151
|
Tsai PW, Cheng YL, Hsieh WP, Lan CY. Responses of Candida albicans to the human antimicrobial peptide LL-37. J Microbiol 2014; 52:581-9. [PMID: 24879350 DOI: 10.1007/s12275-014-3630-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/28/2014] [Accepted: 03/07/2014] [Indexed: 12/31/2022]
Abstract
Candida albicans is amajor fungal pathogen in humans. Antimicrobial peptides (AMPs) are critical components of the innate immune response in vertebrates and represent the first line of defense against microbial infection. LL-37 is the only member of the human family of cathelicidin AMPs and is commonly expressed by various tissues and cells, including surfaces of epithelia. The candidacidal effects of LL-37 have been well documented, but the mechanisms by which LL-37 kills C. albicans are not completely understood. In this study, we examined the effects of LL-37 on cell wall and cellular responses in C. albicans. Using transmission electron microscopy, carbohydrate analyses, and staining for β-1,3-glucan, changing of C. albicans cell wall integrity was detected upon LL-37 treatment. In addition, LL-37 also affected cell wall architecture of the pathogen. Finally, DNA microarray analysis and quantitative PCR demonstrated that sub-lethal concentrations of LL-37 modulated the expression of genes with a variety of functions, including transporters, regulators for biological processes, response to stress or chemical stimulus, and pathogenesis. Together, LL-37 induces complex responses in C. albicans, making LL-37 a promising candidate for use as a therapeutic agent against fungal infections.
Collapse
Affiliation(s)
- Pei-Wen Tsai
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | | | | | | |
Collapse
|
152
|
Steinhoff M, Schauber J, Leyden JJ. New insights into rosacea pathophysiology: a review of recent findings. J Am Acad Dermatol 2014; 69:S15-26. [PMID: 24229632 DOI: 10.1016/j.jaad.2013.04.045] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 04/21/2013] [Indexed: 02/06/2023]
Abstract
Rosacea is a common, chronic inflammatory skin disease of poorly understood origin. Based on its clinical features (flushing, chronic inflammation, fibrosis) and trigger factors, a complex pathobiology involving different regulatory systems can be anticipated. Although a wealth of research has shed new light over recent years on its pathophysiology, the precise interplay of the various dysregulated systems (immune, vascular, nervous) is still poorly understood. Most authors agree on 4 major clinical subtypes of rosacea: erythematotelangiectatic rosacea, papulopustular rosacea, phymatous rosacea, and ocular rosacea. Still, it needs to be elucidated whether these subtypes develop in a consecutive serial fashion or if any subtypes may occur individually as part of a syndrome. Because rosacea often affects multiple family members, a genetic component is also suspected, but the genetic basis of rosacea remains unclear. During disease manifestation and early stage, the innate immune system and neurovascular dysregulation seem to be driving forces in rosacea pathophysiology. Dissection of major players for disease progression and in advanced stages is severely hampered by the complex activation of the innate and adaptive immune systems, enhanced neuroimmune communication, profound blood vessel and possibly lymphatic vessel changes, and activation of almost every resident cell in the skin. This review discusses some of the recent findings and aims to build unifying hypotheses for a modern understanding of rosacea pathophysiology.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology, University of California, San Francisco, California.
| | | | | |
Collapse
|
153
|
Supp DM, Neely AN. Cutaneous antimicrobial gene therapy: engineering human skin replacements to combat wound infection. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.3.1.73] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
154
|
|
155
|
|
156
|
Neumann A, Völlger L, Berends ET, Molhoek EM, Stapels DA, Midon M, Friães A, Pingoud A, Rooijakkers SH, Gallo RL, Mörgelin M, Nizet V, Naim HY, von Köckritz-Blickwede M. Novel Role of the Antimicrobial Peptide LL-37 in the Protection of Neutrophil Extracellular Traps against Degradation by Bacterial Nucleases. J Innate Immun 2014. [DOI: 10.1159/000363699 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs. However, the function of LL-37 within NETs is still unknown because it loses its antimicrobial activity when bound to DNA in the NETs. Using immunofluorescence microscopy, we demonstrate that NETs treated with LL-37 are distinctly more resistant to <i>S. aureus</i> nuclease degradation than nontreated NETs. Biochemical assays utilising a random LL-37-fragment library indicated that the blocking effect of LL-37 on nuclease activity is based on the cationic character of the AMP, which facilitates the binding to neutrophil DNA, thus protecting it from degradation by the nuclease. In good correlation to these data, the cationic AMPs human beta defensin-3 and human neutrophil peptide-1 showed similar protection of neutrophil-derived DNA against nuclease degradation. In conclusion, this study demonstrates a novel role of AMPs in host immune defence: beside its direct antimicrobial activity against various pathogens, cationic AMPs can stabilise neutrophil-derived DNA or NETs against bacterial nuclease degradation.
Collapse
|
157
|
Neumann A, Völlger L, Berends ET, Molhoek EM, Stapels DA, Midon M, Friães A, Pingoud A, Rooijakkers SH, Gallo RL, Mörgelin M, Nizet V, Naim HY, von Köckritz-Blickwede M. Novel Role of the Antimicrobial Peptide LL-37 in the Protection of Neutrophil Extracellular Traps against Degradation by Bacterial Nucleases. J Innate Immun 2014. [DOI: 10.1159/000363699 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs. However, the function of LL-37 within NETs is still unknown because it loses its antimicrobial activity when bound to DNA in the NETs. Using immunofluorescence microscopy, we demonstrate that NETs treated with LL-37 are distinctly more resistant to <i>S. aureus</i> nuclease degradation than nontreated NETs. Biochemical assays utilising a random LL-37-fragment library indicated that the blocking effect of LL-37 on nuclease activity is based on the cationic character of the AMP, which facilitates the binding to neutrophil DNA, thus protecting it from degradation by the nuclease. In good correlation to these data, the cationic AMPs human beta defensin-3 and human neutrophil peptide-1 showed similar protection of neutrophil-derived DNA against nuclease degradation. In conclusion, this study demonstrates a novel role of AMPs in host immune defence: beside its direct antimicrobial activity against various pathogens, cationic AMPs can stabilise neutrophil-derived DNA or NETs against bacterial nuclease degradation.
Collapse
|
158
|
Neumann A, Völlger L, Berends ET, Molhoek EM, Stapels DA, Midon M, Friães A, Pingoud A, Rooijakkers SH, Gallo RL, Mörgelin M, Nizet V, Naim HY, von Köckritz-Blickwede M. Novel Role of the Antimicrobial Peptide LL-37 in the Protection of Neutrophil Extracellular Traps against Degradation by Bacterial Nucleases. J Innate Immun 2014. [DOI: 10.1159/000363699 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs. However, the function of LL-37 within NETs is still unknown because it loses its antimicrobial activity when bound to DNA in the NETs. Using immunofluorescence microscopy, we demonstrate that NETs treated with LL-37 are distinctly more resistant to <i>S. aureus</i> nuclease degradation than nontreated NETs. Biochemical assays utilising a random LL-37-fragment library indicated that the blocking effect of LL-37 on nuclease activity is based on the cationic character of the AMP, which facilitates the binding to neutrophil DNA, thus protecting it from degradation by the nuclease. In good correlation to these data, the cationic AMPs human beta defensin-3 and human neutrophil peptide-1 showed similar protection of neutrophil-derived DNA against nuclease degradation. In conclusion, this study demonstrates a novel role of AMPs in host immune defence: beside its direct antimicrobial activity against various pathogens, cationic AMPs can stabilise neutrophil-derived DNA or NETs against bacterial nuclease degradation.
Collapse
|
159
|
Neumann A, Völlger L, Berends ET, Molhoek EM, Stapels DA, Midon M, Friães A, Pingoud A, Rooijakkers SH, Gallo RL, Mörgelin M, Nizet V, Naim HY, von Köckritz-Blickwede M. Novel Role of the Antimicrobial Peptide LL-37 in the Protection of Neutrophil Extracellular Traps against Degradation by Bacterial Nucleases. J Innate Immun 2014. [DOI: 10.1159/000363699 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs. However, the function of LL-37 within NETs is still unknown because it loses its antimicrobial activity when bound to DNA in the NETs. Using immunofluorescence microscopy, we demonstrate that NETs treated with LL-37 are distinctly more resistant to <i>S. aureus</i> nuclease degradation than nontreated NETs. Biochemical assays utilising a random LL-37-fragment library indicated that the blocking effect of LL-37 on nuclease activity is based on the cationic character of the AMP, which facilitates the binding to neutrophil DNA, thus protecting it from degradation by the nuclease. In good correlation to these data, the cationic AMPs human beta defensin-3 and human neutrophil peptide-1 showed similar protection of neutrophil-derived DNA against nuclease degradation. In conclusion, this study demonstrates a novel role of AMPs in host immune defence: beside its direct antimicrobial activity against various pathogens, cationic AMPs can stabilise neutrophil-derived DNA or NETs against bacterial nuclease degradation.
Collapse
|
160
|
Neumann A, Völlger L, Berends ET, Molhoek EM, Stapels DA, Midon M, Friães A, Pingoud A, Rooijakkers SH, Gallo RL, Mörgelin M, Nizet V, Naim HY, von Köckritz-Blickwede M. Novel Role of the Antimicrobial Peptide LL-37 in the Protection of Neutrophil Extracellular Traps against Degradation by Bacterial Nucleases. J Innate Immun 2014. [DOI: 10.1159/000363699 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs. However, the function of LL-37 within NETs is still unknown because it loses its antimicrobial activity when bound to DNA in the NETs. Using immunofluorescence microscopy, we demonstrate that NETs treated with LL-37 are distinctly more resistant to <i>S. aureus</i> nuclease degradation than nontreated NETs. Biochemical assays utilising a random LL-37-fragment library indicated that the blocking effect of LL-37 on nuclease activity is based on the cationic character of the AMP, which facilitates the binding to neutrophil DNA, thus protecting it from degradation by the nuclease. In good correlation to these data, the cationic AMPs human beta defensin-3 and human neutrophil peptide-1 showed similar protection of neutrophil-derived DNA against nuclease degradation. In conclusion, this study demonstrates a novel role of AMPs in host immune defence: beside its direct antimicrobial activity against various pathogens, cationic AMPs can stabilise neutrophil-derived DNA or NETs against bacterial nuclease degradation.
Collapse
|
161
|
Neumann A, Völlger L, Berends ET, Molhoek EM, Stapels DA, Midon M, Friães A, Pingoud A, Rooijakkers SH, Gallo RL, Mörgelin M, Nizet V, Naim HY, von Köckritz-Blickwede M. Novel Role of the Antimicrobial Peptide LL-37 in the Protection of Neutrophil Extracellular Traps against Degradation by Bacterial Nucleases. J Innate Immun 2014. [DOI: 10.1159/000363699 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs. However, the function of LL-37 within NETs is still unknown because it loses its antimicrobial activity when bound to DNA in the NETs. Using immunofluorescence microscopy, we demonstrate that NETs treated with LL-37 are distinctly more resistant to <i>S. aureus</i> nuclease degradation than nontreated NETs. Biochemical assays utilising a random LL-37-fragment library indicated that the blocking effect of LL-37 on nuclease activity is based on the cationic character of the AMP, which facilitates the binding to neutrophil DNA, thus protecting it from degradation by the nuclease. In good correlation to these data, the cationic AMPs human beta defensin-3 and human neutrophil peptide-1 showed similar protection of neutrophil-derived DNA against nuclease degradation. In conclusion, this study demonstrates a novel role of AMPs in host immune defence: beside its direct antimicrobial activity against various pathogens, cationic AMPs can stabilise neutrophil-derived DNA or NETs against bacterial nuclease degradation.
Collapse
|
162
|
Strömstedt AA, Felth J, Bohlin L. Bioassays in natural product research - strategies and methods in the search for anti-inflammatory and antimicrobial activity. PHYTOCHEMICAL ANALYSIS : PCA 2014; 25:13-28. [PMID: 24019222 DOI: 10.1002/pca.2468] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Identifying bioactive molecules from complex biomasses requires careful selection and execution of relevant bioassays in the various stages of the discovery process of potential leads and targets. OBJECTIVE The aim of this review is to share our long-term experience in bioassay-guided isolation, and mechanistic studies, of bioactive compounds from different organisms in nature with emphasis on anti-inflammatory and antimicrobial activity. METHODS In the search for anti-inflammatory activity, in vivo and in vitro model combinations with enzymes and cells involved in the inflammatory process have been used, such as cyclooxygenases, human neutrophils and human cancer cell lines. Methods concerning adsorption and perforation of bacteria, fungi, human cells and model membranes, have been developed and optimised, with emphasis on antimicrobial peptides and their interaction with the membrane target, in particular their ability to distinguish host from pathogen. RESULTS A long-term research has provided experience of selection and combination of bioassay models, which has led to an increased understanding of ethnopharmacological and ecological observations, together with in-depth knowledge of mode of action of isolated compounds. CONCLUSION A more multidisciplinary approach and a higher degree of fundamental research in development of bioassays are often necessary to identify and to fully understand the mode of action of bioactive molecules with novel structure-activity relationships from natural sources.
Collapse
Affiliation(s)
- Adam A Strömstedt
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Center, Uppsala University, Box 574, 751 23, Uppsala, Sweden
| | | | | |
Collapse
|
163
|
Neumann A, Völlger L, Berends ET, Molhoek EM, Stapels DA, Midon M, Friães A, Pingoud A, Rooijakkers SH, Gallo RL, Mörgelin M, Nizet V, Naim HY, von Köckritz-Blickwede M. Novel Role of the Antimicrobial Peptide LL-37 in the Protection of Neutrophil Extracellular Traps against Degradation by Bacterial Nucleases. J Innate Immun 2014. [DOI: 10.1159/000363699 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Neutrophil extracellular traps (NETs) have been described as a fundamental innate immune defence mechanism. They consist of a nuclear DNA backbone associated with different antimicrobial peptides (AMPs) which are able to engulf and kill pathogens. The AMP LL-37, a member of the cathelicidin family, is highly present in NETs. However, the function of LL-37 within NETs is still unknown because it loses its antimicrobial activity when bound to DNA in the NETs. Using immunofluorescence microscopy, we demonstrate that NETs treated with LL-37 are distinctly more resistant to <i>S. aureus</i> nuclease degradation than nontreated NETs. Biochemical assays utilising a random LL-37-fragment library indicated that the blocking effect of LL-37 on nuclease activity is based on the cationic character of the AMP, which facilitates the binding to neutrophil DNA, thus protecting it from degradation by the nuclease. In good correlation to these data, the cationic AMPs human beta defensin-3 and human neutrophil peptide-1 showed similar protection of neutrophil-derived DNA against nuclease degradation. In conclusion, this study demonstrates a novel role of AMPs in host immune defence: beside its direct antimicrobial activity against various pathogens, cationic AMPs can stabilise neutrophil-derived DNA or NETs against bacterial nuclease degradation.
Collapse
|
164
|
Short KR, von Köckritz-Blickwede M, Langereis JD, Chew KY, Job ER, Armitage CW, Hatcher B, Fujihashi K, Reading PC, Hermans PW, Wijburg OL, Diavatopoulos DA. Antibodies mediate formation of neutrophil extracellular traps in the middle ear and facilitate secondary pneumococcal otitis media. Infect Immun 2014; 82:364-70. [PMID: 24191297 PMCID: PMC3911859 DOI: 10.1128/iai.01104-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 10/14/2013] [Indexed: 12/16/2022] Open
Abstract
Otitis media (OM) (a middle ear infection) is a common childhood illness that can leave some children with permanent hearing loss. OM can arise following infection with a variety of different pathogens, including a coinfection with influenza A virus (IAV) and Streptococcus pneumoniae (the pneumococcus). We and others have demonstrated that coinfection with IAV facilitates the replication of pneumococci in the middle ear. Specifically, we used a mouse model of OM to show that IAV facilitates the outgrowth of S. pneumoniae in the middle ear by inducing middle ear inflammation. Here, we seek to understand how the host inflammatory response facilitates bacterial outgrowth in the middle ear. Using B cell-deficient infant mice, we show that antibodies play a crucial role in facilitating pneumococcal replication. We subsequently show that this is due to antibody-dependent neutrophil extracellular trap (NET) formation in the middle ear, which, instead of clearing the infection, allows the bacteria to replicate. We further demonstrate the importance of these NETs as a potential therapeutic target through the transtympanic administration of a DNase, which effectively reduces the bacterial load in the middle ear. Taken together, these data provide novel insight into how pneumococci are able to replicate in the middle ear cavity and induce disease.
Collapse
Affiliation(s)
- Kirsty R. Short
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | | | - Jeroen D. Langereis
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Keng Yih Chew
- Department of Zoology, The University of Melbourne, Melbourne, Australia
| | - Emma R. Job
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | - Charles W. Armitage
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Brandon Hatcher
- Department of Pediatric Dentistry and Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kohtaro Fujihashi
- Department of Pediatric Dentistry and Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Patrick C. Reading
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Parkville, Victoria, Australia
| | - Peter W. Hermans
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Odilia L. Wijburg
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | - Dimitri A. Diavatopoulos
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
165
|
Barlow PG, Findlay EG, Currie SM, Davidson DJ. Antiviral potential of cathelicidins. Future Microbiol 2014; 9:55-73. [DOI: 10.2217/fmb.13.135] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ABSTRACT: The global burden of morbidity and mortality arising from viral infections is high; however, the development of effective therapeutics has been slow. As our understanding of innate immunity has expanded over recent years, knowledge of natural host defenses against viral infections has started to offer potential for novel therapeutic strategies. An area of current research interest is in understanding the roles played by naturally occurring cationic host defense peptides, such as the cathelicidins, in these innate antiviral host defenses across different species. This research also has the potential to inform the design of novel synthetic antiviral peptide analogs and/or provide rationale for therapies aimed at boosting the natural production of these peptides. In this review, we will discuss our knowledge of the antiviral activities of cathelicidins, an important family of cationic host defense peptides, and consider the implications for novel antiviral therapeutic approaches.
Collapse
Affiliation(s)
- Peter G Barlow
- Health, Life & Social Sciences, Edinburgh Napier University, Sighthill Campus, Edinburgh, EH11 4BN, UK
| | - Emily Gwyer Findlay
- University of Edinburgh/MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Silke M Currie
- University of Edinburgh/MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Donald J Davidson
- University of Edinburgh/MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
166
|
Huang HN, Rajanbabu V, Pan CY, Chan YL, Wu CJ, Chen JY. Use of the antimicrobial peptide Epinecidin-1 to protect against MRSA infection in mice with skin injuries. Biomaterials 2013; 34:10319-27. [DOI: 10.1016/j.biomaterials.2013.09.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/11/2013] [Indexed: 01/30/2023]
|
167
|
Santos JC, Silva-Gomes S, Silva JP, Gama M, Rosa G, Gallo RL, Appelberg R. Endogenous cathelicidin production limits inflammation and protective immunity to Mycobacterium avium in mice. IMMUNITY INFLAMMATION AND DISEASE 2013; 2:1-12. [PMID: 25400920 PMCID: PMC4220664 DOI: 10.1002/iid3.7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/29/2013] [Accepted: 08/06/2013] [Indexed: 01/29/2023]
Abstract
The production of antimicrobial peptides, such as the cathelicidins, plays a prominent role in the innate immune response against microbial pathogens. Cathelicidins are widely distributed amongst living organisms, and the antimicrobial peptides generated by proteolysis of the precursor forms are typically cationic and α-helical, a structure that facilitates their interaction and insertion into anionic bacterial cell walls and membranes, causing damage and promoting microbial death. Here, we found that mouse cathelicidin (Camp) expression was induced in bone marrow-derived macrophages by infection with Mycobacterium avium in a TLR2- and TNF-dependent manner. However, the endogenous production of the cathelin-related antimicrobial peptide (CRAMP) was not required for the bacteriostasis of M. avium either in primary cultures of macrophages or in vivo, as shown by the use of CRAMP-null mice. In contrast, the lack of Camp led to a transient improvement of M. avium growth control in the spleens of infected mice while at the same time causing an exacerbation of the inflammatory response to infection. Our data highlight the anti-inflammatory effects of CRAMP and suggests that virulent mycobacteria may possess strategies to escape its antimicrobial activity.
Collapse
Affiliation(s)
- José Carlos Santos
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto 4150-180, Porto, Portugal
| | - Sandro Silva-Gomes
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto 4150-180, Porto, Portugal
| | - João Pedro Silva
- Centre of Biological Engineering, Universidade do Minho Braga, Portugal
| | - Miguel Gama
- Centre of Biological Engineering, Universidade do Minho Braga, Portugal
| | - Gustavo Rosa
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto 4150-180, Porto, Portugal
| | - Richard L Gallo
- Department of Medicine, Division of Dermatology, University of California 9500 Gilman Drive, San Diego, CA, 92093-0612, USA
| | - Rui Appelberg
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto 4150-180, Porto, Portugal
| |
Collapse
|
168
|
Di Francesco A, Favaroni A, Donati M. Host defense peptides: general overview and an update on their activity against Chlamydia spp. Expert Rev Anti Infect Ther 2013; 11:1215-24. [PMID: 24111488 DOI: 10.1586/14787210.2013.841450] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chlamydiae are obligate intracellular bacteria that cause serious diseases in a wide range of hosts. Chlamydia trachomatis is one of the leading sexually transmitted pathogens in the world. Because vaccines are not currently available, effective drugs are essential. In both animals and humans, chlamydial infections are often treated with tetracycline or its derivatives. A stable tetracycline-resistant phenotype was described in Chlamydia suis strains from pigs in the USA and in Europe. In humans, there are reports of tetracycline treatment failure and the in vitro adaptability of C. trachomatis to evolve to antibiotic resistance has been described, suggesting the pressing need to search for alternative and effective classes of antimicrobial drugs. Host defense peptides (HDPs) are known as direct antimicrobial agents as well as innate immune modulators. Being active against multidrug-resistant bacteria, HDPs are attractive candidates as templates for new drugs. A number of studies evaluated the activity of natural and synthetic HDPs against Chlamydia spp., showing C. trachomatis to be the most sensitive among chlamydia species tested. Protegrins and α-helical peptides were the most active among the HDPs assessed.
Collapse
Affiliation(s)
- Antonietta Di Francesco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | | | | |
Collapse
|
169
|
MacLeod AS, Hemmers S, Garijo O, Chabod M, Mowen K, Witherden DA, Havran WL. Dendritic epidermal T cells regulate skin antimicrobial barrier function. J Clin Invest 2013; 123:4364-74. [PMID: 24051381 DOI: 10.1172/jci70064] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/01/2013] [Indexed: 12/24/2022] Open
Abstract
The epidermis, the outer layer of the skin, forms a physical and antimicrobial shield to protect the body from environmental threats. Skin injury severely compromises the epidermal barrier and requires immediate repair. Dendritic epidermal T cells (DETC) reside in the murine epidermis where they sense skin injury and serve as regulators and orchestrators of immune responses. Here, we determined that TCR stimulation and skin injury induces IL-17A production by a subset of DETC. This subset of IL-17A-producing DETC was distinct from IFN-γ producers, despite similar surface marker profiles. Functionally, blocking IL-17A or genetic deletion of IL-17A resulted in delayed wound closure in animals. Skin organ cultures from Tcrd-/-, which lack DETC, and Il17a-/- mice both exhibited wound-healing defects. Wound healing was fully restored by the addition of WT DETC, but only partially restored by IL-17A-deficient DETC, demonstrating the importance of IL-17A to wound healing. Following skin injury, DETC-derived IL-17A induced expression of multiple host-defense molecules in epidermal keratinocytes to promote healing. Together, these data provide a mechanistic link between IL-17A production by DETC, host-defense, and wound-healing responses in the skin. These findings establish a critical and unique role of IL-17A-producing DETC in epidermal barrier function and wound healing.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Defensins/metabolism
- Epidermal Cells
- Epidermis/immunology
- Epidermis/physiology
- Immunity, Innate
- Interferon-gamma/metabolism
- Interleukin-17/physiology
- Langerhans Cells/immunology
- Langerhans Cells/metabolism
- Leukocyte Common Antigens/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Skin/cytology
- Skin/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tissue Culture Techniques
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
- Wound Healing
Collapse
|
170
|
Augmentation of epithelial resistance to invading bacteria by using mRNA transfections. Infect Immun 2013; 81:3975-83. [PMID: 23940207 DOI: 10.1128/iai.00539-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To protect against invading bacteria, oral epithelial cells appear to use two effector antimicrobial peptides (AMPs): calprotectin (S100A8-S100A9 heterodimer [S100A8/A9]) in the cytosol and cathelicidin antimicrobial protein (CAMP) in endosomes. We sought to learn whether innate immunity might be augmented benignly to increase resistance against invasive bacteria. Epithelial cells were transiently transfected with mRNA constructs containing either the CAMP, S100A8, and S100A9 open reading frames, A8-IRES-A9 (fusion sequence), or A8-nIRES-A9 (fusion with native internal ribosome entry site [IRES] sequence). CAMP, S100A8, and S100A9 protein levels generally peaked between 16 and 44 h after mRNA transfection, depending on the construct; CAMP was processed to LL-37 over time. Following transfection with the respective mRNAs, CAMP and S100A8/A9 each independently increased resistance of epithelial cells to invasion by Listeria and Salmonella for up to 48 h; tandem S100A8/A9 constructs were also effective. Cotransfection to express S100A8/A9 and CAMP together augmented resistance, but synergy was not seen. Independent of the new proteins produced, transfection reduced cell viability after 48 h by 20%, with only 2% attributable to apoptosis. Taken together, these results suggest that epithelial cell resistance to invasive pathogens can be augmented by transient transfection of antimicrobial mRNAs into epithelial cells.
Collapse
|
171
|
Coda AB, Hata T, Miller J, Audish D, Kotol P, Two A, Shafiq F, Yamasaki K, Harper JC, Del Rosso JQ, Gallo RL. Cathelicidin, kallikrein 5, and serine protease activity is inhibited during treatment of rosacea with azelaic acid 15% gel. J Am Acad Dermatol 2013; 69:570-7. [PMID: 23871720 DOI: 10.1016/j.jaad.2013.05.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/13/2013] [Accepted: 05/18/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Excess cathelicidin and kallikrein 5 (KLK5) have been hypothesized to play a role in the pathophysiology of rosacea. OBJECTIVE We sought to evaluate the effects of azelaic acid (AzA) on these elements of the innate immune system. METHODS Gene expression and protease activity were measured in laboratory models and patients with rosacea during a 16-week multicenter, prospective, open-label study of 15% AzA gel. RESULTS AzA directly inhibited KLK5 in cultured keratinocytes and gene expression of KLK5, Toll-like receptor-2, and cathelicidin in mouse skin. Patients with rosacea showed reduction in cathelicidin and KLK5 messenger RNA after treatment with AzA gel. Subjects without rosacea had lower serine protease activity (SPA) than patients with rosacea. Distinct subsets of patients with rosacea who had high and low baseline SPA were identified, and patients with high baseline exhibited a statistically significant reduction of SPA with 15% AzA gel treatment. LIMITATIONS Study size was insufficient to predict clinical efficacy based on the innate immune response to AzA. CONCLUSIONS These results show that cathelicidin and KLK5 decrease in association with AZA exposure. Our observations suggest a new mechanism of action for AzA and that SPA may be a useful biomarker for disease activity.
Collapse
Affiliation(s)
- Alvin B Coda
- Division of Dermatology, Department of Medicine, University of California-San Diego, San Diego, California
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Hahn S, Giaglis S, Chowdhury CS, Chowdury CS, Hösli I, Hasler P. Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology. Semin Immunopathol 2013; 35:439-53. [PMID: 23649713 PMCID: PMC3685704 DOI: 10.1007/s00281-013-0380-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 04/24/2013] [Indexed: 12/12/2022]
Abstract
The ability of neutrophils and other leucocyte members of the innate immune system to expel their DNA into the extracellular environment in a controlled manner in order to trap and kill pathogenic microorganisms lead to a paradigm shift in our understanding of host microbe interactions. Surprisingly, the neutrophil extracellular trap (NET) cast by neutrophils is very wide and extends to the entrapment of viruses as well as multicellular eukaryotic parasites. Not unexpectedly, it has emerged that pathogenic microorganisms can employ a wide array of strategies to avoid ensnarement, including expression of DNAse enzymes that destroy the lattice backbone of NETs. Alternatively, they may use molecular mimicry to avoid detection or trigger events leading to the expression of immune modulatory cytokines such as IL-10, which dampen the NETotic response of neutrophils. In addition, the host microenvironment may contribute to the innate immune response by the production of lectin-like molecules that bind to bacteria and promote their entrapment on NETs. An example of this is the production of surfactant protein D by the lung epithelium. In addition, pregnancy provides a different challenge, as the mother needs to mount an effective response against pathogens, without harming her unborn child. An examination of these decoy and host response mechanisms may open the path for new therapies to treat pathologies mediated by overt NETosis.
Collapse
Affiliation(s)
- Sinuhe Hahn
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
173
|
Antifungal Activity of the Noncytotoxic Human Peptide Hepcidin 20 against Fluconazole-Resistant Candida glabrata in Human Vaginal Fluid. Antimicrob Agents Chemother 2013; 57:4314-4321. [PMID: 23796919 DOI: 10.1128/aac.00904-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/18/2013] [Indexed: 11/20/2022] Open
Abstract
Vaginal infections caused by Candida glabrata are difficult to eradicate due to this species' scarce susceptibility to azoles. Previous studies have shown that the human cationic peptide hepcidin 20 (Hep-20) exerts fungicidal activity in sodium phosphate buffer against a panel of C. glabrata clinical isolates with different levels of susceptibility to fluconazole. In addition, the activity of the peptide was potentiated under acidic conditions, suggesting an application in the topical treatment of vaginal infections. To investigate whether the peptide activity could be maintained in biological fluids, in this study the antifungal activity of Hep-20 was evaluated by a killing assay in (i) a vaginal fluid simulant (VFS) and in (ii) human vaginal fluid (HVF) collected from three healthy donors. The results obtained indicated that the activity of the peptide was maintained in VFS and HVF supplemented with EDTA. Interestingly, the fungicidal activity of Hep-20 was enhanced in HVF compared to that observed in VFS, with a minimal fungicidal concentration of 25 μM for all donors. No cytotoxic effect on human cells was exerted by Hep-20 at concentrations ranging from 6.25 to 100 μM, as shown by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide tetrazolium salt (XTT) reduction assay and propidium iodide staining. A piece of indirect evidence of Hep-20 stability was also obtained from coincubation experiments of the peptide with HVF at 37°C for 90 min and for 24 h. Collectively, these results indicate that this peptide should be further studied as a novel therapeutic agent for the topical treatment of vaginal C. glabrata infections.
Collapse
|
174
|
Chow JYC, Li ZJ, Kei WK, Cho CH. Cathelicidin a potential therapeutic peptide for gastrointestinal inflammation and cancer. World J Gastroenterol 2013; 19:2731-2735. [PMID: 23687409 PMCID: PMC3653146 DOI: 10.3748/wjg.v19.i18.2731] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/04/2013] [Indexed: 02/06/2023] Open
Abstract
Cathelicidins, are host defense peptides synthesized and stored in circulating leukocytes and numerous types of epithelial tissues in particular the gastrointestinal (GI) tract and skin. They have been known for their antimicrobial activities against a variety of microbes. Recently it was discovered that they have other significant biological functions and produce appealing pharmacological actions against inflammation and cancer in the GI tract through defined mechanisms. Experimental evidence shows that these actions could be tissue and disease specific and concentration dependent. This article reviews some of the physiological functions of cathelicidins and also their therapeutic potential in the treatment of inflammation and cancer and also the delivery system for this peptide as targeted therapy for various disorders in the GI tract both in animals and humans.
Collapse
|
175
|
Cathelicidin LL-37 bloodstream surveillance is down regulated during septic shock. Microbes Infect 2013; 15:342-6. [DOI: 10.1016/j.micinf.2013.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/27/2012] [Accepted: 01/03/2013] [Indexed: 02/07/2023]
|
176
|
McGee HM, Schmidt B, Booth CJ, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA, Horsley V. IL-22 promotes fibroblast-mediated wound repair in the skin. J Invest Dermatol 2013; 133:1321-9. [PMID: 23223145 PMCID: PMC3610794 DOI: 10.1038/jid.2012.463] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Skin wound repair requires complex and highly coordinated interactions between keratinocytes, fibroblasts, and immune cells to restore the epidermal barrier and tissue architecture after acute injury. The cytokine IL-22 mediates unidirectional signaling from immune cells to epithelial cells during injury of peripheral tissues such as the liver and colon, where IL-22 causes epithelial cells to produce antibacterial proteins, express mucins, and enhance epithelial regeneration. In this study, we used IL-22(-/-) mice to investigate the in vivo role for IL-22 in acute skin wounding. We found that IL-22(-/-) mice displayed major defects in the skin's dermal compartment after full-thickness wounding. We also found that IL-22 signaling is active in fibroblasts, using in vitro assays with primary fibroblasts, and that IL-22 directs extracellular matrix (ECM) gene expression and myofibroblast differentiation both in vitro and in vivo. These data define roles of IL-22 beyond epithelial cross talk, and suggest that IL-22 has a previously unidentified role in skin repair by mediating interactions between immune cells and fibroblasts.
Collapse
Affiliation(s)
- Heather M. McGee
- Department of Molecular, Cell and Developmental Biology, Yale University
- Department of Immunobiology, Yale University
| | - Barbara Schmidt
- Department of Molecular, Cell and Developmental Biology, Yale University
| | | | | | | | | | | | | | - Valerie Horsley
- Department of Molecular, Cell and Developmental Biology, Yale University
| |
Collapse
|
177
|
Gollwitzer H, Dombrowski Y, Prodinger PM, Peric M, Summer B, Hapfelmeier A, Saldamli B, Pankow F, von Eisenhart-Rothe R, Imhoff AB, Schauber J, Thomas P, Burgkart R, Banke IJ. Antimicrobial peptides and proinflammatory cytokines in periprosthetic joint infection. J Bone Joint Surg Am 2013; 95:644-51. [PMID: 23553300 DOI: 10.2106/jbjs.l.00205] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Differentiation between septic and aseptic loosening of joint replacements is essential for successful revision surgery, but reliable markers for the diagnosis of low-grade infection are lacking. The present study was performed to assess intra-articular and systemic levels of antimicrobial peptides and proinflammatory cytokines as diagnostic markers for periprosthetic joint infection. METHODS Fifteen consecutive patients with staphylococcal periprosthetic joint infections and twenty control patients with aseptic loosening of total hip and knee replacements were included in this prospective, single-center, controlled clinical trial. Expression of the antimicrobial peptides human β-defensin-2 (HBD-2), human β-defensin-3 (HBD-3), and cathelicidin LL-37 (LL-37) was determined by ELISA (enzyme-linked immunosorbent assay) in serum and joint aspirates. Proinflammatory cytokines were assessed in serum and joint aspirates with use of cytometric bead arrays. C-reactive protein in serum, microbiology, and histopathology of periprosthetic tissue served as the "gold standard" for the diagnosis of infection. RESULTS The antimicrobial peptides HBD-3 and LL-37 were significantly elevated in joint aspirates from patients with periprosthetic joint infection compared with patients with aseptic loosening, and the area under the curve (AUC) in a receiver operating characteristic curve analysis was equal to 0.745 and 0.875, respectively. Additionally, significant local increases in the proinflammatory cytokines interleukin (IL)-1β, IL-4, IL-6, IL-17A, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α were observed to be associated with infection. Logistic regression analysis indicated that the combination of an antimicrobial peptide with another synovial fluid biomarker improved diagnostic accuracy; the AUC value was 0.916 for LL-37 and IL-4, 0.895 for LL-37 and IL-6, 0.972 for HBD-3 and IL-4, and 0.849 for HBD-3 and IL-6. In contrast, the only antimicrobial peptides and cytokines in serum that showed a significant systemic increase in association with infection were HBD-2, IL-4, and IL-6 (all of which had an AUC value of <0.75). CONCLUSIONS The present study showed promising results for the use of antimicrobial peptides and other biomarkers in synovial fluid for the diagnosis of periprosthetic joint infection, and analysis of the levels in synovial fluid was more accurate than analysis of serum.
Collapse
Affiliation(s)
- Hans Gollwitzer
- Clinic of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straβe 22, 81675 München, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
|
179
|
Alba A, López-Abarrategui C, Otero-González AJ. Host defense peptides: an alternative as antiinfective and immunomodulatory therapeutics. Biopolymers 2013. [PMID: 23193590 DOI: 10.1002/bip.22076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Host defense peptides are conserved components of innate immune response present among all classes of life. These peptides are potent, broad spectrum antimicrobial agents with potential as novel therapeutic compounds. Also, the ability of host defense peptides to modulate immunity is an emerging therapeutic concept since its selective modulation is a novel antiinfective strategy. Their mechanisms of action and the fundamental differences between pathogens and host cells surfaces mostly lead to a not widely extended microbial resistance and to a lower toxicity toward host cells. Biological libraries and rational design are novel tools for developing such molecules with promising applications as therapeutic drugs.
Collapse
Affiliation(s)
- Annia Alba
- Departamento de Parasitología, Instituto de Medicina Tropical "Pedro Kourí," La Habana, Cuba
| | | | | |
Collapse
|
180
|
Felton S, Navid F, Schwarz A, Schwarz T, Gläser R, Rhodes LE. Ultraviolet radiation-induced upregulation of antimicrobial proteins in health and disease. Photochem Photobiol Sci 2013; 12:29-36. [DOI: 10.1039/c2pp25158b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
181
|
Leonor Sánchez M, María Belén Martínez M, César Maffia P. Natural Antimicrobial Peptides: Pleiotropic Molecules in Host Defense. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/cellbio.2013.24023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
182
|
Rico-Mata R, De Leon-Rodriguez LM, Avila EE. Effect of antimicrobial peptides derived from human cathelicidin LL-37 on Entamoeba histolytica trophozoites. Exp Parasitol 2012; 133:300-6. [PMID: 23274811 DOI: 10.1016/j.exppara.2012.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 10/27/2022]
Abstract
The human cathelicidin hCAP18/LL-37 is an antimicrobial protein consisting of a conserved N-terminal prosequence called the cathelin-like domain and a C-terminal peptide called LL-37. This peptide contains 37 amino acid residues, and several truncated variants obtained from natural sources or by chemical synthesis differ in their capability to damage Gram positive and Gram negative bacteria as well as Candida albicans. KR-12 is the shortest peptide (12 amino acids) of LL-37 that has conserved antibacterial activity. In addition to LL-37, other active cathelicidin-derived peptides have been reported; for instance, the peptides KR-20, a 20-aa derivative of LL-37, and KS-30, a 30-aa derivative of LL-37, have been found in human sweat. Both peptides exhibit an overall increased antibacterial and antifungal activity when compared with LL-37. We investigated the effect of LL-37 and three peptides derived from this antimicrobial molecule, KR-12, KR-20 and KS-30, on the integrity of Entamoeba histolytica trophozoites. The four peptides showed effects on E. histolytica integrity and viability in the concentration range of 10-50 μM. The peptides KR-12, KR-20, KS-30 and LL-37 differed in their capability to damage the parasite integrity, with KR-20 being the most effective and with KR-12 and LL-37 being less active. These results demonstrate the ability of antimicrobial peptides derived from human cathelicidin to damage Entamoeba trophozoites. Moreover, it was shown that the integrity of the peptides is altered in the presence of an ameba soluble fraction with cysteine protease activity.
Collapse
Affiliation(s)
- Rosa Rico-Mata
- Division de Ciencias Naturales y Exactas, Departamento de Biologia, Universidad de Guanajuato, Colonia Noria Alta, Guanajuato, Gto, CP 36050, Mexico.
| | | | | |
Collapse
|
183
|
Human cathelicidin LL-37 prevents bacterial biofilm formation. Future Med Chem 2012; 4:1587-99. [PMID: 22917247 DOI: 10.4155/fmc.12.97] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human pathogens often colonize their host by the formation of biofilms. These surface-attached aggregates of bacteria are characterized by a self-produced extracellular matrix, which makes them highly resistant towards antibiotic treatment. Their abilities to adhere to abiotic surfaces (e.g., catheters and other medical devices) also makes bacterial biofilm formation a challenge in modern medicine. Antimicrobial peptides have lately been introduced as a potential class of drug molecules for combating severe hospital-acquired infections. One of these peptides, human cathelicidin LL-37, has recently been demonstrated to bridge innate and adaptive host defence, in addition to facilitating a robust antibiofilm effect at sub-inhibitory concentrations. In this review we will discuss the evidence, potential and challenges for LL-37 as a candidate molecule for therapeutic use.
Collapse
|
184
|
Zhang L, Yu J, Wong CCM, Ling TKW, Li ZJ, Chan KM, Ren SX, Shen J, Chan RLY, Lee CC, Li MSM, Cheng ASL, To KF, Gallo RL, Sung JJY, Wu WKK, Cho CH. Cathelicidin protects against Helicobacter pylori colonization and the associated gastritis in mice. Gene Ther 2012; 20:751-60. [PMID: 23254369 DOI: 10.1038/gt.2012.92] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/31/2012] [Accepted: 10/08/2012] [Indexed: 12/29/2022]
Abstract
Cathelicidin, an antimicrobial peptide of the innate immune system, has been shown to modulate microbial growth, wound healing and inflammation. However, whether cathelicidin controls Helicobacter pylori infection in vivo remains unexplored. This study sought to elucidate the role of endogenous and exogenous mouse cathelicidin (CRAMP) in the protection against H. pylori infection and the associated gastritis in mice. Results showed that genetic ablation of CRAMP in mice significantly increased the susceptibility of H. pylori colonization and the associated gastritis as compared with the wild-type control. Furthermore, replenishment with exogenous CRAMP, delivered via a bioengineered CRAMP-secreting strain of Lactococcus lactis, reduced H. pylori density in the stomach as well as the associated inflammatory cell infiltration and cytokine production. Collectively, these findings indicate that cathelicidin protects against H. pylori infection and its associated gastritis in vivo. Our study also demonstrates the feasibility of using the transformed food-grade bacteria to deliver cathelicidin, which may have potential clinical applications in the treatment of H. pylori infection in humans.
Collapse
Affiliation(s)
- L Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Hollands A, Gonzalez D, Leire E, Donald C, Gallo RL, Sanderson-Smith M, Dorrestein PC, Nizet V. A bacterial pathogen co-opts host plasmin to resist killing by cathelicidin antimicrobial peptides. J Biol Chem 2012; 287:40891-7. [PMID: 23038245 PMCID: PMC3510793 DOI: 10.1074/jbc.m112.404582] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/14/2012] [Indexed: 02/04/2023] Open
Abstract
The bacterial pathogen Group A Streptococcus (GAS) colonizes epithelial and mucosal surfaces and can cause a broad spectrum of human disease. Through the secreted plasminogen activator streptokinase (Ska), GAS activates human plasminogen into plasmin and binds it to the bacterial surface. The resulting surface plasmin protease activity has been proposed to play a role in disrupting tissue barriers, promoting invasive spread of the bacterium. We investigated whether this surface protease activity could aid the immune evasion role through degradation of the key innate antimicrobial peptide LL-37, the human cathelicidin. Cleavage products of plasmin-degraded LL-37 were analyzed by matrix-assisted laser desorption ionization mass spectrometry. Ska-deficient GAS strains were generated by targeted allelic exchange mutagenesis and confirmed to lack surface plasmin activity after growth in human plasma or media supplemented with plasminogen and fibrinogen. Loss of surface plasmin activity left GAS unable to efficiently degrade LL-37 and increased bacterial susceptibility to killing by the antimicrobial peptide. When mice infected with GAS were simultaneously treated with the plasmin inhibitor aprotinin, a significant reduction in the size of necrotic skin lesions was observed. Together these data reveal a novel immune evasion strategy of the human pathogen: co-opting the activity of a host protease to evade peptide-based innate host defenses.
Collapse
Affiliation(s)
| | | | | | - Cortny Donald
- the Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | - Martina Sanderson-Smith
- the Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 and
| | - Victor Nizet
- From the Department of Pediatrics
- Skaggs School of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
186
|
A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol 2012; 280:22-35. [PMID: 23246832 DOI: 10.1016/j.cellimm.2012.11.009] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/09/2012] [Accepted: 11/15/2012] [Indexed: 01/01/2023]
Abstract
Cathelicidins are a group of antimicrobial peptides. Since their discovery, it has become clear that they are an exceptional class of peptides, with some members having pleiotropic effects. Not only do they possess an antibacterial, antifungal and antiviral function, they also show a chemotactic and immunostimulatory/-modulatory effect. Moreover, they are capable of inducing wound healing, angiogenesis and modulating apoptosis. Recent insights even indicate for a role of these peptides in cancer. This review provides a comprehensive summary of the most recent and relevant insights concerning the human cathelicidin LL-37.
Collapse
|
187
|
Rivas-Santiago B, Rivas Santiago CE, Castañeda-Delgado JE, León-Contreras JC, Hancock REW, Hernandez-Pando R. Activity of LL-37, CRAMP and antimicrobial peptide-derived compounds E2, E6 and CP26 against Mycobacterium tuberculosis. Int J Antimicrob Agents 2012; 41:143-8. [PMID: 23141114 DOI: 10.1016/j.ijantimicag.2012.09.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/13/2012] [Accepted: 09/26/2012] [Indexed: 10/27/2022]
Abstract
Tuberculosis (TB) is a major worldwide health problem in part due to the lack of development of new treatments and the emergence of new strains such as multidrug-resistant (MDR) and extensively drug-resistant strains that are threatening and impairing the control of this disease. In this study, the efficacy of natural and synthetic cationic antimicrobial (host defence) peptides that have been shown often to possess broad-spectrum antimicrobial activity was tested. The natural antimicrobial peptides human LL-37 and mouse CRAMP as well as synthetic peptides E2, E6 and CP26 were tested for their activity against Mycobacterium tuberculosis both in in vitro and in vivo models. The peptides had moderate antimicrobial activities, with minimum inhibitory concentrations ranging from 2 μg/mL to 10 μg/mL. In a virulent model of M. tuberculosis lung infection, intratracheal therapeutic application of these peptides three times a week at doses of ca. 1mg/kg led to significant 3-10-fold reductions in lung bacilli after 28-30 days of treatment. The treatments worked both against the drug-sensitive H37Rv strain and a MDR strain. These results indicate that antimicrobial peptides might constitute a novel therapy against TB.
Collapse
Affiliation(s)
- Bruno Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Social Security Institute, Zacatecas, Mexico.
| | | | | | | | | | | |
Collapse
|
188
|
Vitamin D and the human antimicrobial peptide LL-37 enhance group a streptococcus resistance to killing by human cells. mBio 2012; 3:mBio.00394-12. [PMID: 23093388 PMCID: PMC3482505 DOI: 10.1128/mbio.00394-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The CsrRS two-component regulatory system of group A Streptococcus (GAS; Streptococcus pyogenes) responds to subinhibitory concentrations of the human antimicrobial peptide LL-37. LL-37 signaling through CsrRS results in upregulation of genes that direct synthesis of virulence factors, including the hyaluronic acid capsule and streptolysin O (SLO). Here, we demonstrate that a consequence of this response is augmented GAS resistance to killing by human oropharyngeal keratinocytes, neutrophils, and macrophages. LL-37-induced upregulation of SLO and hyaluronic acid capsule significantly reduced internalization of GAS by keratinocytes and phagocytic killing by neutrophils and macrophages. Because vitamin D induces LL-37 production by macrophages, we tested its effect on macrophage killing of GAS. In contrast to the reported enhancement of macrophage function in relation to other pathogens, treatment of macrophages with 1α,25-dihydroxy-vitamin D3 paradoxically reduced the ability of macrophages to control GAS infection. These observations demonstrate that LL-37 signals through CsrRS to induce a virulence phenotype in GAS characterized by heightened resistance to ingestion and killing by both epithelial cells and phagocytes. By inducing LL-37 production in macrophages, vitamin D may contribute to this paradoxical exacerbation of GAS infection. IMPORTANCE It remains poorly understood why group A Streptococcus (GAS) causes asymptomatic colonization or localized throat inflammation in most individuals but rarely progresses to invasive infection. The human antimicrobial peptide LL-37, which is produced as part of the innate immune response to GAS infection, signals through the GAS CsrRS two-component regulatory system to upregulate expression of multiple virulence factors. This study reports that two CsrRS-regulated GAS virulence factors-streptolysin O and the hyaluronic acid capsule-are critical in LL-37-induced resistance of GAS to killing by human throat epithelial cells and by neutrophils and macrophages. Vitamin D, which increases LL-37 production in macrophages, has the paradoxical effect of increasing GAS resistance to macrophage-mediated killing. In this way, the human innate immune response may promote the transition from GAS colonization to invasive infection.
Collapse
|
189
|
Interleukin 13 exposure enhances vitamin D-mediated expression of the human cathelicidin antimicrobial peptide 18/LL-37 in bronchial epithelial cells. Infect Immun 2012; 80:4485-94. [PMID: 23045480 DOI: 10.1128/iai.06224-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vitamin D is an important regulator of the expression of antimicrobial peptides, and vitamin D deficiency is associated with respiratory infections. Regulating expression of antimicrobial peptides, such as the human cathelicidin antimicrobial peptide 18 (hCAP18)/LL-37, by vitamin D in bronchial epithelial cells requires local conversion of 25(OH)-vitamin D(3) (25D(3)) into its bioactive metabolite, 1,25(OH)(2)-vitamin D(3) (1,25D(3)), by CYP27B1. Low circulating vitamin D levels in childhood asthma are associated with more-severe exacerbations, which are often associated with infections. Atopic asthma is accompanied by Th2-driven inflammation mediated by cytokines such as interleukin 4 (IL-4) and IL-13, and the effect of these cytokines on vitamin D metabolism and hCAP18/LL-37 expression is unknown. Therefore, we investigated this with well-differentiated bronchial epithelial cells. To this end, cells were treated with IL-13 with and without 25D(3), and expression of hCAP18/LL-37, CYP27B1, the 1,25D(3)-inactivating enzyme CYP24A1, and vitamin D receptor was assessed by quantitative PCR. We show that IL-13 enhances the ability of 25D(3) to increase expression of hCAP18/LL-37 and CYP24A1. In addition, exposure to IL-13 resulted in increased CYP27B1 expression, whereas vitamin D receptor (VDR) expression was not significantly affected. The enhancing effect of IL-13 on 25D(3)-mediated expression of hCAP18/LL-37 was further confirmed using SDS-PAGE Western blotting and immunofluorescence staining. In conclusion, we demonstrate that IL-13 induces vitamin D-dependent hCAP18/LL-37 expression, most likely by increasing CYP27B1. These data suggest that Th2 cytokines regulate the vitamin D metabolic pathway in bronchial epithelial cells.
Collapse
|
190
|
Youssef DA, Ranasinghe T, Grant WB, Peiris AN. Vitamin D's potential to reduce the risk of hospital-acquired infections. DERMATO-ENDOCRINOLOGY 2012; 4:167-75. [PMID: 22928073 PMCID: PMC3427196 DOI: 10.4161/derm.20789] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Health care–associated and hospital-acquired infections are two entities associated with increased morbidity and mortality. They are highly costly and constitute a great burden to the health care system. Vitamin D deficiency (< 20 ng/ml) is prevalent and may be a key contributor to both acute and chronic ill health. Vitamin D deficiency is associated with decreased innate immunity and increased risk for infections. Vitamin D can positively influence a wide variety of microbial infections.
Herein we discuss hospital-acquired infections, such as pneumonia, bacteremias, urinary tract and surgical site infections, and the potential role vitamin D may play in ameliorating them. We also discuss how vitamin D might positively influence these infections and help contain health care costs. Pending further studies, we think it is prudent to check vitamin D status at hospital admission and to take immediate steps to address existing insufficient 25-hydroxyvitamin D levels.
Collapse
|
191
|
Dombrowski Y, Schauber J. Cathelicidin LL-37: a defense molecule with a potential role in psoriasis pathogenesis. Exp Dermatol 2012; 21:327-30. [PMID: 22509827 DOI: 10.1111/j.1600-0625.2012.01459.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidermal keratinocytes produce and secrete antimicrobial peptides (AMPs) that subsequently form a chemical shield on the skin surface. Cathelicidins are one family of AMPs in skin with various further immune functions. Consequently, dysfunction of these peptides has been implicated in the pathogenesis of inflammatory skin disease. In particular, the cathelicidin LL-37 is overexpressed in inflamed skin in psoriasis, binds to extracellular self-DNA released from dying cells and converts self-DNA in a potent stimulus for plasmacytoid dendritic cells (pDCs). Subsequently, pDCs secrete type I interferons and trigger an auto-inflammatory cascade. Paradoxically, therapies targeting the vitamin D pathway such as vitamin D analogues or UVB phototherapy ameliorate cutaneous inflammation in psoriasis but strongly induce cathelicidin expression in skin at the same time. Current evidence now suggests that self-DNA present in the cytosol of keratinocytes is also pro-inflammatory active and triggers IL-1β secretion in psoriatic lesions through the AIM2 inflammasome. This time, however, binding of LL-37 to self-DNA neutralizes DNA-mediated inflammation. Hence, cathelicidin LL-37 shows contrasting roles in skin inflammation in psoriasis and might serve as a target for novel therapies for this chronic skin disease.
Collapse
Affiliation(s)
- Yvonne Dombrowski
- Department of Dermatology and Allergy, Ludwig-Maximilian University, Munich, Germany
| | | |
Collapse
|
192
|
Type I IFNs at the interface between cutaneous immunity and epidermal remodeling. J Invest Dermatol 2012; 132:1759-62. [PMID: 22695287 DOI: 10.1038/jid.2012.149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Type I IFNs are key cytokines in antiviral host defense. Preferentially expressed by plasmacytoid dendritic cells, type I IFNs are induced by viral infection and in common skin wounds. In this issue, Tohyama et al. identify a new link between type I IFNs and epidermal remodeling, by showing that type I IFNs specifically upregulate IL-22R expression on keratinocytes and, thereby, IL-22-mediated Stat3 phosphorylation in keratinocytes. The findings suggest that type I IFNs play dual roles in human skin: first, they induce immune activation with the induction of IL-22-producing T cells; second, they provide the interface between immune activation and epidermal remodeling by increasing keratinocyte responsiveness to IL-22.
Collapse
|
193
|
Steinstraesser L, Hirsch T, Schulte M, Kueckelhaus M, Jacobsen F, Mersch EA, Stricker I, Afacan N, Jenssen H, Hancock REW, Kindrachuk J. Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS One 2012; 7:e39373. [PMID: 22879874 PMCID: PMC3412849 DOI: 10.1371/journal.pone.0039373] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/21/2012] [Indexed: 01/13/2023] Open
Abstract
Innate defense regulators (IDRs) are synthetic immunomodulatory versions of natural host defense peptides (HDP). IDRs mediate protection against bacterial challenge in the absence of direct antimicrobial activity, representing a novel approach to anti-infective and anti-inflammatory therapy. Previously, we reported that IDR-1018 selectively induced chemokine responses and suppressed pro-inflammatory responses. As there has been an increasing appreciation for the ability of HDPs to modulate complex immune processes, including wound healing, we characterized the wound healing activities of IDR-1018 in vitro. Further, we investigated the efficacy of IDR-1018 in diabetic and non-diabetic wound healing models. In all experiments, IDR-1018 was compared to the human HDP LL-37 and HDP-derived wound healing peptide HB-107. IDR-1018 was significantly less cytotoxic in vitro as compared to either LL-37 or HB-107. Furthermore, administration of IDR-1018 resulted in a dose-dependent increase in fibroblast cellular respiration. In vivo, IDR-1018 demonstrated significantly accelerated wound healing in S. aureus infected porcine and non-diabetic but not in diabetic murine wounds. However, no significant differences in bacterial colonization were observed. Our investigation demonstrates that in addition to previously reported immunomodulatory activities IDR-1018 promotes wound healing independent of direct antibacterial activity. Interestingly, these effects were not observed in diabetic wounds. It is anticipated that the wound healing activities of IDR-1018 can be attributed to modulation of host immune pathways that are suppressed in diabetic wounds and provide further evidence of the multiple immunomodulatory activities of IDR-1018.
Collapse
Affiliation(s)
- Lars Steinstraesser
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Assessment of an imiquimod-induced psoriatic mouse model in relation to oxidative stress. Arch Dermatol Res 2012; 304:699-706. [PMID: 22864965 DOI: 10.1007/s00403-012-1272-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 06/27/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease that is thought to be related to oxidative stress. Much progress has been made in understanding the pathophysiology of psoriasis in relation to the immunologic and antioxidant systems. However, this progress has been hindered by the lack of an appropriate animal model for psoriasis. Recently, imiquimod (IQM)-induced psoriasis-like cutaneous inflammation has been reported in mice and humans. We verified the usefulness of an IQM-induced mouse model in relation to the antioxidant system. BALB/C female mice at 8-10 weeks of age were treated with IQM cream in this study. We analyzed clinical and histopathological changes. Increased reactive oxygen species production was measured by glutathione assay. Levels of myeloperoxidase (MPO) and superoxide dismutase-1 (SOD1) were determined by western blotting and immunohistochemical analyses. The activity of SOD was measured by a SOD activity assay kit. Application of IQM-induced skin inflammation similar to psoriasis in clinical and histopathological aspects. Accumulation of immune cells was confirmed. Oxidative stress was increased, the antioxidant enzyme MPO levels were increased, and both SOD levels and activity were decreased. In conclusion, the IQM-induced mouse model showed an aberrant antioxidant system. Levels of MPO and oxidative stress were increased, and the level and activity of SOD were decreased. Since this model seemed to be an appropriate model for psoriasis, it can be used to further study the pathogenic role of redox imbalance in psoriasis.
Collapse
|
195
|
Salem SAM, Abu-Zeid RM, Nada OH. Immunohistochemical study of toll-like receptors 1 and 2 expression in cutaneous lichen planus lesions. Arch Dermatol Res 2012; 305:125-31. [DOI: 10.1007/s00403-012-1267-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/06/2012] [Accepted: 07/16/2012] [Indexed: 12/16/2022]
|
196
|
Weldon WC, Zarnitsyn VG, Esser ES, Taherbhai MT, Koutsonanos DG, Vassilieva EV, Skountzou I, Prausnitz MR, Compans RW. Effect of adjuvants on responses to skin immunization by microneedles coated with influenza subunit vaccine. PLoS One 2012; 7:e41501. [PMID: 22848514 PMCID: PMC3405087 DOI: 10.1371/journal.pone.0041501] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/21/2012] [Indexed: 11/23/2022] Open
Abstract
Recent studies have demonstrated the effectiveness of vaccine delivery to the skin by vaccine-coated microneedles; however there is little information on the effects of adjuvants using this approach for vaccination. Here we investigate the use of TLR ligands as adjuvants with skin-based delivery of influenza subunit vaccine. BALB/c mice received 1 µg of monovalent H1N1 subunit vaccine alone or with 1 µg of imiquimod or poly(I:C) individually or in combination via coated microneedle patches inserted into the skin. Poly(I:C) adjuvanted subunit influenza vaccine induced similar antigen-specific immune responses compared to vaccine alone when delivered to the skin by microneedles. However, imiquimod-adjuvanted vaccine elicited higher levels of serum IgG2a antibodies and increased hemagglutination inhibition titers compared to vaccine alone, suggesting enhanced induction of functional antibodies. In addition, imiquimod-adjuvanted vaccine induced a robust IFN-γ cellular response. These responses correlated with improved protection compared to influenza subunit vaccine alone, as well as reduced viral replication and production of pro-inflammatory cytokines in the lungs. The finding that microneedle delivery of imiquimod with influenza subunit vaccine induces improved immune responses compared to vaccine alone supports the use of TLR7 ligands as adjuvants for skin-based influenza vaccines.
Collapse
Affiliation(s)
- William C. Weldon
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Vladimir G. Zarnitsyn
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - E. Stein Esser
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Misha T. Taherbhai
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Dimitrios G. Koutsonanos
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Elena V. Vassilieva
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ioanna Skountzou
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Richard W. Compans
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
197
|
Muehleisen B, Jiang SB, Gladsjo JA, Gerber M, Hata T, Gallo RL. Distinct innate immune gene expression profiles in non-melanoma skin cancer of immunocompetent and immunosuppressed patients. PLoS One 2012; 7:e40754. [PMID: 22808251 PMCID: PMC3396607 DOI: 10.1371/journal.pone.0040754] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/12/2012] [Indexed: 12/28/2022] Open
Abstract
Squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) are the most frequent skin cancers in humans. An intact immune system is critical for protection against SCC since organ transplant recipients (OTR) have a 60- to 100-fold higher risk for developing these tumors. The role of the innate immune system in tumor immunosurveillance is unclear. Our aim was to determine the expression of selected innate immune genes in BCC and SCC arising in immunocompetent and OTR patients. Lesional and peri-lesional skin from 28 SCC and 19 BCC were evaluated for mRNA expression of toll-like receptors (TLR) 1-9, downstream TLR signaling molecules, and antimicrobial peptides. 11 SCC occurring in OTR patients were included in the analysis. We found that SCC but not BCC showed significantly elevated expression of TLRs 1-3, 5-8, TRIF and TRAF1. TNF was increased in SCC compared to normal skin. BCC showed increased IFNγ. hBD1, hBD2 and psoriasin mRNA and protein expression were significantly higher in SCC than in normal skin and higher than in BCC. SCC from OTR showed only an increase in hBD2 but no increase in hBD1 or psoriasin. We conclude that innate immune gene expression in SCC is distinct from normal skin and BCC. BCC shows lesser induction of innate immune genes. SCC from OTR patients have depressed expression of hBD1 and psoriasin compared to SCC from immunocompetent patients.
Collapse
Affiliation(s)
- Beda Muehleisen
- Division of Dermatology, University of California San Diego, La Jolla, California, United States of America
- Department of Dermatology, Zurich University Hospital, Zurich, Switzerland
| | - Shang Brian Jiang
- Division of Dermatology, University of California San Diego, La Jolla, California, United States of America
| | - Julie A. Gladsjo
- Division of Dermatology, University of California San Diego, La Jolla, California, United States of America
| | - Monika Gerber
- Division of Dermatology, University of California San Diego, La Jolla, California, United States of America
| | - Tissa Hata
- Division of Dermatology, University of California San Diego, La Jolla, California, United States of America
| | - Richard L. Gallo
- Division of Dermatology, University of California San Diego, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Veterans Administration San Diego Healthcare System, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
198
|
Alan E, Liman N. Immunohistochemical localization of beta defensins in the endometrium of rat uterus during the postpartum involution period. Vet Res Commun 2012; 36:173-85. [PMID: 22777508 DOI: 10.1007/s11259-012-9529-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2012] [Indexed: 01/23/2023]
Abstract
β-Defensins are small cationic molecules that have antimicrobial actions against bacteria, fungi and viruses and contribute to mucosal immune responses at epithelial sites. The female reproductive tract is an important site of defensin production. This study was conducted to determine the possible changes in proportions and localization of β-defensin 1-4 in the rat uterus at the 1st, 3th, 5th, 10th and 15th days of postpartum and at the period of diestrus using immunohistochemical techniques. In the present study, it was determined that β-defensin 1-4 were generally found in all structural components of the endometrium (luminal and glandular epithelium, stromal cells and blood vessels) in both the nucleus and the cytoplasm of cells during the involution period and diestrus. Suprisingly, immunoreaction of β-defensin 2 was also observed in the lateral membrane of the luminal and glandular epithelial cells on the 10th day of involution and immunostaining of β-defensin 4 was also localized in the apical membrane of the luminal and glandular epithelial cells. The current study demonstrated β-defensin 1-4 immunoreactivities in the endothelium of blood vessels were stronger throughout the involution period. Although β-defensins 2 and 3 were localized in both the nuclei and the cytoplasm of endothelial cells, β-defensins 1 and 4 were present in only cytoplasm. These results show that the most component of rat endometrium expresses human β-defensin 1-4 in a involution-dependent manner. Therefore it may be asserted that these molecules constitute a organised protection to prevent uterus from probable infections during the involution process.
Collapse
Affiliation(s)
- Emel Alan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Erciyes, 38090, Kayseri, Turkey
| | | |
Collapse
|
199
|
Crack LR, Jones L, Malavige GN, Patel V, Ogg GS. Human antimicrobial peptides LL-37 and human β-defensin-2 reduce viral replication in keratinocytes infected with varicella zoster virus. Clin Exp Dermatol 2012; 37:534-43. [PMID: 22639919 DOI: 10.1111/j.1365-2230.2012.04305.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND There is mounting evidence that antimicrobial peptides have an important role in cutaneous defence, but the expression of these antimicrobial peptides in atopic eczema (AE) is still unclear. There are several families of antimicrobial peptides, including cathelicidins and human β-defensins. Patients with AE are more susceptible to severe cutaneous viral infections, including varicella zoster virus (VZV). AIM To characterize the functional activity of the antimicrobial peptides LL-37 (human cathelicidin) and human β-defensin (hBD)-2 keratinocytes were infected with VZV, in a skin-infection model. METHODS Flow-cytometry analysis was used to investigate LL-37 expression in normal human keratinocytes, and quantitative PCR was used to determine viral loads in infected HaCaT keratinocytes and B cells, with and without exogenous LL-37 and hBD-2. RESULTS LL-37 expression was present in keratinocytes, and both exogenous LL-37 and hBD-2 significantly reduced VZV load in infected keratinocytes and B cells. Specific antibodies blocked the antiviral action exhibited by these antimicrobial peptides. Pre-incubation of VZV with LL-37, but not hBD-2, further reduced VZV load. CONCLUSIONS Both LL-37 and hBD-2 have an antiviral effect on VZV replication in the keratinocyte HaCaT cell line and in B cells, but their mechanism of action is different. Evidence of the relationship between antimicrobial peptide expression and higher susceptibility to infections in AE skin is still emerging. Developing novel antiviral therapies based on antimicrobial peptides may provide improved treatment options for patients with AE.
Collapse
Affiliation(s)
- L R Crack
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford and NIHR Research Centre, Oxford, Oxfordshire, UK
| | | | | | | | | |
Collapse
|
200
|
Abstract
Surface tissues of the body such as the skin and intestinal tract are in direct contact with the external environment and are thus continuously exposed to large numbers of microorganisms. To cope with the substantial microbial exposure, epithelial surfaces produce a diverse arsenal of antimicrobial proteins that directly kill or inhibit the growth of microorganisms. In this Review, we highlight new advances in our understanding of how epithelial antimicrobial proteins protect against pathogens and contribute to microbiota-host homeostasis at the skin and gut mucosae. Further, we discuss recent insights into the regulatory mechanisms that control antimicrobial protein expression. Finally, we consider how impaired antimicrobial protein expression and function can contribute to disease.
Collapse
Affiliation(s)
- Richard L Gallo
- Division of Dermatology, Department of Medicine, University of California-San Diego, San Diego, California 92093, USA.
| | | |
Collapse
|