151
|
Morgan MT, Bagchi P, Fahrni CJ. High-contrast fluorescence sensing of aqueous Cu(I) with triarylpyrazoline probes: dissecting the roles of ligand donor strength and excited state proton transfer. Dalton Trans 2013; 42:3240-8. [PMID: 23169532 PMCID: PMC3755598 DOI: 10.1039/c2dt31985c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cu(I)-responsive fluorescent probes based on a photoinduced electron transfer (PET) mechanism generally show incomplete fluorescence recovery relative to the intrinsic quantum yield of the fluorescence reporter. Previous studies on probes with an N-aryl thiazacrown Cu(I)-receptor revealed that the recovery is compromised by incomplete Cu(I)-N coordination and resultant ternary complex formation with solvent molecules. Building upon a strategy that successfully increased the fluorescence contrast and quantum yield of Cu(I) probes in methanol, we integrated the arylamine PET donor into the backbone of a hydrophilic thiazacrown ligand with a sulfonated triarylpyrazoline as a water-soluble fluorescence reporter. This approach was not only expected to disfavor ternary complex formation in aqueous solution but also to maximize PET switching through a synergistic Cu(I)-induced conformational change. The resulting water-soluble probe 1 gave a strong 57-fold fluorescence enhancement upon saturation with Cu(I) with high selectivity over other cations, including Cu(II), Hg(II), and Cd(II); however, the recovery quantum yield did not improve over probes with the original N-aryl thiazacrown design. Concluding from detailed photophysical data, including responses to acidification, solvent isotope effects, quantum yields, and time-resolved fluorescence decay profiles, the fluorescence contrast of 1 is compromised by inadequate coordination of Cu(I) to the weakly basic arylamine nitrogen of the PET donor and by fluorescence quenching via two distinct excited state proton transfer pathways operating under neutral and acidic conditions.
Collapse
Affiliation(s)
- M. Thomas Morgan
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332-0400, U.S.A
| | - Pritha Bagchi
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332-0400, U.S.A
| | - Christoph J. Fahrni
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332-0400, U.S.A
| |
Collapse
|
152
|
Vogt S, Ralle M. Opportunities in multidimensional trace metal imaging: taking copper-associated disease research to the next level. Anal Bioanal Chem 2013; 405:1809-20. [PMID: 23079951 PMCID: PMC3566297 DOI: 10.1007/s00216-012-6437-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/07/2012] [Accepted: 09/18/2012] [Indexed: 01/09/2023]
Abstract
Copper plays an important role in numerous biological processes across all living systems predominantly because of its versatile redox behavior. Cellular copper homeostasis is tightly regulated and disturbances lead to severe disorders such as Wilson disease and Menkes disease. Age-related changes of copper metabolism have been implicated in other neurodegenerative disorders such as Alzheimer disease. The role of copper in these diseases has been a topic of mostly bioinorganic research efforts for more than a decade, metal-protein interactions have been characterized, and cellular copper pathways have been described. Despite these efforts, crucial aspects of how copper is associated with Alzheimer disease, for example, are still only poorly understood. To take metal-related disease research to the next level, emerging multidimensional imaging techniques are now revealing the copper metallome as the basis to better understand disease mechanisms. This review describes how recent advances in X-ray fluorescence microscopy and fluorescent copper probes have started to contribute to this field, specifically in Wilson disease and Alzheimer disease. It furthermore provides an overview of current developments and future applications in X-ray microscopic methods.
Collapse
Affiliation(s)
- Stefan Vogt
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439
| | - Martina Ralle
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239
| |
Collapse
|
153
|
Abstract
Coordination chemistry plays an essential role in the design of photoluminescent probes for metal ions. Metal coordination to organic dyes induces distinct optical responses which signal the presence of metal species of interest. Luminescent lanthanide (Ln(3+)) and transition metal complexes of d(6), d(8) and d(10) configurations often exhibit unique luminescence properties different from organic dyes, such as high quantum yield, large Stokes shift, long emission wavelength and emission lifetimes, low sensitivity to microenvironments, and can be explored as lumophores to construct probes for metal ions, anions and neutral species. In this review, the design principles and coordination chemistry of metal probes based on mechanisms of PeT, PCT, ESIPT, FRET, and excimer formation will be discussed in detail. Particular attention will be given to rationales for the design of turn-on and ratiometric probes. Moreover, phosphorescent probe design based on Ln(3+) and d(6), d(8) and d(10)-metal complexes are also presented via discussing certain factors affecting the phosphorescence of these metal complexes. A survey of the latest progress in photoluminescent probes for identification of essential metal cations in the human body or toxic metal cations in the environment will be presented focusing on their design rationales and sensing behaviors. Metal complex-based photoluminescent probes for biorelated anions such as PPi, and neutral biomolecules ATP, NO, and H(2)S will be discussed also in the context of their metal coordination-related sensing behaviors and design approaches.
Collapse
Affiliation(s)
- Zhipeng Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | | | | |
Collapse
|
154
|
Kar C, Adhikari MD, Ramesh A, Das G. NIR- and FRET-based sensing of Cu2+ and S2- in physiological conditions and in live cells. Inorg Chem 2013; 52:743-52. [PMID: 23302031 DOI: 10.1021/ic301872q] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have synthesized a new indole functionalized rhodamine derivative L(1) which specifically binds to Cu(2+) in the presence of large excess of other competing ions with visually observable changes in their electronic and fluorescence spectral behavior. These spectral changes are significant enough in the NIR and visible region of the spectrum and thus enable naked eye detection. The receptor, L(1), could be employed as a resonance energy transfer (RET) based sensor for detection of Cu(2+) based on the process involving the donor indole and the acceptor Cu(2+) bound xanthene fragment. Studies reveal that L(1)-Cu complex is selectively and fully reversible in presence of sulfide anions. Further, fluorescence microscopic studies confirmed that the reagent L(1) could also be used as an imaging probe for detection of uptake of these ions in HeLa cells.
Collapse
Affiliation(s)
- Chirantan Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781 039, India
| | | | | | | |
Collapse
|
155
|
|
156
|
McRae R, Lai B, Fahrni CJ. Subcellular redistribution and mitotic inheritance of transition metals in proliferating mouse fibroblast cells. Metallomics 2013; 5:52-61. [PMID: 23212029 PMCID: PMC3769613 DOI: 10.1039/c2mt20176c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synchrotron X-ray fluorescence microscopy of non-synchronized NIH 3T3 fibroblasts revealed an intriguing redistribution dynamics that defines the inheritance of trace metals during mitosis. At metaphase, the highest density areas of Zn and Cu are localized in two distinct regions adjacent to the metaphase plate. As the sister chromatids are pulled towards the spindle poles during anaphase, Zn and Cu gradually move to the center and partition into the daughter cells to yield a pair of twin pools during cytokinesis. Colocalization analyses demonstrated high spatial correlations between Zn, Cu, and S throughout all mitotic stages, while Fe showed consistently different topographies characterized by high-density spots distributed across the entire cell. Whereas the total amount of Cu remained similar compared to interphase cells, mitotic Zn levels increased almost 3-fold, suggesting a prominent physiological role that lies beyond the requirement of Zn as a cofactor in metalloproteins or messenger in signaling pathways.
Collapse
Affiliation(s)
- Reagan McRae
- School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, U.S.A
| | - Barry Lai
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A
| | - Christoph J. Fahrni
- School of Chemistry and Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, U.S.A
| |
Collapse
|
157
|
|
158
|
Schwaebel T, Trapp O, Bunz UHF. Digital photography for the analysis of fluorescence responses. Chem Sci 2013. [DOI: 10.1039/c2sc21412a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
159
|
Hirayama T, Okuda K, Nagasawa H. A highly selective turn-on fluorescent probe for iron(ii) to visualize labile iron in living cells. Chem Sci 2013. [DOI: 10.1039/c2sc21649c] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
160
|
|
161
|
Satriano C, Sfrazzetto GT, Amato ME, Ballistreri FP, Copani A, Giuffrida ML, Grasso G, Pappalardo A, Rizzarelli E, Tomaselli GA, Toscano RM. A ratiometric naphthalimide sensor for live cell imaging of copper(i). Chem Commun (Camb) 2013; 49:5565-7. [DOI: 10.1039/c3cc42069h] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
162
|
Taki M, Akaoka K, Iyoshi S, Yamamoto Y. Rosamine-Based Fluorescent Sensor with Femtomolar Affinity for the Reversible Detection of a Mercury Ion. Inorg Chem 2012. [DOI: 10.1021/ic301822r] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Masayasu Taki
- Graduate School of Human & Environmental Studies, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazushi Akaoka
- Graduate School of Human & Environmental Studies, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shohei Iyoshi
- Graduate School of Human & Environmental Studies, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukio Yamamoto
- Graduate School of Human & Environmental Studies, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
163
|
Hong Enriquez RP, Do TN. Bioavailability of metal ions and evolutionary adaptation. Life (Basel) 2012; 2:274-85. [PMID: 25371266 PMCID: PMC4187156 DOI: 10.3390/life2040274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 10/11/2012] [Accepted: 10/19/2012] [Indexed: 11/16/2022] Open
Abstract
The evolution of life on earth has been a long process that began nearly 3,5 x 109 years ago. In their initial moments, evolution was mainly influenced by anaerobic environments; with the rise of O2 and the corresponding change in bioavailability of metal ions, new mechanisms of survival were created. Here we review the relationships between ancient atmospheric conditions, metal ion bioavailability and adaptation of metals homeostasis during early evolution. A general picture linking geochemistry, biochemistry and homeostasis is supported by the reviewed literature and is further illustrated in this report using simple database searches.
Collapse
Affiliation(s)
| | - Trang N Do
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34151 Trieste, Italy.
| |
Collapse
|
164
|
Hyman LM, Franz KJ. Probing oxidative stress: Small molecule fluorescent sensors of metal ions, reactive oxygen species, and thiols. Coord Chem Rev 2012; 256:2333-2356. [PMID: 23440254 PMCID: PMC3579673 DOI: 10.1016/j.ccr.2012.03.009] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oxidative stress is a common feature shared by many diseases, including neurodegenerative diseases. Factors that contribute to cellular oxidative stress include elevated levels of reactive oxygen species, diminished availability of detoxifying thiols, and the misregulation of metal ions (both redox-active iron and copper as well as non-redox active calcium and zinc). Deciphering how each of these components interacts to contribute to oxidative stress presents an interesting challenge. Fluorescent sensors can be powerful tools for detecting specific analytes within a complicated cellular environment. Reviewed here are several classes of small molecule fluorescent sensors designed to detect several molecular participants of oxidative stress. We focus our review on describing the design, function and application of probes to detect metal cations, reactive oxygen species, and intracellular thiol-containing compounds. In addition, we highlight the intricacies and complications that are often faced in sensor design and implementation.
Collapse
Affiliation(s)
- Lynne M. Hyman
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
165
|
Abstract
Imaging technologies developed in the early 20th century achieved contrast solely by relying on macroscopic and morphological differences between the tissues of interest and the surrounding tissues. Since then, there has been a movement toward imaging at the cellular and molecular level in order to visualize biological processes. This rapidly growing field is known as molecular imaging. In the last decade, many methodologies for imaging proteins have emerged. However, most of these approaches cannot be extended to imaging beyond the proteome. Here, we highlight some of the recently developed technologies that enable imaging of non-proteinaceous molecules in the cell: lipids, signalling molecules, inorganic ions, glycans, nucleic acids, small-molecule metabolites, and protein post-translational modifications such as phosphorylation and methylation.
Collapse
Affiliation(s)
- Pamela V. Chang
- Department of Chemistry, University of California, Berkeley, 94720, USA
| | - Carolyn R. Bertozzi
- Department of Chemistry, University of California, Berkeley, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, U.S.A
| |
Collapse
|
166
|
Mbatia HW, Burdette SC. Photochemical Tools for Studying Metal Ion Signaling and Homeostasis. Biochemistry 2012; 51:7212-24. [DOI: 10.1021/bi3001769] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hannah W. Mbatia
- University of Connecticut, 55 North Eagleville
Road, Storrs, Connecticut 06269-3060, United
States
| | - Shawn C. Burdette
- Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts
01609-2280, United States
| |
Collapse
|
167
|
Benes P, Alexova P, Knopfova L, Spanova A, Smarda J. Redox state alters anti-cancer effects of wedelolactone. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:515-524. [PMID: 22733624 DOI: 10.1002/em.21712] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/23/2012] [Indexed: 06/01/2023]
Abstract
Wedelolactone is one of the active plant polyphenolic compounds. Anti-tumor effects of this drug have been demonstrated recently. We have described that wedelolactone acts as catalytic inhibitor of DNA topoisomerase IIα. The aim of this study was to further characterize the mechanism of its anti-tumor effects. We showed that wedelolactone inhibits binding of DNA topoisomerase IIα to plasmid DNA and antagonizes formation of etoposide-induced DNA cleavage complex. The inhibition of topoisomerase IIα by wedelolactone is reversible by excess of the enzyme but not DNA. The in vitro inhibitory effect of wedelolactone on the topoisomerase IIα activity is redox-dependent as it diminished in the presence of reducing agents. Cytotoxicity of wedelolactone was partially inhibited by N-acetylcysteine and glutathione ethyl ester in breast cancer MDA-MB-231 and MDA-MB-468 cells while the inhibitory effect of catalase was observed only in the former cell line. Finally, we found that wedelolactone can be oxidized in the presence of copper ions resulting in DNA strand break and abasic site formation in vitro. However, wedelolactone induced neither DNA damage in MDA-MB-231 cells nor mutations in bacterial cells detectable by Ames test suggesting that wedelolactone may not be an effective inducer of DNA damage. We conclude that the topoisomerase IIα inhibitory- and DNA damaging activities of wedelolactone in vitro depend on its redox state. Pro-oxidant activity could, however, explain only part of wedelolactone-induced cytotoxicity. Therefore, the major cellular target(s) of wedelolactone and the exact mechanism of wedelolactone-induced cytotoxicity still remain to be identified.
Collapse
Affiliation(s)
- Petr Benes
- Department of Experimental Biology, Masaryk University, Czech Republic.
| | | | | | | | | |
Collapse
|
168
|
Paunesku T, Wanzer MB, Kirillova EN, Muksinova KN, Revina VS, Lyubchansky ER, Grosche B, Birschwilks M, Vogt S, Finney L, Woloschak GE. X-ray fluorescence microscopy for investigation of archival tissues. HEALTH PHYSICS 2012; 103:181-186. [PMID: 22951477 PMCID: PMC3716449 DOI: 10.1097/hp.0b013e31824e7023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Several recent efforts in the radiation biology community worldwide have amassed records and archival tissues from animals exposed to different radionuclides and external beam irradiation. In most cases, these samples come from lifelong studies on large animal populations conducted in national laboratories and equivalent institutions throughout Europe, North America, and Japan. While many of these tissues were used for histopathological analyses, much more information may still be obtained from these samples. A new technique suitable for imaging of these tissues is x-ray fluorescence microscopy (XFM). Following development of third generation synchrotrons, XFM has emerged as an ideal technique for the study of metal content, speciation, and localization in cells, tissues, and organs. Here the authors review some of the recent XFM literature pertinent to tissue sample studies and present examples of XFM data obtained from tissue sections of beagle dog samples, which show that the quality of archival tissues allows XFM investigation.
Collapse
Affiliation(s)
- T Paunesku
- Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Ward 13-007, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Human macrophage ATP7A is localized in the trans-Golgi apparatus, controls intracellular copper levels, and mediates macrophage responses to dermal wounds. Inflammation 2012; 35:167-75. [PMID: 21336677 DOI: 10.1007/s10753-011-9302-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound.
Collapse
|
170
|
Bandow N, Gilles VS, Freesmeier B, Semrau JD, Krentz B, Gallagher W, McEllistrem MT, Hartsel SC, Choi DW, Hargrove MS, Heard TM, Chesner LN, Braunreiter KM, Cao BV, Gavitt MM, Hoopes JZ, Johnson JM, Polster EM, Schoenick BD, Umlauf AM, DiSpirito AA. Spectral and copper binding properties of methanobactin from the facultative methanotroph Methylocystis strain SB2. J Inorg Biochem 2012; 110:72-82. [DOI: 10.1016/j.jinorgbio.2012.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/06/2012] [Accepted: 02/01/2012] [Indexed: 11/25/2022]
|
171
|
Que EL, New EJ, Chang CJ. A cell-permeable gadolinium contrast agent for magnetic resonance imaging of copper in a Menkes disease model. Chem Sci 2012; 3:1829-1834. [PMID: 25431649 DOI: 10.1039/c2sc20273e] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We present the synthesis and characterization of octaarginine-conjugated Copper-Gad-2 (Arg8CG2), a new copper-responsive magnetic resonance imaging (MRI) contrast agent that combines a Gd3+-DO3A scaffold with a thioether-rich receptor for copper recognition. The inclusion of a polyarginine appendage leads to a marked increase in cellular uptake compared to previously reported MRI-based copper sensors of the CG family. Arg8CG2 exhibits a 220% increase in relaxivity (r1 = 3.9 to 12.5 mM-1 s-1) upon 1 : 1 binding with Cu+, with a highly selective response to Cu+ over other biologically relevant metal ions. Moreover, Arg8CG2 accumulates in cells at nine-fold greater concentrations than the parent CG2 lacking the polyarginine functionality and is retained well in the cell after washing. In cellulo relaxivity measurements and T1-weighted phantom images using a Menkes disease model cell line demonstrate the utility of Arg8CG2 to report on biological perturbations of exchangeable copper pools.
Collapse
Affiliation(s)
- Emily L Que
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Elizabeth J New
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, California 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
172
|
Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1406-15. [PMID: 22521452 DOI: 10.1016/j.bbamcr.2012.04.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 01/01/2023]
Abstract
Quantifying the amount and defining the location of metal ions in cells and organisms are critical steps in understanding metal homeostasis and how dyshomeostasis causes or is a consequence of disease. A number of recent advances have been made in the development and application of analytical methods to visualize metal ions in biological specimens. Here, we briefly summarize these advances before focusing in more depth on probes for examining transition metals in living cells with high spatial and temporal resolution using fluorescence microscopy. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
|
173
|
Mbatia HW, Kennedy DP, Burdette SC. Understanding the Relationship Between Photolysis Efficiency and Metal Binding Using ArgenCast Photocages. Photochem Photobiol 2012; 88:844-50. [DOI: 10.1111/j.1751-1097.2012.01136.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
174
|
Luo J, Zhang J, Ren D, Tsai WL, Li F, Amanullah A, Hudson T. Probing of C-terminal lysine variation in a recombinant monoclonal antibody production using Chinese hamster ovary cells with chemically defined media. Biotechnol Bioeng 2012; 109:2306-15. [DOI: 10.1002/bit.24510] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 03/08/2012] [Accepted: 03/19/2012] [Indexed: 12/18/2022]
|
175
|
Schrag M, Crofton A, Zabel M, Jiffry A, Kirsch D, Dickson A, Mao XW, Vinters HV, Domaille DW, Chang CJ, Kirsch W. Effect of cerebral amyloid angiopathy on brain iron, copper, and zinc in Alzheimer's disease. J Alzheimers Dis 2012; 24:137-49. [PMID: 21187585 DOI: 10.3233/jad-2010-101503] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is a vascular lesion associated with Alzheimer's disease (AD) present in up to 95% of AD patients and produces MRI-detectable microbleeds in many of these patients. It is possible that CAA-related microbleeding is a source of pathological iron in the AD brain. Because the homeostasis of copper, iron, and zinc are so intimately linked, we determined whether CAA contributes to changes in the brain levels of these metals. We obtained brain tissue from AD patients with severe CAA to compare to AD patients without evidence of vascular amyloid-β. Patients with severe CAA had significantly higher non-heme iron levels. Histologically, iron was deposited in the walls of large CAA-affected vessels. Zinc levels were significantly elevated in grey matter in both the CAA and non-CAA AD tissue, but no vascular staining was noted in CAA cases. Copper levels were decreased in both CAA and non-CAA AD tissues and copper was found to be prominently deposited on the vasculature in CAA. Together, these findings demonstrate that CAA is a significant variable affecting transition metals in AD.
Collapse
Affiliation(s)
- Matthew Schrag
- Neurosurgery Center for Research, Training and Education, Loma Linda University, Loma Linda, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Delangle P, Mintz E. Chelation therapy in Wilson's disease: from D-penicillamine to the design of selective bioinspired intracellular Cu(I) chelators. Dalton Trans 2012; 41:6359-70. [PMID: 22327203 DOI: 10.1039/c2dt12188c] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wilson's disease is an orphan disease due to copper homeostasis dysfunction. Mutations of the ATP7B gene induces an impaired functioning of a Cu-ATPase, impaired Cu detoxification in the liver and copper overload in the body. Indeed, even though copper is an essential element, which is used as cofactor by many enzymes playing vital roles, it becomes toxic when in excess as it promotes cytotoxic reactions leading to oxidative stress. In this perspective, human copper homeostasis is first described in order to explain the mechanisms promoting copper overload in Wilson's disease. We will see that the liver is the main organ for copper distribution and detoxification in the body. Nowadays this disease is treated life-long by systemic chelation therapy, which is not satisfactory in many cases. Therefore the design of more selective and efficient drugs is of great interest. A strategy to design more specific chelators to treat localized copper accumulation in the liver will then be presented. In particular we will show how bioinorganic chemistry may help in the design of such novel chelators by taking inspiration from the biological copper cell transporters.
Collapse
Affiliation(s)
- Pascale Delangle
- INAC, Service de Chimie Inorganique et Biologique (UMR_E 3 CEA UJF), Commissariat à l'Energie Atomique, Grenoble, France.
| | | |
Collapse
|
177
|
Synchrotron radiation induced X-ray emission studies of the antioxidant mechanism of the organoselenium drug ebselen. J Biol Inorg Chem 2012; 17:589-98. [DOI: 10.1007/s00775-012-0879-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/23/2012] [Indexed: 01/30/2023]
|
178
|
Near-infrared fluorescent sensor for in vivo copper imaging in a murine Wilson disease model. Proc Natl Acad Sci U S A 2012; 109:2228-33. [PMID: 22308360 DOI: 10.1073/pnas.1113729109] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Copper is an essential metal nutrient that is tightly regulated in the body because loss of its homeostasis is connected to severe diseases such as Menkes and Wilson diseases, Alzheimer's disease, prion disorders, and amyotrophic lateral sclerosis. The complex relationships between copper status and various stages of health and disease remain challenging to elucidate, in part due to a lack of methods for monitoring dynamic changes in copper pools in whole living organisms. Here we present the synthesis, spectroscopy, and in vivo imaging applications of Coppersensor 790, a first-generation fluorescent sensor for visualizing labile copper pools in living animals. Coppersensor 790 combines a near-infrared emitting cyanine dye with a sulfur-rich receptor to provide a selective and sensitive turn-on response to copper. This probe is capable of monitoring fluctuations in exchangeable copper stores in living cells and mice under basal conditions, as well as in situations of copper overload or deficiency. Moreover, we demonstrate the utility of this unique chemical tool to detect aberrant increases in labile copper levels in a murine model of Wilson disease, a genetic disorder that is characterized by accumulation of excess copper. The ability to monitor real-time copper fluxes in living animals offers potentially rich opportunities to examine copper physiology in health and disease.
Collapse
|
179
|
Qi J, Han MS, Tung CH. A benzothiazole alkyne fluorescent sensor for Cu detection in living cell. Bioorg Med Chem Lett 2012; 22:1747-9. [PMID: 22297113 DOI: 10.1016/j.bmcl.2011.12.140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/14/2011] [Accepted: 12/19/2011] [Indexed: 11/30/2022]
Abstract
A new type of alkyne dye, 6-dimethylaminobenzothiazole alkyne (1), was developed for Cu sensing in biological system. Dye (1) offered excellent selective over a panel of ions, only Cu(I) could change the fluorescence of dye (I) by forming copper acetylide between the terminal alkyne and Cu(I). Its potential of detecting Cu in biological system was demonstrated in cell culture.
Collapse
Affiliation(s)
- Jianjun Qi
- Department of Radiology, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | | | | |
Collapse
|
180
|
Kar C, Deb Adhikari M, Ramesh A, Das G. Selective sensing and efficient separation of Hg2+ from aqueous medium with a pyrene based amphiphilic ligand. RSC Adv 2012. [DOI: 10.1039/c2ra21064a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
181
|
Mbatia HW, Dhammika Bandara HM, Burdette SC. CuproCleav-1, a first generation photocage for Cu+. Chem Commun (Camb) 2012; 48:5331-3. [DOI: 10.1039/c2cc31281f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
182
|
Price KA, Hickey JL, Xiao Z, Wedd AG, James SA, Liddell JR, Crouch PJ, White AR, Donnelly PS. The challenges of using a copper fluorescent sensor (CS1) to track intracellular distributions of copper in neuronal and glial cells. Chem Sci 2012. [DOI: 10.1039/c2sc20397a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
183
|
Roberts EA. Using metalloproteomics to investigate the cellular physiology of copper in hepatocytes. Metallomics 2012; 4:633-40. [DOI: 10.1039/c2mt20019h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
184
|
kakhki RMZ, Rounaghi G. Selective uranyl cation detection by polymeric ion selective electrode based on benzo-15-crown-5. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
185
|
Lu M, Ma X, Fan YJ, Fang CJ, Fu XF, Zhao M, Peng SQ, Yan CH. Selective “turn-on” fluorescent chemosensors for Cu2+based on anthracene. INORG CHEM COMMUN 2011. [DOI: 10.1016/j.inoche.2011.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
186
|
Dergunov SA, Pinkhassik E. Synergistic Co-Entrapment and Triggered Release in Hollow Nanocapsules with Uniform Nanopores. J Am Chem Soc 2011; 133:19656-9. [DOI: 10.1021/ja208922m] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sergey A. Dergunov
- Institute for Nanomaterials Development and Innovation at the University of Memphis (INDIUM), Department of Chemistry, The University of Memphis, 213 Smith Chemistry Building, Memphis, Tennessee 38152-3550, United States
- Chemistry Department, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Eugene Pinkhassik
- Institute for Nanomaterials Development and Innovation at the University of Memphis (INDIUM), Department of Chemistry, The University of Memphis, 213 Smith Chemistry Building, Memphis, Tennessee 38152-3550, United States
- Chemistry Department, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
187
|
Tolosa J, Bryant JJ, Solntsev KM, Brödner K, Tolbert LM, Bunz UHF. Water-Soluble Distyrylbenzenes: One Core with Two Sensory Responses-Turn-On and Ratiometric. Chemistry 2011; 17:13726-31. [DOI: 10.1002/chem.201102402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Indexed: 11/08/2022]
|
188
|
Lye JC, Hwang JEC, Paterson D, de Jonge MD, Howard DL, Burke R. Detection of genetically altered copper levels in Drosophila tissues by synchrotron x-ray fluorescence microscopy. PLoS One 2011; 6:e26867. [PMID: 22053217 PMCID: PMC3203902 DOI: 10.1371/journal.pone.0026867] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/05/2011] [Indexed: 01/03/2023] Open
Abstract
Tissue-specific manipulation of known copper transport genes in Drosophila tissues results in phenotypes that are presumably due to an alteration in copper levels in the targeted cells. However direct confirmation of this has to date been technically challenging. Measures of cellular copper content such as expression levels of copper-responsive genes or cuproenzyme activity levels, while useful, are indirect. First-generation copper-sensitive fluorophores show promise but currently lack the sensitivity required to detect subtle changes in copper levels. Moreover such techniques do not provide information regarding other relevant biometals such as zinc or iron. Traditional techniques for measuring elemental composition such as inductively coupled plasma mass spectroscopy are not sensitive enough for use with the small tissue amounts available in Drosophila research. Here we present synchrotron x-ray fluorescence microscopy analysis of two different Drosophila tissues, the larval wing imaginal disc, and sectioned adult fly heads and show that this technique can be used to detect changes in tissue copper levels caused by targeted manipulation of known copper homeostasis genes.
Collapse
Affiliation(s)
- Jessica C. Lye
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Joab E. C. Hwang
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - David Paterson
- X-ray Fluorescence Microscopy, Australian Synchrotron, Melbourne, Victoria, Australia
| | - Martin D. de Jonge
- X-ray Fluorescence Microscopy, Australian Synchrotron, Melbourne, Victoria, Australia
| | - Daryl L. Howard
- X-ray Fluorescence Microscopy, Australian Synchrotron, Melbourne, Victoria, Australia
| | - Richard Burke
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
189
|
Kitamura M, Suzuki T, Abe R, Ueno T, Aoki S. 11B NMR sensing of d-block metal ions in vitro and in cells based on the carbon-boron bond cleavage of phenylboronic acid-pendant cyclen (cyclen = 1,4,7,10-tetraazacyclododecane). Inorg Chem 2011; 50:11568-80. [PMID: 22010826 DOI: 10.1021/ic201507q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Noninvasive magnetic resonance imaging (MRI) including the "chemical shift imaging (CSI)" technique based on (1)H NMR signals is a powerful method for the in vivo imaging of intracellular molecules and for monitoring various biological events. However, it has the drawback of low resolution because of background signals from intrinsic water protons. On the other hand, it is assumed that the (11)B NMR signals which can be applied to a CSI technique have certain advantages, since boron is an ultratrace element in animal cells and tissues. In this manuscript, we report on the sensing of biologically indispensable d-block metal cations such as zinc, copper, iron, cobalt, manganese, and nickel based on (11)B NMR signals of simple phenylboronic acid-pendant cyclen (cyclen = 1,4,7,10-tetraazacyclododecane), L(6) and L(7), in aqueous solution at physiological pH. The results indicate that the carbon-boron bond of L(6) is cleaved upon the addition of Zn(2+) and the broad (11)B NMR signal of L(6) at 31 ppm is shifted upfield to 19 ppm, which corresponds to the signal of B(OH)(3). (1)H NMR, X-ray single crystal structure analysis, and UV absorption spectra also provide support for the carbon-boron bond cleavage of ZnL(6). Because the cellular uptake of L(6) was very small, a more cell-membrane permeable ligand containing the boronic acid ester L(7) was synthesized and investigated for the sensing of d-block metal ions using (11)B NMR. Data on (11)B NMR sensing of Zn(2+) in Jurkat T cells using L(7) is also presented.
Collapse
Affiliation(s)
- Masanori Kitamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | | | | | | | | |
Collapse
|
190
|
Morgan MT, Bagchi P, Fahrni CJ. Designed to dissolve: suppression of colloidal aggregation of Cu(I)-selective fluorescent probes in aqueous buffer and in-gel detection of a metallochaperone. J Am Chem Soc 2011; 133:15906-9. [PMID: 21916472 DOI: 10.1021/ja207004v] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Due to the lipophilicity of the metal-ion receptor, previously reported Cu(I)-selective fluorescent probes form colloidal aggregates, as revealed by dynamic light scattering. To address this problem, we have developed a hydrophilic triarylpyrazoline-based fluorescent probe, CTAP-2, that dissolves directly in water and shows a rapid, reversible, and highly selective 65-fold fluorescence turn-on response to Cu(I) in aqueous solution. CTAP-2 proved to be sufficiently sensitive for direct in-gel detection of Cu(I) bound to the metallochaperone Atox1, demonstrating the potential for cation-selective fluorescent probes to serve as tools in metalloproteomics for identifying proteins with readily accessible metal-binding sites.
Collapse
Affiliation(s)
- M Thomas Morgan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | | | | |
Collapse
|
191
|
Maity D, Manna AK, Karthigeyan D, Kundu TK, Pati SK, Govindaraju T. Visible-Near-Infrared and Fluorescent Copper Sensors Based on Julolidine Conjugates: Selective Detection and Fluorescence Imaging in Living Cells. Chemistry 2011; 17:11152-61. [DOI: 10.1002/chem.201101906] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Indexed: 01/23/2023]
|
192
|
Determination of copper(II) ion concentration by lifetime measurements of green fluorescent protein. J Fluoresc 2011; 21:2143-53. [PMID: 21773693 DOI: 10.1007/s10895-011-0916-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
Abstract
The understanding of cellular processes and functions and the elucidation of their physiological mechanisms is an important aim in the life sciences. One important aspect is the uptake and the release of essential substances as well as their interactions with the cellular environment. As green fluorescent protein (GFP) can be genetically encoded in cells it can be used as an internal sensor giving a deeper insight into biochemical pathways. Here we report that the presence of copper(II) ions leads to a decrease of the fluorescence lifetime (τ(fl)) of GFP and provide evidence for Förster resonance energy transfer (FRET) as the responsible quenching mechanism. We identify the His(6)-tag as the responsible binding site for Cu(2+) with a dissociation constant K(d) = 9 ± 2 μM and a Förster radius R(0) = 2.1 ± 0.1 nm. The extent of the lifetime quenching depends on [Cu(2+)] which is comprehended by a mathematical titration model. We envision that Cu(2+) can be quantified noninvasively and in real-time by measuring τ(fl) of GFP.
Collapse
|
193
|
Aryal BP, Gorman-Lewis D, Paunesku T, Wilson RE, Lai B, Vogt S, Woloschak GE, Jensen MP. Plutonium uptake and distribution in mammalian cells: molecular vs. polymeric plutonium. Int J Radiat Biol 2011; 87:1023-32. [PMID: 21770702 DOI: 10.3109/09553002.2011.584941] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To study the cellular responses to molecular and polymeric forms of plutonium using PC12 cells derived from a rat pheochromocytoma. MATERIALS AND METHODS Serum starved PC12 cells were exposed to polymeric and molecular forms of plutonium for 3 h. Cells were washed with 10 mM ethylene glycol tetraacetic acid (EGTA), 100 mM NaCl at pH 7.4 to remove surface sorbed plutonium. Localization of plutonium in individual cell was quantitatively analyzed by synchrotron X-ray fluorescence (XRF) microscopy. RESULTS Molecular plutonium complexes introduced to cell growth media in the form of nitrilotriacetic acid (NTA), citrate, or transferrin complexes were taken up by PC12 cells, and mostly colocalized with iron within the cells. Aged polymeric plutonium prepared separately was not internalized by PC12 cells but it was always found on the cell surface as big agglomerates; however, polymeric plutonium formed in situ was mostly found within the cells as agglomerates. CONCLUSIONS PC12 cells can differentiate molecular and polymeric forms of plutonium. Molecular plutonium is taken up by PC12 cells and mostly co-localizes with iron but aged polymeric plutonium is not internalized by the cells.
Collapse
Affiliation(s)
- Baikuntha P Aryal
- The Department of Chemistry, University of Chicago, Chicago, IL 60439, USA
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Dual effects of curcumin on neuronal oxidative stress in the presence of Cu(II). Food Chem Toxicol 2011; 49:1578-83. [DOI: 10.1016/j.fct.2011.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 01/07/2023]
|
195
|
Liu J, Kohler JE, Blass AL, Moncaster JA, Mocofanescu A, Marcus MA, Blakely EA, Bjornstad KA, Amarasiriwardena C, Casey N, Goldstein LE, Soybel DI. Demand for Zn2+ in acid-secreting gastric mucosa and its requirement for intracellular Ca2+. PLoS One 2011; 6:e19638. [PMID: 21698273 PMCID: PMC3115935 DOI: 10.1371/journal.pone.0019638] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 04/07/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIMS Recent work has suggested that Zn(2+) plays a critical role in regulating acidity within the secretory compartments of isolated gastric glands. Here, we investigate the content, distribution and demand for Zn(2+) in gastric mucosa under baseline conditions and its regulation during secretory stimulation. METHODS AND FINDINGS Content and distribution of zinc were evaluated in sections of whole gastric mucosa using X-ray fluorescence microscopy. Significant stores of Zn(2+) were identified in neural elements of the muscularis, glandular areas enriched in parietal cells, and apical regions of the surface epithelium. In in vivo studies, extraction of the low abundance isotope, (70)Zn(2+), from the circulation was demonstrated in samples of mucosal tissue 24 hours or 72 hours after infusion (250 µg/kg). In in vitro studies, uptake of (70)Zn(2+) from media was demonstrated in isolated rabbit gastric glands following exposure to concentrations as low as 10 nM. In additional studies, demand of individual gastric parietal cells for Zn(2+) was monitored using the fluorescent zinc reporter, fluozin-3, by measuring increases in free intracellular concentrations of Zn(2+) {[Zn(2+)](i)} during exposure to standard extracellular concentrations of Zn(2+) (10 µM) for standard intervals of time. Under resting conditions, demand for extracellular Zn(2+) increased with exposure to secretagogues (forskolin, carbachol/histamine) and under conditions associated with increased intracellular Ca(2+) {[Ca(2+)](i)}. Uptake of Zn(2+) was abolished following removal of extracellular Ca(2+) or depletion of intracellular Ca(2+) stores, suggesting that demand for extracellular Zn(2+) increases and depends on influx of extracellular Ca(2+). CONCLUSIONS This study is the first to characterize the content and distribution of Zn(2+) in an organ of the gastrointestinal tract. Our findings offer the novel interpretation, that Ca(2+) integrates basolateral demand for Zn(2+) with stimulation of secretion of HCl into the lumen of the gastric gland. Similar connections may be detectable in other secretory cells and tissues.
Collapse
Affiliation(s)
- JingJing Liu
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan E. Kohler
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy L. Blass
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Juliet A. Moncaster
- Molecular Aging & Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Anca Mocofanescu
- Molecular Aging & Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthew A. Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Eleanor A. Blakely
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kathleen A. Bjornstad
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Chitra Amarasiriwardena
- Channing Laboratories, Brigham and Women's Hospital, Harvard Medical School, and the Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Noel Casey
- Molecular Aging & Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Center for Biometals and Metallomics, Boston University, Boston, Massachusetts, United States of America
| | - Lee E. Goldstein
- Molecular Aging & Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Center for Biometals and Metallomics, Boston University, Boston, Massachusetts, United States of America
| | - David I. Soybel
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
196
|
Dodani SC, Leary SC, Cobine PA, Winge DR, Chang CJ. A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis. J Am Chem Soc 2011; 133:8606-16. [PMID: 21563821 PMCID: PMC3106114 DOI: 10.1021/ja2004158] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present the design, synthesis, spectroscopy, and biological applications of Mitochondrial Coppersensor-1 (Mito-CS1), a new type of targetable fluorescent sensor for imaging exchangeable mitochondrial copper pools in living cells. Mito-CS1 is a bifunctional reporter that combines a Cu(+)-responsive fluorescent platform with a mitochondrial-targeting triphenylphosphonium moiety for localizing the probe to this organelle. Molecular imaging with Mito-CS1 establishes that this new chemical tool can detect changes in labile mitochondrial Cu(+) in a model HEK 293T cell line as well as in human fibroblasts. Moreover, we utilized Mito-CS1 in a combined imaging and biochemical study in fibroblasts derived from patients with mutations in the two synthesis of cytochrome c oxidase 1 and 2 proteins (SCO1 and SCO2), each of which is required for assembly and metalation of functionally active cytochrome c oxidase (COX). Interestingly, we observe that although defects in these mitochondrial metallochaperones lead to a global copper deficiency at the whole cell level, total copper and exchangeable mitochondrial Cu(+) pools in SCO1 and SCO2 patient fibroblasts are largely unaltered relative to wild-type controls. Our findings reveal that the cell maintains copper homeostasis in mitochondria even in situations of copper deficiency and mitochondrial metallochaperone malfunction, illustrating the importance of regulating copper stores in this energy-producing organelle.
Collapse
Affiliation(s)
- Sheel C. Dodani
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Scot C. Leary
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, United States
| | - Dennis R. Winge
- Department of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
197
|
James SA, Myers DE, de Jonge MD, Vogt S, Ryan CG, Sexton BA, Hoobin P, Paterson D, Howard DL, Mayo SC, Altissimo M, Moorhead GF, Wilkins SW. Quantitative comparison of preparation methodologies for X-ray fluorescence microscopy of brain tissue. Anal Bioanal Chem 2011; 401:853-64. [PMID: 21533642 DOI: 10.1007/s00216-011-4978-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/29/2011] [Accepted: 04/02/2011] [Indexed: 11/26/2022]
Abstract
X-ray fluorescence microscopy (XFM) facilitates high-sensitivity quantitative imaging of trace metals at high spatial resolution over large sample areas and can be applied to a diverse range of biological samples. Accurate determination of elemental content from recorded spectra requires proper calibration of the XFM instrument under the relevant operating conditions. Here, we describe the manufacture, characterization, and utilization of multi-element thin-film reference foils for use in calibration of XFM measurements of biological and other specimens. We have used these internal standards to assess the two-dimensional distribution of trace metals in a thin tissue section of a rat hippocampus. The data used in this study was acquired at the XFM beamline of the Australian Synchrotron using a new 384-element array detector (Maia) and at beamline 2-ID-E at the Advanced Photon Source. Post-processing of samples by different fixation techniques was investigated, with the conclusion that differences in solvent type and sample handling can significantly alter elemental content. The present study highlights the quantitative capability, high statistical power, and versatility of the XFM technique for mapping trace metals in biological samples, e.g., brain tissue samples in order to help understand neurological processes, especially when implemented in conjunction with a high-performance detector such as Maia.
Collapse
Affiliation(s)
- Simon A James
- Materials Science and Engineering and the Preventative Health Flagship, CSIRO, Gate 5, Normanby Road (Private Bag 33, Clayton South 3169), Clayton, VIC 3168, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Chandrasekhar V, Pandey MD. Fluorescence sensing of Cu2+ and Hg2+ by a dipyrene ligand involving an excimer-switch off mechanism. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.02.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
199
|
Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and X-ray fluorescence microscopy. Proc Natl Acad Sci U S A 2011; 108:5980-5. [PMID: 21444780 DOI: 10.1073/pnas.1009932108] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dynamic fluxes of s-block metals like potassium, sodium, and calcium are of broad importance in cell signaling. In contrast, the concept of mobile transition metals triggered by cell activation remains insufficiently explored, in large part because metals like copper and iron are typically studied as static cellular nutrients and there are a lack of direct, selective methods for monitoring their distributions in living cells. To help meet this need, we now report Coppersensor-3 (CS3), a bright small-molecule fluorescent probe that offers the unique capability to image labile copper pools in living cells at endogenous, basal levels. We use this chemical tool in conjunction with synchotron-based microprobe X-ray fluorescence microscopy (XRFM) to discover that neuronal cells move significant pools of copper from their cell bodies to peripheral processes upon their activation. Moreover, further CS3 and XRFM imaging experiments show that these dynamic copper redistributions are dependent on calcium release, establishing a link between mobile copper and major cell signaling pathways. By providing a small-molecule fluorophore that is selective and sensitive enough to image labile copper pools in living cells under basal conditions, CS3 opens opportunities for discovering and elucidating functions of copper in living systems.
Collapse
|
200
|
Perron NR, García CR, Pinzón JR, Chaur MN, Brumaghim JL. Antioxidant and prooxidant effects of polyphenol compounds on copper-mediated DNA damage. J Inorg Biochem 2011; 105:745-53. [PMID: 21481816 DOI: 10.1016/j.jinorgbio.2011.02.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 12/18/2022]
Abstract
Inhibition of copper-mediated DNA damage has been determined for several polyphenol compounds. The 50% inhibition concentration values (IC(50)) for most of the tested polyphenols are between 8 and 480 μM for copper-mediated DNA damage prevention. Although most tested polyphenols were antioxidants under these conditions, they generally inhibited Cu(I)-mediated DNA damage less effectively than Fe(II)-mediated damage, and some polyphenols also displayed prooxidant activity. Because semiquinone radicals and hydroxyl radical adducts were detected by EPR spectroscopy in solutions of polyphenols, Cu(I), and H(2)O(2), it is likely that weak polyphenol-Cu(I) interactions permit a redox-cycling mechanism, whereby the necessary reactants to cause DNA damage (Cu(I), H(2)O(2), and reducing agents) are regenerated. The polyphenol compounds that prevent copper-mediated DNA damage likely follow a radical scavenging pathway as determined by EPR spectroscopy.
Collapse
Affiliation(s)
- Nathan R Perron
- Department of Chemistry, Clemson University, Clemson, SC 29634-0973, United States
| | | | | | | | | |
Collapse
|