151
|
Abstract
INTRODUCTION The revolution of epigenetics has revitalized cancer research, shifting focus away from somatic mutation toward a more holistic perspective involving the dynamic states of chromatin. Disruption of chromatin organization can directly and indirectly precipitate genomic instability and transformation. DISCUSSION One group of epigenetic mediators, the Polycomb group (PcG) proteins, establishes heritable gene repression through methylation of histone tails. Although classically considered regulators of development and cellular differentiation, PcG proteins engage in a variety of neoplastic processes, including cellular proliferation and invasion. Due to their multifaceted potential, PcG proteins rest at the intersection of transcriptional memory and malignancy. Expression levels of PcG proteins hold enormous diagnostic and prognostic value in breast, prostate, and more recently, gastrointestinal cancers. CONCLUSION In this review, we briefly summarize the function of PcG proteins and report the latest developments in understanding their role in pancreatic cancer.
Collapse
|
152
|
Del Rizzo PA, Trievel RC. Substrate and product specificities of SET domain methyltransferases. Epigenetics 2011; 6:1059-67. [PMID: 21847010 DOI: 10.4161/epi.6.9.16069] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
SET domain lysine methyltransferases (KMTs) catalyze the site- and state-specific methylation of lysine residues in histone and non-histone substrates. These modifications play fundamental roles in transcriptional regulation, heterochromatin formation, X chromosome inactivation and DNA damage response, and have been implicated in the epigenetic regulation of cell identity and fate. The substrate and product specificities of SET domain KMTs are pivotal to eliciting these effects due to the distinct functions associated with site and state-specific protein lysine methylation. Here, we review advances in understanding the molecular basis of these specificities gained through structural and biochemical studies of the human methyltransferases Mixed Lineage Leukemia 1 (MLL1, also known as KMT2A) and SET7/9 (KMT7). We conclude by exploring the broader implications of these findings on the biological functions of protein lysine methylation by SET domain KMTs.
Collapse
Affiliation(s)
- Paul A Del Rizzo
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
153
|
Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, Tanaka F, Shibata K, Suzuki A, Komune S, Miyano S, Mori M. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 2011; 71:6320-6. [PMID: 21862635 DOI: 10.1158/0008-5472.can-11-1021] [Citation(s) in RCA: 1024] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The functional impact of recently discovered long noncoding RNAs (ncRNAs) in human cancer remains to be clarified. One long ncRNA which has attracted attention is the Hox transcript antisense intergenic RNA termed HOTAIR, a long ncRNA expressed from the developmental HOXC locus located on chromosome 12q13.13. In cooperation with Polycomb complex PRC2, the HOTAIR long ncRNA is reported to reprogram chromatin organization and promote breast cancer metastasis. In this study, we examined the status and function of HOTAIR in patients with stage IV colorectal cancer (CRC) who have liver metastases and a poor prognosis. HOTAIR expression levels were higher in cancerous tissues than in corresponding noncancerous tissues and high HOTAIR expression correlated tightly with the presence of liver metastasis. Moreover, patients with high HOTAIR expression had a relatively poorer prognosis. In a subset of 32 CRC specimens, gene set enrichment analysis using cDNA array data revealed a close correlation between expression of HOTAIR and members of the PRC2 complex (SUZ12, EZH2, and H3K27me3). Our findings suggest that HOTAIR expression is associated with a genome-wide reprogramming of PRC2 function not only in breast cancer but also in CRC, where upregulation of this long ncRNA may be a critical element in metastatic progression.
Collapse
Affiliation(s)
- Ryunosuke Kogo
- Department of Surgery, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Wyngaarden LA, Delgado-Olguin P, Su IH, Bruneau BG, Hopyan S. Ezh2 regulates anteroposterior axis specification and proximodistal axis elongation in the developing limb. Development 2011; 138:3759-67. [PMID: 21795281 DOI: 10.1242/dev.063180] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specification and determination (commitment) of positional identities precedes overt pattern formation during development. In the limb bud, it is clear that the anteroposterior axis is specified at a very early stage and is prepatterned by the mutually antagonistic interaction between Gli3 and Hand2. There is also evidence that the proximodistal axis is specified early and determined progressively. Little is known about upstream regulators of these processes or how epigenetic modifiers influence axis formation. Using conditional mutagenesis at different time points, we show that the histone methyltransferase Ezh2 is an upstream regulator of anteroposterior prepattern at an early stage. Mutants exhibit posteriorised limb bud identity. During later limb bud stages, Ezh2 is essential for cell survival and proximodistal segment elongation. Ezh2 maintains the late phase of Hox gene expression and cell transposition experiments suggest that it regulates the plasticity with which cells respond to instructive positional cues.
Collapse
Affiliation(s)
- Laurie A Wyngaarden
- Developmental and Stem Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
155
|
Abstract
Sirtuin 1 acts in various cell processes, deacetylating both chromatin and non-histone proteins, and its role in cancer and aging has long been studied and debated. Here we discuss another aspect of SirT1 biology, its function as a stem cell pluripotency and differentiation regulator. We evaluate the implications of these findings in sirtuin inhibition-based cancer treatment and in the application of sirtuin activation for anti-aging therapy.
Collapse
Affiliation(s)
- Vincenzo Calvanese
- Department of Immunology and Oncology, Centro Nacional Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| | | |
Collapse
|
156
|
Abstract
The study of mammalian corticogenesis has revealed a critical role for Polycomb group (PcG) factors in timing the execution of developmental choices. Meanwhile, the study of post-translational modifications of PcG factors marks a symmetrical point, namely that the activity of PcG proteins is itself timed in a manner that links progression through the cell cycle to targeting of downstream genes. Finally, in a third symmetrical twist, the studies that dissect the timing of neural fate by Polycomb are also uncovering the importance of timing in the experimental mutation, since ablation of the same PcG member at different developmental stages yields dramatically different results. Here, I weave together these three lines of evidence and develop a unifying model that clarifies the dynamics of Polycomb function in neural development and defines the salient challenges ahead.
Collapse
Affiliation(s)
- Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Milan, Italy.
| |
Collapse
|
157
|
Lu L, Li L, Lü X, Wu XS, Liu DP, Liang CC. Inhibition of SIRT1 Increases EZH2 Protein Level and Enhances the Repression of EZH2 on Target Gene Expression. ACTA ACUST UNITED AC 2011; 26:77-84. [DOI: 10.1016/s1001-9294(11)60024-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
158
|
Ciarapica R, Miele L, Giordano A, Locatelli F, Rota R. Enhancer of zeste homolog 2 (EZH2) in pediatric soft tissue sarcomas: first implications. BMC Med 2011; 9:63. [PMID: 21609503 PMCID: PMC3126730 DOI: 10.1186/1741-7015-9-63] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/25/2011] [Indexed: 01/02/2023] Open
Abstract
Soft tissue sarcomas of childhood are a group of heterogeneous tumors thought to be derived from mesenchymal stem cells. Surgical resection is effective only in about 50% of cases and resistance to conventional chemotherapy is often responsible for treatment failure. Therefore, investigations on novel therapeutic targets are of fundamental importance. Deregulation of epigenetic mechanisms underlying chromatin modifications during stem cell differentiation has been suggested to contribute to soft tissue sarcoma pathogenesis. One of the main elements in this scenario is enhancer of zeste homolog 2 (EZH2), a methyltransferase belonging to the Polycomb group proteins. EZH2 catalyzes histone H3 methylation on gene promoters, thus repressing genes that induce stem cell differentiation to maintain an embryonic stem cell signature. EZH2 deregulated expression/function in soft tissue sarcomas has been recently reported. In this review, an overview of the recently reported functions of EZH2 in soft tissue sarcomas is given and the hypothesis that its expression might be involved in soft tissue sarcomagenesis is discussed. Finally, the therapeutic potential of epigenetic therapies modulating EZH2-mediated gene repression is considered.
Collapse
Affiliation(s)
- Roberta Ciarapica
- Department of Oncohematology, IRCCS, Ospedale Pediatrico Bambino Gesù, Roma, Italy.
| | | | | | | | | |
Collapse
|
159
|
Mulligan P, Yang F, Di Stefano L, Ji JY, Ouyang J, Nishikawa JL, Toiber D, Kulkarni M, Wang Q, Najafi-Shoushtari SH, Mostoslavsky R, Gygi SP, Gill G, Dyson NJ, Näär AM. A SIRT1-LSD1 corepressor complex regulates Notch target gene expression and development. Mol Cell 2011; 42:689-99. [PMID: 21596603 DOI: 10.1016/j.molcel.2011.04.020] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/30/2011] [Accepted: 04/22/2011] [Indexed: 01/28/2023]
Abstract
Epigenetic regulation of gene expression by histone-modifying corepressor complexes is central to normal animal development. The NAD(+)-dependent deacetylase and gene repressor SIRT1 removes histone H4K16 acetylation marks and facilitates heterochromatin formation. However, the mechanistic contribution of SIRT1 to epigenetic regulation at euchromatic loci and whether it acts in concert with other chromatin-modifying activities to control developmental gene expression programs remain unclear. We describe here a SIRT1 corepressor complex containing the histone H3K4 demethylase LSD1/KDM1A and several other LSD1-associated proteins. SIRT1 and LSD1 interact directly and play conserved and concerted roles in H4K16 deacetylation and H3K4 demethylation to repress genes regulated by the Notch signaling pathway. Mutations in Drosophila SIRT1 and LSD1 orthologs result in similar developmental phenotypes and genetically interact with the Notch pathway in Drosophila. These findings offer new insights into conserved mechanisms of epigenetic gene repression and regulation of development by SIRT1 in metazoans.
Collapse
Affiliation(s)
- Peter Mulligan
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Villasante A, Piazzolla D, Li H, Gomez-Lopez G, Djabali M, Serrano M. Epigenetic regulation of Nanog expression by Ezh2 in pluripotent stem cells. Cell Cycle 2011; 10:1488-98. [PMID: 21490431 DOI: 10.4161/cc.10.9.15658] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nanog levels in pluripotent stem cells are heterogeneous and this is thought to reflect two different and interchangeable cell states, respectively poised to self-renew (Nanog-high subpopulation) or to differentiate (Nanog-low subpopulation). However, little is known about the mechanisms responsible for this pattern of Nanog expression. Here, we have examined the impact of the histone methyltransferase Ezh2 on pluripotent stem cells and on Nanog expression. Interestingly, induced pluripotent stem (iPS) cells lacking Ezh2 presented higher levels of Nanog due to a relative expansion of the Nanog-high subpopulation, and this was associated to severe defects in differentiation. Moreover, we found that the Nanog promoter in embryonic stem (ES) cells and iPS cells coexists in two alternative univalent chromatin configurations, either H3K4me3 or H3K27me3, the latter being dependent on the presence of functional Ezh2. Finally, the levels of expression of Ezh2, as well as the amount of H3K27me3 present at the Nanog promoter, were higher in the Nanog-low subpopulation of ES/iPS cells. Together, these data indicate that Ezh2 directly regulates the epigenetic status of the Nanog promoter affecting the balance of Nanog expression in pluripotent stem cells and, therefore, the equilibrium between self-renewal and differentiation.
Collapse
Affiliation(s)
- Aranzazu Villasante
- Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
161
|
Klauke K, de Haan G. Polycomb group proteins in hematopoietic stem cell aging and malignancies. Int J Hematol 2011; 94:11-23. [PMID: 21523335 DOI: 10.1007/s12185-011-0857-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
Protection of the transcriptional "stemness" network is important to maintain a healthy hematopoietic stem cells (HSCs) compartment during the lifetime of the organism. Recent evidence shows that fundamental changes in the epigenetic status of HSCs might be one of the driving forces behind many age-related HSC changes and might pave the way for HSC malignant transformation and subsequent leukemia development, the incidence of which increases exponentially with age. Polycomb group (PcG) proteins are key epigenetic regulators of HSC cellular fate decisions and are often found to be misregulated in human hematopoietic malignancies. In this review, we speculate that PcG proteins balance HSC aging against the risk of developing cancer, since a disturbance in PcG genes and proteins affects several important cellular processes such as cell fate decisions, senescence, apoptosis, and DNA damage repair.
Collapse
Affiliation(s)
- Karin Klauke
- Department of Cell Biology, Section of Stem Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,European Research Institute on the Biology of Ageing (ERIBA), Groningen, The Netherlands
| | - Gerald de Haan
- Department of Cell Biology, Section of Stem Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands. .,European Research Institute on the Biology of Ageing (ERIBA), Groningen, The Netherlands.
| |
Collapse
|
162
|
Beck DB, Bonasio R, Kaneko S, Li G, Li G, Margueron R, Oda H, Sarma K, Sims RJ, Son J, Trojer P, Reinberg D. Chromatin in the nuclear landscape. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 75:11-22. [PMID: 21502408 DOI: 10.1101/sqb.2010.75.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chromatin affects many, if not all aspects, of nuclear organization and function. For this reason, we have focused our attention on elucidating some of the basic mechanisms regulating the formation and maintenance of chromatin, specifically concerning Polycomb repressive complex 2 (PRC2) and PR-Set7. PRC2 is responsible for catalyzing trimethylation of lysine 27 of histone H3 and thus has a critical role in the formation of facultative heterochromatin. PR-Set7 is responsible for catalyzing monomethylation of lysine 20 of histone H4 and is required for proper cell cycle progression and DNA damage response. We have also expanded our work to establish novel techniques and approaches to determine how chromatin is spatially regulated within the nuclear landscape.
Collapse
Affiliation(s)
- D B Beck
- Howard Hughes Medical Institute and Department of Biochemistry, School of Medicine, New York University, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Poreba E, Broniarczyk JK, Gozdzicka-Jozefiak A. Epigenetic mechanisms in virus-induced tumorigenesis. Clin Epigenetics 2011; 2:233-47. [PMID: 22704339 PMCID: PMC3365383 DOI: 10.1007/s13148-011-0026-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 02/28/2011] [Indexed: 12/14/2022] Open
Abstract
About 15–20% of human cancers worldwide have viral etiology. Emerging data clearly indicate that several human DNA and RNA viruses, such as human papillomavirus, Epstein–Barr virus, Kaposi’s sarcoma-associated herpesvirus, hepatitis B virus, hepatitis C virus, and human T-cell lymphotropic virus, contribute to cancer development. Human tumor-associated viruses have evolved multiple molecular mechanisms to disrupt specific cellular pathways to facilitate aberrant replication. Although oncogenic viruses belong to different families, their strategies in human cancer development show many similarities and involve viral-encoded oncoproteins targeting the key cellular proteins that regulate cell growth. Recent studies show that virus and host interactions also occur at the epigenetic level. In this review, we summarize the published information related to the interactions between viral proteins and epigenetic machinery which lead to alterations in the epigenetic landscape of the cell contributing to carcinogenesis.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Department of Molecular Virology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland
| | | | | |
Collapse
|
164
|
Fang Y, Nicholl MB. Sirtuin 1 in malignant transformation: friend or foe? Cancer Lett 2011; 306:10-4. [PMID: 21414717 DOI: 10.1016/j.canlet.2011.02.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 02/11/2011] [Accepted: 02/15/2011] [Indexed: 12/20/2022]
Abstract
In the past decade, great interest has been shown in the role of sirtuin 1 (SIRT1) in tumorigenesis. The published data show SIRT1 can function as both a tumor promoter and tumor suppressor. In this review, we summarize the available data regarding the role of SIRT1 in tumorigenesis, with a focus on the potential mechanisms. The seemingly controversial role of SIRT1 in tumorigenesis suggests that SIRT1 might play a dual role in different tissue contexts depending on the temporal and special distribution of different SIRT1 upstream and downstream factors. Clearly, the role of SIRT1 in tumorigenesis is poorly understood and more research is necessary to elucidate its function in the malignant process.
Collapse
Affiliation(s)
- Yujiang Fang
- Department of Surgery, University of Missouri School of Medicine, Columbia, 65212, USA.
| | | |
Collapse
|
165
|
Casanova M, Preissner T, Cerase A, Poot R, Yamada D, Li X, Appanah R, Bezstarosti K, Demmers J, Koseki H, Brockdorff N. Polycomblike 2 facilitates the recruitment of PRC2 Polycomb group complexes to the inactive X chromosome and to target loci in embryonic stem cells. Development 2011; 138:1471-82. [PMID: 21367819 DOI: 10.1242/dev.053652] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polycomb group (PcG) proteins play an important role in the control of developmental gene expression in higher organisms. In mammalian systems, PcG proteins participate in the control of pluripotency, cell fate, cell cycle regulation, X chromosome inactivation and parental imprinting. In this study we have analysed the function of the mouse PcG protein polycomblike 2 (Pcl2), one of three homologues of the Drosophila Polycomblike (Pcl) protein. We show that Pcl2 is expressed at high levels during early embryogenesis and in embryonic stem (ES) cells. At the biochemical level, Pcl2 interacts with core components of the histone H3K27 methyltransferase complex Polycomb repressive complex 2 (PRC2), to form a distinct substoichiometric biochemical complex, Pcl2-PRC2. Functional analysis using RNAi knockdown demonstrates that Pcl2-PRC2 facilitates both PRC2 recruitment to the inactive X chromosome in differentiating XX ES cells and PRC2 recruitment to target genes in undifferentiated ES cells. The role of Pcl2 in PRC2 targeting in ES cells is critically dependent on a conserved PHD finger domain, suggesting that Pcl2 might function through the recognition of a specific chromatin configuration.
Collapse
Affiliation(s)
- Miguel Casanova
- Developmental Epigenetics Group, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Abstract
Control of gene expression is exerted at a number of different levels, one of which is the accessibility of genes and their controlling elements to the transcriptional machinery. Accessibility is dictated broadly by the degree of chromatin compaction, which is influenced in part by polycomb group proteins. EZH2, together with SUZ12 and EED, forms the polycomb repressive complex 2 (PRC2), which catalyzes trimethylation of histone H3 lysine 27 (H3K27me3). PRC2 may recruit other polycomb complexes, DNA methyltransferases, and histone deacetylases, resulting in additional transcriptional repressive marks and chromatin compaction at key developmental loci. Overexpression of EZH2 is a marker of advanced and metastatic disease in many solid tumors, including prostate and breast cancer. Mutation of EZH2 Y641 is described in lymphoma and results in enhanced activity, whereas inactivating mutations are seen in poor prognosis myeloid neoplasms. No histone demethylating agents are currently available for treatment of patients, but 3-deazaneplanocin (DZNep) reduces EZH2 levels and H3K27 trimethylation, resulting in reduced cell proliferation in breast and prostate cancer cells in vitro. Furthermore, synergistic effects are seen for combined treatment with DNA demethylating agents and histone deacetylation inhibitors, opening up the possibility of refined epigenetic treatments in the future.
Collapse
Affiliation(s)
- Andrew Chase
- Wessex Regional Genetics Laboratory, Salisbury, and Human Genetics Division, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|
167
|
Palacios JA, Herranz D, De Bonis ML, Velasco S, Serrano M, Blasco MA. SIRT1 contributes to telomere maintenance and augments global homologous recombination. ACTA ACUST UNITED AC 2011; 191:1299-313. [PMID: 21187328 PMCID: PMC3010065 DOI: 10.1083/jcb.201005160] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
SIRT1 is a positive regulator of telomere length and attenuates age-associated telomere shortening. Yeast Sir2 deacetylase is a component of the silent information regulator (SIR) complex encompassing Sir2/Sir3/Sir4. Sir2 is recruited to telomeres through Rap1, and this complex spreads into subtelomeric DNA via histone deacetylation. However, potential functions at telomeres for SIRT1, the mammalian orthologue of yeast Sir2, are less clear. We studied both loss of function (SIRT1 deficient) and gain of function (SIRT1super) mouse models. Our results indicate that SIRT1 is a positive regulator of telomere length in vivo and attenuates telomere shortening associated with aging, an effect dependent on telomerase activity. Using chromatin immunoprecipitation assays, we find that SIRT1 interacts with telomeric repeats in vivo. In addition, SIRT1 overexpression increases homologous recombination throughout the entire genome, including telomeres, centromeres, and chromosome arms. These findings link SIRT1 to telomere biology and global DNA repair and provide new mechanistic explanations for the known functions of SIRT1 in protection from DNA damage and some age-associated pathologies.
Collapse
Affiliation(s)
- Jose A Palacios
- Telomeres and Telomerase Group, Spanish National Cancer Centre, Madrid E-28029, Spain
| | | | | | | | | | | |
Collapse
|
168
|
Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev 2011; 21:175-86. [PMID: 21342762 DOI: 10.1016/j.gde.2011.01.022] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 01/18/2011] [Indexed: 12/16/2022]
Abstract
Genomic DNA in the eukaryotic nucleus is hierarchically packaged by histones into chromatin to fit inside the nucleus. The dynamics of higher-order chromatin compaction play a crucial role in transcription and other biological processes inherent to DNA. Many factors, including histone variants, histone modifications, DNA methylation, and the binding of non-histone architectural proteins regulate the structure of chromatin. Although the structure of nucleosomes, the fundamental repeating unit of chromatin, is clear, there is still much discussion on the higher-order levels of chromatin structure. In this review, we focus on the recent progress in elucidating the structure of the 30-nm chromatin fiber. We also discuss the structural plasticity/dynamics and epigenetic inheritance of higher-order chromatin and the roles of chromatin higher-order organization in eukaryotic gene regulation.
Collapse
|
169
|
Functional characterization of human Polycomb-like 3 isoforms identifies them as components of distinct EZH2 protein complexes. Biochem J 2011; 434:333-42. [DOI: 10.1042/bj20100944] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PcG (Polycomb group) proteins are conserved transcriptional repressors essential to regulate cell fate and to maintain epigenetic cellular memory. They work in concert through two main families of chromatin-modifying complexes, PRC1 (Polycomb repressive complex 1) and PRC2–4. In Drosophila, PRC2 contains the H3K27 histone methyltransferase E(Z) whose trimethylation activity towards PcG target genes is stimulated by PCL (Polycomb-like). In the present study, we have examined hPCL3, one of its three human paralogues. Through alternative splicing, hPCL3 encodes a long isoform, hPCL3L, containing an N-terminal TUDOR domain and two PHDs (plant homeodomains) and a smaller isoform, hPCL3S, lacking the second PHD finger (PHD2). By quantitative reverse transcription–PCR analyses, we showed that both isoforms are widely co-expressed at high levels in medulloblastoma. By co-immunoprecipitation analyses, we demonstrated that both isoforms interact with EZH2 through their common TUDOR domain. However, the hPCL3L-specific PHD2 domain, which is better conserved than PHD1 in the PCL family, is also involved in this interaction and implicated in the self-association of hPCL3L. Finally, we have demonstrated that both hPCL3 isoforms are physically associated with EZH2, but in different complexes. Our results provide the first evidence that the two hPCL3 isoforms belong to different complexes and raise important questions about their relative functions, particularly in tumorigenesis.
Collapse
|
170
|
Expression of DBC1 and SIRT1 is associated with poor prognosis for breast carcinoma. Hum Pathol 2011; 42:204-13. [DOI: 10.1016/j.humpath.2010.05.023] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 12/31/2022]
|
171
|
Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming. Proc Natl Acad Sci U S A 2011; 108:2130-5. [PMID: 21245294 DOI: 10.1073/pnas.1009933108] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite the availability of vaccines, human papillomavirus (HPV) infections remain a cause of significant cancer morbidity and mortality. We have previously shown that HPV16 E7 associates with and diminishes E2F6-containing polycomb repressive complexes. Here, we show that repressive trimethyl marks on lysine 27 of histone 3, which are necessary for binding of polycomb repressive complexes, are decreased in HPV16 E7-expressing cells and HPV16-positive cervical lesions. This is caused by transcriptional induction of the KDM6A and KDM6B histone 3 lysine 27-specific demethylases. HPV16 E7-mediated KDM6B induction accounts for expression of the cervical cancer biomarker, p16(INK4A). Moreover, KDM6A- and KDM6B-responsive Homeobox genes are expressed at significantly higher levels, suggesting that HPV16 E7 results in reprogramming of host epithelial cells. These effects are independent of the ability of E7 to inhibit the retinoblastoma tumor suppressor protein. Most importantly, these effects are reversed when E7 expression is silenced, indicating that this pathway may have prognostic and/or therapeutic significance.
Collapse
|
172
|
Dütting S, Brachs S, Mielenz D. Fraternal twins: Swiprosin-1/EFhd2 and Swiprosin-2/EFhd1, two homologous EF-hand containing calcium binding adaptor proteins with distinct functions. Cell Commun Signal 2011; 9:2. [PMID: 21244694 PMCID: PMC3036668 DOI: 10.1186/1478-811x-9-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/18/2011] [Indexed: 11/10/2022] Open
Abstract
Changes in the intracellular calcium concentration govern cytoskeletal rearrangement, mitosis, apoptosis, transcriptional regulation or synaptic transmission, thereby, regulating cellular effector and organ functions. Calcium binding proteins respond to changes in the intracellular calcium concentration with structural changes, triggering enzymatic activation and association with downstream proteins. One type of calcium binding proteins are EF-hand super family proteins. Here, we describe two recently discovered homologous EF-hand containing adaptor proteins, Swiprosin-1/EF-hand domain containing 2 (EFhd2) and Swiprosin-2/EF-hand domain containing 1 (EFhd1), which are related to allograft inflammatory factor-1 (AIF-1). For reasons of simplicity and concision we propose to name Swiprosin-1/EFhd2 and Swiprosin-2/EFhd1 from now on EFhd2 and EFhd1, according to their respective gene symbols. AIF-1 and Swiprosin-1/EFhd2 are already present in Bilateria, for instance in Drosophila melanogaster and Caenhorhabditis elegans. Swiprosin-2/EFhd1 arose later from gene duplication in the tetrapodal lineage. Secondary structure prediction of AIF-1 reveals disordered regions and one functional EF-hand. Swiprosin-1/EFhd2 and Swiprosin-2/EFhd1 exhibit a disordered region at the N-terminus, followed by two EF-hands and a coiled-coil domain. Whereas both proteins are similar in their predicted overall structure they differ in a non-homologous stretch of 60 amino acids just in front of the EF-hands. AIF-1 controls calcium-dependent cytoskeletal rearrangement in innate immune cells by means of its functional EF-hand. We propose that Swiprosin-1/EFhd2 as well is a cytoskeleton associated adaptor protein involved in immune and brain cell function. Pro-inflammatory conditions are likely to modulate expression and function of Swiprosin-1/EFhd2. Swiprosin-2/EFhd1, on the other hand, modulates apoptosis and differentiation of neuronal and muscle precursor cells, probably through an association with mitochondria. We suggest furthermore that Swiprosin-2/EFhd1 is part of a cellular response to oxidative stress, which could explain its pro-survival activity in neuronal, muscle and perhaps some malignant tissues.
Collapse
Affiliation(s)
- Sebastian Dütting
- Division of Molecular Immunology, Department of Medicine III, Nikolaus Fiebiger Center, University of Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | | | | |
Collapse
|
173
|
|
174
|
Sartorelli V, Juan AH. Sculpting chromatin beyond the double helix: epigenetic control of skeletal myogenesis. Curr Top Dev Biol 2011; 96:57-83. [PMID: 21621067 DOI: 10.1016/b978-0-12-385940-2.00003-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Satellite cells (SCs) are the main source of adult skeletal muscle stem cells responsible for muscle growth and regeneration. By interpreting extracellular cues, developmental regulators control quiescence, proliferation, and differentiation of SCs by influencing coordinate gene expression. The scope of this review is limited to the description and discussion of protein complexes that introduce and decode heritable histone and chromatin modifications and how these modifications are relevant for SC biology.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cell and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
175
|
Li H, Cai Q, Godwin AK, Zhang R. Enhancer of zeste homolog 2 promotes the proliferation and invasion of epithelial ovarian cancer cells. Mol Cancer Res 2010; 8:1610-8. [PMID: 21115743 DOI: 10.1158/1541-7786.mcr-10-0398] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the polycomb repressive complex 2 (PRC2) that includes noncatalytic subunits suppressor of zeste 12 (SUZ12) and embryonic ectoderm development (EED). When present in PRC2, EZH2 catalyzes trimethylation on lysine 27 residue of histone H3 (H3K27Me3), resulting in epigenetic silencing of gene expression. Here, we investigated the expression and function of EZH2 in epithelial ovarian cancer (EOC). When compared with primary human ovarian surface epithelial (pHOSE) cells, EZH2, SUZ12, and EED were expressed at higher levels in all 8 human EOC cell lines tested. Consistently, H3K27Me3 was also overexpressed in human EOC cell lines compared with pHOSE cells. EZH2 was significantly overexpressed in primary human EOCs (n = 134) when compared with normal ovarian surface epithelium (n = 46; P < 0.001). EZH2 expression positively correlated with expression of Ki67 (P < 0.001; a marker of cell proliferation) and tumor grade (P = 0.034) but not tumor stage (P = 0.908) in EOC. There was no correlation of EZH2 expression with overall (P = 0.3) or disease-free survival (P = 0.2) in high-grade serous histotype EOC patients (n = 98). Knockdown of EZH2 expression reduced the level of H3K27Me3 and suppressed the growth of human EOC cells both in vitro and in vivo in xenograft models. EZH2 knockdown induced apoptosis of human EOC cells. Finally, we showed that EZH2 knockdown suppressed the invasion of human EOC cells. Together, these data demonstrate that EZH2 is frequently overexpressed in human EOC cells and its overexpression promotes the proliferation and invasion of human EOC cells, suggesting that EZH2 is a potential target for developing EOC therapeutics.
Collapse
Affiliation(s)
- Hua Li
- Women's Cancer Program, Fox Chase Cancer Center, W446, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
176
|
Eckert RL, Adhikary G, Rorke EA, Chew YC, Balasubramanian S. Polycomb group proteins are key regulators of keratinocyte function. J Invest Dermatol 2010; 131:295-301. [PMID: 21085188 DOI: 10.1038/jid.2010.318] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Polycomb group (PcG) proteins are epigenetic suppressors of gene expression that function through modification of histones to change chromatin structure and modulate gene expression and cell behavior. Recent studies show that PcG proteins are expressed in epidermis, that their levels change during differentiation and in disease states, and that PcG expression is regulated by agents that influence cell proliferation and survival. The results indicate that PcG proteins regulate keratinocyte cell-cycle progression, apoptosis, senescence, and differentiation. These proteins are expressed in progenitor cells, in the basal layer, and in suprabasal keratinocytes, and the level, timing, and distribution of expression suggest that the PcG proteins have a central role in maintaining the balance between cell survival and death in multiple epidermal compartments. Additional studies indicate an important role in skin cancer progression.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | |
Collapse
|
177
|
Kolomiĭtseva GI, Prusov AN, Smirnova TA, Vaniushin BF. [Effect of of distamycin A on histone H1 methylation, extraction and formation of UV-inducible crosslinks with DNA in the interphase rat liver nucleus]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:672-80. [PMID: 21063454 DOI: 10.1134/s1068162010050109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Incubation in vitro of rat liver nuclei in the presence of S-adenosyl[methyl-(3)H]methionine ([(3)H] SAM) leads to incorporation of the radioactive label not only into core-histones H3 and H4, but also into linker histone H1. Addition of distamycine A to the incubation medium stimulates label incorporation into histone H1 ~ in 6 times and into histone H3 ~ in 2 times. The presence of distamycine facilitates histone H1 extraction by polyglutamic acid (poly(Glu)) and decreases of UV-induced DNA-histone cross-links formation. These effects give evidence of weakening of H1-chromatin interaction by distamycin to be results of histone H1 position change relative to nucleosome and(or) disturbance of histones H1-H3 interactions so as these histones are exposed to additional methylation.
Collapse
|
178
|
Byles V, Chmilewski LK, Wang J, Zhu L, Forman LW, Faller DV, Dai Y. Aberrant cytoplasm localization and protein stability of SIRT1 is regulated by PI3K/IGF-1R signaling in human cancer cells. Int J Biol Sci 2010; 6:599-612. [PMID: 20941378 PMCID: PMC2952410 DOI: 10.7150/ijbs.6.599] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 10/05/2010] [Indexed: 12/18/2022] Open
Abstract
SIRT1, an NAD-dependent histone/protein deacetylase, has classically been thought of as a nuclear protein. In this study, we demonstrate that SIRT1 is mainly localized in the nucleus of normal cells, but is predominantly localized in the cytoplasm of the cancer / transformed cells we tested. We found this predominant cytoplasmic localization of SIRT1 is regulated by elevated mitotic activity and PI3K/IGF-1R signaling in cancer cells. We show that aberrant cytoplasmic localization of SIRT1 is due to increased protein stability and is regulated by PI3K/IGF-1R signaling. In addition, we determined that SIRT1 is required for PI3K-mediated cancer cell growth. Our study represents the first identification that aberrant cytoplasm localization is one of the specific alternations to SIRT1 that occur in cancer cells, and PI3K/IGF-1R signaling plays an important role in the regulation of cytoplasmic SIRT1 stability. Our findings suggest that the over-expressed cytoplasmic SIRT1 in cancer cells may greatly contribute to its cancer-specific function by working downstream of the PI3K/IGF-1R signaling pathway.
Collapse
Affiliation(s)
- Vanessa Byles
- Department of Medicine, Boston University School of Medicine, Cancer Research Center, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
179
|
Ohm JE, Mali P, Van Neste L, Berman DM, Liang L, Pandiyan K, Briggs K, Zhang W, Argani P, Simons B, Yu W, Matsui W, Van Criekinge W, Rassool F, Zambidis E, Schuebel K, Cope L, Yen J, Mohammad H, Cheng L, Baylin SB. Cancer-related epigenome changes associated with reprogramming to induced pluripotent stem cells. Cancer Res 2010; 70:7662-73. [PMID: 20841480 PMCID: PMC2980296 DOI: 10.1158/0008-5472.can-10-1361] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ability to induce pluripotent stem cells from committed, somatic human cells provides tremendous potential for regenerative medicine. However, there is a defined neoplastic potential inherent to such reprogramming that must be understood and may provide a model for understanding key events in tumorigenesis. Using genome-wide assays, we identify cancer-related epigenetic abnormalities that arise early during reprogramming and persist in induced pluripotent stem cell (iPS) clones. These include hundreds of abnormal gene silencing events, patterns of aberrant responses to epigenetic-modifying drugs resembling those for cancer cells, and presence in iPS and partially reprogrammed cells of cancer-specific gene promoter DNA methylation alterations. Our findings suggest that by studying the process of induced reprogramming, we may gain significant insight into the origins of epigenetic gene silencing associated with human tumorigenesis, and add to means of assessing iPS for safety.
Collapse
Affiliation(s)
- Joyce E. Ohm
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Prashant Mali
- Department of Biomedical Engineering, The Johns Hopkins University, SOM
| | - Leander Van Neste
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Onco-Methylome Sciences, SA, Liege, Belgium
| | | | - Liang Liang
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Kurinji Pandiyan
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
- Program in Cellular and Molecular Medicine, The Johns Hopkins University, SOM
| | - Kimberly Briggs
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
- Program in Cellular and Molecular Medicine, The Johns Hopkins University, SOM
| | - Wei Zhang
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Pedram Argani
- Program in Cellular and Molecular Medicine, The Johns Hopkins University, SOM
| | - Brian Simons
- Molecular and Comparative Pathobiology, JHMI, Baltimore, Maryland 21231
| | - Wayne Yu
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - William Matsui
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Wim Van Criekinge
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Onco-Methylome Sciences, SA, Liege, Belgium
| | - Feyruz Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Elias Zambidis
- The Johns Hopkins University, School of Medicine, Department of Pediatric Oncology
| | - Kornel Schuebel
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Leslie Cope
- Bioingormatics, The Johns Hopkins University, SOM
| | - Jonathan Yen
- Department of Biomedical Engineering, The Johns Hopkins University, SOM
| | - Helai Mohammad
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Linzhao Cheng
- Program in Cellular and Molecular Medicine, The Johns Hopkins University, SOM
- Institute for Cell Engineering and Department of Medicine, The Johns Hopkins University, SOM
| | - Stephen B. Baylin
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
- Program in Cellular and Molecular Medicine, The Johns Hopkins University, SOM
- Program in Cellular and Molecular Medicine, The Johns Hopkins University, SOM
| |
Collapse
|
180
|
Abstract
The Polycomb group (PcG) of proteins is a major mechanism of epigenetic regulation that has been broadly linked to cancer. This system can repress gene expression by chromatin modification and is essential for establishing cell identity. PcG proteins are important for stem cell function and differentiation and have a profound impact during hematopoiesis. In recent years, several published studies have deepened our knowledge of the biology of the PcG in health and disease. In this article, we review the current understanding of the mechanisms of PcG-mediated repression and their relation to DNA methylation, and we discuss the role of the PcG system in hematopoiesis and hematologic malignancies. We suggest that alteration of different PcG members is a frequent event in leukemia and lymphomas that confers the stem cell properties on tumor cells. Thus, drugs targeting Polycomb complexes could be useful for treating patients with these diseases.
Collapse
|
181
|
NAD: a master regulator of transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:681-93. [PMID: 20713194 DOI: 10.1016/j.bbagrm.2010.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 07/20/2010] [Accepted: 08/07/2010] [Indexed: 01/31/2023]
Abstract
Cellular processes such as proliferation, differentiation and death are intrinsically dependent upon the redox status of a cell. Among other indicators of redox flux, cellular NAD(H) levels play a predominant role in transcriptional reprogramming. In addition to this, normal physiological functions of a cell are regulated in response to perturbations in NAD(H) levels (for example, due to alterations in diet/metabolism) to maintain homeostatic conditions. Cells achieve this homeostasis by reprogramming various components that include changes in chromatin structure and function (transcription). The interdependence of changes in gene expression and NAD(H) is evolutionarily conserved and is considered crucial for the survival of a species (by affecting reproductive capacity and longevity). Proteins that bind and/or use NAD(H) as a co-substrate (such as, CtBP and PARPs/Sirtuins respectively) are known to induce changes in chromatin structure and transcriptional profiles. In fact, their ability to sense perturbations in NAD(H) levels has been implicated in their roles in development, stress responses, metabolic homeostasis, reproduction and aging or age-related diseases. It is also becoming increasingly clear that both the levels/activities of these proteins and the availability of NAD(H) are equally important. Here we discuss the pivotal role of NAD(H) in controlling the functions of some of these proteins, the functional interplay between them and physiological implications during calorie restriction, energy homeostasis, circadian rhythm and aging.
Collapse
|
182
|
Luan S, Sun L, Huang F. MicroRNA-34a: a novel tumor suppressor in p53-mutant glioma cell line U251. Arch Med Res 2010; 41:67-74. [PMID: 20470934 DOI: 10.1016/j.arcmed.2010.02.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 11/11/2009] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Previous studies showed that microRNA-34 (miR-34a) family was found to be a direct target of p53, functioning downstream of the p53 pathway as tumor suppressors. MiR-34a was identified to represent the status of p53 and participate in initiation and progress of cancers. We undertook this study to investigate the role of miR-34a in glioma cells. METHODS Expression levels of miR-34a in glioma cell lines and normal brains were detected using qRT-PCR. Human U251 glioma cells were transfected with miR-34a mimics, and the effects of miR-34a restoration were assessed by MTT assays, cell cycle analysis, caspase-3 activation, and in vitro migration and invasion assays. A computational search revealed a conserved target site of miR-34a within the 3'-untranslated region of SIRT1. Luciferase reporter assay was performed to examine the effects of miR-34a on expression of potential target gene SIRT1, and mRNA and protein expression of SIRT1 after miR-34a transfection were detected by qRT-PCR and Western blot analysis. RESULTS MiR-34a expression was markedly reduced in p53-mutant cells U251 compared with A172 and SHG-44 cells expressing wild-type p53 and normal brains. Overexpression of miR-34a in U251 cells resulted in inhibition of cell growth and arrest in G0-G1 phase and induced apoptosis. Also, restoration of miR-34a significantly reduced in vitro migration and invasion capabilities. Reporter assays indicated that SIRT1 was a direct target of miR-34a. In U251 cells, overexpression of miR-34a decreased SIRT1 protein levels but not mRNA expressions, which demonstrated miR-34a-induced SIRT1 inhibition occurred at the posttranscriptional level. CONCLUSIONS Our results demonstrate that miR-34a acts as a tumor suppressor in p53-mutant glioma cells U251, partially through regulating SIRT1.
Collapse
Affiliation(s)
- Shihai Luan
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | | | | |
Collapse
|
183
|
Chen F, Li Y, Wang L, Hu L. Knockdown of BMI-1 causes cell-cycle arrest and derepresses p16INK4a, HOXA9 and HOXC13 mRNA expression in HeLa cells. Med Oncol 2010; 28:1201-9. [DOI: 10.1007/s12032-010-9634-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 07/14/2010] [Indexed: 11/25/2022]
|
184
|
Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proc Natl Acad Sci U S A 2010; 107:13736-41. [PMID: 20631301 DOI: 10.1073/pnas.1001399107] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The longevity-promoting NAD+-dependent class III histone deacetylase Sirtuin 1 (SIRT1) is involved in stem cell function by controlling cell fate decision and/or by regulating the p53-dependent expression of NANOG. We show that SIRT1 is down-regulated precisely during human embryonic stem cell differentiation at both mRNA and protein levels and that the decrease in Sirt1 mRNA is mediated by a molecular pathway that involves the RNA-binding protein HuR and the arginine methyltransferase coactivator-associated arginine methyltransferase 1 (CARM1). SIRT1 down-regulation leads to reactivation of key developmental genes such as the neuroretinal morphogenesis effectors DLL4, TBX3, and PAX6, which are epigenetically repressed by this histone deacetylase in pluripotent human embryonic stem cells. Our results indicate that SIRT1 is regulated during stem cell differentiation in the context of a yet-unknown epigenetic pathway that controls specific developmental genes in embryonic stem cells.
Collapse
|
185
|
Saunders LR, Sharma AD, Tawney J, Nakagawa M, Okita K, Yamanaka S, Willenbring H, Verdin E. miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY) 2010; 2:415-31. [PMID: 20634564 PMCID: PMC2933889 DOI: 10.18632/aging.100176] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
SIRT1 is increasingly recognized as a critical regulator of stress responses, replicative senescence, inflammation, metabolism, and aging. SIRT1 expression is regulated transcriptionally and post-transcriptionally, and its enzymatic activity is controlled by NAD+ levels and interacting proteins. We found that SIRT1 protein levels were much higher in mouse embryonic stem cells (mESCs) than in differentiated tissues. miRNAs post-transcriptionally downregulated SIRT1 during mESC differentiation and maintained low levels of SIRT1 expression in differentiated tissues. Specifically, miR-181a and b, miR-9, miR-204, miR-199b, and miR-135a suppressed SIRT1 protein expression. Inhibition of mir-9, the SIRT1-targeting miRNA induced earliest during mESC differentiation, prevented SIRT1 downregulation. Conversely, SIRT1 protein levels were upregulated post-transcriptionally during the reprogramming of mouse embryonic fibroblasts (MEFs) into induced pluripotent stem (iPS) cells. The regulation of SIRT1 protein levels by miRNAs might provide new opportunities for therapeutic tissue-specific modulation of SIRT1 expression and for reprogramming of somatic cells into iPS cells.
Collapse
Affiliation(s)
- Laura R Saunders
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, 94158, USA
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Abstract
SIRT1 (silent mating-type information regulation 2 homologue 1)-mediated cellular resistance to various stresses is negatively regulated by deleted in breast cancer 1 (DBC1), which was originally reported to be deleted in breast cancer. However, the suggested functions of SIRT1 as a potential tumor promoter and of DBC1 as a potential tumor suppressor have been challenged by observations of their respective down- and up-regulation in various cancers. The aim of the present study was to simultaneously evaluate the expression levels of SIRT1 and DBC1 in the normal and tumor breast tissues from 28 breast cancer patients and to determine correlations with clinicopathological variables. SIRT1 and DBC1 expression was higher in tumor tissues than in matched normal tissues at the protein level, but not at the transcriptional level. Overexpression of SIRT1 and DBC1 in tumor tissue was correlated with favorable and unfavorable clinicopathological factors, suggesting their pleiotropic functions as a potential tumor promoter and tumor suppressor in tumorigenesis. Interestingly, although the overall expression of SIRT1 and DBC1 increased in tumor breast tissues, the correlation between SIRT1 and DBC1 expression was weaker in tumor tissue than in normal tissue. This suggests that the negative regulation of SIRT1 by DBC1 may retard tumorigenesis in breast tissue. Therefore, the correlation between SIRT1 and DBC1 is a potential prognostic indicator in breast cancer.
Collapse
Affiliation(s)
- Ji-Youn Sung
- Department of Pathology, Kyung Hee University Medical Center, Seoul, Korea
| | | | | | | |
Collapse
|
187
|
Iwata S, Takenobu H, Kageyama H, Koseki H, Ishii T, Nakazawa A, Tatezaki SI, Nakagawara A, Kamijo T. Polycomb group molecule PHC3 regulates polycomb complex composition and prognosis of osteosarcoma. Cancer Sci 2010; 101:1646-52. [PMID: 20491773 PMCID: PMC11159380 DOI: 10.1111/j.1349-7006.2010.01586.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Polyhomeotic homolog 3 (PHC 3) is a member of the human polycomb complex and has been regarded as a candidate tumor suppressor of osteosarcoma. In the present paper, we performed a mutation survey and PHC3 expression analysis by quantitative real-time PCR using 10 osteosarcoma cell lines and 42 primary osteosarcoma samples. Relative PHC3 expression values of clinical samples were analyzed with clinical outcomes, and it was suggested that lower PHC3-expressing patients had significantly worse overall survival. Relative PHC3 values of clinical samples were less than those of normal bone tissues, whereas they were greater than those of cell lines. By denaturing high performance liquid chromatography analysis and direct sequencing, we found a PHC3 missense mutation in U2OS cells, which resulted in arginine56 to proline substitution. The same point mutation existed in four of 42 primary osteosarcoma samples. Regarding functional analysis, PHC3 expression significantly suppressed the colony formation of tumor cells. Intriguingly, polycomb repressive complex 1 members, Bmi1 and Ring1b proteins, were reduced in PHC3-expressing osteosarcoma cells. Deletion mutant PHC3 expression suggested that the carboxyl terminus of PHC3 has a role in suppression; the above-mentioned point mutation of PHC3 also lost inhibitory activities. Conversely, Bmi1 expression reduced PHC3 at the mRNA level and induced the proliferation of osteosarcoma cells. Taken together, we confirmed the role of PHC3 as a tumor suppressor in osteosarcoma cells and found that PHC3-dependent tumor suppression may be caused by modification of the composition of polycomb repressive complex 1 in cancer cells.
Collapse
Affiliation(s)
- Shintaro Iwata
- Division of Biochemistry and Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
The polycomb group gene product Ezh2 regulates proliferation and differentiation of murine hepatic stem/progenitor cells. J Hepatol 2010; 52:854-63. [PMID: 20395008 DOI: 10.1016/j.jhep.2010.01.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/12/2010] [Accepted: 01/14/2010] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS Polycomb group proteins initiate and maintain gene silencing through chromatin modifications and contribute to the maintenance of self-renewal in a variety of stem cells. Among polycomb repressive complexes (PRCs), PRC2 initiates gene silencing by methylating histone H3 lysine 27, and PRC1 maintains gene silencing through mono-ubiquitination of histone H2A lysine 119. We have previously shown that Bmi1, a core component of PRC1, tightly regulates the self-renewal of hepatic stem/progenitor cells. METHODS In this study, we conducted lentivirus-mediated knockdown of Ezh2 to characterise the function of Ezh2, a major component of PRC2, in hepatic stem/progenitor cells. RESULTS Loss of Ezh2 function in embryonic murine hepatic stem/progenitor cells severely impaired proliferation and self-renewal capability. This effect was more prominent than that of Bmi1-knockdown and was partially abrogated by the deletion of both Ink4a and Arf, major targets of PRC1 and PRC2. Importantly, Ezh2-knockdown but not Bmi1-knockdown promoted the differentiation and terminal maturation of hepatocytes, followed by the up-regulation of several transcriptional regulators of hepatocyte differentiation. CONCLUSIONS Our findings indicate that Ezh2 plays an essential role in the maintenance of both the proliferative and self-renewal capacity of hepatic stem/progenitor cells and the full execution of their differentiation.
Collapse
|
189
|
Weiss T, Hergeth S, Zeissler U, Izzo A, Tropberger P, Zee BM, Dundr M, Garcia BA, Daujat S, Schneider R. Histone H1 variant-specific lysine methylation by G9a/KMT1C and Glp1/KMT1D. Epigenetics Chromatin 2010; 3:7. [PMID: 20334638 PMCID: PMC2860349 DOI: 10.1186/1756-8935-3-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/24/2010] [Indexed: 01/17/2023] Open
Abstract
Background The linker histone H1 has a key role in establishing and maintaining higher order chromatin structure and in regulating gene expression. Mammals express up to 11 different H1 variants, with H1.2 and H1.4 being the predominant ones in most somatic cells. Like core histones, H1 has high levels of covalent modifications; however, the full set of modifications and their biological role are largely unknown. Results In this study, we used a candidate screen to identify enzymes that methylate H1 and to map their corresponding methylation sites. We found that the histone lysine methyltransferases G9a/KMT1C and Glp1/KMT1D methylate H1.2 in vitro and in vivo, and we mapped this novel site to lysine 187 (H1.2K187) in the C-terminus of H1. This H1.2K187 methylation is variant-specific. The main target for methylation by G9a in H1.2, H1.3, H1.5 and H1.0 is in the C-terminus, whereas H1.4 is preferentially methylated at K26 (H1.4K26me) in the N-terminus. We found that the readout of these marks is different; H1.4K26me can recruit HP1, but H1.2K187me cannot. Likewise, JMJD2D/KDM4 only reverses H1.4K26 methylation, clearly distinguishing these two methylation sites. Further, in contrast to C-terminal H1 phosphorylation, H1.2K187 methylation level is steady throughout the cell cycle. Conclusions We have characterised a novel methylation site in the C-terminus of H1 that is the target of G9a/Glp1 both in vitro and in vivo. To our knowledge, this is the first demonstration of variant-specific histone methylation by the same methyltransferases, but with differing downstream readers, thereby supporting the hypothesis of H1 variants having specific functions.
Collapse
Affiliation(s)
- Thomas Weiss
- MPI for Immunobiology, Stübeweg 51, 79108 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Walker E, Chang WY, Hunkapiller J, Cagney G, Garcha K, Torchia J, Krogan NJ, Reiter JF, Stanford WL. Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell 2010; 6:153-66. [PMID: 20144788 DOI: 10.1016/j.stem.2009.12.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 10/15/2009] [Accepted: 12/17/2009] [Indexed: 01/06/2023]
Abstract
Polycomb group (PcG) proteins are conserved epigenetic transcriptional repressors that control numerous developmental gene expression programs and have recently been implicated in modulating embryonic stem cell (ESC) fate. We identified the PcG protein PCL2 (polycomb-like 2) in a genome-wide screen for regulators of self-renewal and pluripotency and predicted that it would play an important role in mouse ESC-fate determination. Using multiple biochemical strategies, we provide evidence that PCL2 is a Polycomb Repressive Complex 2 (PRC2)-associated protein in mouse ESCs. Knockdown of Pcl2 in ESCs resulted in heightened self-renewal characteristics, defects in differentiation, and altered patterns of histone methylation. Integration of global gene expression and promoter occupancy analyses allowed us to identify PCL2 and PRC2 transcriptional targets and draft regulatory networks. We describe the role of PCL2 in both modulating transcription of ESC self-renewal genes in undifferentiated ESCs as well as developmental regulators during early commitment and differentiation.
Collapse
Affiliation(s)
- Emily Walker
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Cruickshank MN, Besant P, Ulgiati D. The impact of histone post-translational modifications on developmental gene regulation. Amino Acids 2010; 39:1087-105. [PMID: 20204433 DOI: 10.1007/s00726-010-0530-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/12/2010] [Indexed: 02/06/2023]
Abstract
Eukaryotic genomic DNA is orderly compacted to fit into the nucleus and to inhibit accessibility of specific sequences. DNA is manipulated in many different ways by bound RNA and proteins within the composite material known as chromatin. All of the biological processes that require access to genomic DNA (such as replication, recombination and transcription) therefore are dependent on the precise characteristics of chromatin in eukaryotes. This distinction underlies a fundamental property of eukaryotic versus prokaryotic gene regulation such that chromatin structure must be regulated to precisely repress or relieve repression of particular regions of the genome in an appropriate spatio-temporal manner. As well as playing a key role in structuring genomic DNA, histones are subject to site-specific modifications that can influence the organization of chromatin structure. This review examines the molecular processes regulating site-specific histone acetylation, methylation and phosphorylation with an emphasis on how these processes underpin differentiation-regulated transcription.
Collapse
Affiliation(s)
- Mark N Cruickshank
- Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | | |
Collapse
|
192
|
Siddiqi S, Mills J, Matushansky I. Epigenetic remodeling of chromatin architecture: exploring tumor differentiation therapies in mesenchymal stem cells and sarcomas. Curr Stem Cell Res Ther 2010; 5:63-73. [PMID: 19807660 DOI: 10.2174/157488810790442859] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 08/11/2009] [Indexed: 12/28/2022]
Abstract
Sarcomas are the mesenchymal-derived malignant tumors of connective tissues (e.g., fat, bone, and cartilage) presumed to arise from aberrant development or differentiation of mesenchymal stem cells (MSCs). Appropriate control of stem cell maintenance versus differentiation allows for normal connective tissue development. Current theories suggest that loss of this control--through accumulation of genetic lesions in MSCs at various points in the differentiation process--leads to development of sarcomas, including undifferentiated, high grade sarcoma tumors. The initiation of stem cell differentiation is highly associated with alteration of gene expression, which depends on chromatin remodeling. Epigenetic chromatin modifying agents have been shown to induce cancer cell differentiation and are currently being used clinically to treat cancer. This review will focus on the importance of epigenetic chromatin remodeling in the context of mesenchymal stem cells, sarcoma tumorigenesis and differentiation therapy.
Collapse
Affiliation(s)
- Sara Siddiqi
- Integrated Program, Graduate School of Arts and Sciences, New York, USA
| | | | | |
Collapse
|
193
|
Defects in mesenchymal stem cell self-renewal and cell fate determination lead to an osteopenic phenotype in Bmi-1 null mice. J Bone Miner Res 2010; 25:640-52. [PMID: 19653817 DOI: 10.1359/jbmr.090812] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In parathyroid hormone-related protein 1-84 [PTHrP(1-84)] knockin mice, expression of the polycomb protein Bmi-1 is reduced and potentially can mediate the phenotypic alterations observed. We have therefore now examined the skeletal phenotype of Bmi-1(-/-) mice in vivo and also assessed the function of bone marrow mesenchymal stem cells (BM-MSCs) from Bmi-1(-/-) mice ex vivo in culture. Neonatal Bmi-1(-/-) mice exhibited skeletal growth retardation, with reduced chondrocyte proliferation and increased apoptosis. Osteoblast numbers; gene expression of alkaline phosphatase, type I collagen, and osteocalcin; the mineral apposition rate; trabecular bone volume; and bone mineral density all were reduced significantly; however, the number of bone marrow adipocytes and Ppar-gamma expression were increased. These changes were consistent with the skeletal phenotype observed in the PTHrP(1-84) knockin mouse. The efficiency of colony-forming unit fibroblast (CFU-F) formation in bone marrow cultures was decreased, and the percentage of alkaline phosphatase-positive CFU-F and Runx2 expression were reduced. In contrast, adipocyte formation and Ppar-gamma expression in cultures were increased, and expression of the polycomb protein sirtuin (Sirt1) was reduced. Reduced proliferation and increased apoptosis of BM-MSCs were associated with upregulation of senescence-associated tumor-suppressor genes, including p16, p19, and p27. Analysis of the skeletal phenotype in Bmi-1(-/-) mice suggests that Bmi-1 functions downstream of PTHrP. Furthermore, our studies indicate that Bmi-1 maintains self-renewal of BM-MSCs by inhibiting the expression of p27, p16, and p19 and alters the cell fate of BM-MSCs by enhancing osteoblast differentiation and inhibiting adipocyte differentiation at least in part by stimulating Sirt1 expression. Bmi-1 therefore plays a critical role in promoting osteogenesis.
Collapse
|
194
|
Gieni RS, Hendzel MJ. Polycomb group protein gene silencing, non-coding RNA, stem cells, and cancer. Biochem Cell Biol 2010; 87:711-46. [PMID: 19898523 DOI: 10.1139/o09-057] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epigenetic programming is an important facet of biology, controlling gene expression patterns and the choice between developmental pathways. The Polycomb group proteins (PcGs) silence gene expression, allowing cells to both acquire and maintain identity. PcG silencing is important for stemness, X chromosome inactivation (XCI), genomic imprinting, and the abnormally silenced genes in cancers. Stem and cancer cells commonly share gene expression patterns, regulatory mechanisms, and signalling pathways. Many microRNA species have oncogenic or tumor suppressor activity, and disruptions in these networks are common in cancer; however, long non-coding (nc)RNA species are also important. Many of these directly guide PcG deposition and gene silencing at the HOX locus, during XCI, and in examples of genomic imprinting. Since inappropriate HOX expression and loss of genomic imprinting are hallmarks of cancer, disruption of long ncRNA-mediated PcG silencing likely has a role in oncogenesis. Aberrant silencing of coding and non-coding loci is critical for both the genesis and progression of cancers. In addition, PcGs are commonly abnormally overexpressed years prior to cancer pathology, making early PcG targeted therapy an option to reverse tumor formation, someday replacing the blunt instrument of eradication in the cancer therapy arsenal.
Collapse
Affiliation(s)
- Randall S Gieni
- Cross Cancer Institute and Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G1Z2, Canada
| | | |
Collapse
|
195
|
Shen X, Kim W, Fujiwara Y, Simon MD, Liu Y, Mysliwiec MR, Yuan GC, Lee Y, Orkin SH. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell 2010; 139:1303-14. [PMID: 20064376 DOI: 10.1016/j.cell.2009.12.003] [Citation(s) in RCA: 340] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 10/21/2009] [Accepted: 12/02/2009] [Indexed: 11/28/2022]
Abstract
Trimethylation on histone H3 lysine 27 (H3K27me3) by Polycomb repressive complex 2 (PRC2) regulates the balance between self-renewal and differentiation of embryonic stem cells (ESCs). The mechanisms controlling the activity and recruitment of PRC2 are largely unknown. Here we demonstrate that the founding member of the Jumonji family, JMJ (JUMONJI or JARID2), is associated with PRC2, colocalizes with PRC2 and H3K27me3 on chromatin, and modulates PRC2 function. In vitro JMJ inhibits PRC2 methyltransferase activity, consistent with increased H3K27me3 marks at PRC2 targets in Jmj(-/-) ESCs. Paradoxically, JMJ is required for efficient binding of PRC2, indicating that the interplay of PRC2 and JMJ fine-tunes deposition of the H3K27me3 mark. During differentiation, activation of genes marked by H3K27me3 and lineage commitments are delayed in Jmj(-/-) ESCs. Our results demonstrate that dynamic regulation of Polycomb complex activity orchestrated by JMJ balances self-renewal and differentiation, highlighting the involvement of chromatin dynamics in cell-fate transitions.
Collapse
Affiliation(s)
- Xiaohua Shen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Children's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Kalari S, Pfeifer GP. Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. ADVANCES IN GENETICS 2010; 70:277-308. [PMID: 20920752 DOI: 10.1016/b978-0-12-380866-0.60010-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human cancer genomes are characterized by widespread aberrations in DNA methylation patterns including DNA hypomethylation of mostly repetitive sequences and hypermethylation of numerous CpG islands. The analysis of DNA methylation patterns in cancer has progressed from single gene studies examining potentially important candidate genes to a more global analysis where all or almost all promoter and CpG island sequences can be analyzed. We provide a brief overview of these genome-scale methylation-profiling techniques, summarize some of the information that has been obtained with these approaches, and discuss what we have learned about the specificity of methylation aberrations in cancer at a genome-wide level. The challenge is now to identify those methylation changes that are thought to be crucial for the processes of tumor initiation, tumor progression, or metastasis and distinguish these from methylation changes that are merely passenger events that accompany the transformation process but have no effect per se on the process of carcinogenesis.
Collapse
Affiliation(s)
- Satish Kalari
- Department of Cancer Biology, Beckman Research Institute of the Cityof Hope, Duarte, CA, USA
| | | |
Collapse
|
197
|
Beck S, Faradji F, Brock H, Peronnet F. Maintenance of Hox Gene Expression Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:41-62. [DOI: 10.1007/978-1-4419-6673-5_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
198
|
He LR, Liu MZ, Li BK, Rao HL, Liao YJ, Guan XY, Zeng YX, Xie D. Prognostic impact of H3K27me3 expression on locoregional progression after chemoradiotherapy in esophageal squamous cell carcinoma. BMC Cancer 2009; 9:461. [PMID: 20028503 PMCID: PMC2804715 DOI: 10.1186/1471-2407-9-461] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 12/22/2009] [Indexed: 12/15/2022] Open
Abstract
Background Trimethylation of lysine 27 on histone H3 (H3K27me3) by enhancer of zeste homolog 2 (EZH2) is an epigenetic mark that mediates gene silencing. EZH2 is overexpressed and correlates with poor prognosis in many cancers. However, the clinical implication of H3K27me3 in human malignancies has not been well established. We wished to ascertain whether a correlation exists between the expression of H3K27me3 and clinical outcome in a group of patients with esophageal squamous cell carcinoma (ESCC) treated with definitive chemoradiotherapy (CRT). Methods The method of immunohistochemistry (IHC) was utilized to examine the protein expression of H3K27me3 in 98 pretreatment biopsy specimens of ESCC and in 30 samples of normal esophageal mucosa. The clinical/prognostic significance of H3K27me3 expression was statistically analyzed. Results The expression frequency and expression levels of H3K27me3 were significantly higher in ESCCs than in normal tissues. There was a positive correlation between H3K27me3 expression and WHO grade (P = 0.016), tumor size (P = 0.019), T status (P = 0.024), locoregional progression (P = 0.009) and EZH2 expression (P = 0.036). High H3K27me3 expression was associated with poor locoregional progression-free survival (LPFS) (P = 0.010) in ESCC. Further analysis demonstrated that H3K27me3 could stratify patient outcome in T2-3 (P = 0.048), N0 (P = 0.005) and M0 (P = 0.018) stages as well as in CRT effective group (P = 0.022). Conclusions Our data suggests that H3K27me3 expression examined by IHC might be useful for stratifying LPFS for different subsets of ESCC patients treated with definitive CRT.
Collapse
Affiliation(s)
- Li-Ru He
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Polycomb Repressive Complex 2 and Trithorax modulate Drosophila longevity and stress resistance. Proc Natl Acad Sci U S A 2009; 107:169-74. [PMID: 20018689 DOI: 10.1073/pnas.0907739107] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polycomb Group (PcG) and Trithorax Group (TrxG) proteins are key epigenetic regulators of global transcription programs. Their antagonistic chromatin-modifying activities modulate the expression of many genes and affect many biological processes. Here we report that heterozygous mutations in two core subunits of Polycomb Repressive Complex 2 (PRC2), the histone H3 lysine 27 (H3K27)-specific methyltransferase E(Z) and its partner, the H3 binding protein ESC, increase longevity and reduce adult levels of trimethylated H3K27 (H3K27me3). Mutations in trithorax (trx), a well known antagonist of Polycomb silencing, elevate the H3K27me3 level of E(z) mutants and suppress their increased longevity. Like many long-lived mutants, E(z) and esc mutants exhibit increased resistance to oxidative stress and starvation, and these phenotypes are also suppressed by trx mutations. This suppression strongly suggests that both the longevity and stress resistance phenotypes of PRC2 mutants are specifically due to their reduced levels of H3K27me3 and the consequent perturbation of Polycomb silencing. Consistent with this, long-lived E(z) mutants exhibit derepression of Abd-B, a well-characterized direct target of Polycomb silencing, and Odc1, a putative direct target implicated in stress resistance. These findings establish a role for PRC2 and TRX in the modulation of organismal longevity and stress resistance and indicate that moderate perturbation of Polycomb silencing can increase longevity.
Collapse
|
200
|
Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 2009; 18:1093-108. [PMID: 19480567 DOI: 10.1089/scd.2009.0113] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Coordinated transcription factor networks have emerged as the master regulatory mechanisms of stem cell pluripotency and differentiation. Many stem cell-specific transcription factors, including the pluripotency transcription factors, OCT4, NANOG, and SOX2 function in combinatorial complexes to regulate the expression of loci, which are involved in embryonic stem (ES) cell pluripotency and cellular differentiation. This review will address how these pathways form a reciprocal regulatory circuit whereby the equilibrium between stem cell self-renewal, proliferation, and differentiation is in perpetual balance. We will discuss how distinct epigenetic repressive pathways involving polycomb complexes, DNA methylation, and microRNAs cooperate to reduce transcriptional noise and to prevent stochastic and aberrant induction of differentiation. We will provide a brief overview of how these networks cooperate to modulate differentiation along hematopoietic and neuronal lineages. Finally, we will describe how aberrant functioning of components of the stem cell regulatory network may contribute to malignant transformation of adult stem cells and the establishment of a "cancer stem cell" phenotype and thereby underlie multiple types of human malignancies.
Collapse
Affiliation(s)
- Vasundhra Kashyap
- Department of Pharmacology, Graduate Programs in Pharmacology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|