151
|
Lagarde J, Sarazin M, Bottlaender M. In vivo PET imaging of neuroinflammation in Alzheimer's disease. J Neural Transm (Vienna) 2017; 125:847-867. [PMID: 28516240 DOI: 10.1007/s00702-017-1731-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/01/2017] [Indexed: 12/15/2022]
Abstract
Increasing evidence suggests that neuroinflammation contributes to the pathophysiology of many neurodegenerative diseases, especially Alzheimer's disease (AD). Molecular imaging by PET may be a useful tool to assess neuroinflammation in vivo, thus helping to decipher the complex role of inflammatory processes in the pathophysiology of neurodegenerative diseases and providing a potential means of monitoring the effect of new therapeutic approaches. For this objective, the main target of PET studies is the 18 kDa translocator protein (TSPO), as it is overexpressed by activated microglia. In the present review, we describe the most widely used PET tracers targeting the TSPO, the methodological issues in tracer quantification and summarize the results obtained by TSPO PET imaging in AD, as well as in neurodegenerative disorders associated with AD, in psychiatric disorders and ageing. We also briefly describe alternative PET targets and imaging modalities to study neuroinflammation. Lastly, we question the meaning of PET imaging data in the context of a highly complex and multifaceted role of neuroinflammation in neurodegenerative diseases. This overview leads to the conclusion that PET imaging of neuroinflammation is a promising way of deciphering the enigma of the pathophysiology of AD and of monitoring the effect of new therapies.
Collapse
Affiliation(s)
- Julien Lagarde
- Unit of Neurology of Memory and Language, Centre de Psychiatrie et Neurosciences, INSERM UMR S894, Centre Hospitalier Sainte-Anne and Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - Marie Sarazin
- Unit of Neurology of Memory and Language, Centre de Psychiatrie et Neurosciences, INSERM UMR S894, Centre Hospitalier Sainte-Anne and Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - Michel Bottlaender
- UNIACT, NeuroSpin, Institut d'Imagerie Biomédicale, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, 91191, Gif-sur-Yvette, France. .,Laboratoire Imagerie Moléculaire in Vivo, UMR 1023, Service Hospitalier Frédéric Joliot, Institut d'Imagerie Biomédicale, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, 91400, Orsay, France.
| |
Collapse
|
152
|
Cerami C, Iaccarino L, Perani D. Molecular Imaging of Neuroinflammation in Neurodegenerative Dementias: The Role of In Vivo PET Imaging. Int J Mol Sci 2017; 18:ijms18050993. [PMID: 28475165 PMCID: PMC5454906 DOI: 10.3390/ijms18050993] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022] Open
Abstract
Neurodegeneration elicits neuroinflammatory responses to kill pathogens, clear debris and support tissue repair. Neuroinflammation is a dynamic biological response characterized by the recruitment of innate and adaptive immune system cells in the site of tissue damage. Resident microglia and infiltrating immune cells partake in the restoration of central nervous system homeostasis. Nevertheless, their activation may shift to chronic and aggressive responses, which jeopardize neuron survival and may contribute to the disease process itself. Positron Emission Tomography (PET) molecular imaging represents a unique tool contributing to in vivo investigating of neuroinflammatory processes in patients. In the present review, we first provide an overview on the molecular basis of neuroinflammation in neurodegenerative diseases with emphasis on microglia activation, astrocytosis and the molecular targets for PET imaging. Then, we review the state-of-the-art of in vivo PET imaging for neuroinflammation in dementia conditions associated with different proteinopathies, such as Alzheimer’s disease, frontotemporal lobar degeneration and Parkinsonian spectrum.
Collapse
Affiliation(s)
- Chiara Cerami
- Clinical Neuroscience Department, San Raffaele Turro Hospital, Milan 20121-20162, Italy.
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20121-20162, Italy.
| | - Leonardo Iaccarino
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20121-20162, Italy.
- Faculty of Psychology and Molecular Medicine Doctoral Course, Vita-Salute San Raffaele University, Milan 20121-20162, Italy.
| | - Daniela Perani
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20121-20162, Italy.
- Faculty of Psychology and Molecular Medicine Doctoral Course, Vita-Salute San Raffaele University, Milan 20121-20162, Italy.
- Nuclear Medicine Unit, San Raffaele Hospital, Milan 20121-20162, Italy.
| |
Collapse
|
153
|
Iaccarino L, Moresco RM, Presotto L, Bugiani O, Iannaccone S, Giaccone G, Tagliavini F, Perani D. An In Vivo 11C-(R)-PK11195 PET and In Vitro Pathology Study of Microglia Activation in Creutzfeldt-Jakob Disease. Mol Neurobiol 2017; 55:2856-2868. [PMID: 28455699 DOI: 10.1007/s12035-017-0522-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/06/2017] [Indexed: 01/08/2023]
Abstract
Microgliosis is part of the immunobiology of Creutzfeldt-Jakob disease (CJD). This is the first report using 11C-(R)-PK11195 PET imaging in vivo to measure 18 kDa translocator protein (TSPO) expression, indexing microglia activation, in symptomatic CJD patients, followed by a postmortem neuropathology comparison. One genetic CJD (gCJD) patient, two sporadic CJD (sCJD) patients, one variant CJD (vCJD) patient (mean ± SD age, 47.50 ± 15.95 years), and nine healthy controls (mean ± SD age, 44.00 ± 11.10 years) were included in the study. TSPO binding potentials were estimated using clustering and parametric analyses of reference regions. Statistical comparisons were run at the regional and at the voxel-wise levels. Postmortem evaluation measured scrapie prion protein (PrPSc) immunoreactivity, neuronal loss, spongiosis, astrogliosis, and microgliosis. 11C-(R)-PK11195-PET showed a significant TSPO overexpression at the cortical level in the two sCJD patients, as well as thalamic and cerebellar involvement; very limited parieto-occipital activation in the gCJD case; and significant increases at the subcortical level in the thalamus, basal ganglia, and midbrain and in the cerebellum in the vCJD brain. Along with misfolded prion deposits, neuropathology in all patients revealed neuronal loss, spongiosis and astrogliosis, and a diffuse cerebral and cerebellar microgliosis which was particularly dense in thalamic and basal ganglia structures in the vCJD brain. These findings confirm significant microgliosis in CJD, which was variably modulated in vivo and more diffuse at postmortem evaluation. Thus, TSPO overexpression in microglia activation, topography, and extent can vary in CJD subtypes, as shown in vivo, possibly related to the response to fast apoptotic processes, but reaches a large amount at the final disease course.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Rosa Maria Moresco
- Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.,IBFM-CNR, Via F.lli Cervi 93, Segrate, 20090, Milan, Italy.,Department of Health Sciences, University of Milan Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126, Milan, Italy
| | - Luca Presotto
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.,Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Orso Bugiani
- IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133, Milan, Italy
| | - Sandro Iannaccone
- Neurological Rehabilitation Unit, Clinical Neurosciences Department, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy
| | - Giorgio Giaccone
- IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133, Milan, Italy
| | - Fabrizio Tagliavini
- IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133, Milan, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy. .,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy. .,Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
154
|
Alam MM, Lee J, Lee SY. Recent Progress in the Development of TSPO PET Ligands for Neuroinflammation Imaging in Neurological Diseases. Nucl Med Mol Imaging 2017; 51:283-296. [PMID: 29242722 DOI: 10.1007/s13139-017-0475-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/08/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is heavily associated with various neurological diseases including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and stroke. It is strongly characterized by the activation of microglia which can be visualized using position emission tomography (PET). Traditionally, translocator protein 18 kDa (TSPO) has been the preferred target for imaging the inflammatory progression of the microglial component. TSPO is expressed in the outer mitochondrial membrane and present in very low concentrations in the healthy human brain, but is markedly upregulated in response to brain injury and inflammation. Due to its value as a marker of microglial activation and subsequent utility for evaluating neuroinflammation in CNS disorders, several classes of TSPO radioligands have been developed and evaluated. However, the application of these second-generation TSPO radiotracers has been subject to several limiting factors, including a polymorphism that affects TSPO binding. This review focuses on recent developments in TSPO imaging, as well as current limitations and suggestions for future directions from a medical imaging perspective.
Collapse
Affiliation(s)
- Md Maqusood Alam
- Neuroscience Research Institute, Gachon University, Incheon, 20565 South Korea
| | - Jihye Lee
- Neuroscience Research Institute, Gachon University, Incheon, 20565 South Korea
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon, 20565 South Korea.,Department of Neuroscience, College of Medicine, Gachon University, Incheon, 21936 South Korea
| |
Collapse
|
155
|
Howes OD, McCutcheon R. Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Transl Psychiatry 2017; 7:e1024. [PMID: 28170004 PMCID: PMC5438023 DOI: 10.1038/tp.2016.278] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/27/2016] [Indexed: 12/12/2022] Open
Abstract
An interaction between external stressors and intrinsic vulnerability is one of the longest standing pathoaetiological explanations for schizophrenia. However, novel lines of evidence from genetics, preclinical studies, epidemiology and imaging have shed new light on the mechanisms that may underlie this, implicating microglia as a key potential mediator. Microglia are the primary immune cells of the central nervous system. They have a central role in the inflammatory response, and are also involved in synaptic pruning and neuronal remodeling. In addition to immune and traumatic stimuli, microglial activation occurs in response to psychosocial stress. Activation of microglia perinatally may make them vulnerable to subsequent overactivation by stressors experienced in later life. Recent advances in genetics have shown that variations in the complement system are associated with schizophrenia, and this system has been shown to regulate microglial synaptic pruning. This suggests a mechanism via which genetic and environmental influences may act synergistically and lead to pathological microglial activation. Microglial overactivation may lead to excessive synaptic pruning and loss of cortical gray matter. Microglial mediated damage to stress-sensitive regions such as the prefrontal cortex and hippocampus may lead directly to cognitive and negative symptoms, and account for a number of the structural brain changes associated with the disorder. Loss of cortical control may also lead to disinhibition of subcortical dopamine-thereby leading to positive psychotic symptoms. We review the preclinical and in vivo evidence for this model and consider the implications this has for treatment, and future directions.
Collapse
Affiliation(s)
- O D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK,MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK,PET Imaging Group, MRC Clinical Sciences Centre, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK. E-mail:
| | - R McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK,MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
156
|
Raffel J, Sridharan S, Nicholas R. [ 11 C]PBR-28 positron emission tomography in multiple sclerosis: Neuroinflammation or otherwise? Ann Neurol 2017; 81:323-324. [PMID: 28019656 DOI: 10.1002/ana.24853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Joel Raffel
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Sujata Sridharan
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Richard Nicholas
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
157
|
Herranz E, Hooker JM, Izquierdo-Garcia D, Loggia ML, Mainero C. Reply. Ann Neurol 2017; 81:324-325. [PMID: 28032651 DOI: 10.1002/ana.24865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital.,Harvard Medical School, Boston, MA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital.,Harvard Medical School, Boston, MA
| | - David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital.,Harvard Medical School, Boston, MA
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital.,Harvard Medical School, Boston, MA
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital.,Harvard Medical School, Boston, MA
| |
Collapse
|
158
|
Belloli S, Pannese M, Buonsanti C, Maiorino C, Di Grigoli G, Carpinelli A, Monterisi C, Moresco RM, Panina-Bordignon P. Early upregulation of 18-kDa translocator protein in response to acute neurodegenerative damage in TREM2-deficient mice. Neurobiol Aging 2017; 53:159-168. [PMID: 28189343 DOI: 10.1016/j.neurobiolaging.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/21/2016] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
Abstract
Mutations in the TREM2 gene confer risk for Alzheimer's disease and susceptibility for Parkinson's disease (PD). We evaluated the effect of TREM2 deletion in a 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model, measuring neurodegeneration and microglia activation using a combined in vivo imaging and postmortem molecular approach. In wild-type mice, MPTP administration induced a progressive decrease of [11C]FECIT uptake, culminating at day 7. Neuronal loss was accompanied by an increase of TREM2, IL-1β, and translocator protein (TSPO) transcript levels, [11C]PK11195 binding and GFAP staining (from day 2), and an early and transient increase of TNF-α, Galectin-3, and Iba-1 (from day 1). In TREM2 null (TREM2-/-) mice, MPTP similarly affected neuron viability and microglial cells, as shown by the lower level of Iba-1 staining in basal condition, and reduced increment of Iba-1, TNF-α, and IL-1β in response to MPTP. Likely to compensate for TREM2 absence, TREM2-/- mice showed an earlier increment of [11C]PK11195 binding and a significant increase of IL-4. Taken together, our data demonstrate a central role of TREM2 in the regulation of microglia response to acute neurotoxic insults and suggest a potential modulatory role of TSPO in response to immune system deficit.
Collapse
Affiliation(s)
- Sara Belloli
- Institute of Bioimages and Molecular Physiology, National Research Council, Segrate, MI, Italy; Milan Center for Neuroscience (NeuroMi), Milan, Italy; Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pannese
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cecilia Buonsanti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Maiorino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Di Grigoli
- Institute of Bioimages and Molecular Physiology, National Research Council, Segrate, MI, Italy; Milan Center for Neuroscience (NeuroMi), Milan, Italy
| | - Assunta Carpinelli
- Institute of Bioimages and Molecular Physiology, National Research Council, Segrate, MI, Italy
| | - Cristina Monterisi
- Department of Medicine and Surgery, University of Milan Bicocca, Monza, Italy
| | - Rosa Maria Moresco
- Milan Center for Neuroscience (NeuroMi), Milan, Italy; Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Medicine and Surgery, University of Milan Bicocca, Monza, Italy.
| | - Paola Panina-Bordignon
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
159
|
Kalk NJ, Guo Q, Owen D, Cherian R, Erritzoe D, Gilmour A, Ribeiro AS, McGonigle J, Waldman A, Matthews P, Cavanagh J, McInnes I, Dar K, Gunn R, Rabiner EA, Lingford-Hughes AR. Decreased hippocampal translocator protein (18 kDa) expression in alcohol dependence: a [ 11C]PBR28 PET study. Transl Psychiatry 2017; 7:e996. [PMID: 28072413 PMCID: PMC5545729 DOI: 10.1038/tp.2016.264] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 11/02/2016] [Accepted: 11/13/2016] [Indexed: 01/05/2023] Open
Abstract
Repeated withdrawal from alcohol is clinically associated with progressive cognitive impairment. Microglial activation occurring during pre-clinical models of alcohol withdrawal is associated with learning deficits. We investigated whether there was microglial activation in recently detoxified alcohol-dependent patients (ADP), using [11C]PBR28 positron emission tomography (PET), selective for the 18kDa translocator protein (TSPO) highly expressed in activated microglia and astrocytes. We investigated the relationship between microglial activation and cognitive performance. Twenty healthy control (HC) subjects (45±13; M:F 14:6) and nine ADP (45±6, M:F 9:0) were evaluated. Dynamic PET data were acquired for 90 min following an injection of 331±15 MBq [11C]PBR28. Regional volumes of distribution (VT) for regions of interest (ROIs) identified a priori were estimated using a two-tissue compartmental model with metabolite-corrected arterial plasma input function. ADP had an ~20% lower [11C]PBR28 VT, in the hippocampus (F(1,24) 5.694; P=0.025), but no difference in VT in other ROIs. Hippocampal [11C]PBR28 VT was positively correlated with verbal memory performance in a combined group of HC and ADP (r=0.720, P<0.001), an effect seen in HC alone (r=0.738; P=0.001) but not in ADP. We did not find evidence for increased microglial activation in ADP, as seen pre-clinically. Instead, our findings suggest lower glial density or an altered activation state with lower TSPO expression. The correlation between verbal memory and [11C]PBR28 VT, raises the possibility that abnormalities of glial function may contribute to cognitive impairment in ADP.
Collapse
Affiliation(s)
- N J Kalk
- National Addictions Centre, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK,National Addictions Centre, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, 4 Windsor Walk, London SE5 8BB, UK. E-mail:
| | - Q Guo
- Neuroimaging Department, Kings College London, London, UK,Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - D Owen
- Division of Brain Sciences, Imperial College London, London, UK
| | - R Cherian
- West London Mental Health NHS Trust, London, UK
| | - D Erritzoe
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - A Gilmour
- Centre for Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - A S Ribeiro
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - J McGonigle
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - A Waldman
- Division of Brain Sciences, Imperial College London, London, UK
| | - P Matthews
- Division of Brain Sciences, Imperial College London, London, UK
| | - J Cavanagh
- Institute of Health and Well-being, University of Glasgow, Glasgow, UK
| | - I McInnes
- Centre for Infection, Inflammation and Immunity, University of Glasgow, Glasgow, UK
| | - K Dar
- Central and North West London NHS Trust, London, UK
| | - R Gunn
- Imanova Limited, London, UK
| | | | | |
Collapse
|
160
|
Scott G, Mahmud M, Owen DR, Johnson MR. Microglial positron emission tomography (PET) imaging in epilepsy: Applications, opportunities and pitfalls. Seizure 2017; 44:42-47. [DOI: 10.1016/j.seizure.2016.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022] Open
|
161
|
Niraula A, Sheridan JF, Godbout JP. Microglia Priming with Aging and Stress. Neuropsychopharmacology 2017; 42:318-333. [PMID: 27604565 PMCID: PMC5143497 DOI: 10.1038/npp.2016.185] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 01/08/2023]
Abstract
The population of aged individuals is increasing worldwide and this has significant health and socio-economic implications. Clinical and experimental studies on aging have discovered myriad changes in the brain, including reduced neurogenesis, increased synaptic aberrations, higher metabolic stress, and augmented inflammation. In rodent models of aging, these alterations are associated with cognitive decline, neurobehavioral deficits, and increased reactivity to immune challenges. In rodents, caloric restriction and young blood-induced revitalization reverses the behavioral effects of aging. The increased inflammation in the aged brain is attributed, in part, to the resident population of microglia. For example, microglia of the aged brain are marked by dystrophic morphology, elevated expression of inflammatory markers, and diminished expression of neuroprotective factors. Importantly, the heightened inflammatory profile of microglia in aging is associated with a 'sensitized' or 'primed' phenotype. Mounting evidence points to a causal link between the primed profile of the aged brain and vulnerability to secondary insults, including infections and psychological stress. Conversely, psychological stress may also induce aging-like sensitization of microglia and increase reactivity to secondary challenges. This review delves into the characteristics of neuroinflammatory signaling and microglial sensitization in aging, its implications in psychological stress, and interventions that reverse aging-associated deficits.
Collapse
Affiliation(s)
- Anzela Niraula
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - John F Sheridan
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Division of Biosciences, The Ohio State University, College of Dentistry, Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA,Department of Neuroscience, The Ohio State University, 231 IBMR Bld, 460 Medical Center Drive Columbus, OH 43210, USA, Tel: +614 293 3456, Fax: +614 366 2097, E-mail:
| |
Collapse
|
162
|
Therapeutic Implications of Brain-Immune Interactions: Treatment in Translation. Neuropsychopharmacology 2017; 42:334-359. [PMID: 27555382 PMCID: PMC5143492 DOI: 10.1038/npp.2016.167] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/22/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
Abstract
A wealth of data has been amassed that details a complex, yet accessible, series of pathways by which the immune system, notably inflammation, can influence the brain and behavior. These data have opened the window to a diverse array of novel targets whose potential efficacy is tied to specific neurotransmitters and neurocircuits as well as specific behaviors. What is clear is that the impact of inflammation on the brain cuts across psychiatric disorders and engages dopaminergic and glutamatergic pathways that regulate motivation and motor activity as well as the sensitivity to threat. Given the ability to identify patient populations with increased inflammation, the precision of interventions can be further tuned, in conjunction with the ability to establish target engagement in the brain through the use of multiple neuroimaging strategies. After a brief overview of the mechanisms by which inflammation affects the brain and behavior, this review examines the extant literature on the efficacy of anti-inflammatory treatments, while forging guidelines for future intelligent clinical trial design. An examination of the most promising therapeutic strategies is also provided, along with some of the most exciting clinical trials that are currently being planned or underway.
Collapse
|
163
|
Ardura-Fabregat A, Boddeke EWGM, Boza-Serrano A, Brioschi S, Castro-Gomez S, Ceyzériat K, Dansokho C, Dierkes T, Gelders G, Heneka MT, Hoeijmakers L, Hoffmann A, Iaccarino L, Jahnert S, Kuhbandner K, Landreth G, Lonnemann N, Löschmann PA, McManus RM, Paulus A, Reemst K, Sanchez-Caro JM, Tiberi A, Van der Perren A, Vautheny A, Venegas C, Webers A, Weydt P, Wijasa TS, Xiang X, Yang Y. Targeting Neuroinflammation to Treat Alzheimer's Disease. CNS Drugs 2017; 31:1057-1082. [PMID: 29260466 PMCID: PMC5747579 DOI: 10.1007/s40263-017-0483-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the past few decades, research on Alzheimer's disease (AD) has focused on pathomechanisms linked to two of the major pathological hallmarks of extracellular deposition of beta-amyloid peptides and intra-neuronal formation of neurofibrils. Recently, a third disease component, the neuroinflammatory reaction mediated by cerebral innate immune cells, has entered the spotlight, prompted by findings from genetic, pre-clinical, and clinical studies. Various proteins that arise during neurodegeneration, including beta-amyloid, tau, heat shock proteins, and chromogranin, among others, act as danger-associated molecular patterns, that-upon engagement of pattern recognition receptors-induce inflammatory signaling pathways and ultimately lead to the production and release of immune mediators. These may have beneficial effects but ultimately compromise neuronal function and cause cell death. The current review, assembled by participants of the Chiclana Summer School on Neuroinflammation 2016, provides an overview of our current understanding of AD-related immune processes. We describe the principal cellular and molecular players in inflammation as they pertain to AD, examine modifying factors, and discuss potential future therapeutic targets.
Collapse
Affiliation(s)
- A. Ardura-Fabregat
- grid.5963.9Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - E. W. G. M. Boddeke
- 0000 0004 0407 1981grid.4830.fDepartment of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A. Boza-Serrano
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| | - S. Brioschi
- grid.5963.9Department of Psychiatry and Psychotherapy, Medical Center University of Freiburg, Faculty of Medicine University of Freiburg, Freiburg, Germany
| | - S. Castro-Gomez
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - K. Ceyzériat
- grid.457334.2Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de biologie François Jacob, MIRCen, 92260 Fontenay-aux-Roses, France ,0000 0001 2171 2558grid.5842.bNeurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, UMR 9199, F-92260 Fontenay-aux-Roses, France
| | - C. Dansokho
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - T. Dierkes
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany ,0000 0000 8786 803Xgrid.15090.3dBiomedical Centre, Institute of Innate Immunity, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - G. Gelders
- 0000 0001 0668 7884grid.5596.fDepartment of Neurosciences, Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Michael T. Heneka
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany ,0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - L. Hoeijmakers
- 0000000084992262grid.7177.6Center for Neuroscience (SILS-CNS), Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - A. Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - L. Iaccarino
- grid.15496.3fVita-Salute San Raffaele University, Milan, Italy ,0000000417581884grid.18887.3eIn Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S. Jahnert
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - K. Kuhbandner
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - G. Landreth
- 0000 0001 2287 3919grid.257413.6Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - N. Lonnemann
- 0000 0001 1090 0254grid.6738.aDepartment of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - R. M. McManus
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - A. Paulus
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| | - K. Reemst
- 0000000084992262grid.7177.6Center for Neuroscience (SILS-CNS), Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - J. M. Sanchez-Caro
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - A. Tiberi
- grid.6093.cBio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - A. Van der Perren
- 0000 0001 0668 7884grid.5596.fDepartment of Neurosciences, Laboratory for Neurobiology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - A. Vautheny
- grid.457334.2Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de biologie François Jacob, MIRCen, 92260 Fontenay-aux-Roses, France ,0000 0001 2171 2558grid.5842.bNeurodegenerative Diseases Laboratory, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, UMR 9199, F-92260 Fontenay-aux-Roses, France
| | - C. Venegas
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - A. Webers
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - P. Weydt
- 0000 0000 8786 803Xgrid.15090.3dDepartment of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - T. S. Wijasa
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Sigmund Freud Str. 27, 53127 Bonn, Germany
| | - X. Xiang
- 0000 0004 1936 973Xgrid.5252.0Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-University Munich, 81377 Munich, Germany ,0000 0004 1936 973Xgrid.5252.0Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, 82152 Munich, Germany
| | - Y. Yang
- 0000 0001 0930 2361grid.4514.4Experimental Neuroinflammation Laboratory, Department of Experimental Medical Sciences, Biomedical Centrum (BMC), Lund University, Lund, Sweden
| |
Collapse
|
164
|
Al-Diwani A, Pollak TA, Langford AE, Lennox BR. Synaptic and Neuronal Autoantibody-Associated Psychiatric Syndromes: Controversies and Hypotheses. Front Psychiatry 2017; 8:13. [PMID: 28220082 PMCID: PMC5292436 DOI: 10.3389/fpsyt.2017.00013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/17/2017] [Indexed: 12/26/2022] Open
Abstract
Autoimmune encephalitis (AE) mediated by antibodies against synaptic and neuronal surface targets frequently presents with a psychiatric syndrome. In these patients, removal of autoantibodies treats the disease and outcomes are closely linked to early intervention. The discovery of these autoantibodies in isolated psychiatric syndromes has raised the possibility that these patients may derive similar benefits from immunotherapy, a potentially transformational approach to the treatment of mental illness. Although open-label case series suggest impressive therapeutic outcomes, the pathological relevance of these autoantibodies outside of canonical presentations is debated. The advent of diagnostic criteria for AE attempts to facilitate its prompt identification but risks prematurely neglecting the potential scientific and clinical significance of isolated syndromes that do not satisfy these criteria. Here, we propose using a syndrome-level taxonomy that has occasional, but not necessary, overlap with AE: synaptic and neuronal autoantibody-associated psychiatric syndromes or "SNAps". This will prevent confusion with AE and act heuristically to promote active investigation into this rare example of psychopathology defined on a molecular level. We suggest that this concept would have application in other autoantibody-associated syndromes including seizure, cognitive, and movement disorders, in which similar issues arise. We review putative direct and indirect mechanisms and outline experimentally testable hypotheses that would help to determine prospectively in whom autoantibody detection is relevant, and as important, in whom it is not. We summarize a pragmatic approach to autoantibody testing and management in severe mental illness in order to promptly diagnose AE and advocate a research-orientated experimental medicine paradigm for SNAps, where there is greater equipoise. We conclude that SNAps remains a nascent area of clinical neuroscience with great potential and in ongoing need of psychiatry-led basic and clinical research.
Collapse
Affiliation(s)
- Adam Al-Diwani
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK; Oxford Health NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Thomas A Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's Health Partners , London , UK
| | - Alexander E Langford
- Oxford Health NHS Foundation Trust, Oxford, Oxfordshire, UK; Department of Psychological Medicine, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Belinda R Lennox
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK; Oxford Health NHS Foundation Trust, Oxford, Oxfordshire, UK
| |
Collapse
|
165
|
Nair A, Veronese M, Xu X, Curtis C, Turkheimer F, Howard R, Reeves S. Test-retest analysis of a non-invasive method of quantifying [(11)C]-PBR28 binding in Alzheimer's disease. EJNMMI Res 2016; 6:72. [PMID: 27678494 PMCID: PMC5039146 DOI: 10.1186/s13550-016-0226-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022] Open
Abstract
PURPOSE In order to maximise the utility of [(11)C]-PBR28 for use in longitudinal studies and clinical trials in Alzheimer's disease (AD), there is a need to develop non-invasive metrics of tracer binding that do not require arterial cannulation. Recent work has suggested that standardised uptake value (SUV)-based methods may be sensitive to changes in translocator protein (TSPO) levels associated with neurodegeneration. However, the test-retest reliability of these approaches in AD over a time period relevant for clinical trials is unknown. In this study, the test-retest reliability of three SUV-based metrics was assessed in AD patients over 12 weeks. METHODS Five patients with mild AD and the high-affinity binding TSPO genotype underwent two [(11)C]-PBR28 PET scans approximately 12 weeks apart. The test-retest reliability (TRR) of the unadjusted SUV, SUV relative to cerebellar grey matter (SUVRC) and SUV normalised to whole brain activity (SUVRWB) in nine cortical and limbic regions of interest was assessed using the absolute variability and the intraclass correlation coefficient. RESULTS Of the three measures, SUVRWB performed best overall, showing low absolute variability (mean -0.13 %, SD 2.47 %) and high reliability (mean ICC = 0.83). Unadjusted SUV also performed well, with high reliability (ICC = 0.94) but also high variability (mean -1.24 %, SD 7.28 %). By comparison, the SUVRC showed higher variability (mean -3.98 %, SD 7.07 %) and low reliability (ICC = 0.65). CONCLUSIONS In this AD sample, we found that SUV-derived metrics of [(11)C]-PBR28 binding showed high stability over 12 weeks. These results compare favourably with studies reporting TRR of absolute quantification of [(11)C]-PBR28. Pending further validation of SUV-based measures of [(11)C]-PBR28, semi-quantitative methods of [(11)C]-PBR28 analysis may prove useful in longitudinal studies of AD.
Collapse
Affiliation(s)
- Akshay Nair
- UCL Huntington's Disease Research Group, 2nd floor, Russell Square House, 10-12 Russell Square, London, WC1B 5EH, UK.
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, IoPPN, King's College London, Box PO89, De Crespigny Park, London, SE5 8AF, UK
| | - Xiaohui Xu
- MRC Social, Genetic and Developmental Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8EF, UK
- NIHR Biomedical Research Centre for Mental Health, Maudsley Hospital and Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Charles Curtis
- MRC Social, Genetic and Developmental Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8EF, UK
- NIHR Biomedical Research Centre for Mental Health, Maudsley Hospital and Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, IoPPN, King's College London, Box PO89, De Crespigny Park, London, SE5 8AF, UK
| | - Robert Howard
- Division of Psychiatry, University College London, 6th Floor, Wings A and B, Maple House, 149 Tottenham Court Road, London, W1T 7NF, UK
| | - Suzanne Reeves
- Division of Psychiatry, University College London, 6th Floor, Wings A and B, Maple House, 149 Tottenham Court Road, London, W1T 7NF, UK
| |
Collapse
|
166
|
Herranz E, Giannì C, Louapre C, Treaba CA, Govindarajan ST, Ouellette R, Loggia ML, Sloane JA, Madigan N, Izquierdo-Garcia D, Ward N, Mangeat G, Granberg T, Klawiter EC, Catana C, Hooker JM, Taylor N, Ionete C, Kinkel RP, Mainero C. Neuroinflammatory component of gray matter pathology in multiple sclerosis. Ann Neurol 2016; 80:776-790. [PMID: 27686563 DOI: 10.1002/ana.24791] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 09/07/2016] [Accepted: 09/25/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE In multiple sclerosis (MS), using simultaneous magnetic resonance-positron emission tomography (MR-PET) imaging with 11 C-PBR28, we quantified expression of the 18kDa translocator protein (TSPO), a marker of activated microglia/macrophages, in cortex, cortical lesions, deep gray matter (GM), white matter (WM) lesions, and normal-appearing WM (NAWM) to investigate the in vivo pathological and clinical relevance of neuroinflammation. METHODS Fifteen secondary-progressive MS (SPMS) patients, 12 relapsing-remitting MS (RRMS) patients, and 14 matched healthy controls underwent 11 C-PBR28 MR-PET. MS subjects underwent 7T T2*-weighted imaging for cortical lesion segmentation, and neurological and cognitive evaluation. 11 C-PBR28 binding was measured using normalized 60- to 90-minute standardized uptake values and volume of distribution ratios. RESULTS Relative to controls, MS subjects exhibited abnormally high 11 C-PBR28 binding across the brain, the greatest increases being in cortex and cortical lesions, thalamus, hippocampus, and NAWM. MS WM lesions showed relatively modest TSPO increases. With the exception of cortical lesions, where TSPO expression was similar, 11 C-PBR28 uptake across the brain was greater in SPMS than in RRMS. In MS, increased 11 C-PBR28 binding in cortex, deep GM, and NAWM correlated with neurological disability and impaired cognitive performance; cortical thinning correlated with increased thalamic TSPO levels. INTERPRETATION In MS, neuroinflammation is present in the cortex, cortical lesions, deep GM, and NAWM, is closely linked to poor clinical outcome, and is at least partly linked to neurodegeneration. Distinct inflammatory-mediated factors may underlie accumulation of cortical and WM lesions. Quantification of TSPO levels in MS could prove to be a sensitive tool for evaluating in vivo the inflammatory component of GM pathology, particularly in cortical lesions. Ann Neurol 2016;80:776-790.
Collapse
Affiliation(s)
- Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Costanza Giannì
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Céline Louapre
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Sindhuja T Govindarajan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Russell Ouellette
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Jacob A Sloane
- Harvard Medical School, Boston, MA.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Nancy Madigan
- Harvard Medical School, Boston, MA.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Noreen Ward
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
| | - Gabriel Mangeat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA.,Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Tobias Granberg
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Eric C Klawiter
- Harvard Medical School, Boston, MA.,Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Norman Taylor
- Harvard Medical School, Boston, MA.,Department of Anesthesiology, Massachusetts General Hospital, Boston, MA
| | | | - Revere P Kinkel
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA.,University of San Diego, San Diego, California
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| |
Collapse
|
167
|
Airas L, Rissanen E, Rinne J. Imaging of microglial activation in MS using PET: Research use and potential future clinical application. Mult Scler 2016; 23:496-504. [PMID: 27760860 DOI: 10.1177/1352458516674568] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis (MS) is a complex disease, where several processes can be selected as a target for positron emission topography (PET) imaging. Unlike magnetic resonance imaging (MRI), PET provides specific and quantitative information, and unlike neuropathology, it can be non-invasively applied to living patients, which enables longitudinal follow-up of the MS pathology. In the study of MS, PET can be useful for in vivo evaluation of specific pathological characteristics at various stages of the disease. Increased understanding of the progressive MS pathology will enhance the treatment options of this undertreated condition. The ultimate goal of developing and expanding PET in the study of MS is to have clinical non-invasive in vivo imaging biomarkers of neuroinflammation that will help to establish prognosis and accurately measure response to therapeutics. This topical review provides an overview of the promises and challenges of the use of PET in MS.
Collapse
Affiliation(s)
- Laura Airas
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Rissanen
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Juha Rinne
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
168
|
Slavik R, Müller Herde A, Haider A, Krämer SD, Weber M, Schibli R, Ametamey SM, Mu L. Discovery of a fluorinated 4-oxo-quinoline derivative as a potential positron emission tomography radiotracer for imaging cannabinoid receptor type 2. J Neurochem 2016; 138:874-86. [PMID: 27385045 DOI: 10.1111/jnc.13716] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/28/2022]
Abstract
The cannabinoid receptor type 2 (CB2) is part of the endocannabinoid system and has gained growing attention in recent years because of its important role in neuroinflammatory/neurodegenerative diseases. Recently, we reported on a carbon-11 labeled 4-oxo-quinoline derivative, designated RS-016, as a promising radiotracer for imaging CB2 using PET. In this study, three novel fluorinated analogs of RS-016 were designed, synthesized, and pharmacologically evaluated. The results of our efforts led to the identification of N-(1-adamantyl)-1-(2-(2-fluoroethoxy)ethyl)-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxamide (RS-126) as the most potent candidate for evaluation as a CB2 PET ligand. [(18) F]RS-126 was obtained in ≥ 99% radiochemical purity with an average specific radioactivity of 98 GBq/μmol at the end of the radiosynthesis. [(18) F]RS-126 showed a logD7.4 value of 1.99 and is stable in vitro in rat and human plasma over 120 min, whereas 55% intact parent compound was found in vivo in rat blood plasma at 10 min post injection. In vitro autoradiographic studies with CB2-positive rat spleen tissue revealed high and blockable binding which was confirmed in in vivo displacement experiments with rats by dynamic PET imaging. Ex vivo biodistribution studies confirmed accumulation of [(18) F]RS-126 in rat spleen with a specificity of 79% under blocking conditions. The moderate elevated CB2 levels in LPS-treated mice brain did not permit the detection of CB2 by [(18) F]RS-126 using PET imaging. In summary, [(18) F]RS-126 demonstrated high specificity toward CB2 receptor in vitro and in vivo and is a promising radioligand for imaging CB2 receptor expression. Cannabinoid receptor type 2 (CB2) is an interesting target for PET imaging. Specific binding of [(18) F]RS-126 in CB2-positive spleen tissue (white arrow head) was confirmed in in vivo displacement experiments with rats. Time activity curve of [(18) F]RS-126 in the spleen after the addition of GW405833 (CB2 specific ligand, green) demonstrates faster radiotracer elimination (blue) compared to the tracer only (red).
Collapse
Affiliation(s)
- Roger Slavik
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Ahmed Haider
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Roger Schibli
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.,Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Simon M Ametamey
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| | - Linjing Mu
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland. .,Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
169
|
Choi JY, Iacobazzi RM, Perrone M, Margiotta N, Cutrignelli A, Jung JH, Park DD, Moon BS, Denora N, Kim SE, Lee BC. Synthesis and Evaluation of Tricarbonyl (99m)Tc-Labeled 2-(4-Chloro)phenyl-imidazo[1,2-a]pyridine Analogs as Novel SPECT Imaging Radiotracer for TSPO-Rich Cancer. Int J Mol Sci 2016; 17:ijms17071085. [PMID: 27399688 PMCID: PMC4964461 DOI: 10.3390/ijms17071085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 01/06/2023] Open
Abstract
The 18-kDa translocator protein (TSPO) levels are associated with brain, breast, and prostate cancer progression and have emerged as viable targets for cancer therapy and imaging. In order to develop highly selective and active ligands with a high affinity for TSPO, imidazopyridine-based TSPO ligand (CB256, 3) was prepared as the precursor. (99m)Tc- and Re-CB256 (1 and 2, respectively) were synthesized in high radiochemical yield (74.5% ± 6.4%, decay-corrected, n = 5) and chemical yield (65.6%) by the incorporation of the [(99m)Tc(CO)₃(H₂O)₃]⁺ and (NEt₄)₂[Re(CO)₃Br₃] followed by HPLC separation. Radio-ligand 1 was shown to be stable (>99%) when incubated in human serum for 4 h at 37 °C with a relatively low lipophilicity (logD = 2.15 ± 0.02). The rhenium-185 and -187 complex 2 exhibited a moderate affinity (Ki = 159.3 ± 8.7 nM) for TSPO, whereas its cytotoxicity evaluated on TSPO-rich tumor cell lines was lower than that observed for the precursor. In vitro uptake studies of 1 in C6 and U87-MG cells for 60 min was found to be 9.84% ± 0.17% and 7.87% ± 0.23% ID, respectively. Our results indicated that (99m)Tc-CB256 can be considered as a potential new TSPO-rich cancer SPECT imaging agent and provides the foundation for further in vivo evaluation.
Collapse
Affiliation(s)
- Ji Young Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea.
| | - Rosa Maria Iacobazzi
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari 70125, Italy.
- Istituto Tumori IRCCS "Giovanni Paolo II", Flacco, St. 65, Bari 70124, Italy.
| | - Mara Perrone
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari 70125, Italy.
| | - Nicola Margiotta
- Department of Chemistry, University of Bari "Aldo Moro", Bari 70125, Italy.
| | - Annalisa Cutrignelli
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari 70125, Italy.
| | - Jae Ho Jung
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
| | - Do Dam Park
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
| | - Byung Seok Moon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
| | - Nunzio Denora
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari 70125, Italy.
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, Korea.
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Korea.
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Korea.
| |
Collapse
|
170
|
Fan Z, Calsolaro V, Atkinson RA, Femminella GD, Waldman A, Buckley C, Trigg W, Brooks DJ, Hinz R, Edison P. Flutriciclamide (18F-GE180) PET: First-in-Human PET Study of Novel Third-Generation In Vivo Marker of Human Translocator Protein. J Nucl Med 2016; 57:1753-1759. [DOI: 10.2967/jnumed.115.169078] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/10/2016] [Indexed: 12/27/2022] Open
|
171
|
Kawamura K, Kumata K, Takei M, Furutsuka K, Hashimoto H, Ito T, Shiomi S, Fujishiro T, Watanabe R, Igarashi N, Muto M, Yamasaki T, Yui J, Xie L, Hatori A, Zhang Y, Nemoto K, Fujibayashi Y, Zhang MR. Efficient radiosynthesis and non-clinical safety tests of the TSPO radioprobe [(18)F]FEDAC: Prerequisites for clinical application. Nucl Med Biol 2016; 43:445-53. [PMID: 27183465 DOI: 10.1016/j.nucmedbio.2016.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 12/17/2022]
Abstract
INTRODUCTION [(18)F]FEDAC ([(18)F]1) has potent binding affinity and selectivity for translocator protein (18kDa, TSPO), and has been used to noninvasively visualize neuroinflammation, lung inflammation, acute liver damage, nonalcoholic fatty liver disease, and liver fibrosis. We had previously synthesized [(18)F]1 in two steps: (i) preparation of [(18)F]fluoroethyl bromide and (ii) coupling of [(18)F]fluoroethyl bromide with the appropriate precursor (2) for labeling. In this study, to clinically utilize [(18)F]1 as a PET radiopharmaceutical and to transfer the production technique of [(18)F]1 to other PET centers, we simplified its preparation by using a direct, one-step, tosyloxy-for-fluorine substitution. We also performed an acute toxicity study as a major non-clinical safety test, and determined radiometabolites using human liver microsomes. METHODS [(18)F]1 was prepared via direct (18)F-fluorination by heating the corresponding tosylated derivative (3) with [(18)F]fluoride as its Kryptofix 222 complex in dimethyl sulfoxide at 110°C for 15min, following by HPLC purification. Non-clinical safety tests were performed for the extended single-dose toxicity study in rats, and for the in vitro metabolite analysis with human liver microsomal incubation. RESULTS High quality batches of [(18)F]1, compatible with clinical applications, were obtained. At the end of irradiation, the decay-corrected radiochemical yield of [(18)F]1 using 1 and 5mg of precursor based on [(18)F]fluoride was 18.5±7.9% (n=10) and 52.0±5.8% (n=3), respectively. A single-dose of [(18)F]1 did not show toxicological effects for 14 days after the injection in male and female rats. In human liver microsomal incubations, [(18)F]1 was easily metabolized to [(18)F]desbenzyl-FEDAC ([(18)F]10) by CYPs (4.2% of parent compound left 60min after incubation). CONCLUSION We successfully synthesized clinical grade batches of [(18)F]1 and verified the absence of innocuity of this radiotracer. [(18)F]1 will be used to first-in-human studies in our facility.
Collapse
Affiliation(s)
- Kazunori Kawamura
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Makoto Takei
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kenji Furutsuka
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; SHI Accelerator Service Ltd., Tokyo 141-0032, Japan
| | - Hiroki Hashimoto
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Takehito Ito
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; SHI Accelerator Service Ltd., Tokyo 141-0032, Japan
| | - Satoshi Shiomi
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Tokyo Nuclear Services, Tokyo 110-0016, Japan
| | - Tomoya Fujishiro
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Tokyo Nuclear Services, Tokyo 110-0016, Japan
| | - Ryuji Watanabe
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Tokyo Nuclear Services, Tokyo 110-0016, Japan
| | - Nobuyuki Igarashi
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Tokyo Nuclear Services, Tokyo 110-0016, Japan
| | - Masatoshi Muto
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Tokyo Nuclear Services, Tokyo 110-0016, Japan
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Joji Yui
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Kazuyoshi Nemoto
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yasuhisa Fujibayashi
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
172
|
Albrecht DS, Granziera C, Hooker JM, Loggia ML. In Vivo Imaging of Human Neuroinflammation. ACS Chem Neurosci 2016; 7:470-83. [PMID: 26985861 DOI: 10.1021/acschemneuro.6b00056] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is implicated in the pathophysiology of a growing number of human disorders, including multiple sclerosis, chronic pain, traumatic brain injury, and amyotrophic lateral sclerosis. As a result, interest in the development of novel methods to investigate neuroinflammatory processes, for the purpose of diagnosis, development of new therapies, and treatment monitoring, has surged over the past 15 years. Neuroimaging offers a wide array of non- or minimally invasive techniques to characterize neuroinflammatory processes. The intent of this Review is to provide brief descriptions of currently available neuroimaging methods to image neuroinflammation in the human central nervous system (CNS) in vivo. Specifically, because of the relatively widespread accessibility of equipment for nuclear imaging (positron emission tomography [PET]; single photon emission computed tomography [SPECT]) and magnetic resonance imaging (MRI), we will focus on strategies utilizing these technologies. We first provide a working definition of "neuroinflammation" and then discuss available neuroimaging methods to study human neuroinflammatory processes. Specifically, we will focus on neuroimaging methods that target (1) the activation of CNS immunocompetent cells (e.g. imaging of glial activation with TSPO tracer [(11)C]PBR28), (2) compromised BBB (e.g. identification of MS lesions with gadolinium-enhanced MRI), (3) CNS-infiltration of circulating immune cells (e.g. tracking monocyte infiltration into brain parenchyma with iron oxide nanoparticles and MRI), and (4) pathological consequences of neuroinflammation (e.g. imaging apoptosis with [(99m)Tc]Annexin V or iron accumulation with T2* relaxometry). This Review provides an overview of state-of-the-art techniques for imaging human neuroinflammation which have potential to impact patient care in the foreseeable future.
Collapse
Affiliation(s)
| | - Cristina Granziera
- Neuro-Immunology,
Neurology Division, Department of Clinical Neurosciences, Centre Hospitalier
Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
- LTS5, Ecole
Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
173
|
Shimojo M, Higuchi M, Suhara T, Sahara N. Imaging Multimodalities for Dissecting Alzheimer's Disease: Advanced Technologies of Positron Emission Tomography and Fluorescence Imaging. Front Neurosci 2015; 9:482. [PMID: 26733795 PMCID: PMC4686595 DOI: 10.3389/fnins.2015.00482] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/01/2015] [Indexed: 01/24/2023] Open
Abstract
The rapid progress in advanced imaging technologies has expanded our toolbox for monitoring a variety of biological aspects in living subjects including human. In vivo radiological imaging using small chemical tracers, such as with positron emission tomography, represents an especially vital breakthrough in the efforts to improve our understanding of the complicated cascade of neurodegenerative disorders including Alzheimer's disease (AD), and it has provided the most reliable visible biomarkers for enabling clinical diagnosis. At the same time, in combination with genetically modified animal model systems, the most recent innovation of fluorescence imaging is helping establish diverse applications in basic neuroscience research, from single-molecule analysis to animal behavior manipulation, suggesting the potential utility of fluorescence technology for dissecting the detailed molecular-based consequence of AD pathophysiology. In this review, our primary focus is on a current update of PET radiotracers and fluorescence indicators beneficial for understanding the AD cascade, and discussion of the utility and pitfalls of those imaging modalities for future translational research applications. We will also highlight current cutting-edge genetic approaches and discuss how to integrate individual technologies for further potential innovations.
Collapse
Affiliation(s)
- Masafumi Shimojo
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences Chiba, Japan
| | - Makoto Higuchi
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences Chiba, Japan
| | - Tetsuya Suhara
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences Chiba, Japan
| | - Naruhiko Sahara
- Molecular Neuroimaging Program, Molecular Imaging Center, National Institute of Radiological Sciences Chiba, Japan
| |
Collapse
|