151
|
|
152
|
Ahmadi A, Gispert JD, Navarro A, Vilor-Tejedor N, Sadeghi I. Single-cell Transcriptional Changes in Neurodegenerative Diseases. Neuroscience 2021; 479:192-205. [PMID: 34748859 DOI: 10.1016/j.neuroscience.2021.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/25/2023]
Abstract
In recent decades, our understanding of the molecular changes involved in neurodegenerative diseases has been transformed. Single-cell RNA sequencing and single-nucleus RNA sequencing technologies have been applied to provide cellular and molecular details of the brain at the single-cell level. This has expanded our knowledge of the central nervous system and provided insights into the molecular vulnerability of brain cell types and underlying mechanisms in neurodegenerative diseases. In this review, we highlight the recent advances and findings related to neurodegenerative diseases using these cutting-edge technologies.
Collapse
Affiliation(s)
- Amirhossein Ahmadi
- Department of Biology, Faculty of Nano and BioScience and Technology, Persian Gulf University, Bushehr 75169, Iran
| | - Juan D Gispert
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Arcadi Navarro
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Natalia Vilor-Tejedor
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Erasmus MC University Medical Center. Department of Clinical Genetics, Rotterdam, the Netherlands.
| | - Iman Sadeghi
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
153
|
Walgrave H, Zhou L, De Strooper B, Salta E. The promise of microRNA-based therapies in Alzheimer's disease: challenges and perspectives. Mol Neurodegener 2021; 16:76. [PMID: 34742333 PMCID: PMC8572071 DOI: 10.1186/s13024-021-00496-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/17/2021] [Indexed: 02/06/2023] Open
Abstract
Multi-pathway approaches for the treatment of complex polygenic disorders are emerging as alternatives to classical monotarget therapies and microRNAs are of particular interest in that regard. MicroRNA research has come a long way from their initial discovery to the cumulative appreciation of their regulatory potential in healthy and diseased brain. However, systematic interrogation of putative therapeutic or toxic effects of microRNAs in (models of) Alzheimer's disease is currently missing and fundamental research findings are yet to be translated into clinical applications. Here, we review the literature to summarize the knowledge on microRNA regulation in Alzheimer's pathophysiology and to critically discuss whether and to what extent these increasing insights can be exploited for the development of microRNA-based therapeutics in the clinic.
Collapse
Affiliation(s)
- Hannah Walgrave
- VIB Center for Brain & Disease Research, Leuven, KU, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Lujia Zhou
- Division of Janssen Pharmaceutica NV, Discovery Neuroscience, Janssen Research and Development, Beerse, Belgium
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, KU, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
- UK Dementia Research Institute at University College London, London, UK
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
154
|
Jha RM, Raikwar SP, Mihaljevic S, Casabella AM, Catapano JS, Rani A, Desai S, Gerzanich V, Simard JM. Emerging therapeutic targets for cerebral edema. Expert Opin Ther Targets 2021; 25:917-938. [PMID: 34844502 PMCID: PMC9196113 DOI: 10.1080/14728222.2021.2010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/20/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Cerebral edema is a key contributor to death and disability in several forms of brain injury. Current treatment options are limited, reactive, and associated with significant morbidity. Targeted therapies are emerging based on a growing understanding of the molecular underpinnings of cerebral edema. AREAS COVERED We review the pathophysiology and relationships between different cerebral edema subtypes to provide a foundation for emerging therapies. Mechanisms for promising molecular targets are discussed, with an emphasis on those advancing in clinical trials, including ion and water channels (AQP4, SUR1-TRPM4) and other proteins/lipids involved in edema signaling pathways (AVP, COX2, VEGF, and S1P). Research on novel treatment modalities for cerebral edema [including recombinant proteins and gene therapies] is presented and finally, insights on reducing secondary injury and improving clinical outcome are offered. EXPERT OPINION Targeted molecular strategies to minimize or prevent cerebral edema are promising. Inhibition of SUR1-TRPM4 (glyburide/glibenclamide) and VEGF (bevacizumab) are currently closest to translation based on advances in clinical trials. However, the latter, tested in glioblastoma multiforme, has not demonstrated survival benefit. Research on recombinant proteins and gene therapies for cerebral edema is in its infancy, but early results are encouraging. These newer modalities may facilitate our understanding of the pathobiology underlying cerebral edema.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sudhanshu P. Raikwar
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sandra Mihaljevic
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Joshua S. Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Anupama Rani
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Shashvat Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore MD, USA
| |
Collapse
|
155
|
Ito D. Promise of Nucleic Acid Therapeutics for Amyotrophic Lateral Sclerosis. Ann Neurol 2021; 91:13-20. [PMID: 34704267 DOI: 10.1002/ana.26259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Nucleic acid therapeutics have been attracting attention as novel drug discovery modalities for intractable diseases, including amyotrophic lateral sclerosis. This review provides an overview of the current status and prospects of antisense oligonucleotide treatment for amyotrophic lateral sclerosis. Recently, the results of a phase I/II study using the antisense oligonucleotides Tofersen to treat familial amyotrophic lateral sclerosis with superoxide dismutase 1 mutation have been reported. Intrathecal Tofersen administration resulted in a 36% reduction in superoxide dismutase 1 level in the cerebrospinal fluid. Another report described 2 patients with mutant superoxide dismutase 1 treated with an adeno-associated virus encoding a microRNA targeting superoxide dismutase 1. The first patient, who possessed the fast progressive mutant A5V, received a single intrathecal infusion. Although the patient died of respiratory arrest 16 months after treatment, autopsy findings showed a reduction of >90% in superoxide dismutase 1 level in the spinal cord. Clinical trials on antisense oligonucleotide therapies targeting other major amyotrophic lateral sclerosis-causative genes, fused in sarcoma and chromosome 9 open reading frame 72, are ongoing. To attenuate the pathology of TDP-43, strategies targeting regulators of TDP-43 (ataxin 2) and proteins downstream of TDP-43 (stathmin 2) by antisense oligonucleotides are being developed. The advent of nucleic acid therapeutics has enabled to specifically attack the molecules in the amyotrophic lateral sclerosis pathological cascade, expanding the options for therapeutic targets. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
156
|
Hutt JA, Assaf BT, Bolon B, Cavagnaro J, Galbreath E, Grubor B, Kattenhorn LM, Romeike A, Whiteley LO. Scientific and Regulatory Policy Committee Points to Consider: Nonclinical Research and Development of In Vivo Gene Therapy Products, Emphasizing Adeno-Associated Virus Vectors. Toxicol Pathol 2021; 50:118-146. [PMID: 34657529 DOI: 10.1177/01926233211041962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sequencing of the human genome and numerous advances in molecular techniques have launched the era of genetic medicine. Increasingly precise technologies for genetic modification, manufacturing, and administration of pharmaceutical-grade biologics have proved the viability of in vivo gene therapy (GTx) as a therapeutic modality as shown in several thousand clinical trials and recent approval of several GTx products for treating rare diseases and cancers. In recognition of the rapidly advancing knowledge in this field, the regulatory landscape has evolved considerably to maintain appropriate monitoring of safety concerns associated with this modality. Nonetheless, GTx safety assessment remains complex and is designed on a case-by-case basis that is determined by the disease indication and product attributes. This article describes our current understanding of fundamental biological principles and possible procedures (emphasizing those related to toxicology and toxicologic pathology) needed to support research and development of in vivo GTx products. This article is not intended to provide comprehensive guidance on all GTx modalities but instead provides an overview relevant to in vivo GTx generally by utilizing recombinant adeno-associated virus-based GTx-the most common in vivo GTx platform-to exemplify the main points to be considered in nonclinical research and development of GTx products.
Collapse
Affiliation(s)
- Julie A Hutt
- Greenfield Pathology Services, Inc, Greenfield, IN, USA
| | - Basel T Assaf
- Drug Safety Research and Development, Pfizer Inc, Cambridge, MA, USA
| | | | | | | | - Branka Grubor
- Biogen, Preclinical Safety/Comparative Pathology, Cambridge, MA, USA
| | | | | | | |
Collapse
|
157
|
Jensen TL, Gøtzsche CR, Woldbye DPD. Current and Future Prospects for Gene Therapy for Rare Genetic Diseases Affecting the Brain and Spinal Cord. Front Mol Neurosci 2021; 14:695937. [PMID: 34690692 PMCID: PMC8527017 DOI: 10.3389/fnmol.2021.695937] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, gene therapy has been raising hopes toward viable treatment strategies for rare genetic diseases for which there has been almost exclusively supportive treatment. We here review this progress at the pre-clinical and clinical trial levels as well as market approvals within diseases that specifically affect the brain and spinal cord, including degenerative, developmental, lysosomal storage, and metabolic disorders. The field reached an unprecedented milestone when Zolgensma® (onasemnogene abeparvovec) was approved by the FDA and EMA for in vivo adeno-associated virus-mediated gene replacement therapy for spinal muscular atrophy. Shortly after EMA approved Libmeldy®, an ex vivo gene therapy with lentivirus vector-transduced autologous CD34-positive stem cells, for treatment of metachromatic leukodystrophy. These successes could be the first of many more new gene therapies in development that mostly target loss-of-function mutation diseases with gene replacement (e.g., Batten disease, mucopolysaccharidoses, gangliosidoses) or, less frequently, gain-of-toxic-function mutation diseases by gene therapeutic silencing of pathologic genes (e.g., amyotrophic lateral sclerosis, Huntington's disease). In addition, the use of genome editing as a gene therapy is being explored for some diseases, but this has so far only reached clinical testing in the treatment of mucopolysaccharidoses. Based on the large number of planned, ongoing, and completed clinical trials for rare genetic central nervous system diseases, it can be expected that several novel gene therapies will be approved and become available within the near future. Essential for this to happen is the in depth characterization of short- and long-term effects, safety aspects, and pharmacodynamics of the applied gene therapy platforms.
Collapse
Affiliation(s)
- Thomas Leth Jensen
- Department of Neurology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | | | |
Collapse
|
158
|
Therapeutic strategies for C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol 2021; 34:748-755. [PMID: 34392299 PMCID: PMC8678157 DOI: 10.1097/wco.0000000000000984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW An intronic G4C2 expansion mutation in C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Although there are currently no treatments for this insidious, fatal disease, intense research has led to promising therapeutic strategies, which will be discussed here. RECENT FINDINGS Therapeutic strategies for C9-ALS/FTD have primarily focused on reducing the toxic effects of mutant expansion RNAs or the dipeptide repeat proteins (DPRs). The pathogenic effects of G4C2 expansion transcripts have been targeted using approaches aimed at promoting their degradation, inhibiting nuclear export or silencing transcription. Other promising strategies include immunotherapy to reduce the DPRs themselves, reducing RAN translation, removing the repeats using DNA or RNA editing and manipulation of downstream disease-altered stress granule pathways. Finally, understanding the molecular triggers that lead to pheno-conversion may lead to opportunities that can delay symptomatic disease onset. SUMMARY A large body of evidence implicates RAN-translated DPRs as a main driver of C9-ALS/FTD. Promising therapeutic strategies for these devastating diseases are being rapidly developed with several approaches already in or approaching clinical trials.
Collapse
|
159
|
Laneve P, Tollis P, Caffarelli E. RNA Deregulation in Amyotrophic Lateral Sclerosis: The Noncoding Perspective. Int J Mol Sci 2021; 22:10285. [PMID: 34638636 PMCID: PMC8508793 DOI: 10.3390/ijms221910285] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
RNA metabolism is central to cellular physiopathology. Almost all the molecular pathways underpinning biological processes are affected by the events governing the RNA life cycle, ranging from transcription to degradation. The deregulation of these processes contributes to the onset and progression of human diseases. In recent decades, considerable efforts have been devoted to the characterization of noncoding RNAs (ncRNAs) and to the study of their role in the homeostasis of the nervous system (NS), where they are highly enriched. Acting as major regulators of gene expression, ncRNAs orchestrate all the steps of the differentiation programs, participate in the mechanisms underlying neural functions, and are crucially implicated in the development of neuronal pathologies, among which are neurodegenerative diseases. This review aims to explore the link between ncRNA dysregulation and amyotrophic lateral sclerosis (ALS), the most frequent motoneuron (MN) disorder in adults. Notably, defective RNA metabolism is known to be largely associated with this pathology, which is often regarded as an RNA disease. We also discuss the potential role that these transcripts may play as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Pietro Laneve
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Paolo Tollis
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy;
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| |
Collapse
|
160
|
Muratet F, Teyssou E, Chiot A, Boillée S, Lobsiger CS, Bohl D, Gyorgy B, Guegan J, Marie Y, Amador MDM, Salachas F, Meininger V, Bernard E, Antoine JC, Camdessanché JP, Camu W, Cazeneuve C, Fauret-Amsellem AL, Leguern E, Mouzat K, Guissart C, Lumbroso S, Corcia P, Vourc'h P, Grapperon AM, Attarian S, Verschueren A, Seilhean D, Millecamps S. Impact of a frequent nearsplice SOD1 variant in amyotrophic lateral sclerosis: optimising SOD1 genetic screening for gene therapy opportunities. J Neurol Neurosurg Psychiatry 2021; 92:942-949. [PMID: 33785574 DOI: 10.1136/jnnp-2020-325921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 03/07/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Mutations in superoxide dismutase 1 gene (SOD1), encoding copper/zinc superoxide dismutase protein, are the second most frequent high penetrant genetic cause for amyotrophic lateral sclerosis (ALS) motor neuron disease in populations of European descent. More than 200 missense variants are reported along the SOD1 protein. To limit the production of these aberrant and deleterious SOD1 species, antisense oligonucleotide approaches have recently emerged and showed promising effects in clinical trials. To offer the possibility to any patient with SOD1-ALS to benefit of such a gene therapy, it is necessary to ascertain whether any variant of unknown significance (VUS), detected for example in SOD1 non-coding sequences, is pathogenic. METHODS We analysed SOD1 mutation distribution after SOD1 sequencing in a large cohort of 470 French familial ALS (fALS) index cases. RESULTS We identified a total of 27 SOD1 variants in 38 families including two SOD1 variants located in nearsplice or intronic regions of the gene. The pathogenicity of the c.358-10T>G nearsplice SOD1 variant was corroborated based on its high frequency (as the second most frequent SOD1 variant) in French fALS, the segregation analysis confirmed in eight affected members of a large pedigree, the typical SOD1-related phenotype observed (with lower limb onset and prominent lower motor neuron involvement), and findings on postmortem tissues showing SOD1 misaccumulation. CONCLUSIONS Our results highlighted nearsplice/intronic mutations in SOD1 are responsible for a significant portion of French fALS and suggested the systematic analysis of the SOD1 mRNA sequence could become the method of choice for SOD1 screening, not to miss these specific cases.
Collapse
Affiliation(s)
- François Muratet
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM,Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, Île de France, France
| | - Elisa Teyssou
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM,Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, Île de France, France
| | - Aude Chiot
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM,Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, Île de France, France
| | - Séverine Boillée
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM,Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, Île de France, France
| | - Christian S Lobsiger
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM,Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, Île de France, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM,Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, Île de France, France
| | - Beata Gyorgy
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM,Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, Île de France, France
| | - Justine Guegan
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM,Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, Île de France, France
| | - Yannick Marie
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM,Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, Île de France, France
| | - Maria Del Mar Amador
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM,Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, Île de France, France.,AP-HP, Département de Neurologie, Centre de référence SLA Ile de France, Hôpital de la Pitié-Salpêtrière, Paris, Île de France, France
| | - Francois Salachas
- AP-HP, Département de Neurologie, Centre de référence SLA Ile de France, Hôpital de la Pitié-Salpêtrière, Paris, Île de France, France
| | - Vincent Meininger
- Hôpital des Peupliers, Ramsay General Health Group, Paris, Île-de-France, France
| | - Emilien Bernard
- Centre de référence SLA, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Université de Lyon, Bron, Auvergne-Rhône-Alpes, France.,Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, Lyon, Auvergne-Rhône-Alpes, France
| | - Jean-Christophe Antoine
- Service de Neurologie, Centre de Ressource et de Compétence SLA, Hôpital Nord, CHU de Saint-Etienne, Saint-Etienne, Rhône-Alpes, France
| | - Jean-Philippe Camdessanché
- Service de Neurologie, Centre de Ressource et de Compétence SLA, Hôpital Nord, CHU de Saint-Etienne, Saint-Etienne, Rhône-Alpes, France
| | - William Camu
- Centre de référence SLA, Hôpital Gui de Chauliac, CHU de Montpellier, Université de Montpellier, Montpellier, Languedoc-Roussillon, France
| | - Cécile Cazeneuve
- Département de Génétique et Cytogénétique, Unité Fonctionnelle de neurogénétique moléculaire et cellulaire, APHP, Hôpital Pitié-Salpêtrière, Paris, Île-de-France, France
| | - Anne-Laure Fauret-Amsellem
- Département de Génétique et Cytogénétique, Unité Fonctionnelle de neurogénétique moléculaire et cellulaire, APHP, Hôpital Pitié-Salpêtrière, Paris, Île-de-France, France
| | - Eric Leguern
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM,Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, Île de France, France.,Département de Génétique et Cytogénétique, Unité Fonctionnelle de neurogénétique moléculaire et cellulaire, APHP, Hôpital Pitié-Salpêtrière, Paris, Île-de-France, France
| | - Kevin Mouzat
- Laboratoire de Biochimie et Biologie Moleculaire, CHU Nimes, Nîmes, Languedoc-Roussillon, France.,Motoneuron Disease: Pathophysiology and Therapy, INM, INSERM, Université de Montpellier, Montpellier, Languedoc-Roussillon, France
| | - Claire Guissart
- Laboratoire de Biochimie et Biologie Moleculaire, CHU Nimes, Nîmes, Languedoc-Roussillon, France.,Motoneuron Disease: Pathophysiology and Therapy, INM, INSERM, Université de Montpellier, Montpellier, Languedoc-Roussillon, France
| | - Serge Lumbroso
- Laboratoire de Biochimie et Biologie Moleculaire, CHU Nimes, Nîmes, Languedoc-Roussillon, France.,Motoneuron Disease: Pathophysiology and Therapy, INM, INSERM, Université de Montpellier, Montpellier, Languedoc-Roussillon, France
| | - Philippe Corcia
- Centre de référence SLA, Département de Neurologie, CHRU Tours, Tours, Centre-Val de Loire, France.,UMR 1253, Université de Tours, Inserm, Tours, Centre-Val de Loire, France
| | - Patrick Vourc'h
- UMR 1253, Université de Tours, Inserm, Tours, Centre-Val de Loire, France.,Service de Biochimie et Biologie Moléculaire, CHU Tours, Tours, Centre-Val de Loire, France
| | - Aude-Marie Grapperon
- Centre de Référence pour les Maladies Neuromusculaire et la SLA, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, CHU de Marseille, Marseille, Provence-Alpes-Côte d'Azur, France
| | - Shahram Attarian
- Centre de Référence pour les Maladies Neuromusculaire et la SLA, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, CHU de Marseille, Marseille, Provence-Alpes-Côte d'Azur, France
| | - Annie Verschueren
- Centre de Référence pour les Maladies Neuromusculaire et la SLA, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, CHU de Marseille, Marseille, Provence-Alpes-Côte d'Azur, France
| | - Danielle Seilhean
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM,Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, Île de France, France.,Département de Neuropathologie, APHP, Hôpital Pitié-Salpêtrière, Paris, Île-de-France, France
| | - Stéphanie Millecamps
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM,Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, Île de France, France
| |
Collapse
|
161
|
de Souza PVS, Pinto WBVDR, Farias IB, Badia BDML, Pinto IFN, Costa GC, Marin CM, Dos Santos Jorge AC, Souto EC, Serrano PDL, Machado RIL, Chieia MAT, Bertini E, Oliveira ASB. Progressive spastic tetraplegia and axial hypotonia (STAHP) due to SOD1 deficiency: is it really a new entity? Orphanet J Rare Dis 2021; 16:360. [PMID: 34380534 PMCID: PMC8359534 DOI: 10.1186/s13023-021-01993-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/01/2021] [Indexed: 11/30/2022] Open
Abstract
Background Amyotrophic Lateral Sclerosis (ALS) is a rare, progressive, and fatal neurodegenerative disease due to upper and lower motor neuron involvement with symptoms classically occurring in adulthood with an increasing recognition of juvenile presentations and childhood neurodegenerative disorders caused by genetic variants in genes related to Amyotrophic Lateral Sclerosis. The main objective of this study is detail clinical, radiological, neurophysiological, and genetic findings of a Brazilian cohort of patients with a recent described condition known as Spastic Tetraplegia and Axial Hypotonia (STAHP) due to SOD1 deficiency and compare with other cases described in the literature and discuss whether the clinical picture related to SOD1 protein deficiency is a new entity or may be represent a very early-onset form of Amyotrophic Lateral Sclerosis. Methods We conducted a case series report which included retrospective data from five Brazilian patients with SOD1 protein deficiency of a Brazilian reference center for Neuromuscular Disorders. Clinical data were obtained from a review of the medical records and descriptive statistics and variables were summarized using counts and percentages of the total population. Results All 5 patients presented with a childhood-onset neurodegenerative disorders characterized by spastic tetraplegia with axial hypotonia in all cases, with gestational history showing polyhydramnios in 4/5 and intrauterine growth restriction in 3/5 patients, with most patients initially presenting a normal motor development until the six month of life or during the first year followed by a rapidly progressive motor decline with severe dysphagia and respiratory insufficiency in all patients accompanied by cognitive impairment in 3/5 patients. All patients were homozygous for the c.335dupG (p.Cys112Trpfs*11) mutation in the SOD1 gene with completely decreased enzyme activity. Conclusions This case series is the biggest data collection of the new recent clinical entity described as Spastic Tetraplegia and Axial Hypotonia (STAHP) due to SOD1 deficiency.
Collapse
Affiliation(s)
- Paulo Victor Sgobbi de Souza
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Embaú Street, 67, Vila Clementino, São Paulo, SP, 04039-060, Brazil.
| | - Wladimir Bocca Vieira de Rezende Pinto
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Embaú Street, 67, Vila Clementino, São Paulo, SP, 04039-060, Brazil
| | - Igor Braga Farias
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Embaú Street, 67, Vila Clementino, São Paulo, SP, 04039-060, Brazil
| | - Bruno de Mattos Lombardi Badia
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Embaú Street, 67, Vila Clementino, São Paulo, SP, 04039-060, Brazil
| | - Icaro França Navarro Pinto
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Embaú Street, 67, Vila Clementino, São Paulo, SP, 04039-060, Brazil
| | - Gustavo Carvalho Costa
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Embaú Street, 67, Vila Clementino, São Paulo, SP, 04039-060, Brazil
| | - Carolina Maria Marin
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Embaú Street, 67, Vila Clementino, São Paulo, SP, 04039-060, Brazil
| | - Ana Carolina Dos Santos Jorge
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Embaú Street, 67, Vila Clementino, São Paulo, SP, 04039-060, Brazil
| | - Emília Correia Souto
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Embaú Street, 67, Vila Clementino, São Paulo, SP, 04039-060, Brazil
| | - Paulo de Lima Serrano
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Embaú Street, 67, Vila Clementino, São Paulo, SP, 04039-060, Brazil
| | - Roberta Ismael Lacerda Machado
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Embaú Street, 67, Vila Clementino, São Paulo, SP, 04039-060, Brazil
| | - Marco Antônio Troccoli Chieia
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Embaú Street, 67, Vila Clementino, São Paulo, SP, 04039-060, Brazil
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Research Hospital, IRCCS, Rome, Italy
| | - Acary Souza Bulle Oliveira
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), Embaú Street, 67, Vila Clementino, São Paulo, SP, 04039-060, Brazil
| |
Collapse
|
162
|
Xu X, Shen D, Gao Y, Zhou Q, Ni Y, Meng H, Shi H, Le W, Chen S, Chen S. A perspective on therapies for amyotrophic lateral sclerosis: can disease progression be curbed? Transl Neurodegener 2021; 10:29. [PMID: 34372914 PMCID: PMC8353789 DOI: 10.1186/s40035-021-00250-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/09/2021] [Indexed: 01/17/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease involving both upper and lower motor neurons, leading to paralysis and eventually death. Symptomatic treatments such as inhibition of salivation, alleviation of muscle cramps, and relief of spasticity and pain still play an important role in enhancing the quality of life. To date, riluzole and edaravone are the only two drugs approved by the Food and Drug Administration for the treatment of ALS in a few countries. While there is adequate consensus on the modest efficacy of riluzole, there are still open questions concerning the efficacy of edaravone in slowing the disease progression. Therefore, identification of novel therapeutic strategies is urgently needed. Impaired autophagic process plays a critical role in ALS pathogenesis. In this review, we focus on therapies modulating autophagy in the context of ALS. Furthermore, stem cell therapies, gene therapies, and newly-developed biomaterials have great potentials in alleviating neurodegeneration, which might halt the disease progression. In this review, we will summarize the current and prospective therapies for ALS.
Collapse
Affiliation(s)
- Xiaojiao Xu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, 610031, China
| | - Dingding Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Yining Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - You Ni
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Huanyu Meng
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China
| | - Hongqin Shi
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China.,Department of Neurology, Xinrui Hospital, Wuxi, 214028, China
| | - Weidong Le
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China. .,Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, 610031, China. .,Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China.
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200020, China.
| |
Collapse
|
163
|
Bolt MW, Brady JT, Whiteley LO, Khan KN. Development challenges associated with rAAV-based gene therapies. J Toxicol Sci 2021; 46:57-68. [PMID: 33536390 DOI: 10.2131/jts.46.57] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The number of gene therapies in development continues to increase, as they represent a novel method to treat, and potentially cure, many diseases. Gene therapies can be conducted with an in vivo or ex vivo approach, to cause gene augmentation, gene suppression, or genomic editing. Adeno-associated viruses are commonly used to deliver gene therapies, but their use is associated with several manufacturing, nonclinical and clinical challenges. As these challenges emerge, regulatory agency expectations continue to evolve. Following administration of rAAV-based gene therapies, nonclinical toxicities may occur, which includes immunogenicity, hepatotoxicity, neurotoxicity, and the potential risks for insertional mutagenesis and subsequent tumorgenicity. The mechanism for these findings and translation into the clinical setting are unclear at this time but have influenced the nonclinical studies that regulatory agencies are increasingly requesting to support clinical trials and marketing authorizations. These evolving regulatory expectations and toxicities, as well as future nonclinical considerations, are discussed herein.
Collapse
Affiliation(s)
- Michael W Bolt
- Pfizer Inc., Drug Safety Research and Development, Cambridge, MA, USA
| | - Joseph T Brady
- Pfizer Inc., Drug Safety Research and Development, Cambridge, MA, USA
| | | | - K Nasir Khan
- Pfizer Inc., Drug Safety Research and Development, Groton, CA, USA
| |
Collapse
|
164
|
Guerra S, Chung R, Yerbury J, Karl T. Behavioural effects of cage systems on the G93A Superoxide Dismutase 1 transgenic mouse model for amyotrophic lateral sclerosis. GENES BRAIN AND BEHAVIOR 2021; 20:e12735. [PMID: 33871173 DOI: 10.1111/gbb.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 11/28/2022]
Abstract
Environmental factors inherent to animal facilities can impact on the neuro-behavioural phenotype of laboratory mice and genetic mouse models for human diseases. Many facilities have upgraded from traditional 'open filter top' cages (FT) to individually ventilated cage (IVC) systems, which have been shown to modify various behavioural responses of laboratory mice. Importantly, the impact of IVC housing on the G93A superoxide dismutase 1 mouse model of amyotrophic lateral sclerosis (ALS) is currently unknown. Male and female wild type-like (WT) and heterozygous SOD1G93A mice were group-housed in FT or IVC systems from PND 30 ± 5 onwards. Body weight and motor function were assessed weekly from 15 weeks onward. Mice were also tested for cognitive abilities (i.e., fear conditioning and social recognition memory) and sensorimotor gating (i.e., prepulse inhibition: PPI). SOD1G93A mice lost body weight, and their motor function degenerated over time compared with control littermates. Motor impairments developed faster when SOD1G93A females were housed in IVCs. Context and cue freezing were increased in SOD1G93A females compared with controls, whereas all SOD1G93A mice exhibited lower acoustic startle and PPI than WT mice. IVC housing led to an increase in cue freezing in males and reduced the severity of PPI deficits in SOD1G93A females. Overall, IVC housing impacted moderately on the SOD1G93A phenotype but central behavioural deficits were still evident across housing conditions. Nonetheless, our findings indicate the importance of assessing the effect of cage system in genetic mouse models as these systems can modulate the magnitude and onset of genotypic differences.
Collapse
Affiliation(s)
- Stefan Guerra
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Roger Chung
- Centre for MND Research, Macquarie University, Sydney, New South Wales, Australia
| | - Justin Yerbury
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia.,Neuroscience Research Australia, Randwick, New South Wales, Australia
| |
Collapse
|
165
|
Disease Mechanisms and Therapeutic Approaches in C9orf72 ALS-FTD. Biomedicines 2021; 9:biomedicines9060601. [PMID: 34070550 PMCID: PMC8229688 DOI: 10.3390/biomedicines9060601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/15/2023] Open
Abstract
A hexanucleotide repeat expansion mutation in the first intron of C9orf72 is the most common known genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Since the discovery in 2011, numerous pathogenic mechanisms, including both loss and gain of function, have been proposed. The body of work overall suggests that toxic gain of function arising from bidirectionally transcribed repeat RNA is likely to be the primary driver of disease. In this review, we outline the key pathogenic mechanisms that have been proposed to date and discuss some of the novel therapeutic approaches currently in development.
Collapse
|
166
|
Li D, McIntosh CS, Mastaglia FL, Wilton SD, Aung-Htut MT. Neurodegenerative diseases: a hotbed for splicing defects and the potential therapies. Transl Neurodegener 2021; 10:16. [PMID: 34016162 PMCID: PMC8136212 DOI: 10.1186/s40035-021-00240-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a fundamental step in eukaryotic gene expression that systematically removes non-coding regions (introns) and ligates coding regions (exons) into a continuous message (mature mRNA). This process is highly regulated and can be highly flexible through a process known as alternative splicing, which allows for several transcripts to arise from a single gene, thereby greatly increasing genetic plasticity and the diversity of proteome. Alternative splicing is particularly prevalent in neuronal cells, where the splicing patterns are continuously changing to maintain cellular homeostasis and promote neurogenesis, migration and synaptic function. The continuous changes in splicing patterns and a high demand on many cis- and trans-splicing factors contribute to the susceptibility of neuronal tissues to splicing defects. The resultant neurodegenerative diseases are a large group of disorders defined by a gradual loss of neurons and a progressive impairment in neuronal function. Several of the most common neurodegenerative diseases involve some form of splicing defect(s), such as Alzheimer's disease, Parkinson's disease and spinal muscular atrophy. Our growing understanding of RNA splicing has led to the explosion of research in the field of splice-switching antisense oligonucleotide therapeutics. Here we review our current understanding of the effects alternative splicing has on neuronal differentiation, neuronal migration, synaptic maturation and regulation, as well as the impact on neurodegenerative diseases. We will also review the current landscape of splice-switching antisense oligonucleotides as a therapeutic strategy for a number of common neurodegenerative disorders.
Collapse
Affiliation(s)
- Dunhui Li
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Craig Stewart McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Frank Louis Mastaglia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Steve Donald Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia. .,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
167
|
Opportunities and challenges for microRNA-targeting therapeutics for epilepsy. Trends Pharmacol Sci 2021; 42:605-616. [PMID: 33992468 DOI: 10.1016/j.tips.2021.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Epilepsy is a common and serious neurological disorder characterised by recurrent spontaneous seizures. Frontline pharmacotherapy includes small-molecule antiseizure drugs that typically target ion channels and neurotransmitter systems, but these fail in 30% of patients and do not prevent either the development or progression of epilepsy. An emerging therapeutic target is microRNA (miRNA), small noncoding RNAs that negatively regulate sets of proteins. Their multitargeting action offers unique advantages for certain forms of epilepsy with complex underlying pathophysiology, such as temporal lobe epilepsy (TLE). miRNA can be inhibited by designed antisense oligonucleotides (ASOs; e.g., antimiRs). Here, we outline the prospects for miRNA-based therapies. We review design considerations for nucleic acid-based approaches and the challenges and next steps in developing therapeutic miRNA-targeting molecules for epilepsy.
Collapse
|
168
|
Cappella M, Elouej S, Biferi MG. The Potential of Induced Pluripotent Stem Cells to Test Gene Therapy Approaches for Neuromuscular and Motor Neuron Disorders. Front Cell Dev Biol 2021; 9:662837. [PMID: 33937264 PMCID: PMC8080375 DOI: 10.3389/fcell.2021.662837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) represents a major advance for the development of human disease models. The emerging of this technique fostered the concept of "disease in a dish," which consists into the generation of patient-specific models in vitro. Currently, iPSCs are used to study pathological molecular mechanisms caused by genetic mutations and they are considered a reliable model for high-throughput drug screenings. Importantly, precision-medicine approaches to treat monogenic disorders exploit iPSCs potential for the selection and validation of lead candidates. For example, antisense oligonucleotides (ASOs) were tested with promising results in myoblasts or motor neurons differentiated from iPSCs of patients affected by either Duchenne muscular dystrophy or Amyotrophic lateral sclerosis. However, the use of iPSCs needs additional optimization to ensure translational success of the innovative strategies based on gene delivery through adeno associated viral vectors (AAV) for these diseases. Indeed, to establish an efficient transduction of iPSCs with AAV, several aspects should be optimized, including viral vector serotype, viral concentration and timing of transduction. This review will outline the use of iPSCs as a model for the development and testing of gene therapies for neuromuscular and motor neuron disorders. It will then discuss the advantages for the use of this versatile tool for gene therapy, along with the challenges associated with the viral vector transduction of iPSCs.
Collapse
Affiliation(s)
- Marisa Cappella
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| | - Sahar Elouej
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| | - Maria Grazia Biferi
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, Paris, France
| |
Collapse
|
169
|
Amado DA, Davidson BL. Gene therapy for ALS: A review. Mol Ther 2021; 29:3345-3358. [PMID: 33839324 DOI: 10.1016/j.ymthe.2021.04.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/28/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) has historically posed unique challenges for gene-therapy-based approaches, due to a paucity of therapeutic targets as well as the difficulty of accessing both the brain and spinal cord. Recent advances in our understanding of disease mechanism and ALS genetics, however, have combined with tremendous strides in CNS targeting, gene delivery, and gene editing and knockdown techniques to open new horizons of therapeutic possibility. Gene therapy clinical trials are currently underway for ALS patients with SOD1 mutations, C9orf72 hexanucleotide repeat expansions, ATXN2 trinucleotide expansions, and FUS mutations, as well as sporadic disease without known genetic cause. In this review, we provide an in-depth exploration of the state of ALS-directed gene therapy, including antisense oligonucleotides, RNA interference, CRISPR, adeno-associated virus (AAV)-mediated trophic support, and antibody-based methods. We discuss how each of these approaches has been implemented across known genetic causes as well as sporadic ALS, reviewing preclinical studies as well as completed and ongoing human clinical trials. We highlight the transformative potential of these evolving technologies as the gene therapy field advances toward a true disease-modifying treatment for this devastating illness.
Collapse
Affiliation(s)
- Defne A Amado
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Beverly L Davidson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
170
|
Chu WS, Ng J. Immunomodulation in Administration of rAAV: Preclinical and Clinical Adjuvant Pharmacotherapies. Front Immunol 2021; 12:658038. [PMID: 33868303 PMCID: PMC8049138 DOI: 10.3389/fimmu.2021.658038] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 12/26/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) has attracted a significant research focus for delivering genetic therapies to target cells. This non-enveloped virus has been trialed in many clinical-stage therapeutic strategies but important obstacle in clinical translation is the activation of both innate and adaptive immune response to the protein capsid, vector genome and transgene product. In addition, the normal population has pre-existing neutralizing antibodies against wild-type AAV, and cross-reactivity is observed between different rAAV serotypes. While extent of response can be influenced by dosing, administration route and target organ(s), these pose concerns over reduction or complete loss of efficacy, options for re-administration, and other unwanted immunological sequalae such as local tissue damage. To reduce said immunological risks, patients are excluded if they harbor anti-AAV antibodies or have received gene therapy previously. Studies have incorporated immunomodulating or suppressive regimens to block cellular and humoral immune responses such as systemic corticosteroids pre- and post-administration of Luxturna® and Zolgensma®, the two rAAV products with licensed regulatory approval in Europe and the United States. In this review, we will introduce the current pharmacological strategies to immunosuppress or immunomodulate the host immune response to rAAV gene therapy.
Collapse
Affiliation(s)
- Wing Sum Chu
- Pharmacy Department, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Joanne Ng
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, EGA Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
171
|
The future of ALS might move towards Genetic Therapy. Rev Neurol (Paris) 2021; 177:613-614. [PMID: 33775441 DOI: 10.1016/j.neurol.2021.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/23/2022]
|
172
|
Deng HX, Zhai H, Shi Y, Liu G, Lowry J, Liu B, Ryan ÉB, Yan J, Yang Y, Zhang N, Yang Z, Liu E, Ma YC, Siddique T. Efficacy and long-term safety of CRISPR/Cas9 genome editing in the SOD1-linked mouse models of ALS. Commun Biol 2021; 4:396. [PMID: 33767386 PMCID: PMC7994668 DOI: 10.1038/s42003-021-01942-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/03/2021] [Indexed: 01/31/2023] Open
Abstract
CRISPR/Cas9-mediated genome editing provides potential for therapeutic development. Efficacy and long-term safety represent major concerns that remain to be adequately addressed in preclinical studies. Here we show that CRISPR/Cas9-mediated genome editing in two distinct SOD1-amyotrophic lateral sclerosis (ALS) transgenic mouse models prevented the development of ALS-like disease and pathology. The disease-linked transgene was effectively edited, with rare off-target editing events. We observed frequent large DNA deletions, ranging from a few hundred to several thousand base pairs. We determined that these large deletions were mediated by proximate identical sequences in Alu elements. No evidence of other diseases was observed beyond 2 years of age in these genome edited mice. Our data provide preclinical evidence of the efficacy and long-term safety of the CRISPR/Cas9 therapeutic approach. Moreover, the molecular mechanism of proximate identical sequences-mediated recombination provides mechanistic information to optimize therapeutic targeting design, and to avoid or minimize unintended and potentially deleterious recombination events.
Collapse
Affiliation(s)
- Han-Xiang Deng
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Hong Zhai
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yong Shi
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Guoxiang Liu
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jessica Lowry
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bin Liu
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Éanna B Ryan
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jianhua Yan
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yi Yang
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nigel Zhang
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zhihua Yang
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Erdong Liu
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yongchao C Ma
- Departments of Pediatrics, Neurology and Physiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Teepu Siddique
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
173
|
Sun J, Roy S. Gene-based therapies for neurodegenerative diseases. Nat Neurosci 2021; 24:297-311. [PMID: 33526943 PMCID: PMC8394447 DOI: 10.1038/s41593-020-00778-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Gene therapy is making a comeback. With its twin promise of targeting disease etiology and 'long-term correction', gene-based therapies (defined here as all forms of genome manipulation) are particularly appealing for neurodegenerative diseases, for which conventional pharmacologic approaches have been largely disappointing. The recent success of a viral-vector-based gene therapy in spinal muscular atrophy-promoting survival and motor function with a single intravenous injection-offers a paradigm for such therapeutic intervention and a platform to build on. Although challenges remain, the newfound optimism largely stems from advances in the development of viral vectors that can diffusely deliver genes throughout the CNS, as well as genome-engineering tools that can manipulate disease pathways in ways that were previously impossible. Surely spinal muscular atrophy cannot be the only neurodegenerative disease amenable to gene therapy, and one can imagine a future in which the toolkit of a clinician will include gene-based therapeutics. The goal of this Review is to highlight advances in the development and application of gene-based therapies for neurodegenerative diseases and offer a prospective look into this emerging arena.
Collapse
Affiliation(s)
- Jichao Sun
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Subhojit Roy
- Department of Pathology, University of California, San Diego, La Jolla, CA,Department of Neurosciences, University of California, San Diego, La Jolla, CA,Correspondence:
| |
Collapse
|
174
|
Kiernan MC, Vucic S, Talbot K, McDermott CJ, Hardiman O, Shefner JM, Al-Chalabi A, Huynh W, Cudkowicz M, Talman P, Van den Berg LH, Dharmadasa T, Wicks P, Reilly C, Turner MR. Improving clinical trial outcomes in amyotrophic lateral sclerosis. Nat Rev Neurol 2021; 17:104-118. [PMID: 33340024 PMCID: PMC7747476 DOI: 10.1038/s41582-020-00434-z] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
Individuals who are diagnosed with amyotrophic lateral sclerosis (ALS) today face the same historically intransigent problem that has existed since the initial description of the disease in the 1860s - a lack of effective therapies. In part, the development of new treatments has been hampered by an imperfect understanding of the biological processes that trigger ALS and promote disease progression. Advances in our understanding of these biological processes, including the causative genetic mutations, and of the influence of environmental factors have deepened our appreciation of disease pathophysiology. The consequent identification of pathogenic targets means that the introduction of effective therapies is becoming a realistic prospect. Progress in precision medicine, including genetically targeted therapies, will undoubtedly change the natural history of ALS. The evolution of clinical trial designs combined with improved methods for patient stratification will facilitate the translation of novel therapies into the clinic. In addition, the refinement of emerging biomarkers of therapeutic benefits is critical to the streamlining of care for individuals. In this Review, we synthesize these developments in ALS and discuss the further developments and refinements needed to accelerate the introduction of effective therapeutic approaches.
Collapse
Affiliation(s)
- Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia.
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.
| | - Steve Vucic
- Sydney Medical School Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield, UK
| | - Orla Hardiman
- Academic Neurology Unit, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- National Neuroscience Centre, Beaumont Hospital, Dublin, Ireland
| | - Jeremy M Shefner
- Department of Neurology, Barrow Neurological Institute, University of Arizona College of Medicine Phoenix, Creighton University, Phoenix, AZ, USA
| | - Ammar Al-Chalabi
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, London, UK
| | - William Huynh
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Merit Cudkowicz
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Paul Talman
- Neurosciences Department, Barwon Health District, Melbourne, Victoria, Australia
| | - Leonard H Van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thanuja Dharmadasa
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Paul Wicks
- Wicks Digital Health, Lichfield, United Kingdom
| | - Claire Reilly
- The Motor Neurone Disease Association of New Zealand, Auckland, New Zealand
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
175
|
Rich KA, Roggenbuck J, Kolb SJ. Searching Far and Genome-Wide: The Relevance of Association Studies in Amyotrophic Lateral Sclerosis. Front Neurosci 2021; 14:603023. [PMID: 33584177 PMCID: PMC7873947 DOI: 10.3389/fnins.2020.603023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Genome-wide association studies (GWAS) and rare variant association studies (RVAS) are applied across many areas of complex disease to analyze variation in whole genomes of thousands of unrelated patients. These approaches are able to identify variants and/or biological pathways which are associated with disease status and, in contrast to traditional linkage studies or candidate gene approaches, do so without requiring multigenerational affected families, prior hypotheses, or known genes of interest. However, the novel associations identified by these methods typically have lower effect sizes than those found in classical family studies. In the motor neuron disease amyotrophic lateral sclerosis (ALS), GWAS, and RVAS have been used to identify multiple disease-associated genes but have not yet resulted in novel therapeutic interventions. There is significant urgency within the ALS community to identify additional genetic markers of disease to uncover novel biological mechanisms, stratify genetic subgroups of disease, and drive drug development. Given the widespread and increasing application of genetic association studies of complex disease, it is important to recognize the strengths and limitations of these approaches. Here, we review ALS gene discovery via GWAS and RVAS.
Collapse
Affiliation(s)
- Kelly A Rich
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jennifer Roggenbuck
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
176
|
|
177
|
Cappella M, Pradat PF, Querin G, Biferi MG. Beyond the Traditional Clinical Trials for Amyotrophic Lateral Sclerosis and The Future Impact of Gene Therapy. J Neuromuscul Dis 2021; 8:25-38. [PMID: 33074186 PMCID: PMC7902976 DOI: 10.3233/jnd-200531] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and incurable motor neuron (MN) disorder affecting both upper and lower MNs. Despite impressive advances in the understanding of the disease’s pathological mechanism, classical pharmacological clinical trials failed to provide an efficient cure for ALS over the past twenty years. Two different gene therapy approaches were recently approved for the monogenic disease Spinal muscular atrophy, characterized by degeneration of lower MNs. This milestone suggests that gene therapy-based therapeutic solutions could be effective for the treatment of ALS. This review summarizes the possible reasons for the failure of traditional clinical trials for ALS. It provides then a focus on the advent of gene therapy approaches for hereditary forms of ALS. Specifically, it describes clinical use of antisense oligonucleotides in three familial forms of ALS, caused by mutations in SOD1, C9orf72 and FUS genes, respectively.. Clinical and pre-clinical studies based on AAV-mediated gene therapy approaches for both familial and sporadic ALS cases are presented as well. Overall, this overview highlights the potential of gene therapy as a transforming technology that will have a huge impact on treatment perspective for ALS patients and on the design of future clinical trials.
Collapse
Affiliation(s)
- Marisa Cappella
- INSERM, Institute of Myology, Centre of Research in Myology, Sorbonne Université, Paris, France
| | - Pierre-François Pradat
- INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris, France.,APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France.,Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, United Kingdom
| | - Giorgia Querin
- INSERM, Institute of Myology, Centre of Research in Myology, Sorbonne Université, Paris, France.,Association Institut de Myologie, Plateforme Essais Cliniques Adultes, Paris, France.,APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Maria Grazia Biferi
- INSERM, Institute of Myology, Centre of Research in Myology, Sorbonne Université, Paris, France
| |
Collapse
|
178
|
Kim G, Gautier O, Tassoni-Tsuchida E, Ma XR, Gitler AD. ALS Genetics: Gains, Losses, and Implications for Future Therapies. Neuron 2020; 108:822-842. [PMID: 32931756 PMCID: PMC7736125 DOI: 10.1016/j.neuron.2020.08.022] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/01/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder caused by the loss of motor neurons from the brain and spinal cord. The ALS community has made remarkable strides over three decades by identifying novel familial mutations, generating animal models, elucidating molecular mechanisms, and ultimately developing promising new therapeutic approaches. Some of these approaches reduce the expression of mutant genes and are in human clinical trials, highlighting the need to carefully consider the normal functions of these genes and potential contribution of gene loss-of-function to ALS. Here, we highlight known loss-of-function mechanisms underlying ALS, potential consequences of lowering levels of gene products, and the need to consider both gain and loss of function to develop safe and effective therapeutic strategies.
Collapse
Affiliation(s)
- Garam Kim
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olivia Gautier
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eduardo Tassoni-Tsuchida
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - X Rosa Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
179
|
Gittings LM, Sattler R. Recent advances in understanding amyotrophic lateral sclerosis and emerging therapies. Fac Rev 2020; 9:12. [PMID: 33659944 PMCID: PMC7886072 DOI: 10.12703/b/9-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by degeneration of both upper and lower motor neurons and subsequent progressive loss of muscle function. Within the last decade, significant progress has been made in the understanding of the etiology and pathobiology of the disease; however, treatment options remain limited and only two drugs, which exert a modest effect on survival, are approved for ALS treatment in the US. Therefore, the search for effective ALS therapies continues, and over 60 clinical trials are in progress for patients with ALS and other therapeutics are at the pre-clinical stage of development. Recent advances in understanding the genetics, pathology, and molecular mechanisms of ALS have led to the identification of novel targets and strategies that are being used in emerging ALS therapeutic interventions. Here, we review the current status and mechanisms of action of a selection of emerging ALS therapies in pre-clinical or early clinical development, including gene therapy, immunotherapy, and strategies that target neuroinflammation, phase separation, and protein clearance.
Collapse
Affiliation(s)
- Lauren M Gittings
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Rita Sattler
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
180
|
Franklin JP, Azzouz M, Shaw PJ. SOD1-targeting therapies for neurodegenerative diseases: a review of current findings and future potential. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1835638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- John P. Franklin
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
181
|
SOD1 Targeted as Treatment for Amyotrophic Lateral Sclerosis. Am J Med Genet A 2020; 182:2475-2476. [DOI: 10.1002/ajmg.a.61250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
182
|
|
183
|
Affiliation(s)
- Orla Hardiman
- From Trinity College and Beaumont Hospital, Dublin (O.H.); and University Medical Center, Utrecht, the Netherlands (L.H.B.)
| | - Leonard H van den Berg
- From Trinity College and Beaumont Hospital, Dublin (O.H.); and University Medical Center, Utrecht, the Netherlands (L.H.B.)
| |
Collapse
|