570200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glucose-6-phosphatase catalyzes the terminal step in the gluconeogenic and glycogenolytic pathways. In HepG2 cells, the maximum repression of basal glucose-6-phosphatase catalytic subunit (G6Pase) gene transcription by insulin requires two distinct promoter regions, designated A (located between -231 and -199) and B (located between -198 and -159), that together form an insulin response unit. Region A binds hepatocyte nuclear factor-1, which acts as an accessory factor to enhance the effect of insulin, mediated through region B, on G6Pase gene transcription. We have previously shown that region B binds the transcriptional activator FKHR (FOXO1a) in vitro. Chromatin immunoprecipitation assays demonstrate that FKHR also binds the G6Pase promoter in situ and that insulin inhibits this binding. Region B contains three insulin response sequences (IRSs), designated IRS 1, 2, and 3, that share the core sequence T(G/A)TTTT. However, detailed analyses reveal that these three G6Pase IRSs are functionally distinct. Thus, FKHR binds IRS 1 with high affinity and IRS 2 with low affinity but it does not bind IRS 3. Moreover, in the context of the G6Pase promoter, IRS 1 and 2, but not IRS 3, are required for the insulin response. Surprisingly, IRS 3, as well as IRS 1 and IRS 2, can each confer an inhibitory effect of insulin on the expression of a heterologous fusion gene, indicating that, in this context, a transcription factor other than FKHR, or its orthologs, can also mediate an insulin response through the T(G/A)TTTT motif.
Collapse
Affiliation(s)
- Beth T Vander Kooi
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
181
|
Boudeau J, Deak M, Lawlor MA, Morrice NA, Alessi DR. Heat-shock protein 90 and Cdc37 interact with LKB1 and regulate its stability. Biochem J 2003; 370:849-57. [PMID: 12489981 PMCID: PMC1223241 DOI: 10.1042/bj20021813] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2002] [Revised: 12/18/2002] [Accepted: 12/19/2002] [Indexed: 12/21/2022]
Abstract
LKB1 is a widely expressed serine/threonine protein kinase that is mutated in the inherited Peutz-Jeghers cancer syndrome. Recent findings indicate that LKB1 functions as a tumour suppressor, but little is known regarding the detailed mechanism by which LKB1 regulates cell growth. In this study we have purified LKB1 from cells and establish that it is associated with the heat-shock protein 90 (Hsp90) chaperone and the Cdc37 kinase-specific targetting subunit for Hsp90. We demonstrate that Cdc37 and Hsp90 bind specifically to the kinase domain of LKB1. We also perform experiments using Hsp90 inhibitors, which indicate that the association of Hsp90 and Cdc37 with LKB1 regulates LKB1 stability and prevents its degradation by the proteasome. Hsp90 inhibitors are being considered as potential anti-cancer agents. However, our observations indicate that prolonged usage of these drugs could possibly lead to tumour development by decreasing cellular levels of LKB1.
Collapse
Affiliation(s)
- Jérôme Boudeau
- MRC Protein Phosphorylation Unit, MSI/WTB Complex, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK.
| | | | | | | | | |
Collapse
|
182
|
Tran H, Brunet A, Griffith EC, Greenberg ME. The many forks in FOXO's road. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:RE5. [PMID: 12621150 DOI: 10.1126/stke.2003.172.re5] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The FOXO family of transcription factors constitute an evolutionarily conserved subgroup within the larger family known as winged helix or Forkhead transcriptional regulators. Building upon work in the nematode, researchers have uncovered a role for these proteins in a diverse set of cellular responses that include glucose metabolism, stress response, cell cycle regulation, and apoptosis. At the organismal level, FOXO transcription factors are believed to function in various pathological processes ranging from cancer and diabetes to organismal aging. A number of studies have also shed light on the signaling pathways that regulate FOXO activity in response to external stimuli and have identified multiple FOXO target genes that mediate this varied set of biological responses.
Collapse
Affiliation(s)
- Hien Tran
- Department of Neurobiology, Division of Neuroscience, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
183
|
Ogilvie VC, Wilson BJ, Nicol SM, Morrice NA, Saunders LR, Barber GN, Fuller-Pace FV. The highly related DEAD box RNA helicases p68 and p72 exist as heterodimers in cells. Nucleic Acids Res 2003; 31:1470-80. [PMID: 12595555 PMCID: PMC149829 DOI: 10.1093/nar/gkg236] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The RNA helicases p68 and p72 are highly related members of the DEAD box family of proteins, sharing 90% identity across the conserved core, and have been shown to be involved in both transcription and mRNA processing. We previously showed that these proteins co-localise in the nucleus of interphase cells. In this study we show that p68 and p72 can interact with each other and self-associate in the yeast two-hybrid system. Co-immunoprecipitation experiments confirmed that p68 and p72 can interact in the cell and indicated that these proteins preferentially exist as hetero-dimers. In addition, we show that p68 can interact with NFAR-2, a protein that is also thought to function in mRNA processing. Moreover, gel filtration analysis suggests that p68 and p72 can exist in a variety of complexes in the cell (ranging from approximately 150 to approximately 400 kDa in size), with a subset of p68 molecules being in very large complexes (>2 MDa). The potential to exist in different complexes that may contain p68 and/or p72, together with a range of other factors, would provide the potential for these proteins to interact with different RNA substrates and would be consistent with recent reports implying a wide range of functions for p68/p72.
Collapse
Affiliation(s)
- V C Ogilvie
- Department of Molecular and Cellular Pathology, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | | | | | | | | | | | | |
Collapse
|
184
|
Martí E, Altafaj X, Dierssen M, de la Luna S, Fotaki V, Alvarez M, Pérez-Riba M, Ferrer I, Estivill X. Dyrk1A expression pattern supports specific roles of this kinase in the adult central nervous system. Brain Res 2003; 964:250-63. [PMID: 12576186 DOI: 10.1016/s0006-8993(02)04069-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dyrk1A and its Drosophila orthologue, the protein minibrain (mnb), belong to a family of serine/threonine kinases involved in the development of the central nervous system (CNS). However, additional roles for Dyrk1A have to be proposed, as its expression is still prominent in the adult brain. To gain insight into Dyrk1A physiological roles we have studied the distribution of this kinase in the CNS of mice in adulthood. A homogeneous diffuse immunostaining of variable intensity was detected throughout the neuropile, with the white matter displaying faint Dyrk1A immunoreactivity. Dyrk1A immunostaining was strong in the olfactory bulb, the cerebellar cortex and functionally related structures, the spinal cord and most of the motor nuclei of the midbrain and brain stem. These data agree with a possible implication of this kinase in the physiology of olfaction and motor functions. Cellular and subcellular localisation of Dyrk1A was also studied in primary cell culture of cerebellum, one of the structures showing significant Dyrk1A immunostaining in the adult. The distribution of Dyrk1A in primary cell culture showed the presence of this protein in the nucleus and the cytoplasm of both neurons and astrocytes. Moreover, studies on the subcellular distribution of Dyrk1A in whole brain homogenates of adult mice showed the presence of this protein both in nuclear and cytoplasm-enriched fractions, thus supporting selective functions of this kinase in these two subcellular compartments. The present results showing the distribution of Dyrk1A in widespread areas of the adult CNS and in different subcellular compartments, together with previous reports demonstrating its implication in developmental events concur with the idea of several spatio-temporal functional profiles.
Collapse
Affiliation(s)
- Eulàlia Martí
- Program in Genes and Disease, Centre de Regulació Genòmica-CRG, Passeig Marítim 37-49, 08003, Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
von Groote-Bidlingmaier F, Schmoll D, Orth HM, Joost HG, Becker W, Barthel A. DYRK1 is a co-activator of FKHR (FOXO1a)-dependent glucose-6-phosphatase gene expression. Biochem Biophys Res Commun 2003; 300:764-9. [PMID: 12507516 DOI: 10.1016/s0006-291x(02)02914-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Expression of glucose-6-phosphatase (G6Pase), one of the rate-limiting enzymes of hepatic gluconeogenesis, has recently been shown to be transactivated by the transcription factor FKHR. One of the proteins known to directly interact with FKHR is the nuclear protein kinase DYRK1A. In order to study the effects of DYRK1A on G6Pase gene expression, we generated a H4IIEC3 rat hepatoma cell line stably expressing DYRK1A by retroviral infection. Overexpression of DYRK1A increased the expression of G6Pase about threefold, as determined by Northern blotting. In transiently transfected HepG2 cells, co-expression of DYRK1A and a G6Pase promoter construct increased G6Pase promoter activity about twofold. This effect of DYRK1A was independent of its kinase activity, since a kinase-dead DYRK1A mutant as well as a point mutant of the phosphorylation site of DYRK1A in FKHR (Ser329Ala) failed to affect the effect of DYRK1A on the G6Pase expression. The effect of DYRK on the G6Pase promoter activity was produced by the isoforms DYRK1A and DYRK1B, which are localized in the nucleus, but not by DYRK2. Mutations of the FKHR-binding sites in the G6Pase promoter markedly reduced the effect of DYRK1 on the G6Pase promoter activity. In summary, the data suggest that DYRK1 is a specific co-activator of FKHR, independent of its kinase activity.
Collapse
|
186
|
Abstract
The function of many key proteins and transcription factors involved in cell growth can be regulated by their cellular localization. Such proteins include the tumor suppressor p53 and the nuclear factor kappaB. Although the idea of trapping such proteins in either the nucleus or cytoplasm has been introduced as a potential therapeutic target, only two nuclear transport inhibitors have been reported. Here, we explore the roles of small-molecule inhibitors that cause target proteins to sequester in either the nucleus or cytoplasm. Methods of artificially targeting proteins to the nucleus or cytoplasm using peptide aptamer technology are also discussed.
Collapse
Affiliation(s)
- Tweeny R Kau
- Dept of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Dept of Cancer Biology, The Dana Farber Cancer Institute, Boston, MA 02115, USA
| | | |
Collapse
|
187
|
Branchi I, Bichler Z, Berger-Sweeney J, Ricceri L. Animal models of mental retardation: from gene to cognitive function. Neurosci Biobehav Rev 2003; 27:141-53. [PMID: 12732230 DOI: 10.1016/s0149-7634(03)00016-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
About 2-3% of all children are affected by mental retardation, and genetic conditions rank among the leading causes of mental retardation. Alterations in the information encoded by genes that regulate critical steps of brain development can disrupt the normal course of development, and have profound consequences on mental processes. Genetically modified mouse models have helped to elucidate the contribution of specific gene alterations and gene-environment interactions to the phenotype of several forms of mental retardation. Mouse models of several neurodevelopmental pathologies, such as Down and Rett syndromes and X-linked forms of mental retardation, have been developed. Because behavior is the ultimate output of brain, behavioral phenotyping of these models provides functional information that may not be detectable using molecular, cellular or histological evaluations. In particular, the study of ontogeny of behavior is recommended in mouse models of disorders having a developmental onset. Identifying the role of specific genes in neuropathologies provides a framework in which to understand key stages of human brain development, and provides a target for potential therapeutic intervention.
Collapse
Affiliation(s)
- Igor Branchi
- Section of Behavioural Pathophysiology, Laboratorio di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy.
| | | | | | | |
Collapse
|
188
|
Ewton DZ, Lee K, Deng X, Lim S, Friedman E. Rapid turnover of cell-cycle regulators found in Mirk/dyrk1B transfectants. Int J Cancer 2003; 103:21-8. [PMID: 12455049 DOI: 10.1002/ijc.10743] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mirk/dyrk1B is an arginine-directed protein kinase, which functions as a transcriptional activator and mediates serum-free growth of colon carcinoma cells by an unknown mechanism. We now report that turnover of the cdk inhibitor p27(kip1) and the G(1)-phase cyclin cyclin D1 is enhanced in each of 4 Mirk stable transfectants compared to vector control transfectants and Mirk kinase-inactive mutant transfectants. This enhanced turnover is proteasome-dependent and leads to lower protein levels of both p27(kip1) and cyclin D1. Lower protein levels of the cdk inhibitor p21(cip1) were also observed in the 4 Mirk stable transfectants. Mirk did not alter the activity of a p27(kip1) promoter construct or p27(kip1) mRNA levels by stable expression, indicating that the decrease in p27(kip1) protein levels was due to a posttranscriptional mechanism. These data are consistent with mirk enhancing the expression of some component common to the proteolysis of both p27(kip1) and cyclin D1.
Collapse
Affiliation(s)
- Daina Z Ewton
- Pathology Department, Upstate Medical University, State University of New York, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
189
|
Galceran J, de Graaf K, Tejedor FJ, Becker W. The MNB/DYRK1A protein kinase: genetic and biochemical properties. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2003:139-48. [PMID: 15068246 DOI: 10.1007/978-3-7091-6721-2_12] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The "Down syndrome critical region" of human chromosome 21 has been defined based on the analysis of rare cases of partial trisomy 21. Evidence is accumulating that DYRK1A, one of the 20 genes located in this region, is an important candidate gene involved in the neurobiological alterations of Down syndrome. Both the structure of the DYRK1A gene and the sequence of the encoded protein kinase are highly conserved in evolution. The protein contains a unique assembly of structural motifs outside the catalytic domain, including a nuclear localization signal, a PEST region, and a repeat of 13 consecutive histidines. MNB/DYRK1A and related kinases are unique among serine/threonine-specific protein kinases in that their activity depends on tyrosine autophosphorylation in the catalytic domain. Also, evidence is accumulating that mRNA levels of MNB/DYRK1A are subject to tight regulation. A number of putative substrates of MNB/DYRK1A have emerged in the recent years, the majority of them being transcription factors. Although the function of MNB/DYRK1A in intracellular signalling and regulation of cell function is still poorly defined, current evidence suggests that the kinase may play a role in the regulation of gene expression.
Collapse
Affiliation(s)
- J Galceran
- Instituto de Neurociencias, Unidad de Neurobiologia del Desarrollo, CSIC y Universidad Miguel Hernandez, Campus de San Juan, San Juan (Alicante), Spain
| | | | | | | |
Collapse
|
190
|
Li K, Zhao S, Karur V, Wojchowski DM. DYRK3 activation, engagement of protein kinase A/cAMP response element-binding protein, and modulation of progenitor cell survival. J Biol Chem 2002; 277:47052-60. [PMID: 12356771 DOI: 10.1074/jbc.m205374200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DYRKs are a new family of dual-specificity tyrosine-regulated kinases with emerging roles in cell growth and development. Recently, we discovered that DYRK3 is expressed primarily in erythroid progenitor cells and modulates late erythropoiesis. We now describe 1) roles for the DYRK3 YTY signature motif in kinase activation, 2) the coupling of DYRK3 to cAMP response element (CRE)-binding protein (CREB), and 3) effects of DYRK3 on hematopoietic progenitor cell survival. Regarding the DYRK3 kinase domain, intactness of Tyr(333) (but not Tyr(331)) within subdomain loop VII-VIII was critical for activation. Tyr(331) plus Tyr(333) acidification (Tyr mutated to Glu) was constitutively activating, but kinase activity was not affected substantially by unique N- or C-terminal domains. In transfected 293 and HeLa cells, DYRK3 was discovered to efficiently stimulate CRE-luciferase expression, to activate a CREB-Gal4 fusion protein, and to promote CREB phosphorylation at Ser(133). Interestingly, this CREB/CRE response was also supported (50% of wild-type activity) by a kinase-inactive DYRK3 mutant as well as a DYRK3 C-terminal region and was blocked by protein kinase A inhibitors, suggesting functional interactions between protein kinase A and DYRK3. Finally, DYRK3 expression in cytokine-dependent hematopoietic FDCW2 cells was observed to inhibit programmed cell death. Thus, primary new insight into DYRK3 kinase signaling routes, subdomain activities, and possible biofunctions is provided.
Collapse
Affiliation(s)
- Ke Li
- Immunobiology Program and the Department of Veterinary Science, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
191
|
Mao J, Maye P, Kogerman P, Tejedor FJ, Toftgard R, Xie W, Wu G, Wu D. Regulation of Gli1 transcriptional activity in the nucleus by Dyrk1. J Biol Chem 2002; 277:35156-61. [PMID: 12138125 DOI: 10.1074/jbc.m206743200] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To investigate the cellular role of dual specificity Yak1-related kinase (Dyrk) 1, a nuclear localized dual specificity protein kinase, we examined its effect on transcriptional regulation using reporter gene assays. We found that Dyrk1 can substantially enhance Gli1-dependent, but not LEF-1-, c-Jun-, or Elk-dependent, gene transcription. In part, Dyrk1 does this through retaining Gli1 in the nucleus. However, we also demonstrate that Dyrk1 can enhance the transcriptional activity of Gli1-AHA, a nuclear export mutant, suggesting that Dyrk1 may be more directly involved in regulating the transcriptional activity of Gli1. In addition, Dyrk1 acted synergistically with Sonic hedgehog (Shh) to induce gene transcription and differentiation in mouse C3H10T1/2 cells. The failure of Shh to stimulate Dyrk1 kinase activity suggests that Dyrk1 may not be directly regulated by the Shh signaling pathway but functionally interacts with it. Thus, Gli1 transcriptional activity may be subjected to further regulation in the cell nucleus by a pathway distinct from Shh signaling, one mediated by Dyrk1.
Collapse
Affiliation(s)
- Junhao Mao
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Campbell DG, Morrice NA. Identification of protein phosphorylation sites by a combination of mass spectrometry and solid phase Edman sequencing. J Biomol Tech 2002; 13:119-130. [PMID: 19498976 PMCID: PMC2279855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The analysis of protein phosphorylation sites is one of the major challenges in the post-genomic age. To understand the role of reversible phosphorylation in cell signaling, the precise location of phosphorylation sites must be determined in a phosphoprotein as well as the effect that these post-translational modifications have on the function of the protein. The use of solid phase Edman degradation of (32)P-labeled phosphoproteins and peptides was described over 10 years ago as a method for the identification of phosphorylation sites. Since that time a number of laboratories have used this technique as the standard method for phosphorylation site analysis. In this report, we will describe how we routinely use this technology to perform hundreds of successful phosphorylation site analyses per annum. By combining mass spectrometry to identify the phosphopeptide and solid phase Edman degradation to localize the site of phosphorylation, subpmole quantities of phosphopeptides can be successfully characterized.
Collapse
Affiliation(s)
- David G Campbell
- MRC Protein Phosphorylation Unit, University of Dundee, Dundee, Scotland
| | | |
Collapse
|
193
|
Fotaki V, Dierssen M, Alcántara S, Martínez S, Martí E, Casas C, Visa J, Soriano E, Estivill X, Arbonés ML. Dyrk1A haploinsufficiency affects viability and causes developmental delay and abnormal brain morphology in mice. Mol Cell Biol 2002; 22:6636-47. [PMID: 12192061 PMCID: PMC135639 DOI: 10.1128/mcb.22.18.6636-6647.2002] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Revised: 06/03/2002] [Accepted: 06/13/2002] [Indexed: 11/20/2022] Open
Abstract
DYRK1A is the human orthologue of the Drosophila minibrain (mnb) gene, which is involved in postembryonic neurogenesis in flies. Because of its mapping position on chromosome 21 and the neurobehavioral alterations shown by mice overexpressing this gene, involvement of DYRK1A in some of the neurological defects of Down syndrome patients has been suggested. To gain insight into its physiological role, we have generated mice deficient in Dyrk1A function by gene targeting. Dyrk1A(-/-) null mutants presented a general growth delay and died during midgestation. Mice heterozygous for the mutation (Dyrk1A(+/-)) showed decreased neonatal viability and a significant body size reduction from birth to adulthood. General neurobehavioral analysis revealed preweaning developmental delay of Dyrk1A(+/-) mice and specific alterations in adults. Brains of Dyrk1A(+/-) mice were decreased in size in a region-specific manner, although the cytoarchitecture and neuronal components in most areas were not altered. Cell counts showed increased neuronal densities in some brain regions and a specific decrease in the number of neurons in the superior colliculus, which exhibited a significant size reduction. These data provide evidence about the nonredundant, vital role of Dyrk1A and suggest a conserved mode of action that determines normal growth and brain size in both mice and flies.
Collapse
Affiliation(s)
- Vassiliki Fotaki
- Medical and Molecular Genetics Center, Institut de Recerca Oncològica, 08907-L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Abstract
The FOXO family of Forkhead transcription factors, FKHR (FOXO1), FKHR-L1 (FOXO3a) and AFX (FOXO4), are regulated by the phosphoinositide-3-kinase-protein-kinase-B (PI3K-PKB/c-Akt) pathway. Direct phosphorylation by PKB results in cytoplasmic retention and inactivation, inhibiting the expression of FOXO-regulated genes, which control the cell cycle, cell death, cell metabolism and oxidative stress. This pathway appears to be well conserved throughout evolution. In the nematode Caenorhabditis elegans, it affects lifespan and controls dauer formation. Recent discoveries about FOXO regulation by PI3K-PKB signalling suggest that the PI3K-PKB-FOXO pathway might participate in similar processes in higher eukaryotes.
Collapse
Affiliation(s)
- Boudewijn M T Burgering
- Dept Physiological Chemistry and Centre for Biomedical Genetics, University Medical Centre Utrecht, Stratenum, The Netherlands.
| | | |
Collapse
|
195
|
Chen-Hwang MC, Chen HR, Elzinga M, Hwang YW. Dynamin is a minibrain kinase/dual specificity Yak1-related kinase 1A substrate. J Biol Chem 2002; 277:17597-604. [PMID: 11877424 DOI: 10.1074/jbc.m111101200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The minibrain kinase (Mnbk)/dual specificity Yak 1-related kinase 1A (Dyrk1A) gene is implicated in the mental retardation associated with Down's syndrome. It encodes a proline-directed serine/threonine kinase whose function has yet to be defined. We have used a solid-phase Mnbk/Dyrk1A kinase assay to aid in the search for the cellular Mnbk/Dyrk1A substrates. The assay revealed that rat brain contains two cytosolic proteins, one with a molecular mass of 100 kDa and one with a molecular mass of 140 kDa, that were prominently phosphorylated by Mnbk/Dyrk1A. The 100-kDa protein was purified and identified as dynamin 1. The conclusion was further supported by evidence that a recombinant glutathione S-transferase fusion protein containing dynamin isoform 1aa was phosphorylated by Mnbk/Dyrk1A. In addition to isoform 1aa, Mnbk/Dyrk1A also phosphorylated isoforms 1ab and 2aa but not human MxA protein when analyzed by the solid-phase kinase assay. Upon Mnbk/Dyrk1A phosphorylation, the interaction of dynamin 1 with the Src homology 3 domain of amphiphysin 1 was reduced. However, when Mnbk/Dyrk1A phosphorylation was allowed to proceed more extensively, the phosphorylation enhanced rather than reduced the binding of dynamin 1 to amphiphysin 1. The result suggests that Mnbk/Dyrk1A can play a dual role in regulating the interaction of dynamin 1 with amphiphysin 1. Mnbk/Dyrk1A phosphorylation also reduced the interaction of dynamin with endophilin 1, whereas the same phosphorylation enhanced the binding of dynamin 1 to Grb2. Nevertheless, the dual function of Mnbk/Dyrk1A phosphorylation was not observed for the interaction of dynamin 1 with endophilin 1 or Grb2. The interactions of dynamin with amphiphysin and endophilin are essential for the formation of endocytic complexes; our results suggest that Mnbk/Dyrk1A may function as a regulator controlling the assembly of endocytic apparatus.
Collapse
Affiliation(s)
- Mo-Chou Chen-Hwang
- Molecular Biology Department, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA
| | | | | | | |
Collapse
|
196
|
Rena G, Woods YL, Prescott AR, Peggie M, Unterman TG, Williams MR, Cohen P. Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. EMBO J 2002; 21:2263-71. [PMID: 11980723 PMCID: PMC125977 DOI: 10.1093/emboj/21.9.2263] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2001] [Revised: 03/04/2002] [Accepted: 03/04/2002] [Indexed: 11/12/2022] Open
Abstract
FKHR is phosphorylated by protein kinase B (PKB) at Thr24, Ser256 and Ser319 in response to growth factors, stimulating the nuclear exit and inactivation of this transcription factor. Here we identify two further residues, Ser322 and Ser325, that become phosphorylated in insulin-like growth factor-1 (IGF-1)-stimulated cells and which are mediated by the phosphatidylinositol 3-kinase-dependent PKB-catalysed phosphorylation of Ser319. Phosphorylation of Ser319 forms a consensus sequence for phosphorylation by CK1, allowing it to phosphorylate Ser322, which in turn primes the CK1-catalysed phosphorylation of Ser325. IGF-1 stimulates the phosphorylation of Thr24, Ser256, Ser319, Ser322 and Ser325 in embryonic stem (ES) cells, but not in PDK1-/- ES cells, providing genetic evidence that PDK1 (the upstream activator of PKB) is required for the phosphorylation of FKHR in mammalian cells. In contrast, the phosphorylation of Ser329 is unaffected by IGF-1 and the phosphorylation of this site is not decreased in PDK1-/- ES cells. The cluster of phosphorylation sites at Ser319, Ser322, Ser325 and Ser329 appears to accelerate nuclear export by controlling the interaction of FKHR with the Ran-containing protein complex that mediates this process.
Collapse
Affiliation(s)
- Graham Rena
- MRC Protein Phosphorylation Unit, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dow Street, Dundee DD1 5EH, UK and
University of Illinois College of Medicine at Chicago and Chicago Veterans Healthcare System (West Side Division), Chicago, IL 60612, USA Present address: Department of Surgery and Oncology, University of Dundee Medical School, Ninewells Hospital, Dundee, UK Corresponding author e.mail:
| | - Yvonne L. Woods
- MRC Protein Phosphorylation Unit, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dow Street, Dundee DD1 5EH, UK and
University of Illinois College of Medicine at Chicago and Chicago Veterans Healthcare System (West Side Division), Chicago, IL 60612, USA Present address: Department of Surgery and Oncology, University of Dundee Medical School, Ninewells Hospital, Dundee, UK Corresponding author e.mail:
| | | | | | - Terry G. Unterman
- MRC Protein Phosphorylation Unit, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dow Street, Dundee DD1 5EH, UK and
University of Illinois College of Medicine at Chicago and Chicago Veterans Healthcare System (West Side Division), Chicago, IL 60612, USA Present address: Department of Surgery and Oncology, University of Dundee Medical School, Ninewells Hospital, Dundee, UK Corresponding author e.mail:
| | | | | |
Collapse
|
197
|
Fagerholm S, Morrice N, Gahmberg CG, Cohen P. Phosphorylation of the cytoplasmic domain of the integrin CD18 chain by protein kinase C isoforms in leukocytes. J Biol Chem 2002; 277:1728-38. [PMID: 11700305 DOI: 10.1074/jbc.m106856200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CD11/CD18 (beta(2)) integrins are leukocyte-specific adhesion receptors, and their ability to bind ligands on other cells can be activated by extracellular stimuli. During cell activation, the CD18 chain is known to become phosphorylated on serine and functionally important threonine residues located in the intracellular C-terminal tail. Here, we identify catalytic domain fragments of protein kinase C (PKC) delta and PKCbetaI/II as the major protein kinases in leukocyte extracts that phosphorylate a peptide corresponding to the cytoplasmic tail of the integrin CD18 chain. The sites phosphorylated in vitro were identified as Ser-745 and Thr-758. PKCalpha and PKCeta also phosphorylated these residues, and PKCalpha additionally phosphorylated Thr-760. Ser-745, a novel site, was shown to become phosphorylated in T cells in response to phorbol ester stimulation. Ser-756, a residue not phosphorylated by PKC isoforms, also became phosphorylated in T cells after phorbol ester stimulation. When leukocyte extracts were subjected to affinity chromatography on agarose to which residues 751-761 of the CD18 chain phosphorylated at Thr-758 were bound covalently, the only proteins that bound specifically were identified as isoforms of 14-3-3 proteins. Thus, PKC-mediated phosphorylation of CD18 after cell stimulation could lead to the recruitment of 14-3-3 proteins to the activated integrin, which may play a role in regulating its adhesive state or ability to signal.
Collapse
Affiliation(s)
- Susanna Fagerholm
- MRC Protein Phosphorylation Unit, MSI/WTB Complex, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
198
|
Campbell LE, Proud CG. Differing substrate specificities of members of the DYRK family of arginine-directed protein kinases. FEBS Lett 2002; 510:31-6. [PMID: 11755526 DOI: 10.1016/s0014-5793(01)03221-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The mammalian DYRK (dual specificity tyrosine phosphorylated and regulated kinase) family of protein kinases comprises a number of related, but poorly understood enzymes. DYRK1A is nuclear while DYRKs 2 and 3 are cytoplasmic. We recently showed that DYRK2 phosphorylates the translation initiation factor eIF2B at Ser539 in its epsilon-subunit and thereby "primes" its phosphorylation by glycogen synthase kinase-3. Here we have used peptides based on the sequence around Ser539 to help define the specificity of DYRK2/3 in comparison with DYRK1A. These kinases require an arginine N-terminal to the target residue for efficient substrate phosphorylation. This cannot be replaced even by lysine. A peptide with arginine at -2 is phosphorylated much less well by all three kinases than one with arginine at -3. Replacement of the +1 proline by alanine almost completely eliminates substrate phosphorylation, but valine here does allow phosphorylation especially by DYRK2. This study reveals both similarities and differences in the specificities of these arginine-dependent protein kinases.
Collapse
Affiliation(s)
- Linda E Campbell
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | |
Collapse
|
199
|
Himpel S, Panzer P, Eirmbter K, Czajkowska H, Sayed M, Packman LC, Blundell T, Kentrup H, Grötzinger J, Joost HG, Becker W. Identification of the autophosphorylation sites and characterization of their effects in the protein kinase DYRK1A. Biochem J 2001; 359:497-505. [PMID: 11672423 PMCID: PMC1222170 DOI: 10.1042/0264-6021:3590497] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein kinases of the DYRK ('dual-specificity tyrosine-regulated kinase') family are characterized by a conserved Tyr-Xaa-Tyr motif (Tyr-319-Tyr-321) in a position exactly corresponding to the activation motif of the mitogen-activated protein kinase (MAP kinase) family (Thr-Xaa-Tyr). In a molecular model of the catalytic domain of DYRK1A, the orientation of phosphorylated Tyr-321 is strikingly similar to that of Tyr-185 in the known structure of the activated MAP kinase, extracellular-signal-regulated kinase 2. Consistent with our model, substitution of Tyr-321 but not of Tyr-319 by phenylalanine markedly reduced the enzymic activity of recombinant DYRK1A expressed in either Escherichia coli or mammalian cells. Direct identification of phosphorylated residues by tandem MS confirmed that Tyr-321, but not Tyr-319, was phosphorylated. When expressed in COS-7 cells, DYRK1A was found to be fully phosphorylated on Tyr-321. A catalytically inactive mutant of DYRK1A contained no detectable phosphotyrosine, indicating that Tyr-321 is autophosphorylated by DYRK1A. MS identified Tyr-111 and Ser-97 as additional autophosphorylation sites in the non-catalytic N-terminal domain of bacterially expressed DYRK1A. Enzymic activity was not affected in the DYRK1A-Y111F mutant. The present experimental data and the molecular model indicate that the activity of DYRK1A is dependent on the autophosphorylation of a conserved tyrosine residue in the activation loop.
Collapse
Affiliation(s)
- S Himpel
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät der RWTH Aachen, Wendlingweg 2, D-52057 Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Woods YL, Cohen P, Becker W, Jakes R, Goedert M, Wang X, Proud CG. The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bepsilon at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochem J 2001; 355:609-15. [PMID: 11311121 PMCID: PMC1221774 DOI: 10.1042/bj3550609] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The substrate specificity of glycogen synthase kinase 3 (GSK3) is unusual in that efficient phosphorylation only occurs if another phosphoserine or phosphothreonine residue is already present four residues C-terminal to the site of GSK3 phosphorylation. One such substrate is the epsilon-subunit of rat eukaryotic protein-synthesis initiation factor 2B (eIF2Bepsilon), which is inhibited by the GSK3-catalysed phosphorylation of Ser(535). There is evidence that GSK3 is only able to phosphorylate eIF2Bepsilon at Ser(535) if Ser(539) is already phosphorylated by another protein kinase. However, no protein kinases capable of phosphorylating Ser(539) have so far been identified. Here we show that Ser(539) of eIF2Bepsilon, which is followed by proline, is phosphorylated specifically by two isoforms of dual-specificity tyrosine phosphorylated and regulated kinase (DYRK2 and DYRK1A), but only weakly or not at all by other 'proline-directed' protein kinases tested. We also establish that phosphorylation of Ser(539) permits GSK3 to phosphorylate Ser(535) in vitro and that eIF2Bepsilon is highly phosphorylated at Ser(539) in vivo. The DYRK isoforms also phosphorylate human microtubule-associated protein tau at Thr(212) in vitro, a residue that is phosphorylated in foetal tau and hyperphosphorylated in filamentous tau from Alzheimer's-disease brain. Phosphorylation of Thr(212) primes tau for phosphorylation by GSK3 at Ser(208) in vitro, suggesting a more general role for DYRK isoforms in priming phosphorylation of GSK3 substrates.
Collapse
Affiliation(s)
- Y L Woods
- MRC Protein Phosphorylation Unit, School of Life Sciences, MSI/WTB Complex, Dow Street, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | | | | | | | | | | | | |
Collapse
|