151
|
Highly efficient production of a dengue pseudoinfectious virus. Vaccine 2014; 32:3854-60. [PMID: 24797700 DOI: 10.1016/j.vaccine.2014.03.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/01/2014] [Accepted: 03/26/2014] [Indexed: 02/05/2023]
Abstract
Dengue is a major infectious disease that affects people living in tropical and subtropical regions around the world. The causative agents are dengue virus serotype 1, 2, 3, and 4 (DENV1, 2, 3, and 4). Developing a vaccine for dengue is a high priority for public health, but traditional methods have faced numerous obstacles due to the unique immunopathogenesis of dengue virus infection. Here, we report a novel dengue vaccine candidate based on dengue pseudoinfectious virus (PIV) produced by the incorporation of a dengue subgenomic replicon into viral particles in highly efficient packaging cells. The subgenomic replicon was constructed by deleting the capsid protein (C) gene from the dengue viral genome and optimizing the signal peptide sequence of pre-membrane protein (prM) to facilitate the formation of viral particles. Packaging cells were developed for inducible expression of a bi-protein Cpr, where the protein pr is the "pr" segment of viral protein prM that holds the protein C on the endoplasmic reticulum (ER). When the replicon was introduced into the packaging cells, protein C was released from the bi-protein Cpr by a replicon-encoded viral protease. Coordinate expression of viral structural proteins by the replicon and packaging cells led to the incorporation of the replicon into viral particle to produce PIVs. Animal tests showed that the dengue PIV vaccine was highly immunogenic and the immune response protected mice challenged with a hundred-fold LD50 inoculation of dengue virus. The method described here has the potential to be applied to vaccine development for other flaviviruses.
Collapse
|
152
|
Yang D, Li XF, Ye Q, Wang HJ, Deng YQ, Zhu SY, Zhang Y, Li SH, Qin CF. Characterization of live-attenuated Japanese encephalitis vaccine virus SA14-14-2. Vaccine 2014; 32:2675-81. [DOI: 10.1016/j.vaccine.2014.03.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/14/2014] [Accepted: 03/25/2014] [Indexed: 12/17/2022]
|
153
|
de Figueiredo IR, Freire JM, Flores L, Veiga AS, Castanho MARB. Cell-penetrating peptides: A tool for effective delivery in gene-targeted therapies. IUBMB Life 2014; 66:182-194. [PMID: 24659560 DOI: 10.1002/iub.1257] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 12/24/2022]
Abstract
The current landscapes of novel therapeutic approaches rely mostly on gene-targeted technologies, enabling to fight rare genomic diseases, from infections to cancer and hereditary diseases. Although, reaching the action-site for this novel treatments requires to deliver nucleic acids, or other macromolecules into cells, which may pose difficult tasks to pharmaceutical companies. To overcome this technological limitation, a wide variety of vectors have been developed in the past decades and have proven to be successful in delivering various therapeutics. Cell-penetrating peptides (CPP) have been one of the technologies widely studied and have been increasingly used to transport small RNA/DNA, plasmids, antibodies, and nanoparticles into cells. Despite the already proved huge potential that these peptide-based approaches may suggest, few advances have been put to pharmacological or clinical use. This review will describe the origin, development, and usage of CPP to deliver therapeutic agents into cells, with special emphasis on their current application to gene-therapies. Specifically, we will describe the current trials being conducted to treat cancer, gene disorders, and autoimmune diseases using CPP-based therapies. © 2014 IUBMB Life, 66(3):182-194, 2014.
Collapse
Affiliation(s)
- Inês Rego de Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João Miguel Freire
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Luís Flores
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
154
|
Abstract
This review is a partially personal account of the discovery of virus structure and its implication for virus function. Although I have endeavored to cover all aspects of structural virology and to acknowledge relevant individuals, I know that I have favored taking examples from my own experience in telling this story. I am anxious to apologize to all those who I might have unintentionally offended by omitting their work. The first knowledge of virus structure was a result of Stanley's studies of tobacco mosaic virus (TMV) and the subsequent X-ray fiber diffraction analysis by Bernal and Fankuchen in the 1930s. At about the same time it became apparent that crystals of small RNA plant and animal viruses could diffract X-rays, demonstrating that viruses must have distinct and unique structures. More advances were made in the 1950s with the realization by Watson and Crick that viruses might have icosahedral symmetry. With the improvement of experimental and computational techniques in the 1970s, it became possible to determine the three-dimensional, near-atomic resolution structures of some small icosahedral plant and animal RNA viruses. It was a great surprise that the protecting capsids of the first virus structures to be determined had the same architecture. The capsid proteins of these viruses all had a 'jelly-roll' fold and, furthermore, the organization of the capsid protein in the virus were similar, suggesting a common ancestral virus from which many of today's viruses have evolved. By this time a more detailed structure of TMV had also been established, but both the architecture and capsid protein fold were quite different to that of the icosahedral viruses. The small icosahedral RNA virus structures were also informative of how and where cellular receptors, anti-viral compounds, and neutralizing antibodies bound to these viruses. However, larger lipid membrane enveloped viruses did not form sufficiently ordered crystals to obtain good X-ray diffraction. Starting in the 1990s, these enveloped viruses were studied by combining cryo-electron microscopy of the whole virus with X-ray crystallography of their protein components. These structures gave information on virus assembly, virus neutralization by antibodies, and virus fusion with and entry into the host cell. The same techniques were also employed in the study of complex bacteriophages that were too large to crystallize. Nevertheless, there still remained many pleomorphic, highly pathogenic viruses that lacked the icosahedral symmetry and homogeneity that had made the earlier structural investigations possible. Currently some of these viruses are starting to be studied by combining X-ray crystallography with cryo-electron tomography.
Collapse
|
155
|
Replication cycle and molecular biology of the West Nile virus. Viruses 2013; 6:13-53. [PMID: 24378320 PMCID: PMC3917430 DOI: 10.3390/v6010013] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 12/27/2022] Open
Abstract
West Nile virus (WNV) is a member of the genus Flavivirus in the family Flaviviridae. Flaviviruses replicate in the cytoplasm of infected cells and modify the host cell environment. Although much has been learned about virion structure and virion-endosomal membrane fusion, the cell receptor(s) used have not been definitively identified and little is known about the early stages of the virus replication cycle. Members of the genus Flavivirus differ from members of the two other genera of the family by the lack of a genomic internal ribosomal entry sequence and the creation of invaginations in the ER membrane rather than double-membrane vesicles that are used as the sites of exponential genome synthesis. The WNV genome 3' and 5' sequences that form the long distance RNA-RNA interaction required for minus strand initiation have been identified and contact sites on the 5' RNA stem loop for NS5 have been mapped. Structures obtained for many of the viral proteins have provided information relevant to their functions. Viral nonstructural protein interactions are complex and some may occur only in infected cells. Although interactions between many cellular proteins and virus components have been identified, the functions of most of these interactions have not been delineated.
Collapse
|
156
|
Freire JM, Veiga AS, Conceição TM, Kowalczyk W, Mohana-Borges R, Andreu D, Santos NC, Da Poian AT, Castanho MARB. Intracellular nucleic acid delivery by the supercharged dengue virus capsid protein. PLoS One 2013; 8:e81450. [PMID: 24339931 PMCID: PMC3855322 DOI: 10.1371/journal.pone.0081450] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/14/2013] [Indexed: 12/20/2022] Open
Abstract
Supercharged proteins are a recently identified class of proteins that have the ability to efficiently deliver functional macromolecules into mammalian cells. They were first developed as bioengineering products, but were later found in the human proteome. In this work, we show that this class of proteins with unusually high net positive charge is frequently found among viral structural proteins, more specifically among capsid proteins. In particular, the capsid proteins of viruses from the Flaviviridae family have all a very high net charge to molecular weight ratio (> +1.07/kDa), thus qualifying as supercharged proteins. This ubiquity raises the hypothesis that supercharged viral capsid proteins may have biological roles that arise from an intrinsic ability to penetrate cells. Dengue virus capsid protein was selected for a detailed experimental analysis. We showed that this protein is able to deliver functional nucleic acids into mammalian cells. The same result was obtained with two isolated domains of this protein, one of them being able to translocate lipid bilayers independently of endocytic routes. Nucleic acids such as siRNA and plasmids were delivered fully functional into cells. The results raise the possibility that the ability to penetrate cells is part of the native biological functions of some viral capsid proteins.
Collapse
Affiliation(s)
- João Miguel Freire
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Thaís M. Conceição
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wioleta Kowalczyk
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Ronaldo Mohana-Borges
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Andrea T. Da Poian
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
157
|
Balinsky CA, Schmeisser H, Ganesan S, Singh K, Pierson TC, Zoon KC. Nucleolin interacts with the dengue virus capsid protein and plays a role in formation of infectious virus particles. J Virol 2013; 87:13094-106. [PMID: 24027323 PMCID: PMC3838225 DOI: 10.1128/jvi.00704-13] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 09/03/2013] [Indexed: 01/24/2023] Open
Abstract
Dengue virus (DENV) is a mosquito-transmitted flavivirus that can cause severe disease in humans and is considered a reemerging pathogen of significant importance to public health. The DENV capsid (C) protein functions as a structural component of the infectious virion; however, it may have additional functions in the virus replicative cycle. Here, we show that the DENV C protein interacts and colocalizes with the multifunctional host protein nucleolin (NCL). Furthermore, we demonstrate that this interaction can be disrupted by the addition of an NCL binding aptamer (AS1411). Knockdown of NCL with small interfering RNA (siRNA) or treatment of cells with AS1411 results in a significant reduction of viral titers after DENV infection. Western blotting and quantitative RT-PCR (qRT-PCR) analysis revealed no differences in viral RNA or protein levels at early time points postinfection, suggesting a role for NCL in viral morphogenesis. We support this hypothesis by showing that treatment with AS1411 alters the migration characteristics of the viral capsid, as visualized by native electrophoresis. Here, we identify a critical interaction between DENV C protein and NCL that represents a potential new target for the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Corey A. Balinsky
- Cytokine Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hana Schmeisser
- Cytokine Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kavita Singh
- Structural Biology Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kathryn C. Zoon
- Cytokine Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
158
|
Freire JM, Veiga AS, Rego de Figueiredo I, de la Torre BG, Santos NC, Andreu D, Da Poian AT, Castanho MARB. Nucleic acid delivery by cell penetrating peptides derived from dengue virus capsid protein: design and mechanism of action. FEBS J 2013; 281:191-215. [DOI: 10.1111/febs.12587] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/03/2013] [Accepted: 10/24/2013] [Indexed: 01/09/2023]
Affiliation(s)
- João M. Freire
- Instituto de Medicina Molecular; Faculdade de Medicina, Universidade de Lisboa; Portugal
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular; Faculdade de Medicina, Universidade de Lisboa; Portugal
| | | | - Beatriz G. de la Torre
- Department of Experimental and Health Sciences; Pompeu Fabra University; Barcelona Biomedical Research Park; Spain
| | - Nuno C. Santos
- Instituto de Medicina Molecular; Faculdade de Medicina, Universidade de Lisboa; Portugal
| | - David Andreu
- Department of Experimental and Health Sciences; Pompeu Fabra University; Barcelona Biomedical Research Park; Spain
| | - Andrea T. Da Poian
- Instituto de Bioquímica Médica; Universidade Federal do Rio de Janeiro; Brazil
| | | |
Collapse
|
159
|
Rubella virus capsid protein structure and its role in virus assembly and infection. Proc Natl Acad Sci U S A 2013; 110:20105-10. [PMID: 24282305 DOI: 10.1073/pnas.1316681110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rubella virus (RV) is a leading cause of birth defects due to infectious agents. When contracted during pregnancy, RV infection leads to severe damage in fetuses. Despite its medical importance, compared with the related alphaviruses, very little is known about the structure of RV. The RV capsid protein is an essential structural component of virions as well as a key factor in virus-host interactions. Here we describe three crystal structures of the structural domain of the RV capsid protein. The polypeptide fold of the RV capsid protomer has not been observed previously. Combining the atomic structure of the RV capsid protein with the cryoelectron tomograms of RV particles established a low-resolution structure of the virion. Mutational studies based on this structure confirmed the role of amino acid residues in the capsid that function in the assembly of infectious virions.
Collapse
|
160
|
Tsuda Y, Mori Y, Abe T, Yamashita T, Okamoto T, Ichimura T, Moriishi K, Matsuura Y. Nucleolar Protein B23 Interacts with Japanese Encephalitis Virus Core Protein and Participates in Viral Replication. Microbiol Immunol 2013; 50:225-34. [PMID: 16547420 DOI: 10.1111/j.1348-0421.2006.tb03789.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Japanese encephalitis virus (JEV) core protein is detected not only in the cytoplasm but also in the nucleoli of infected cells. We previously showed that a mutant JEV lacking the nucleolar localization of the core protein impaired viral replication in mammalian cells. In this study, we identified a nucleolar phosphoprotein B23 as a protein binding with the core protein of JEV but not with that of dengue virus. The region binding with JEV core protein was mapped to amino acid residues 38 to 77 of B23. Upon JEV infection, some fraction of B23 was translocated from the nucleoli to the cytoplasm, and cytoplasmic B23 was colocalized with the core protein of wild-type JEV but not with that of the mutant JEV. Furthermore, overexpression of dominant negatives of B23 reduced JEV replication. These results suggest that B23 plays an important role in the intracellular localization of the core protein and replication of JEV.
Collapse
Affiliation(s)
- Yoshimi Tsuda
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Yun SI, Lee YM. Japanese encephalitis: the virus and vaccines. Hum Vaccin Immunother 2013; 10:263-79. [PMID: 24161909 PMCID: PMC4185882 DOI: 10.4161/hv.26902] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/14/2013] [Accepted: 10/22/2013] [Indexed: 12/11/2022] Open
Abstract
Japanese encephalitis (JE) is an infectious disease of the central nervous system caused by Japanese encephalitis virus (JEV), a zoonotic mosquito-borne flavivirus. JEV is prevalent in much of Asia and the Western Pacific, with over 4 billion people living at risk of infection. In the absence of antiviral intervention, vaccination is the only strategy to develop long-term sustainable protection against JEV infection. Over the past half-century, a mouse brain-derived inactivated vaccine has been used internationally for active immunization. To date, however, JEV is still a clinically important, emerging, and re-emerging human pathogen of global significance. In recent years, production of the mouse brain-derived vaccine has been discontinued, but 3 new cell culture-derived vaccines are available in various parts of the world. Here we review current aspects of JEV biology, summarize the 4 types of JEV vaccine, and discuss the potential of an infectious JEV cDNA technology for future vaccine development.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research; College of Agriculture and Applied Sciences; Utah State University; Logan, UT USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research; College of Agriculture and Applied Sciences; Utah State University; Logan, UT USA
| |
Collapse
|
162
|
Lim SP, Wang QY, Noble CG, Chen YL, Dong H, Zou B, Yokokawa F, Nilar S, Smith P, Beer D, Lescar J, Shi PY. Ten years of dengue drug discovery: progress and prospects. Antiviral Res 2013; 100:500-19. [PMID: 24076358 DOI: 10.1016/j.antiviral.2013.09.013] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/07/2013] [Accepted: 09/15/2013] [Indexed: 01/26/2023]
Abstract
To combat neglected diseases, the Novartis Institute of Tropical Diseases (NITD) was founded in 2002 through private-public funding from Novartis and the Singapore Economic Development Board. One of NITD's missions is to develop antivirals for dengue virus (DENV), the most prevalent mosquito-borne viral pathogen. Neither vaccine nor antiviral is currently available for DENV. Here we review the progress in dengue drug discovery made at NITD as well as the major discoveries made by academia and other companies. Four strategies have been pursued to identify inhibitors of DENV through targeting both viral and host proteins: (i) HTS (high-throughput screening) using virus replication assays; (ii) HTS using viral enzyme assays; (iii) structure-based in silico docking and rational design; (iv) repurposing hepatitis C virus inhibitors for DENV. Along the developmental process from hit finding to clinical candidate, many inhibitors did not advance beyond the stage of hit-to-lead optimization, due to their poor selectivity, physiochemical or pharmacokinetic properties. Only a few compounds showed efficacy in the AG129 DENV mouse model. Two nucleoside analogs, NITD-008 and Balapiravir, entered preclinical animal safety study and clinic trial, but both were terminated due to toxicity and lack of potency, respectively. Celgosivir, a host alpha-glucosidase inhibitor, is currently under clinical trial; its clinical efficacy remains to be determined. The knowledge accumulated during the past decade has provided a better rationale for ongoing dengue drug discovery. Though challenging, we are optimistic that this continuous, concerted effort will lead to an effective dengue therapy.
Collapse
Affiliation(s)
- Siew Pheng Lim
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, 05-01 Chromos, Singapore 138670, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Segura-Cabrera A, García-Pérez CA, Guo X, Rodríguez-Pérez MA. A viral-human interactome based on structural motif-domain interactions captures the human infectome. PLoS One 2013; 8:e71526. [PMID: 23951184 PMCID: PMC3738538 DOI: 10.1371/journal.pone.0071526] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 06/28/2013] [Indexed: 11/23/2022] Open
Abstract
Protein interactions between a pathogen and its host are fundamental in the establishment of the pathogen and underline the infection mechanism. In the present work, we developed a single predictive model for building a host-viral interactome based on the identification of structural descriptors from motif-domain interactions of protein complexes deposited in the Protein Data Bank (PDB). The structural descriptors were used for searching, in a database of protein sequences of human and five clinically important viruses; therefore, viral and human proteins sharing a descriptor were predicted as interacting proteins. The analysis of the host-viral interactome allowed to identify a set of new interactions that further explain molecular mechanism associated with viral infections and showed that it was able to capture human proteins already associated to viral infections (human infectome) and non-infectious diseases (human diseasome). The analysis of human proteins targeted by viral proteins in the context of a human interactome showed that their neighbors are enriched in proteins reported with differential expression under infection and disease conditions. It is expected that the findings of this work will contribute to the development of systems biology for infectious diseases, and help guide the rational identification and prioritization of novel drug targets.
Collapse
Affiliation(s)
- Aldo Segura-Cabrera
- Laboratorio de Bioinformática, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, México.
| | | | | | | |
Collapse
|
164
|
Faustino AF, Carvalho FA, Martins IC, Castanho MARB, Mohana-Borges R, Almeida FCL, Da Poian AT, Santos NC. Dengue virus capsid protein interacts specifically with very low-density lipoproteins. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:247-55. [PMID: 23792329 DOI: 10.1016/j.nano.2013.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 04/15/2013] [Accepted: 06/08/2013] [Indexed: 11/30/2022]
Abstract
UNLABELLED Dengue affects millions of people worldwide. No specific treatment is currently available, in part due to an incomplete understanding of the viral components' interactions with host cellular structures. We tested dengue virus (DENV) capsid protein (C) interaction with low- and very low-density lipoproteins (LDL and VLDL, respectively) using atomic force microscopy-based force spectroscopy, dynamic light scattering, NMR and computational analysis. Data reveal a specific DENV C interaction with VLDL, but not LDL. This binding is potassium-dependent and involves the DENV C N-terminal region, as previously observed for the DENV C-lipid droplets (LDs) interaction. A successful inhibition of DENV C-VLDL binding was achieved with a peptide drug lead. The similarities between LDs and VLDL, and between perilipin 3 (DENV C target on LDs) and ApoE, indicate ApoE as the molecular target on VLDL. We hypothesize that DENV may form lipoviroparticles, which would constitute a novel step on DENV life cycle. FROM THE CLINICAL EDITOR Using atomic force microscopy-based force spectroscopy, dynamic light scattering, NMR, and computational analysis, these authors demonstrate that dengue viral capsid proteins (DENV C) bind to very low density lipoprotein surfaces, but not to LDLs, in a potassium-dependent manner. This observation suggests the formation of lipo-viroparticles, which may be a novel step in its life cycle, and may offer potential therapeutic interventions directed to this step.
Collapse
Affiliation(s)
- André F Faustino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ronaldo Mohana-Borges
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio C L Almeida
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro and National Institute of Structural Biology and Bioimage, Rio de Janeiro, Brazil
| | - Andrea T Da Poian
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
165
|
Nemésio H, Palomares-Jerez MF, Villalaín J. Hydrophobic segment of dengue virus C protein. Interaction with model membranes. Mol Membr Biol 2013; 30:273-87. [PMID: 23745515 DOI: 10.3109/09687688.2013.805835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dengue virus (DENV) C protein is essential for viral assembly. DENV C protein associates with intracellular membranes through a conserved hydrophobic domain and accumulates around endoplasmic reticulum-derived lipid droplets which could provide a platform for capsid formation during assembly. In a previous work we described a region in DENV C protein which induced a nearly complete membrane rupture of several membrane model systems, which was coincident with the theoretically predicted highly hydrophobic region of the protein. In this work we have carried out a study of the binding to and interaction with model biomembranes of a peptide corresponding to this DENV C region, DENV2C6. We show that DENV2C6 partitions into phospholipid membranes, is capable of rupturing membranes even at very low peptide-to-lipid ratios and its membrane-activity is modulated by lipid composition. These results identify an important region in the DENV C protein which might be directly implicated in the DENV life cycle through the modulation of membrane structure.
Collapse
Affiliation(s)
- Henrique Nemésio
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche-Alicante, Spain
| | | | | |
Collapse
|
166
|
Sangiambut S, Suphatrakul A, Sriburi R, Keelapang P, Puttikhunt C, Kasinrerk W, Malasit P, Sittisombut N. Sustained replication of dengue pseudoinfectious virus lacking the capsid gene by trans-complementation in capsid-producing mosquito cells. Virus Res 2013; 174:37-46. [DOI: 10.1016/j.virusres.2013.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 11/16/2022]
|
167
|
Total chemical synthesis of dengue 2 virus capsid protein via native chemical ligation: role of the conserved salt-bridge. Bioorg Med Chem 2013; 21:3443-9. [PMID: 23673222 DOI: 10.1016/j.bmc.2013.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 11/21/2022]
Abstract
The dengue capsid protein C is a highly basic alpha-helical protein of ~100 amino acid residues that forms an emphipathic homodimer to encapsidate the viral genome and to interact with viral membranes. The solution structure of dengue 2 capsid protein C (DEN2C) has been determined by NMR spectroscopy, revealing a large dimer interface formed almost exclusively by hydrophobic residues. The only acidic residue (Glu87) conserved in the capsid proteins of all four serotypes of dengue virus forms a salt bridge with the side chains of Lys45 and Arg55'. To understand the structural and functional significance of this conserved salt bridge, we chemically synthesized an N-terminally truncated form of DEN2C ((WT)DEN2C) and its salt bridge-void analog (E87A)DEN2C using the native chemical ligation technique developed by Kent and colleagues. Comparative biochemical and biophysical studies of these two synthetic proteins using circular dichroism spectroscopy, fluorescence polarization, protein thermal denaturation, and proteolytic susceptibility assay demonstrated that the conserved salt bridge contributed to DEN2C dimerization and stability as well as its resistance to proteolytic degradation. Our work provided insight into the role of a fully conserved structural element of the dengue capsid protein C and paved the way for additional functional studies of this important viral protein.
Collapse
|
168
|
Chong MK, Parthasarathy K, Yeo HY, Ng ML. Optimized sequential purification protocol for in vivo site-specific biotinylated full-length dengue virus capsid protein. Protein Eng Des Sel 2013; 26:377-87. [PMID: 23479673 DOI: 10.1093/protein/gzs107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dengue virus (DENV) capsid (C) protein is one of the three structural proteins that form a mature virus. The main challenge impeding the study of this protein is to generate pure non-truncated, full-length C proteins for structural and functional studies. This is mainly due to its small molecular weight, highly positively charged, stability and solubility properties. Here, we report a strategy to construct, express, biotinylate and purify non-truncated, full-length DENV C protein. A 6× His tag and a biotin acceptor peptide (BAP) were cloned at the N-terminus of C protein using overlapping extension-polymerase chain reaction method for site-specific biotinylation. The final construct was inserted into pET28a plasmid and BL-21 (CodonPlus) expression competent cell strain was selected as there are 12% rare codons in the C protein sequence. Strikingly, we found that our recombinant proteins with BAP were biotinylated endogenously with high efficiency in Escherichia coli BL-21 strains. To purify this His-tagged C protein, nickel-nitriloacetic acid affinity chromatography was first carried out under denaturing condition. After stepwise dialysis and concurrent refolding, ion exchange-fast protein liquid chromatography was performed to further separate the residual contaminants. To obtain C protein with high purity, a final round of purification with size exclusion chromatography was carried out and a single peak corresponding to C protein was attained. With this optimized sequential purification protocol, we successfully generated pure biotinylated full-length DENV C protein. The functionality of this purified non-truncated DENV C protein was examined and it was suitable for structural and molecular studies.
Collapse
Affiliation(s)
- Mun Keat Chong
- Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
169
|
In vitro inhibition of Japanese encephalitis virus replication by capsid-targeted virus inactivation. Antiviral Res 2013; 97:369-75. [DOI: 10.1016/j.antiviral.2012.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/10/2012] [Accepted: 12/31/2012] [Indexed: 01/01/2023]
|
170
|
Freire JM, Veiga AS, de la Torre BG, Andreu D, Castanho MARB. Quantifying molecular partition of cell-penetrating peptide-cargo supramolecular complexes into lipid membranes: optimizing peptide-based drug delivery systems. J Pept Sci 2013; 19:182-9. [PMID: 23322613 DOI: 10.1002/psc.2477] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/23/2012] [Accepted: 11/26/2012] [Indexed: 11/08/2022]
Abstract
One of the major challenges in the drug development process is biodistribution across epithelia and intracellular drug targeting. Cellular membrane heterogeneity is one of the major drawbacks in developing efficient and sustainable drug delivery systems, which brings the need to study their interaction with lipids in order to unravel their mechanisms of action and improve their delivery capacities. Cell penetrating peptides (CPPs) are able to translocate almost any cell membrane carrying cargo molecules. However, different CPP use different entry mechanisms, which are often concentration-dependent and cargo-dependent. Being able to quantify the lipid affinity of CPP is of obvious importance and can be achieved by studying the partition extent of CPP into lipid bilayers. The partition constant (Kp) reflects the lipid-water partition extent. However, all currently available methodologies are only suitable to determine the partition of single molecules into lipid membranes or entities, being unsuitable to determine the partition of bimolecular or higher order supramolecular complexes. We derived and tested a mathematical model to determine the Kp of supramolecular CPP-cargo complexes from fluorescence spectroscopy data, using DNA oligomers as a model cargo. As a proof-of-concept example, the partition extent of two new membrane active peptides derived from dengue virus capsid protein (DENV C protein) with potential CPP properties, in both scenarios (free peptide and complexed with a molecular cargo), were tested. We were able to identify the lipid affinity of these CPP:DNA complexes, thus gaining valuable insights into better CPP formulations.
Collapse
Affiliation(s)
- João Miguel Freire
- Instituto de Medicina Molecular, University of Lisbon, Physical Biochemistry Unit, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
171
|
Mairiang D, Zhang H, Sodja A, Murali T, Suriyaphol P, Malasit P, Limjindaporn T, Finley RL. Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito. PLoS One 2013; 8:e53535. [PMID: 23326450 PMCID: PMC3543448 DOI: 10.1371/journal.pone.0053535] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 12/03/2012] [Indexed: 11/26/2022] Open
Abstract
The four divergent serotypes of dengue virus are the causative agents of dengue fever, dengue hemorrhagic fever and dengue shock syndrome. About two-fifths of the world's population live in areas where dengue is prevalent, and thousands of deaths are caused by the viruses every year. Dengue virus is transmitted from one person to another primarily by the yellow fever mosquito, Aedes aegypti. Recent studies have begun to define how the dengue viral proteins interact with host proteins to mediate viral replication and pathogenesis. A combined analysis of these studies, however, suggests that many virus-host protein interactions remain to be identified, especially for the mosquito host. In this study, we used high-throughput yeast two-hybrid screening to identify mosquito and human proteins that physically interact with dengue proteins. We tested each identified host protein against the proteins from all four serotypes of dengue to identify interactions that are conserved across serotypes. We further confirmed many of the interactions using co-affinity purification assays. As in other large-scale screens, we identified some previously detected interactions and many new ones, moving us closer to a complete host - dengue protein interactome. To help summarize and prioritize the data for further study, we combined our interactions with other published data and identified a subset of the host-dengue interactions that are now supported by multiple forms of evidence. These data should be useful for understanding the interplay between dengue and its hosts and may provide candidates for drug targets and vector control strategies.
Collapse
Affiliation(s)
- Dumrong Mairiang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Huamei Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Ann Sodja
- Department of Biology, Wayne State University, Detroit, Michigan, United States of America
| | - Thilakam Murali
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Prapat Suriyaphol
- Bioinformatics and Data Management for Research Unit, Faculty of Medicine Siriraj Hospital, and Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
| | - Prida Malasit
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Russell L. Finley
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
172
|
|
173
|
Ivanyi-Nagy R, Darlix JL. Reprint of: Core protein-mediated 5'-3' annealing of the West Nile virus genomic RNA in vitro. Virus Res 2012; 169:448-57. [PMID: 23022255 PMCID: PMC7172194 DOI: 10.1016/j.virusres.2012.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 12/21/2022]
Abstract
Genome cyclization through conserved RNA sequences located in the 5' and 3' terminal regions of flavivirus genomic RNA is essential for virus replication. Although the role of various cis-acting RNA elements in panhandle formation is well characterized, almost nothing is known about the potential contribution of protein cofactors to viral RNA cyclization. Proteins with nucleic acid chaperone activities are encoded by many viruses (e.g., retroviruses, coronaviruses) to facilitate RNA structural rearrangements and RNA-RNA interactions during the viral replicative cycle. Since the core protein of flaviviruses is also endowed with potent RNA chaperone activities, we decided to examine the effect of West Nile virus (WNV) core on 5'-3' genomic RNA annealing in vitro. Core protein binding resulted in a dramatic, dose-dependent increase in 5'-3' complex formation. Mutations introduced in either the UAR (upstream AUG region) or CS (conserved sequence) elements of the viral RNA diminished core protein-dependent annealing, while compensatory mutations restored the 5'-3' RNA interaction. The activity responsible for stimulating RNA annealing was mapped to the C-terminal RNA-binding region of WNV core protein. These results indicate that core protein - besides its function in viral particle formation - might be involved in the regulation of flavivirus genomic RNA cyclization, and thus virus replication.
Collapse
Affiliation(s)
- Roland Ivanyi-Nagy
- LaboRetro, INSERM U758, Ecole Normale Supérieure de Lyon, IFR128 Biosciences Lyon-Gerland, 46 allée d'Italie, 69364 Lyon, France
| | | |
Collapse
|
174
|
Japanese encephalitis virus core protein inhibits stress granule formation through an interaction with Caprin-1 and facilitates viral propagation. J Virol 2012; 87:489-502. [PMID: 23097442 DOI: 10.1128/jvi.02186-12] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stress granules (SGs) are cytoplasmic foci composed of stalled translation preinitiation complexes induced by environmental stress stimuli, including viral infection. Since viral propagation completely depends on the host translational machinery, many viruses have evolved to circumvent the induction of SGs or co-opt SG components. In this study, we found that expression of Japanese encephalitis virus (JEV) core protein inhibits SG formation. Caprin-1 was identified as a binding partner of the core protein by an affinity capture mass spectrometry analysis. Alanine scanning mutagenesis revealed that Lys(97) and Arg(98) in the α-helix of the JEV core protein play a crucial role in the interaction with Caprin-1. In cells infected with a mutant JEV in which Lys(97) and Arg(98) were replaced with alanines in the core protein, the inhibition of SG formation was abrogated, and viral propagation was impaired. Furthermore, the mutant JEV exhibited attenuated virulence in mice. These results suggest that the JEV core protein circumvents translational shutoff by inhibiting SG formation through an interaction with Caprin-1 and facilitates viral propagation in vitro and in vivo.
Collapse
|
175
|
A novel inhibitor of dengue virus replication that targets the capsid protein. Antimicrob Agents Chemother 2012; 57:15-25. [PMID: 23070172 DOI: 10.1128/aac.01429-12] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dengue viruses (DENV) infect 50 to 100 million people worldwide per year, of which 500,000 develop severe life-threatening disease. This mosquito-borne illness is endemic in most tropical and subtropical countries and has spread significantly over the last decade. While there are several promising vaccine candidates in clinical trials, there are currently no approved vaccines or therapeutics available for treatment of dengue infection. Here, we describe a novel small-molecule compound, ST-148, that is a potent inhibitor of all four serotypes of DENV in vitro. ST-148 significantly reduced viremia and viral load in vital organs and tended to lower cytokine levels in the plasma in a nonlethal model of DENV infection in AG129 mice. Compound resistance mapped to the DENV capsid (C) gene, and a direct interaction of ST-148 with C protein is suggested by alterations of the intrinsic fluorescence of the protein in the presence of compound. Thus, ST-148 appears to interact with the DENV C protein and inhibits a distinct step(s) of the viral replication cycle.
Collapse
|
176
|
A brief review on dengue molecular virology, diagnosis, treatment and prevalence in Pakistan. GENETIC VACCINES AND THERAPY 2012; 10:6. [PMID: 22929369 PMCID: PMC3478998 DOI: 10.1186/1479-0556-10-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/22/2012] [Indexed: 11/10/2022]
Abstract
Dengue virus infection is a serious health problem infecting 2.5 billion people worldwide. Dengue is now endemic in more than 100 countries, including Pakistan. Each year hundreds of people get infected with dengue in Pakistan. Currently, there is no vaccine available for the prevention of Dengue virus infection due to four viral serotypes. Dengue infection can cause death of patients in its most severity, meanwhile many antiviral compounds are being tested against dengue virus infection to eradicate this disease but still there is a need to develop an efficient, low-cost and safe vaccine that can target all the four serotypes of dengue virus. This review summarizes dengue molecular virology, important drug targets, prevalence in Pakistan, diagnosis, treatment and medicinal plant inhibitors against dengue.
Collapse
|
177
|
Ivanyi-Nagy R, Darlix JL. Core protein-mediated 5'-3' annealing of the West Nile virus genomic RNA in vitro. Virus Res 2012; 167:226-35. [PMID: 22652509 PMCID: PMC7172325 DOI: 10.1016/j.virusres.2012.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 01/17/2023]
Abstract
Genome cyclization through conserved RNA sequences located in the 5' and 3' terminal regions of flavivirus genomic RNA is essential for virus replication. Although the role of various cis-acting RNA elements in panhandle formation is well characterized, almost nothing is known about the potential contribution of protein cofactors to viral RNA cyclization. Proteins with nucleic acid chaperone activities are encoded by many viruses (e.g., retroviruses, coronaviruses) to facilitate RNA structural rearrangements and RNA-RNA interactions during the viral replicative cycle. Since the core protein of flaviviruses is also endowed with potent RNA chaperone activities, we decided to examine the effect of West Nile virus (WNV) core on 5'-3' genomic RNA annealing in vitro. Core protein binding resulted in a dramatic, dose-dependent increase in 5'-3' complex formation. Mutations introduced in either the UAR (upstream AUG region) or CS (conserved sequence) elements of the viral RNA diminished core protein-dependent annealing, while compensatory mutations restored the 5'-3' RNA interaction. The activity responsible for stimulating RNA annealing was mapped to the C-terminal RNA-binding region of WNV core protein. These results indicate that core protein - besides its function in viral particle formation - might be involved in the regulation of flavivirus genomic RNA cyclization, and thus virus replication.
Collapse
Key Words
- cs, conserved sequence
- dar, downstream aug region
- db, dumbbell-like structure
- denv, dengue virus
- jev, japanese encephalitis virus
- orf, open reading frame
- rdrp, rna-dependent rna polymerase
- sfrna, subgenomic flavivirus rna
- tbev, tick-borne encephalitis virus
- uar, upstream aug region
- utr, untranslated region
- wnv, west nile virus
- yfv, yellow fever virus
- west nile virus
- core protein
- flaviviruses
- viral replication
- genome cyclization
- rna chaperoning
Collapse
Affiliation(s)
| | - Jean-Luc Darlix
- LaboRetro, INSERM U758, Ecole Normale Supérieure de Lyon, IFR128 Biosciences Lyon-Gerland, 46 allée d’Italie, 69364 Lyon, France
| |
Collapse
|
178
|
The disordered N-terminal region of dengue virus capsid protein contains a lipid-droplet-binding motif. Biochem J 2012; 444:405-15. [PMID: 22428600 DOI: 10.1042/bj20112219] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dengue is the major arthropod-borne human viral disease, for which no vaccine or specific treatment is available. We used NMR, zeta potential measurements and atomic force microscopy to study the structural features of the interaction between dengue virus C (capsid) protein and LDs (lipid droplets), organelles crucial for infectious particle formation. C protein-binding sites to LD were mapped, revealing a new function for a conserved segment in the N-terminal disordered region and indicating that conformational selection is involved in recognition. The results suggest that the positively charged N-terminal region of C protein prompts the interaction with negatively charged LDs, after which a conformational rearrangement enables the access of the central hydrophobic patch to the LD surface. Taken together, the results allowed the design of a peptide with inhibitory activity of C protein-LD binding, paving the way for new drug development approaches against dengue.
Collapse
|
179
|
Alves CS, Kairys V, Castanho MARB, Fernandes MX. Interaction of antimicrobial peptides, BP100 and pepR, with model membrane systems as explored by brownian dynamics simulations on a coarse-grained model. Biopolymers 2012. [DOI: 10.1002/bip.22075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
180
|
Schrauf S, Kurz M, Taucher C, Mandl CW, Skern T. Generation and genetic stability of tick-borne encephalitis virus mutants dependent on processing by the foot-and-mouth disease virus 3C protease. J Gen Virol 2012; 93:504-515. [PMID: 22131310 PMCID: PMC3918513 DOI: 10.1099/vir.0.038398-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mature protein C of tick-borne encephalitis virus (TBEV) is cleaved from the polyprotein precursor by the viral NS2B/3 protease (NS2B/3(pro)). We showed previously that replacement of the NS2B/3(pro) cleavage site at the C terminus of protein C by the foot-and-mouth disease virus (FMDV) 2A StopGo sequence leads to the production of infectious virions. Here, we show that infectious virions can also be produced from a TBEV mutant bearing an inactivated 2A sequence through the expression of the FMDV 3C protease (3C(pro)) either in cis or in trans (from a TBEV replicon). Cleavage at the C terminus of protein C depended on the catalytic activity of 3C(pro) as well as on the presence of an optimized 3C(pro) cleavage site. Passage of the TBEV mutants bearing a 3C(pro) cleavage site either in the absence of 3C(pro) or in the presence of a catalytically inactive 3C(pro) led to the appearance of revertants in which protein C cleavage by NS2B/3(pro) had been regained. In three different revertants, a cleavage site for NS2B/3(pro), namely RR*C, was now present, leading to an elongated protein C. Furthermore, two revertants acquired additional mutations in the C terminus of protein C, eliminating two basic residues. Although these latter mutants showed wild-type levels of early RNA synthesis, their foci were smaller and an accumulation of protein C in the cytoplasm was observed. These findings suggest a role of the positive charge of the C terminus of protein C for budding of the nucleocapsid and further support the notion that TBEV protein C is a multifunctional protein.
Collapse
Affiliation(s)
- Sabrina Schrauf
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| | - Martina Kurz
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| | - Christian Taucher
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| | - Christian W. Mandl
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| | - Tim Skern
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria
| |
Collapse
|
181
|
Dengue virus-like particles: construction and application. Appl Microbiol Biotechnol 2012; 94:39-46. [DOI: 10.1007/s00253-012-3958-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 11/26/2022]
|
182
|
Samsa MM, Mondotte JA, Caramelo JJ, Gamarnik AV. Uncoupling cis-Acting RNA elements from coding sequences revealed a requirement of the N-terminal region of dengue virus capsid protein in virus particle formation. J Virol 2012; 86:1046-58. [PMID: 22072762 PMCID: PMC3255831 DOI: 10.1128/jvi.05431-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/21/2011] [Indexed: 11/20/2022] Open
Abstract
Little is known about the mechanism of flavivirus genome encapsidation. Here, functional elements of the dengue virus (DENV) capsid (C) protein were investigated. Study of the N-terminal region of DENV C has been limited by the presence of overlapping cis-acting RNA elements within the protein-coding region. To dissociate these two functions, we used a recombinant DENV RNA with a duplication of essential RNA structures outside the C coding sequence. By the use of this system, the highly conserved amino acids FNML, which are encoded in the RNA cyclization sequence 5'CS, were found to be dispensable for C function. In contrast, deletion of the N-terminal 18 amino acids of C impaired DENV particle formation. Two clusters of basic residues (R5-K6-K7-R9 and K17-R18-R20-R22) were identified as important. A systematic mutational analysis indicated that a high density of positive charges, rather than particular residues at specific positions, was necessary. Furthermore, a differential requirement of N-terminal sequences of C for viral particle assembly was observed in mosquito and human cells. While no viral particles were observed in human cells with a virus lacking the first 18 residues of C, DENV propagation was detected in mosquito cells, although to a level about 50-fold less than that observed for a wild-type (WT) virus. We conclude that basic residues at the N terminus of C are necessary for efficient particle formation in mosquito cells but that they are crucial for propagation in human cells. This is the first report demonstrating that the N terminus of C plays a role in DENV particle formation. In addition, our results suggest that this function of C is differentially modulated in different host cells.
Collapse
|
183
|
Abstract
Family Flaviviridae genus flavivirus contains numerous pathogenic viruses such as Japanese encephalitis virus, dengue virus, West Nile virus, etc, which cause public health problems in the world. Since many mammals and birds can act as amplifying hosts and reservoir hosts in nature and those viruses are transmitted by haematophagous mosquitoes or ticks, those viruses could not be eradicated from the nature. In the recent few decades, the viral replication mechanism and the ultrastructure of viral proteins as well as the viral immune evasion mechanism have been elucidated extensively, leading to develop novel types of antivirals and vaccines. In this review, the flavivirus nature and epidemiology, replication mechanism, immune response and immune evasion, and antivirals and vaccines against flaviviruses were described.
Collapse
Affiliation(s)
- Tomohiro Ishikawa
- Department of Microbiology, Dokkyo Medical University School of Medicine.
| | | |
Collapse
|
184
|
Dengue virus capsid protein binding to hepatic lipid droplets (LD) is potassium ion dependent and is mediated by LD surface proteins. J Virol 2011; 86:2096-108. [PMID: 22130547 DOI: 10.1128/jvi.06796-11] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dengue virus (DENV) affects millions of people, causing more than 20,000 deaths annually. No effective treatment for the disease caused by DENV infection is currently available, partially due to the lack of knowledge on the basic aspects of the viral life cycle, including the molecular basis of the interaction between viral components and cellular compartments. Here, we characterized the properties of the interaction between the DENV capsid (C) protein and hepatic lipid droplets (LDs), which was recently shown to be essential for the virus replication cycle. Zeta potential analysis revealed a negative surface charge of LDs, with an average surface charge of -19 mV. The titration of LDs with C protein led to an increase of the surface charge, which reached a plateau at +13.7 mV, suggesting that the viral protein-LD interaction exposes the protein cationic surface to the aqueous environment. Atomic force microscopy (AFM)-based force spectroscopy measurements were performed by using C protein-functionalized AFM tips. The C protein-LD interaction was found to be strong, with a single (un)binding force of 33.6 pN. This binding was dependent on high intracellular concentrations of potassium ions but not sodium. The inhibition of Na(+)/K(+)-ATPase in DENV-infected cells resulted in the dissociation of C protein from LDs and a 50-fold inhibition of infectious virus production but not of RNA replication, indicating a biological relevance for the potassium-dependent interaction. Limited proteolysis of the LD surface impaired the C protein-LD interaction, and force measurements in the presence of specific antibodies indicated that perilipin 3 (TIP47) is the major DENV C protein ligand on the surface of LDs.
Collapse
|
185
|
Circulation of different lineages of dengue virus type 2 in Central America, their evolutionary time-scale and selection pressure analysis. PLoS One 2011; 6:e27459. [PMID: 22076162 PMCID: PMC3208639 DOI: 10.1371/journal.pone.0027459] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/17/2011] [Indexed: 11/19/2022] Open
Abstract
Dengue is caused by any of the four serotypes of dengue virus (DENV-1 to 4). Each serotype is genetically distant from the others, and each has been subdivided into different genotypes based on phylogenetic analysis. The study of dengue evolution in endemic regions is important since the diagnosis is often made by nucleic acid amplification tests, which depends upon recognition of the viral genome target, and natural occurring mutations can affect the performance of these assays. Here we report for the first time a detailed study of the phylogenetic relationships of DENV-2 from Central America, and report the first fully sequenced DENV-2 strain from Guatemala. Our analysis of the envelope (E) protein and of the open reading frame of strains from Central American countries, between 1999 and 2009, revealed that at least two lineages of the American/Asian genotype of DENV-2 have recently circulated in that region. In occasions the co-circulation of these lineages may have occurred and that has been suggested to play a role in the observed increased severity of clinical cases. Our time-scale analysis indicated that the most recent common ancestor for Central American DENV-2 of the American/Asian genotype existed about 19 years ago. Finally, we report positive selection in DENV-2 from Central America in codons of the genes encoding for C, E, NS2A, NS3, and NS5 proteins. Some of these identified codons are novel findings, described for the first time for any of the DENV-2 genotypes.
Collapse
|
186
|
The membrane-active regions of the dengue virus proteins C and E. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2390-402. [DOI: 10.1016/j.bbamem.2011.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/23/2011] [Accepted: 06/28/2011] [Indexed: 12/24/2022]
|
187
|
Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells. PLoS One 2011; 6:e24365. [PMID: 21909430 PMCID: PMC3164731 DOI: 10.1371/journal.pone.0024365] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/08/2011] [Indexed: 12/24/2022] Open
Abstract
Dengue virus (DENV) is a member of the Flaviviridae and a globally (re)emerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C) is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection.
Collapse
|
188
|
Medigeshi GR. Mosquito-borne flaviviruses: overview of viral life-cycle and host–virus interactions. Future Virol 2011. [DOI: 10.2217/fvl.11.85] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mosquito-borne flaviviruses such as dengue virus, Japanese encephalitis virus and West Nile virus pose a threat to half of the world population and are a serious public health challenge in many developing countries. There are no effective vaccines or antivirals for most of these viruses. Viruses, being obligate parasites, hijack host pathways for efficient replication and therefore each step of viral life-cycle, namely entry into the host cell, genome replication, assembly and exit, requires the participation of host factors. Investigating the biology of mosquito-borne flaviviruses and the complex interplay of virus with its host will help in identifying drug targets and also in developing safer vaccines and antivirals. This article provides insights into the recent developments in our understanding of the virus–host interactions at various steps in the life-cycle of these viruses.
Collapse
Affiliation(s)
- Guruprasad R Medigeshi
- Vaccine & Infectious Disease Research Center, Translational Health Science & Technology Institute, Plot 496, Udyog Vihar Phase III, Gurgaon 122016, Haryana, India
| |
Collapse
|
189
|
Heterogeneous nuclear ribonucleoprotein A2 participates in the replication of Japanese encephalitis virus through an interaction with viral proteins and RNA. J Virol 2011; 85:10976-88. [PMID: 21865391 DOI: 10.1128/jvi.00846-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that is kept in a zoonotic transmission cycle between pigs and mosquitoes. JEV causes infection of the central nervous system with a high mortality rate in dead-end hosts, including humans. Many studies have suggested that the flavivirus core protein is not only a component of nucleocapsids but also an important pathogenic determinant. In this study, we identified heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2) as a binding partner of the JEV core protein by pulldown purification and mass spectrometry. Reciprocal coimmunoprecipitation analyses in transfected and infected cells confirmed a specific interaction between the JEV core protein and hnRNP A2. Expression of the JEV core protein induced cytoplasmic retention of hnRNP A2 in JEV subgenomic replicon cells. Small interfering RNA (siRNA)-mediated knockdown of hnRNP A2 resulted in a 90% reduction of viral RNA replication in cells infected with JEV, and the reduction was cancelled by the expression of an siRNA-resistant hnRNP A2 mutant. In addition to the core protein, hnRNP A2 also associated with JEV nonstructural protein 5, which has both methyltransferase and RNA-dependent RNA polymerase activities, and with the 5'-untranslated region of the negative-sense JEV RNA. During one-step growth, synthesis of both positive- and negative-strand JEV RNAs was delayed by the knockdown of hnRNP A2. These results suggest that hnRNP A2 plays an important role in the replication of JEV RNA through the interaction with viral proteins and RNA.
Collapse
|
190
|
Fischl W, Bartenschlager R. Exploitation of cellular pathways by Dengue virus. Curr Opin Microbiol 2011; 14:470-5. [DOI: 10.1016/j.mib.2011.07.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 06/29/2011] [Accepted: 07/05/2011] [Indexed: 01/11/2023]
|
191
|
Chase AJ, Medina FA, Muñoz-Jordán JL. Impairment of CD4+ T cell polarization by dengue virus-infected dendritic cells. J Infect Dis 2011; 203:1763-74. [PMID: 21606535 DOI: 10.1093/infdis/jir197] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The production of type I interferon alpha/beta (IFN-α/β) is crucial to viral clearance during dengue virus (DENV) infection; however, in vitro-infected dendritic cells (DCs) exhibit a decreased capacity to respond to IFN-α/β stimulation, and antigen-presenting cells (APCs) isolated from patients with acute DENV infection exhibit defects in T cell priming. METHODS In order to ascertain the stimulatory capacity of primary human monocyte-derived DCs infected with wild-type DENV isolates, representing a range of genotypes and disease outcomes, we cocultured infected DCs with allogeneic-naive CD4(+) T cells. The gene expression patterns of IFN-α/β sensitive genes were quantitated to determine if the infected DCs displayed a blunted IFN-α/β response. RESULTS DENV-infected DCs induced the initial proliferation of naive CD4(+) T cells but they remained nonpolarized in effector function. The expression of IFN-α/β-stimulated genes was downregulated, revealing that the inhibition of IFN-α/β signaling is conserved among endemic DENV serotype 2 strains. CONCLUSIONS The failure of naive CD4(+) T cells to differentiate into IFN gamma-producing effector T cells when primed by DENV-infected DCs cannot be explained solely by a block in IFN-α/β signaling, suggesting that the ability of DENV to evade the early host response is multifaceted.
Collapse
Affiliation(s)
- Amanda J Chase
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, USA
| | | | | |
Collapse
|
192
|
Pong WL, Huang ZS, Teoh PG, Wang CC, Wu HN. RNA binding property and RNA chaperone activity of dengue virus core protein and other viral RNA-interacting proteins. FEBS Lett 2011; 585:2575-81. [PMID: 21771593 PMCID: PMC7164067 DOI: 10.1016/j.febslet.2011.06.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 11/30/2022]
Abstract
In this study we showed that the dengue virus (DENV) core protein forms a dimer with an α-helix-rich structure, binds RNA and facilitates the strand annealing process. To assess the RNA chaperone activity of this core protein and other dengue viral RNA-interacting proteins, such as NS3 helicase and NS5 proteins, we engineered cis- and trans-cleavage hammerhead ribozyme constructs carrying DENV genomic RNA elements. Our results indicate that DENV core protein facilitates typical hammerhead structure formation by acting as an RNA chaperone and DENV NS5 has a weak RNA chaperone activity, while DENV NS3 helicase failed to refold RNA with a complex secondary structure.
Collapse
Affiliation(s)
- Wen-Li Pong
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
193
|
Abstract
BACKGROUND Infection by mosquito-borne flaviviruses (family Flaviviridae) is increasing in prevalence worldwide. The vast global, social and economic impact due to the morbidity and mortality associated with the diseases caused by these viruses necessitates therapeutic intervention. There is currently no effective clinical treatment for any flaviviral infection. Therefore, there is a great need for the identification of novel inhibitors to target the virus life cycle. DISCUSSION In this article, we discuss structural and nonstructural viral proteins that are the focus of current target validation and drug discovery efforts. Both inhibition of essential enzymatic activities and disruption of necessary protein–protein interactions are considered. In addition, we address promising new targets for future research. CONCLUSION As our molecular and biochemical understanding of the flavivirus life cycle increases, the number of targets for antiviral therapeutic discovery grows and the possibility for novel drug discovery continues to strengthen.
Collapse
|
194
|
Li D, Liu J, Kang F, Guan W, Gao X, Wang Y, Sun D. Core-APOBEC3C chimerical protein inhibits hepatitis B virus replication. J Biochem 2011; 150:371-4. [PMID: 21746770 DOI: 10.1093/jb/mvr086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We tested the capsid targeted viral inactivation method as an anti-HBV strategy. HepG2 cells were cotransfected with HBV expression plasmid and the plasmid encoding fusion protein of either Core-A3C or Core-humanized renilla GFP (hrGFP). Core-A3C had substantial effect on HBV DNA levels. In the HepG2 cells expressing Core-A3C, the number of G-to-A mutations increased dramatically, whereas other nucleotide substitutions were rare. In addition, Core-A3C substantially inhibited HBV production intracellularly and in culture supernatant. These results suggest that Core-A3C may be a candidate as a novel antiviral agent against human HBV infection.
Collapse
Affiliation(s)
- Dong Li
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | |
Collapse
|
195
|
Li D, Aaskov J, Lott WB. Identification of a cryptic prokaryotic promoter within the cDNA encoding the 5' end of dengue virus RNA genome. PLoS One 2011; 6:e18197. [PMID: 21483867 PMCID: PMC3069047 DOI: 10.1371/journal.pone.0018197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/28/2011] [Indexed: 11/17/2022] Open
Abstract
Infectious cDNA clones of RNA viruses are important research tools, but flavivirus cDNA clones have proven difficult to assemble and propagate in bacteria. This has been attributed to genetic instability and/or host cell toxicity, however the mechanism leading to these difficulties has not been fully elucidated. Here we identify and characterize an efficient cryptic bacterial promoter in the cDNA encoding the dengue virus (DENV) 5' UTR. Following cryptic transcription in E. coli, protein expression initiated at a conserved in-frame AUG that is downstream from the authentic DENV initiation codon, yielding a DENV polyprotein fragment that was truncated at the N-terminus. A more complete understanding of constitutive viral protein expression in E. coli might help explain the cloning and propagation difficulties generally observed with flavivirus cDNA.
Collapse
Affiliation(s)
- Dongsheng Li
- Infectious Diseases Program, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | | | | |
Collapse
|
196
|
Sun EC, Zhao J, Yang T, Liu NH, Geng HW, Qin YL, Wang LF, Bu ZG, Yang YH, Lunt RA, Wang LF, Wu DL. Identification of a conserved JEV serocomplex B-cell epitope by screening a phage-display peptide library with a mAb generated against West Nile virus capsid protein. Virol J 2011; 8:100. [PMID: 21375771 PMCID: PMC3060845 DOI: 10.1186/1743-422x-8-100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 03/06/2011] [Indexed: 11/25/2022] Open
Abstract
Background The West Nile virus (WNV) capsid (C) protein is one of the three viral structural proteins, encapsidates the viral RNA to form the nucleocapsid, and is necessary for nuclear and nucleolar localization. The antigenic sites on C protein that are targeted by humoral immune responses have not been studied thoroughly, and well-defined B-cell epitopes on the WNV C protein have not been reported. Results In this study, we generated a WNV C protein-specific monoclonal antibody (mAb) and defined the linear epitope recognized by the mAb by screening a 12-mer peptide library using phage-display technology. The mAb, designated as 6D3, recognized the phages displaying a consensus motif consisting of the amino acid sequence KKPGGPG, which is identical to an amino acid sequence present in WNV C protein. Further fine mapping was conducted using truncated peptides expressed as MBP-fusion proteins. We found that the KKPGGPG motif is the minimal determinant of the linear epitope recognized by the mAb 6D3. Western blot (WB) analysis demonstrated that the KKPGGPG epitope could be recognized by antibodies contained in WNV- and Japanese encephalitis virus (JEV)-positive equine serum, but was not recognized by Dengue virus 1-4 (DENV1-4)-positive mice serum. Furthermore, we found that the epitope recognized by 6D3 is highly conserved among the JEV serocomplex of the Family Flaviviridae. Conclusion The KKPGGPG epitope is a JEV serocomplex-specific linear B-cell epitope recognized by the 6D3 mAb generated in this study. The 6D3 mAb may serve as a novel reagent in development of diagnostic tests for JEV serocomplex infection. Further, the identification of the B-cell epitope that is highly conserved among the JEV serocomplex may support the rationale design of vaccines against viruses of the JEV serocomplex.
Collapse
Affiliation(s)
- En-Cheng Sun
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
|
198
|
|
199
|
Urcuqui-Inchima S, Patiño C, Torres S, Haenni AL, Díaz FJ. Recent developments in understanding dengue virus replication. Adv Virus Res 2010; 77:1-39. [PMID: 20951868 DOI: 10.1016/b978-0-12-385034-8.00001-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dengue is the most important cause of mosquito-borne virus diseases in tropical and subtropical regions in the world. Severe clinical outcomes such as dengue hemorrhagic fever and dengue shock syndrome are potentially fatal. The epidemiology of dengue has undergone profound changes in recent years, due to several factors such as expansion of the geographical distribution of the insect vector, increase in traveling, and demographic pressure. As a consequence, the incidence of dengue has increased dramatically. Since mosquito control has not been successful and since no vaccine or antiviral treatment is available, new approaches to this problem are needed. Consequently, an in-depth understanding of the molecular and cellular biology of the virus should be helpful to design efficient strategies for the control of dengue. Here, we review the recently acquired knowledge on the molecular and cell biology of the dengue virus life cycle based on newly developed molecular biology technologies.
Collapse
Affiliation(s)
- Silvio Urcuqui-Inchima
- Grupo de Inmunoviología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | | | | | | | | |
Collapse
|
200
|
Brown BA, Panganiban AT. Identification of a region of hantavirus nucleocapsid protein required for RNA chaperone activity. RNA Biol 2010; 7:830-7. [PMID: 21378500 DOI: 10.4161/rna.7.6.13862] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sin Nombre hantavirus (SNV) is a New World hantavirus and causes hantavirus cardiopulmonary syndrome. The viral nucleocapsid protein (N) is an RNA chaperone and has multiple functions important in virus replication. The three negative sense RNA segments of hantaviruses form panhandle structures through imperfect hydrogen bonding of the 5' and 3' termini, and the chaperone activity of N can mediate correct panhandle formation. N also functions during transcription and translation initiation and the chaperone activity of N is likely to be involved in aspects of these processes. Using a series of mutations in the N gene we identified a region of N required for chaperone activity. The N-terminal 100 amino acids of N contain a domain that is both necessary and sufficient for RNA chaperone activity. We propose that this region of N may reside in one of two potential states. First, the region may be highly disordered and function in N-mediated RNA chaperone activity. Alternatively, in trimeric form, the region likely becomes ordered and serves in high affinity vRNA panhandle recognition.
Collapse
Affiliation(s)
- Bradley A Brown
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | |
Collapse
|