151
|
Abstract
SOX transcription factors participate in the specification, differentiation and activities of many cell types in development and beyond. The 20 mammalian family members are distributed into eight groups based on sequence identity, and while co-expressed same-group proteins often have redundant functions, different-group proteins typically have distinct functions. More than a handful of SOX proteins have pivotal roles in skeletogenesis. Heterozygous mutations in their genes cause human diseases, in which skeletal dysmorphism is a major feature, such as campomelic dysplasia (SOX9), or a minor feature, such as LAMSHF syndrome (SOX5) and Coffin-Siris-like syndromes (SOX4 and SOX11). Loss- and gain-of-function experiments in animal models have revealed that SOX4 and SOX11 (SOXC group) promote skeletal progenitor survival and control skeleton patterning and growth; SOX8 (SOXE group) delays the differentiation of osteoblast progenitors; SOX9 (SOXE group) is essential for chondrocyte fate maintenance and differentiation, and works in cooperation with SOX5 and SOX6 (SOXD group) and other types of transcription factors. These and other SOX proteins have also been proposed, mainly through in vitro experiments, to have key roles in other aspects of skeletogenesis, such as SOX2 in osteoblast stem cell self-renewal. We here review current knowledge of well-established and proposed skeletogenic roles of SOX proteins, their transcriptional and non-transcriptional actions, and their modes of regulation at the gene, RNA and protein levels. We also discuss gaps in knowledge and directions for future research to further decipher mechanisms underlying skeletogenesis in health and diseases and identify treatment options for skeletal malformation and degeneration diseases.
Collapse
Affiliation(s)
- Véronique Lefebvre
- The Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
152
|
Abstract
Accumulating evidence supports the idea that stem and progenitor cells play important roles in skeletal development. Over the last decade, the definition of skeletal stem and progenitor cells has evolved from cells simply defined by their in vitro behaviors to cells fully defined by a combination of sophisticated approaches, including serial transplantation assays and in vivo lineage-tracing experiments. These approaches have led to better identification of the characteristics of skeletal stem cells residing in multiple sites, including the perichondrium of the fetal bone, the resting zone of the postnatal growth plate, the bone marrow space and the periosteum in adulthood. These diverse groups of skeletal stem cells appear to closely collaborate and achieve a number of important biological functions of bones, including not only bone development and growth, but also bone maintenance and repair. Although these are important findings, we are only beginning to understand the diversity and the nature of skeletal stem and progenitor cells, and how they actually behave in vivo.
Collapse
Affiliation(s)
- Noriaki Ono
- University of Michigan School of Dentistry, Ann Arbor, MI, United States.
| | - Deepak H Balani
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
153
|
Serrano F, Bernard WG, Granata A, Iyer D, Steventon B, Kim M, Vallier L, Gambardella L, Sinha S. A Novel Human Pluripotent Stem Cell-Derived Neural Crest Model of Treacher Collins Syndrome Shows Defects in Cell Death and Migration. Stem Cells Dev 2019; 28:81-100. [PMID: 30375284 PMCID: PMC6350417 DOI: 10.1089/scd.2017.0234] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 10/29/2018] [Indexed: 01/05/2023] Open
Abstract
The neural crest (NC) is a transient multipotent cell population present during embryonic development. The NC can give rise to multiple cell types and is involved in a number of different diseases. Therefore, the development of new strategies to model NC in vitro enables investigations into the mechanisms involved in NC development and disease. In this study, we report a simple and efficient protocol to differentiate human pluripotent stem cells (HPSC) into NC using a chemically defined media, with basic fibroblast growth factor 2 (FGF2) and the transforming growth factor-β inhibitor SB-431542. The cell population generated expresses a range of NC markers, including P75, TWIST1, SOX10, and TFAP2A. NC purification was achieved in vitro through serial passaging of the population, recreating the developmental stages of NC differentiation. The generated NC cells are highly proliferative, capable of differentiating to their derivatives in vitro and engraft in vivo to NC specific locations. In addition, these cells could be frozen for storage and thawed with no loss of NC properties, nor the ability to generate cellular derivatives. We assessed the potential of the derived NC population to model the neurocristopathy, Treacher Collins Syndrome (TCS), using small interfering RNA (siRNA) knockdown of TCOF1 and by creating different TCOF1+/- HPSC lines through CRISPR/Cas9 technology. The NC cells derived from TCOF1+/- HPSC recapitulate the phenotype of the reported TCS murine model. We also report for the first time an impairment of migration in TCOF1+/- NC and mesenchymal stem cells. In conclusion, the developed protocol permits the generation of the large number of NC cells required for developmental studies, disease modeling, and for drug discovery platforms in vitro.
Collapse
Affiliation(s)
- Felipe Serrano
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - William George Bernard
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alessandra Granata
- Division of Clinical Neurosciences, Clifford Allbutt Building, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Dharini Iyer
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ben Steventon
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Kim
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ludovic Vallier
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Laure Gambardella
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sanjay Sinha
- Anne McLaren Laboratory, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
154
|
Song JY, Pineault KM, Wellik DM. Development, repair, and regeneration of the limb musculoskeletal system. Curr Top Dev Biol 2019; 132:451-486. [PMID: 30797517 DOI: 10.1016/bs.ctdb.2018.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The limb musculoskeletal system provides a primary means for locomotion, manipulation of objects and protection for most vertebrate organisms. Intricate integration of the bone, tendon and muscle tissues are required for function. These three tissues arise largely independent of one another, but the connections formed during later development are maintained throughout life and are re-established following injury. Each of these tissues also have mesenchymal stem/progenitor cells that function in maintenance and repair. Here in, we will review the major events in the development of limb skeleton, tendon, and muscle tissues, their response to injury, and discuss current knowledge regarding resident progenitor/stem cells within each tissue that participate in development, repair, and regeneration in vivo.
Collapse
Affiliation(s)
- Jane Y Song
- Program in Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI, United States
| | - Kyriel M Pineault
- Department of Cell & Regenerative Biology, University of Wisconsin, Madison, WI, United States
| | - Deneen M Wellik
- Department of Cell & Regenerative Biology, University of Wisconsin, Madison, WI, United States.
| |
Collapse
|
155
|
Bahney CS, Zondervan RL, Allison P, Theologis A, Ashley JW, Ahn J, Miclau T, Marcucio RS, Hankenson KD. Cellular biology of fracture healing. J Orthop Res 2019; 37:35-50. [PMID: 30370699 PMCID: PMC6542569 DOI: 10.1002/jor.24170] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/27/2018] [Indexed: 02/04/2023]
Abstract
The biology of bone healing is a rapidly developing science. Advances in transgenic and gene-targeted mice have enabled tissue and cell-specific investigations of skeletal regeneration. As an example, only recently has it been recognized that chondrocytes convert to osteoblasts during healing bone, and only several years prior, seminal publications reported definitively that the primary tissues contributing bone forming cells during regeneration were the periosteum and endosteum. While genetically modified animals offer incredible insights into the temporal and spatial importance of various gene products, the complexity and rapidity of healing-coupled with the heterogeneity of animal models-renders studies of regenerative biology challenging. Herein, cells that play a key role in bone healing will be reviewed and extracellular mediators regulating their behavior discussed. We will focus on recent studies that explore novel roles of inflammation in bone healing, and the origins and fates of various cells in the fracture environment. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Chelsea S. Bahney
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Robert L. Zondervan
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Patrick Allison
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Alekos Theologis
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Jason W. Ashley
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Jaimo Ahn
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Theodore Miclau
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
156
|
Zaydman AM, Strokova EL, O Stepanova A, Laktionov PP, Shevchenko AI, Subbotin VM. A New Look at Causal Factors of Idiopathic Scoliosis: Altered Expression of Genes Controlling Chondroitin Sulfate Sulfation and Corresponding Changes in Protein Synthesis in Vertebral Body Growth Plates. Int J Med Sci 2019; 16:221-230. [PMID: 30745802 PMCID: PMC6367535 DOI: 10.7150/ijms.29312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/07/2018] [Indexed: 11/17/2022] Open
Abstract
Background: In a previous report, we demonstrated the presence of cells with a neural/glial phenotype on the concave side of the vertebral body growth plate in Idiopathic Scoliosis (IS) and proposed this phenotype alteration as the main etiological factor of IS. In the present study, we utilized the same specimens of vertebral body growth plates removed during surgery for Grade III-IV IS to analyse gene expression. We suggested that phenotype changes observed on the concave side of the vertebral body growth plate can be associated with altered expression of particular genes, which in turn compromise mechanical properties of the concave side. Methods: We used a Real-Time SYBR Green PCR assay to investigate gene expression in vertebral body growth plates removed during surgery for Grade III-IV IS; cartilage tissues from human fetal spine were used as a surrogate control. Special attention was given to genes responsible for growth regulation, chondrocyte differentiation, matrix synthesis, sulfation and transmembrane transport of sulfates. We performed morphological, histochemical, biochemical, and ultrastructural analysis of vertebral body growth plates. Results: Expression of genes that control chondroitin sulfate sulfation and corresponding protein synthesis was significantly lower in scoliotic specimens compared to controls. Biochemical analysis showed 1) a decrease in diffused proteoglycans in the total pool of proteoglycans; 2) a reduced level of their sulfation; 3) a reduction in the amount of chondroitin sulfate coinciding with raising the amount of keratan sulfate; and 4) reduced levels of sulfation on the concave side of the scoliotic deformity. Conclusion: The results suggested that altered expression of genes that control chondroitin sulfate sulfation and corresponding changes in protein synthesis on the concave side of vertebral body growth plates could be causal agents of the scoliotic deformity.
Collapse
Affiliation(s)
- Alla M Zaydman
- Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan, Novosibirsk, Russia
| | - Elena L Strokova
- Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan, Novosibirsk, Russia
| | - Alena O Stepanova
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia.,Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Science, Novosibirsk, Russia
| | - Pavel P Laktionov
- Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia.,Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Science, Novosibirsk, Russia
| | | | - Vladimir M Subbotin
- University of Pittsburgh, Pittsburgh PA, USA.,Arrowhead Pharmaceuticals, Madison WI, USA
| |
Collapse
|
157
|
Felsenthal N, Rubin S, Stern T, Krief S, Pal D, Pryce BA, Schweitzer R, Zelzer E. Development of migrating tendon-bone attachments involves replacement of progenitor populations. Development 2018; 145:dev.165381. [PMID: 30504126 DOI: 10.1242/dev.165381] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022]
Abstract
Tendon-bone attachment sites, called entheses, are essential for musculoskeletal function. They are formed embryonically by Sox9+ progenitors and continue to develop postnatally, utilizing Gli1 lineage cells. Despite their importance, we lack information on the transition from embryonic to mature enthesis and on the relation between Sox9+ progenitors and the Gli1 lineage. Here, by performing a series of lineage tracing experiments in mice, we identify the onset of Gli1 lineage contribution to different entheses. We show that Gli1 expression is regulated embryonically by SHH signaling, whereas postnatally it is maintained by IHH signaling. During bone elongation, some entheses migrate along the bone shaft, whereas others remain stationary. Interestingly, in stationary entheses Sox9 + cells differentiate into the Gli1 lineage, but in migrating entheses this lineage is replaced by Gli1 lineage. These Gli1+ progenitors are defined embryonically to occupy the different domains of the mature enthesis. Overall, these findings demonstrate a developmental strategy whereby one progenitor population establishes a simple embryonic tissue, whereas another population contributes to its maturation. Moreover, they suggest that different cell populations may be considered for cell-based therapy of enthesis injuries.
Collapse
Affiliation(s)
- Neta Felsenthal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sarah Rubin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tomer Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Deepanwita Pal
- Research Division, Shriners Hospital for Children, Portland, OR 97201, USA
| | - Brian A Pryce
- Research Division, Shriners Hospital for Children, Portland, OR 97201, USA
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR 97201, USA
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
158
|
Yu X, Zhao T, Qi Y, Luo J, Fang J, Yang X, Liu X, Xu T, Yang Q, Gou Z, Dai X. In vitro Chondrocyte Responses in Mg-doped Wollastonite/Hydrogel Composite Scaffolds for Osteochondral Interface Regeneration. Sci Rep 2018; 8:17911. [PMID: 30559344 PMCID: PMC6297151 DOI: 10.1038/s41598-018-36200-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/16/2018] [Indexed: 12/31/2022] Open
Abstract
The zone of calcified cartilage (ZCC) is the mineralized region between the hyaline cartilage and subchondral bone and is critical in cartilage repair. A new non-stoichiometric calcium silicate (10% Ca substituted by Mg; CSi-Mg10) has been demonstrated to be highly bioactive in an osteogenic environment in vivo. This study is aimed to systematically evaluate the potential to regenerate osteochondral interface with different amount of Ca-Mg silicate in hydrogel-based scaffolds, and to compare with the scaffolds containing conventional Ca-phosphate biomaterials. Hydrogel-based porous scaffolds combined with 0-6% CSi-Mg10, 6% β-tricalcium phosphate (β-TCP) or 6% nanohydroxyapatite (nHAp) were made with three-dimensional (3D) printing. An increase in CSi-Mg10 content is desirable for promoting the hypertrophy and mineralization of chondrocytes, as well as cell proliferation and matrix deposition. Osteogenic and chondrogenic induction were both up-regulated in a dose-dependent manner. In comparison with the scaffolds containing 6% β-TCP or nHAp, human deep zone chondrocytes (hDZCs) seeded on CSi-Mg10 scaffold of equivalent concentration exhibited higher mineralization. It is noteworthy that the hDZCs in the 6% CSi-Mg10 scaffolds maintained a higher expression of the calcified cartilage zone specific extracellular matrix marker and hypertrophic marker, collagen type X. Immunohistochemical and Alizarin Red staining reconfirmed these findings. The study demonstrated that hydrogel-based hybrid scaffolds containing 6% CSi-Mg10 are particularly desirable for inducing the formation of calcified cartilage.
Collapse
Affiliation(s)
- Xinning Yu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopaedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Department of Orthopaedic Surgery, Hangzhou Mingzhou Hospital (International Medical Center, Second Affiliated Hospital, Zhejiang University), Hangzhou, 311215, China
| | - Tengfei Zhao
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopaedics Research Institute, Zhejiang University, Hangzhou, 310009, China
| | - Yiying Qi
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopaedics Research Institute, Zhejiang University, Hangzhou, 310009, China
| | - Jianyang Luo
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopaedics Research Institute, Zhejiang University, Hangzhou, 310009, China
| | - Jinghua Fang
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopaedics Research Institute, Zhejiang University, Hangzhou, 310009, China
- Department of Orthopaedic Surgery, Hangzhou Mingzhou Hospital (International Medical Center, Second Affiliated Hospital, Zhejiang University), Hangzhou, 311215, China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xiaonan Liu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopaedics Research Institute, Zhejiang University, Hangzhou, 310009, China
| | - Tengjing Xu
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopaedics Research Institute, Zhejiang University, Hangzhou, 310009, China
| | - Quanming Yang
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Orthopaedics Research Institute, Zhejiang University, Hangzhou, 310009, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xuesong Dai
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Orthopaedics Research Institute, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
159
|
Replogle MR, Sreevidya VS, Lee VM, Laiosa MD, Svoboda KR, Udvadia AJ. Establishment of a murine culture system for modeling the temporal progression of cranial and trunk neural crest cell differentiation. Dis Model Mech 2018; 11:dmm.035097. [PMID: 30409814 PMCID: PMC6307900 DOI: 10.1242/dmm.035097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
The neural crest (NC) is a transient population of embryonic progenitors that are implicated in a diverse range of congenital birth defects and pediatric syndromes. The broad spectrum of NC-related disorders can be attributed to the wide variety of differentiated cell types arising from the NC. In vitro models of NC development provide a powerful platform for testing the relative contributions of intrinsic and extrinsic factors mediating NC differentiation under normal and pathogenic conditions. Although differentiation is a dynamic process that unfolds over time, currently, there is no well-defined chronology that characterizes the in vitro progression of NC differentiation towards specific cell fates. In this study, we have optimized culture conditions for expansion of primary murine NC cells that give rise to both ectodermal and mesoectodermal derivatives, even after multiple passages. Significantly, we have delineated highly reproducible timelines that include distinct intermediate stages for lineage-specific NC differentiation in vitro. In addition, isolating both cranial and trunk NC cells from the same embryos enabled us to make direct comparisons between the two cell populations over the course of differentiation. Our results define characteristic changes in cell morphology and behavior that track the temporal progression of NC cells as they differentiate along the neuronal, glial and chondrogenic lineages in vitro. These benchmarks constitute a chronological baseline for assessing how genetic or environmental disruptions may facilitate or impede NC differentiation. Introducing a temporal dimension substantially increases the power of this platform for screening drugs or chemicals for developmental toxicity or therapeutic potential.
This article has an associated First Person interview with the first author of the paper. Summary: A novel method for isolating and expanding primary neural crest cells, and establishment of reproducible temporal benchmarks of differentiation, provides a potential screening platform for developmental toxicity or therapeutic capacity.
Collapse
Affiliation(s)
- Maria R Replogle
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Virinchipuram S Sreevidya
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Vivian M Lee
- STEMCELL Technologies, Vancouver, BC V6A 1BC, Canada
| | - Michael D Laiosa
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Kurt R Svoboda
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Ava J Udvadia
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| |
Collapse
|
160
|
Ferguson GB, Van Handel B, Bay M, Fiziev P, Org T, Lee S, Shkhyan R, Banks NW, Scheinberg M, Wu L, Saitta B, Elphingstone J, Larson AN, Riester SM, Pyle AD, Bernthal NM, Mikkola HK, Ernst J, van Wijnen AJ, Bonaguidi M, Evseenko D. Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes. Nat Commun 2018; 9:3634. [PMID: 30194383 PMCID: PMC6128860 DOI: 10.1038/s41467-018-05573-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 07/04/2018] [Indexed: 11/09/2022] Open
Abstract
Tissue-specific gene expression defines cellular identity and function, but knowledge of early human development is limited, hampering application of cell-based therapies. Here we profiled 5 distinct cell types at a single fetal stage, as well as chondrocytes at 4 stages in vivo and 2 stages during in vitro differentiation. Network analysis delineated five tissue-specific gene modules; these modules and chromatin state analysis defined broad similarities in gene expression during cartilage specification and maturation in vitro and in vivo, including early expression and progressive silencing of muscle- and bone-specific genes. Finally, ontogenetic analysis of freshly isolated and pluripotent stem cell-derived articular chondrocytes identified that integrin alpha 4 defines 2 subsets of functionally and molecularly distinct chondrocytes characterized by their gene expression, osteochondral potential in vitro and proliferative signature in vivo. These analyses provide new insight into human musculoskeletal development and provide an essential comparative resource for disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Gabriel B Ferguson
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Ben Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Maxwell Bay
- Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA, 90033, USA
| | - Petko Fiziev
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA.,Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA
| | - Tonis Org
- Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, 90095, USA.,Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Siyoung Lee
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Ruzanna Shkhyan
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Nicholas W Banks
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Mila Scheinberg
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Ling Wu
- InVitro Cell Research, LLC, Cockeysville, MD, 21030, USA
| | - Biagio Saitta
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Joseph Elphingstone
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - A Noelle Larson
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Center of Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Scott M Riester
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Center of Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - April D Pyle
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Hanna Ka Mikkola
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA.,Department of Molecular, Cell and Developmental Biology, UCLA, Los Angeles, CA, 90095, USA
| | - Jason Ernst
- Department of Biological Chemistry, UCLA, Los Angeles, CA, 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, CA, 90095, USA.,Computer Science Department, University of California, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Andre J van Wijnen
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Center of Regenerative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michael Bonaguidi
- Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA, 90033, USA
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA. .,Department of Stem Cell Research and Regenerative Medicine, USC, Los Angeles, CA, 90033, USA. .,Department of Orthopaedic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
161
|
Liu ES, Martins JS, Zhang W, Demay MB. Molecular analysis of enthesopathy in a mouse model of hypophosphatemic rickets. Development 2018; 145:dev.163519. [PMID: 30002128 DOI: 10.1242/dev.163519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022]
Abstract
The bone tendon attachment site known as the enthesis comprises a transitional zone between bone and tendon, and plays an important role in enabling movement at this site. X-linked hypophosphatemia (XLH) is characterized by impaired activation of vitamin D, elevated serum FGF23 levels and low serum phosphate levels, which impair bone mineralization. Paradoxically, an important complication of XLH is mineralization of the enthesis (enthesopathy). Studies were undertaken to identify the cellular and molecular pathways important for normal post-natal enthesis maturation and to examine their role during the development of enthesopathy in mice with XLH (Hyp). The Achilles tendon entheses of Hyp mice demonstrate an expansion of hypertrophic-appearing chondrogenic cells by P14. Post-natally, cells in wild-type and Hyp entheses similarly descend from scleraxis- and Sox9-expressing progenitors; however, Hyp entheses exhibit an expansion of Sox9-expressing cells, and enhanced BMP and IHH signaling. These results support a role for enhanced BMP and IHH signaling in the development of enthesopathy in XLH.
Collapse
Affiliation(s)
- Eva S Liu
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA.,Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Janaina S Martins
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Wanlin Zhang
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marie B Demay
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA .,Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
162
|
Nugraha AP, Narmada IB, Ernawati DS, Dinaryanti A, Hendrianto E, Ihsan IS, Riawan W, Rantam FA. Osteogenic potential of gingival stromal progenitor cells cultured in platelet rich fibrin is predicted by core-binding factor subunit-α1/Sox9 expression ratio ( in vitro). F1000Res 2018; 7:1134. [PMID: 30430007 PMCID: PMC6097418 DOI: 10.12688/f1000research.15423.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Alveolar bone defect regeneration has long been problematic in the field of dentistry. Gingival stromal progenitor cells (GSPCs) offer a promising solution for alveolar bone regeneration. In order to optimally differentiate and proliferate progenitor cells, growth factors (GFs) are required. Platelet rich fibrin (PRF) has many GFs and can be easily manufactured. Core-binding factor subunit-α1 (CBF-α1) constitutes a well-known osteogenic differentiation transcription factor in SPCs. Sox9, as a chondrogenic transcription factor, interacts and inhibits CBF-α1, but its precise role in direct in vitro osteogenesis remains unknown. GSPCs cultured in vitro in PRF to optimally stimulate osteogenic differentiation has been largely overlooked. The aim of this study was to analyze GSPCs cultured in PRF osteogenic differentiation predicted by CBF-α1/Sox9. Methods: This study used a true experimental with post-test only control group design and random sampling. GPSCs isolated from the lower gingiva of four healthy, 250-gram, 1-month old, male Wistar rats ( Rattus Novergicus) were cultured for two weeks, passaged every 4-5 days. GSPCs in passage 3-5 were cultured in five M24 plates (N=108; n=6/group) for Day 7, Day 14, and Day 21 in three different mediums (control negative group: αModified Eagle Medium; control positive group: High Glucose-Dulbecco's Modified Eagle Medium (DMEM-HG) + osteogenic medium; Treatment group: DMEM-HG + osteogenic medium + PRF). CBF-α1 and Sox9 were examined with ICC monoclonal antibody. A one-way ANOVA continued with Tukey HSD test (p<0.05) based on Kolmogorov-Smirnov and Levene's tests (p>0.05) was performed. Results: The treatment group showed the highest CBF-α1/Sox9 ratio (16.00±3.000/14.33±2.517) on Day 7, while the lowest CBF-α1/Sox9 ratio (3.33±1.528/3.67±1.155) occurred in the control negative group on Day 21, with significant difference between the groups (p<0.05). Conclusion: GSPCs cultured in PRF had potential osteogenic differentiation ability predicted by the CBF-α1/sox9 ratio.
Collapse
Affiliation(s)
- Alexander Patera Nugraha
- Graduate School of Immunology, Postgraduate School, Universitas Airlangga, Surabaya, 60132, Indonesia
- Orthodontic Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Ida Bagus Narmada
- Orthodontic Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Diah Savitri Ernawati
- Oral Medicine Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Aristika Dinaryanti
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Eryk Hendrianto
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Igo Syaiful Ihsan
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Wibi Riawan
- Biochemistry Biomolecular Laboratory, Faculty of Medicine, Universitas Brawijaya, Malang, 65145, Indonesia
| | - Fedik Abdul Rantam
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, 60132, Indonesia
- Virology and Immunology Laboratory, Microbiology Department, Faculty of Veterinary Medicine, Universitas Airlangga., Surabaya, 60132, Indonesia
| |
Collapse
|
163
|
Sakagami N, Ono W, Ono N. Diverse contribution of Col2a1-expressing cells to the craniofacial skeletal cell lineages. Orthod Craniofac Res 2018. [PMID: 28643905 DOI: 10.1111/ocr.12168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Craniofacial skeletal development requires deliberate coordination of two distinct mechanisms of endochondral and intramembranous ossification. Col2a1-expressing cells encompass growth-associated skeletal progenitors in endochondral bones of the limb. The objective of this study was to determine the contribution of Col2a1-expressing cells to the craniofacial skeletal cell lineages. We hypothesize that Col2a1-expressing progenitors significantly contribute to various modes of ossification associated with the craniofacial development. METHODS Cellular fates of Col2a1-expressing cells were studied based on a cre-loxP system using a Col2a1-cre transgene and an R26R-tdTomato reporter allele. We analysed three distinct locations of the craniofacial skeletal complex representing unique ossification mechanisms: the cranial base, the calvaria and the mandibular condyle. RESULTS Col2a1-cre consistently marked a majority of skeletal cells in the cranial base. Interestingly, Col2a1-cre also marked a large number of osteoblasts and suture mesenchymal cells in the calvaria, in addition to chondrocytes in the underlying transient cartilage. In the mandibular condyle, Col2a1-cre marked chondrocytes and osteoblasts only during the growth phase. CONCLUSIONS Col2a1 is expressed by progenitors of the skeletal lineage in canonical endochondral bone formation occurring in the cranial base. In contrast, other ossification mechanisms of the craniofacial complex utilize Col2a1-expressing cells in a different manner, whereby Col2a1 may be expressed in more differentiated or transient cell types of the skeletal lineage.
Collapse
Affiliation(s)
- N Sakagami
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - W Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - N Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
164
|
Reciprocal Negative Regulation Between Lmx1a and Lmo4 Is Required for Inner Ear Formation. J Neurosci 2018; 38:5429-5440. [PMID: 29769265 PMCID: PMC5990987 DOI: 10.1523/jneurosci.2484-17.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/07/2018] [Accepted: 02/11/2018] [Indexed: 02/07/2023] Open
Abstract
LIM-domain containing transcription factors (LIM-TFs) are conserved factors important for embryogenesis. The specificity of these factors in transcriptional regulation is conferred by the complexes that they form with other proteins such as LIM-domain-binding (Ldb) proteins and LIM-domain only (LMO) proteins. Unlike LIM-TFs, these proteins do not bind DNA directly. LMO proteins are negative regulators of LIM-TFs and function by competing with LIM-TFs for binding to Ldb's. Although the LIM-TF Lmx1a is expressed in the developing mouse hindbrain, which provides many of the extrinsic signals for inner ear formation, conditional knock-out embryos of both sexes show that the inner ear source of Lmx1a is the major contributor of ear patterning. In addition, we have found that the reciprocal interaction between Lmx1a and Lmo4 (a LMO protein within the inner ear) mediates the formation of both vestibular and auditory structures. Lmo4 negatively regulates Lmx1a to form the three sensory cristae, the anterior semicircular canal, and the shape of the utricle in the vestibule. Furthermore, this negative regulation blocks ectopic sensory formation in the cochlea. In contrast, Lmx1a negatively regulates Lmo4 in mediating epithelial resorption of the canal pouch, which gives rise to the anterior and posterior semicircular canals. We also found that Lmx1a is independently required for the formation of the endolymphatic duct and hair cells in the basal cochlear region. SIGNIFICANCE STATEMENT The mammalian inner ear is a structurally complex organ responsible for detecting sound and maintaining balance. Failure to form the intricate 3D structure of this organ properly during development most likely will result in sensory deficits on some level. Here, we provide genetic evidence that a transcription factor, Lmx1a, interacts with its negative regulator, Lmo4, to pattern various vestibular and auditory components of the mammalian inner ear. Identifying these key molecules that mediate formation of this important sensory organ will be helpful for designing strategies and therapeutics to alleviate hearing loss and balance disorders.
Collapse
|
165
|
de Souza Tesch R, Takamori ER, Menezes K, Carias RBV, Dutra CLM, de Freitas Aguiar M, Torraca TSDS, Senegaglia AC, Rebelatto CLK, Daga DR, Brofman PRS, Borojevic R. Temporomandibular joint regeneration: proposal of a novel treatment for condylar resorption after orthognathic surgery using transplantation of autologous nasal septum chondrocytes, and the first human case report. Stem Cell Res Ther 2018; 9:94. [PMID: 29625584 PMCID: PMC5889586 DOI: 10.1186/s13287-018-0806-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/12/2018] [Accepted: 02/13/2018] [Indexed: 01/22/2023] Open
Abstract
Background Upon orthognathic mandibular advancement surgery the adjacent soft tissues can displace the distal bone segment and increase the load on the temporomandibular joint causing loss of its integrity. Remodeling of the condyle and temporal fossa with destruction of condylar cartilage and subchondral bone leads to postsurgical condylar resorption, with arthralgia and functional limitations. Patients with severe lesions are refractory to conservative treatments, leading to more invasive therapies that range from simple arthrocentesis to open surgery and prosthesis. Although aggressive and with a high risk for the patient, surgical invasive treatments are not always efficient in managing the degenerative lesions. Methods We propose a regenerative medicine approach using in-vitro expanded autologous cells from nasal septum applied to the first proof-of-concept patient. After the required quality controls, the cells were injected into each joint by arthrocentesis. Results were monitored by functional assays and image analysis using computed tomography. Results The cell injection fully reverted the condylar resorption, leading to functional and structural regeneration after 6 months. Computed tomography images showed new cortical bone formation filling the former cavity space, and a partial recovery of condylar and temporal bones. The superposition of the condyle models showed the regeneration of the bone defect, reconstructing the condyle original form. Conclusions We propose a new treatment of condylar resorption subsequent to orthognathic surgery, presently treated only by alloplastic total joint replacement. We propose an intra-articular injection of autologous in-vitro expanded cells from the nasal septum. The proof-of-concept treatment of a selected patient that had no alternative therapeutic proposal has given promising results, reaching full regeneration of both the condylar cartilage and bone at 6 months after the therapy, which was fully maintained after 1 year. This first case is being followed by inclusion of new patients with a similar pathological profile to complete an ongoing stage I/II study. Trial registration This clinical trial is approved by the National Commission of Ethics in Medical Research (CONEP), Brazil, CAAE 12484813.0.0000.5245, and retrospectively registered in the Brazilian National Clinical Trials Registry and in the USA Clinical Trials Registry under the Universal Trial Number (UTN) U1111–1194-6997. Electronic supplementary material The online version of this article (10.1186/s13287-018-0806-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ricardo de Souza Tesch
- Centro de Medicina Regenerativa, Faculdade de Medicina de Petrópolis - FASE, Avenida Barão do Rio Branco 1003, Centro, Petrópolis, RJ 25680-120, Brazil.
| | - Esther Rieko Takamori
- Centro de Medicina Regenerativa, Faculdade de Medicina de Petrópolis - FASE, Avenida Barão do Rio Branco 1003, Centro, Petrópolis, RJ 25680-120, Brazil
| | - Karla Menezes
- Centro de Medicina Regenerativa, Faculdade de Medicina de Petrópolis - FASE, Avenida Barão do Rio Branco 1003, Centro, Petrópolis, RJ 25680-120, Brazil
| | - Rosana Bizon Vieira Carias
- Centro de Medicina Regenerativa, Faculdade de Medicina de Petrópolis - FASE, Avenida Barão do Rio Branco 1003, Centro, Petrópolis, RJ 25680-120, Brazil
| | - Cláudio Leonardo Milione Dutra
- Centro de Medicina Regenerativa, Faculdade de Medicina de Petrópolis - FASE, Avenida Barão do Rio Branco 1003, Centro, Petrópolis, RJ 25680-120, Brazil
| | - Marcelo de Freitas Aguiar
- Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Rua Dr. Silvio Henrique Braune 22, Nova Friburgo, RJ 28625-650, Brazil
| | - Tânia Salgado de Sousa Torraca
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Avenida Pedro Calmon, 550 - Cidade Universitária, Rio de Janeiro, RJ 21941-901, Brazil
| | - Alexandra Cristina Senegaglia
- Centro de Tecnologia Celular, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Bairro Prado Velho, Curitiba, PR 80215-901, Brazil
| | - Cármen Lúcia Kuniyoshi Rebelatto
- Centro de Tecnologia Celular, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Bairro Prado Velho, Curitiba, PR 80215-901, Brazil
| | - Debora Regina Daga
- Centro de Tecnologia Celular, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Bairro Prado Velho, Curitiba, PR 80215-901, Brazil
| | - Paulo Roberto Slud Brofman
- Centro de Tecnologia Celular, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Bairro Prado Velho, Curitiba, PR 80215-901, Brazil
| | - Radovan Borojevic
- Centro de Medicina Regenerativa, Faculdade de Medicina de Petrópolis - FASE, Avenida Barão do Rio Branco 1003, Centro, Petrópolis, RJ 25680-120, Brazil
| |
Collapse
|
166
|
Schuelke J, Meyers N, Reitmaier S, Klose S, Ignatius A, Claes L. Intramembranous bone formation after callus distraction is augmented by increasing axial compressive strain. PLoS One 2018; 13:e0195466. [PMID: 29624608 PMCID: PMC5889182 DOI: 10.1371/journal.pone.0195466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/22/2018] [Indexed: 01/24/2023] Open
Abstract
The mechanical environment is a primary factor in the success of distraction osteogenesis. It is known that the interfragmentary movement during the distraction and maturation phase effects the callus formation. In addition to cyclic compression, other movements like shear and bending influence the bone formation process as shown in previous callus distraction studies. Reports of cartilage presence and endochondral ossification in the regenerative zone have been associated with a lack of fixation stability and delayed healing. So far the effects of the direction of interfragmentary movements could not be studied separately. By means of a unique lateral callus distraction model, we investigated the effects of small (0.1 mm) and moderate (0.6 mm), purely axial compression on ossification during callus maturation in sheep. A distraction device incorporating a mobile titanium plate was mounted on the tibia. Following lateral callus distraction, electromechanically controlled movements allowed purely axial cyclic compression of the tissue regenerate. Seven weeks post-operatively, the tissue regenerates were investigated using μCT, histology and immunohistochemistry. The larger amplitude significantly increased bone formation (Fractional bone volume: 19.4% vs. 5.2%, p = 0.03; trabecular thickness: 0.1 mm vs. 0.06 mm, p = 0.006; mean spicule height: 2.6 mm vs. 1.1 mm, p = 0.02) however, no endochondral ossification occurred. The elimination of shear movement, unimpaired neovascularization as well as the tensile strain stimuli during the distraction phase suppressing chondrogenic differentiation may all contribute to the absence of cartilage. In clinical application of distraction osteogenesis, moderate axial interfragmentary movement augments intramembranous ossification provided shear strain is minimized.
Collapse
Affiliation(s)
- Julian Schuelke
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University Hospital Ulm, Ulm, Baden-Württemberg, Germany
| | - Nicholaus Meyers
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University Hospital Ulm, Ulm, Baden-Württemberg, Germany
| | - Sandra Reitmaier
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University Hospital Ulm, Ulm, Baden-Württemberg, Germany
| | - Svenja Klose
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University Hospital Ulm, Ulm, Baden-Württemberg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University Hospital Ulm, Ulm, Baden-Württemberg, Germany
| | - Lutz Claes
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University Hospital Ulm, Ulm, Baden-Württemberg, Germany
- * E-mail:
| |
Collapse
|
167
|
Zuo C, Wang L, Kamalesh RM, Bowen ME, Moore DC, Dooner MS, Reginato AM, Wu Q, Schorl C, Song Y, Warman ML, Neel BG, Ehrlich MG, Yang W. SHP2 regulates skeletal cell fate by modifying SOX9 expression and transcriptional activity. Bone Res 2018; 6:12. [PMID: 29644115 PMCID: PMC5886981 DOI: 10.1038/s41413-018-0013-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 01/15/2018] [Accepted: 02/28/2018] [Indexed: 02/05/2023] Open
Abstract
Chondrocytes and osteoblasts differentiate from a common mesenchymal precursor, the osteochondroprogenitor (OCP), and help build the vertebrate skeleton. The signaling pathways that control lineage commitment for OCPs are incompletely understood. We asked whether the ubiquitously expressed protein-tyrosine phosphatase SHP2 (encoded by Ptpn11) affects skeletal lineage commitment by conditionally deleting Ptpn11 in mouse limb and head mesenchyme using "Cre-loxP"-mediated gene excision. SHP2-deficient mice have increased cartilage mass and deficient ossification, suggesting that SHP2-deficient OCPs become chondrocytes and not osteoblasts. Consistent with these observations, the expression of the master chondrogenic transcription factor SOX9 and its target genes Acan, Col2a1, and Col10a1 were increased in SHP2-deficient chondrocytes, as revealed by gene expression arrays, qRT-PCR, in situ hybridization, and immunostaining. Mechanistic studies demonstrate that SHP2 regulates OCP fate determination via the phosphorylation and SUMOylation of SOX9, mediated at least in part via the PKA signaling pathway. Our data indicate that SHP2 is critical for skeletal cell lineage differentiation and could thus be a pharmacologic target for bone and cartilage regeneration.
Collapse
Affiliation(s)
- Chunlin Zuo
- 1Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903 USA.,9Present Address: Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Lijun Wang
- 1Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903 USA
| | - Raghavendra M Kamalesh
- 1Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903 USA
| | - Margot E Bowen
- 2Orthopaedic Research Laboratories and Howard Hughes Medical Institute, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Douglas C Moore
- 1Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903 USA
| | - Mark S Dooner
- 3Division of Hematology and Oncology, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903 USA
| | - Anthony M Reginato
- 4Division of Rheumatology, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903 USA
| | - Qian Wu
- 5Department of Pathology and Laboratory Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Christoph Schorl
- 6Department of Molecular and Cell Biology and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02912 USA
| | - Yueming Song
- 7Department of Orthopedic Surgery, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Matthew L Warman
- 2Orthopaedic Research Laboratories and Howard Hughes Medical Institute, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115 USA
| | - Benjamin G Neel
- 8Laura and Issac Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY 10016 USA
| | - Michael G Ehrlich
- 1Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903 USA
| | - Wentian Yang
- 1Department of Orthopaedics, Brown University Alpert Medical School and Rhode Island Hospital, Providence, RI 02903 USA
| |
Collapse
|
168
|
Lebaschi AH, Deng XH, Camp CL, Zong J, Cong GT, Carballo CB, Album Z, Rodeo SA. Biomechanical, Histologic, and Molecular Evaluation of Tendon Healing in a New Murine Model of Rotator Cuff Repair. Arthroscopy 2018; 34:1173-1183. [PMID: 29459078 PMCID: PMC6340398 DOI: 10.1016/j.arthro.2017.10.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 02/02/2023]
Abstract
PURPOSE To develop a clinically relevant, robust murine model of rotator cuff tendon repair to examine cellular and molecular mechanisms of healing. METHODS Sixty C57BL/6 male mice underwent rotator cuff transection and repair using microsurgical techniques. A modified Kessler suturing technique was used prior to tendon detachment. Sutures were passed through 2 intersecting bone tunnels that were made at the tendon attachment site. Mice were sacrificed at 2 and 4 weeks with subsequent biomechanical, histologic, micro-CT, and gene expression evaluations. RESULTS Failure forces in the 2- and 4-week groups were 36% and 75% of the intact tendon, respectively. Histologic evaluation revealed complete reattachment of the tendon with no observable gap. Healing occurred by formation of fibrovascular tissue at the tendon-bone interface, similar to larger animal models. Molecular analysis revealed gene expression consistent with gradual healing of the reattached tendon over a period of 4 weeks. Comparisons were made using 1-way analysis of variance. CONCLUSIONS This model is distinguished by use of microsurgical suturing techniques, which provides a robust, reproducible, and economic animal model to study various aspects of rotator cuff pathology. CLINICAL RELEVANCE Improvement of clinical outcomes of rotator cuff pathology requires in-depth understanding of the underlying cellular and molecular mechanisms of healing. This study presents a robust murine model of supraspinatus repair to serve as a standard research tool for basic and translational investigations into signaling pathways, gene expression, and the effect of biologic augmentation approaches.
Collapse
|
169
|
Leucht P, Lee S, Yim N. Wnt signaling and bone regeneration: Can't have one without the other. Biomaterials 2018; 196:46-50. [PMID: 29573821 DOI: 10.1016/j.biomaterials.2018.03.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/25/2022]
Abstract
Advances in the understanding of the complexities of the Wnt signaling pathway during development and tissue homeostasis have made the Wnt pathway one of the prime candidates for translational applications during tissue regeneration. Wnts are key components of the stem cell niche and are short range signaling molecules responsible for cellular decisions such as proliferation and differentiation. Systemic treatment using biologics targeting the Wnt signaling pathway have shown promising early results and will likely enter the clinical arena in the near future. This comprehensive review summarizes the intricacies how Wnts function in the context of the bone regeneration.
Collapse
Affiliation(s)
- Philipp Leucht
- NYU Langone Health, Departments of Orthopaedic Surgery and Cell Biology, New York, NY, USA.
| | - Sooyeon Lee
- NYU Langone Health, Departments of Orthopaedic Surgery and Cell Biology, New York, NY, USA
| | - Nury Yim
- NYU Langone Health, Departments of Orthopaedic Surgery and Cell Biology, New York, NY, USA
| |
Collapse
|
170
|
Minas TZ, Surdez D, Javaheri T, Tanaka M, Howarth M, Kang HJ, Han J, Han ZY, Sax B, Kream BE, Hong SH, Çelik H, Tirode F, Tuckermann J, Toretsky JA, Kenner L, Kovar H, Lee S, Sweet-Cordero EA, Nakamura T, Moriggl R, Delattre O, Üren A. Combined experience of six independent laboratories attempting to create an Ewing sarcoma mouse model. Oncotarget 2018; 8:34141-34163. [PMID: 27191748 PMCID: PMC5470957 DOI: 10.18632/oncotarget.9388] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/05/2016] [Indexed: 12/17/2022] Open
Abstract
Ewing sarcoma (ES) involves a tumor-specific chromosomal translocation that produces the EWS-FLI1 protein, which is required for the growth of ES cells both in vitro and in vivo. However, an EWS-FLI1-driven transgenic mouse model is not currently available. Here, we present data from six independent laboratories seeking an alternative approach to express EWS-FLI1 in different murine tissues. We used the Runx2, Col1a2.3, Col1a3.6, Prx1, CAG, Nse, NEFL, Dermo1, P0, Sox9 and Osterix promoters to target EWS-FLI1 or Cre expression. Additional approaches included the induction of an endogenous chromosomal translocation, in utero knock-in, and the injection of Cre-expressing adenovirus to induce EWS-FLI1 expression locally in multiple lineages. Most models resulted in embryonic lethality or developmental defects. EWS-FLI1-induced apoptosis, promoter leakiness, the lack of potential cofactors, and the difficulty of expressing EWS-FLI1 in specific sites were considered the primary reasons for the failed attempts to create a transgenic mouse model of ES.
Collapse
Affiliation(s)
- Tsion Zewdu Minas
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Didier Surdez
- Genetics and Biology of Cancers Unit, Institut Curie Research Center, PSL Research University, Île-de-France, Paris, France.,INSERM U830, Institut Curie Research Center, Île-de-France, Paris, France
| | | | - Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Michelle Howarth
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Hong-Jun Kang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Jenny Han
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Zhi-Yan Han
- Genetics and Biology of Cancers Unit, Institut Curie Research Center, PSL Research University, Île-de-France, Paris, France.,INSERM U830, Institut Curie Research Center, Île-de-France, Paris, France
| | - Barbara Sax
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Barbara E Kream
- Department of Medicine, and Genetics and Genome Sciences, University of Connecticut Health Science Center, Farmington, CT, United States of America
| | - Sung-Hyeok Hong
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Haydar Çelik
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Franck Tirode
- Genetics and Biology of Cancers Unit, Institut Curie Research Center, PSL Research University, Île-de-France, Paris, France.,INSERM U830, Institut Curie Research Center, Île-de-France, Paris, France
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Jeffrey A Toretsky
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria.,Department of Pathology of Laboratory Animals (UPLA), University of Veterinary Medicine, Vienna, Austria
| | - Heinrich Kovar
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria.,Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Sean Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - E Alejandro Sweet-Cordero
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria.,Medical University of Vienna, Vienna, Austria
| | - Olivier Delattre
- Genetics and Biology of Cancers Unit, Institut Curie Research Center, PSL Research University, Île-de-France, Paris, France.,INSERM U830, Institut Curie Research Center, Île-de-France, Paris, France.,Unité de génétique somatique, Institut Curie, Île-de-France, Paris, France
| | - Aykut Üren
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
171
|
Sieker JT, Proffen BL, Waller KA, Chin KE, Karamchedu NP, Akelman MR, Perrone GS, Kiapour AM, Konrad J, Fleming BC, Murray MM. Transcriptional profiling of synovium in a porcine model of early post-traumatic osteoarthritis. J Orthop Res 2018; 36:10.1002/jor.23876. [PMID: 29460983 PMCID: PMC6102098 DOI: 10.1002/jor.23876] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/15/2018] [Indexed: 02/04/2023]
Abstract
To determine the transcriptional profile of synovium during the molecular phase of post-traumatic osteoarthritis, anterior cruciate ligament transections (ACL) were performed in 36 Yucatan minipigs. Equal numbers were randomly assigned to no further treatment, ACL reconstruction or repair. Perimeniscal synovium for histopathology and RNA-sequencing was harvested at 1 and 4 weeks post-operatively and from six healthy control animals. Microscopic synovitis scores significantly worsened at 1 (p < 0.001) and 4 weeks (p = 0.003) post-surgery relative to controls, and were driven by intimal hyperplasia and increased stromal cellularity without inflammatory infiltrates. Synovitis scores were similar between no treatment, reconstruction, and repair groups (p ≥ 0.668). Relative to no treatment at 1 week, 88 and 367 genes were differentially expressed in the reconstruction and repair groups, respectively (227 and 277 at 4 weeks). Relative to controls and with the treatment groups pooled, 1,683 transcripts were concordantly differentially expressed throughout the post-surgery time-course. Affected pathways included, proteolysis_connective tissue degradation (including upregulations of protease-encoding MMP1, MMP13, and ADAMTS4), and development_cartilage development (including upregulations of ACAN, SOX9, and RUNX2), among others. Using linear regression, significant associations of post-surgery synovial expression levels of 20 genes with the articular cartilage glycosaminoglycan loss were identified. These genes were predominantly related to embryonic skeletal system development and included RUNX2. In conclusion, this study confirmed an increased synovial expression of genes that may serve as targets to prevent cartilage degradation, including MMP1, MMP13, and ADAMTS4, in knees with microscopic synovitis and cartilage proteoglycan loss. Attractive novel targets include regulators of embryonic developmental processes in synovium. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Jakob T. Sieker
- Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | - Kimberly A. Waller
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Kaitlyn E. Chin
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | | | - Matthew R. Akelman
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | | | - Ata M. Kiapour
- Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Johannes Konrad
- Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Braden C. Fleming
- Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | | |
Collapse
|
172
|
Wang C, Abu-Amer Y, O'Keefe RJ, Shen J. Loss of Dnmt3b in Chondrocytes Leads to Delayed Endochondral Ossification and Fracture Repair. J Bone Miner Res 2018; 33:283-297. [PMID: 29024060 PMCID: PMC5809267 DOI: 10.1002/jbmr.3305] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/27/2017] [Accepted: 10/07/2017] [Indexed: 12/12/2022]
Abstract
Despite advanced understanding of signaling mediated by local and systemic factors, the role of epigenetic factors in the regulation of bone regeneration remains vague. The DNA methyltransferases (Dnmts) Dnmt3a and Dnmt3b have tissue specific expression patterns and create unique methylation signatures to regulate gene expression. Using a stabilized murine tibia fracture model we find that Dnmt3b is induced early in fracture healing, peaks at 10 days post fracture (dpf), and declines to nearly undetectable levels by 28 dpf. Dnmt3b expression was cell-specific and stage-specific. High levels were observed in chondrogenic lineage cells within the fracture callus. To determine the role of Dnmt3b in fracture healing, Agc1CreERT2 ;Dnmt3bf/f (Dnmt3bAgc1ER ) mice were generated to delete Dnmt3b in chondrogenic cells. Dnmt3bAgc1ER fracture displayed chondrogenesis and chondrocyte maturation defect, and a delay in the later events of angiogenesis, ossification, and bone remodeling. Biomechanical studies demonstrated markedly reduced strength in Dnmt3bAgc1ER fractures and confirmed the delay in repair. The angiogenic response was reduced in both vessel number and volume at 10 and 14 dpf in Dnmt3bAgc1ER mice. Immunohistochemistry showed decreased CD31 expression, consistent with the reduced angiogenesis. Finally, in vitro angiogenesis assays with human umbilical vein endothelial cells (HUVECs) revealed that loss of Dnmt3b in chondrocytes significantly reduced tube formation and endothelial migration. To identify specific angiogenic factors involved in the decreased callus vascularization, a protein array was performed using conditioned media isolated from control and Dnmt3b loss-of-function chondrocytes. Several angiogenic factors, including CXCL12 and osteopontin (OPN) were reduced in chondrocytes following loss of Dnmt3b. DNA methylation analysis further identified hypomethylation in Cxcl12 promoter region. Importantly, the defects in tube formation and cell migration could be rescued by administration of CXCL12 and/or OPN. Altogether, our findings establish that Dnmt3b positively regulates chondrocyte maturation process, and its genetic ablation leads to delayed angiogenesis and fracture repair. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, USA
| | - Yousef Abu-Amer
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, USA
| | - Regis J O'Keefe
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, USA
| |
Collapse
|
173
|
Scott RW, Underhill TM. Methods and Strategies for Lineage Tracing of Mesenchymal Progenitor Cells. Methods Mol Biol 2017; 1416:171-203. [PMID: 27236672 DOI: 10.1007/978-1-4939-3584-0_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mesenchymal progenitors (MP) are found to varying extents in most tissues and organs. Their relationship to bone marrow-derived mesenchymal stem cells (MSCs) remains unclear, however, both populations appear to share a number of properties as defined by functional assays, clonogenic activity, and genetic and cell surface markers. MSCs were originally defined by their in vitro colony forming unit-fibroblast (CFU-F) activity and their ability to contribute to various mesenchymal lineages (i.e. cartilage, bone, and fat). MSCs also appear to exhibit some unique properties, in that expanded clones in the absence of bone-inducing factors generate bone spicules/organs in vivo. Subsequent analysis of these elements has demonstrated that the transplanted cells directly contribute to multiple mesenchymal lineages. Our ability to study MP and/or MSC behavior and lineage potential in vivo has been hampered by a lack of suitable Cre lines in which to effectively genetically mark and follow the fate and activity of these cells in development, growth, homeostasis and following injury or in disease. The emergence of several new genetic lines is enabling us to now address critical questions regarding MP/MSC location, behavior, function, and fate. The use of these lines and others in conjunction with suitable reporter lines will be described for MP/MSC cell fate analysis.
Collapse
Affiliation(s)
- R Wilder Scott
- Department of Cellular and Physiological Sciences and Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, USA
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences and Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, USA.
| |
Collapse
|
174
|
Live Fluorescent Staining Platform for Drug-Screening and Mechanism-Analysis in Zebrafish for Bone Mineralization. Molecules 2017; 22:molecules22122068. [PMID: 29186901 PMCID: PMC6149919 DOI: 10.3390/molecules22122068] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 11/21/2022] Open
Abstract
Currently, drug screening relies on cell-based experiments or on animal models to confirm biological effects. The mammalian system is considered too time-consuming, expensive and complex to perform high-throughput drug screening. There is a gap between in vitro cell-based models and the in vivo mammalian models. The zebrafish is an ideal model that could link preclinical toxicity screening with the drug development pipeline. Taking advantage of a highly conservative genomic, rapid development, large number of offspring, low cost and easy manipulation, zebrafish has been considered an excellent animal model for disease-based drug screening. In this study, zebrafish embryos were incubated with small molecular compounds that potentially affected bone mineralization in microplates. Two compounds of alendronate and dorsomorphin were used as positive and negative controls, respectively. The level of osteogenic mineralization was measured and quantified by using ImageJ software with fluorescent calcein-staining images. Among twenty-four tested compounds from the kinase inhibitor library, we identified two compounds, pentamidine and BML-267, which showed increased embryonic mineralization; while six compounds, RWJ-60475, levamisole HCL, tetramisole HCL, fenvalerate, NSC-663284, and BML-267ester, were inhibitory to bone mineralization. In addition, real time quantitative PCR (RT-qPCR) was performed to evaluate the biological pathways involved in bone metabolism at the molecular level. We confirmed that alendronate enhanced the level of bone mineralization by inhibiting osteoclast-related genes. In summary, our research established a simple method to screen potential bone metabolic drugs and to perform mechanism analysis for bone mineralization in vivo.
Collapse
|
175
|
He X, Bougioukli S, Ortega B, Arevalo E, Lieberman JR, McMahon AP. Sox9 positive periosteal cells in fracture repair of the adult mammalian long bone. Bone 2017; 103. [PMID: 28627474 PMCID: PMC6435293 DOI: 10.1016/j.bone.2017.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The phases of fracture healing have been well characterized. However, the exact source and genetic profile of the skeletal progenitors that participate in bone repair is somewhat unclear. Sox9 expression in skeletal elements precedes bone and cartilage formation and a Sox9+ cell type is retained in the adult periosteum. We hypothesized that Sox9+ periosteal cells are multipotent skeletal progenitors normally participating in fracture repair. METHODS To test this hypothesis we used tamoxifen (TM)-mediated lineage tracing of Sox9+ cells in Sox9CreErt2:Td-Tomato mice. Intact femora were analyzed with immunostaining and RNA sequencing to evaluate the skeletal distribution and gene expression profile of Td-Tomato positive, Sox9-descendent cells in the adult femur. To assess the role of Td-tomato+cells in the fracture healing process, mice underwent a closed mid-diaphyseal femoral fracture. Fractured hind limbs were analyzed by X-ray, histology and immuno-staining at 3, 9 or 56days post-fracture. RESULTS In the intact adult mouse femur, Td-Tomato-labeled cells were observed in the primary spongiosa, periosteum and endosteum. RNA sequencing showed that Td-Tomato positive periosteal cells were co-enriched for Sox9 transcripts, and mRNAs for osteoblast and chondrocyte specific genes. In a femoral fracture model, we showed that pre-labeled Td-Tomato positive descendent cells were mobilized during the early stages of bone repair (day 3 post-op) contributing to the fracture repair process by differentiating into chondrocytes, osteoblasts and osteocytes. CONCLUSION A Sox9+ skeletal progenitor population resides in the adult periosteum. Fate tracing studies show that descendants of the Sox9+ periosteal progenitors give rise to chondrocytes, osteoblasts and mature cortical osteocytes in repair of the fractured femur. To our knowledge this is the first report of a reparative Sox9+ progenitor population in the periosteum of the adult long bone. Taken together with developmental studies, our data suggest a broad role for Sox9+ osteochondroprogenitors in development and repair of the mammalian skeleton.
Collapse
Affiliation(s)
- Xinjun He
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brandon Ortega
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eric Arevalo
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
176
|
Ontogenic Identification and Analysis of Mesenchymal Stromal Cell Populations during Mouse Limb and Long Bone Development. Stem Cell Reports 2017; 9:1124-1138. [PMID: 28919259 PMCID: PMC5639212 DOI: 10.1016/j.stemcr.2017.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022] Open
Abstract
Bone-derived mesenchymal stromal cells (MSCs) differentiate into multiple lineages including chondro- and osteogenic fates and function in establishing the hematopoietic compartment of the bone marrow. Here, we analyze the emergence of different MSC types during mouse limb and long bone development. In particular, PDGFRαposSCA-1pos (PαS) cells and mouse skeletal stem cells (mSSCs) are detected within the PDGFRαposCD51pos (PαCD51) mesenchymal progenitors, which are the most abundant progenitors in early limb buds and developing long bones until birth. Long-bone-derived PαS cells and mSSCs are most prevalent in newborn mice, and molecular analysis shows that they constitute distinct progenitor populations from the earliest stages onward. Differential expression of CD90 and CD73 identifies four PαS subpopulations that display distinct chondro- and osteogenic differentiation potentials. Finally, we show that cartilage constructs generated from CD90pos PαS cells are remodeled into bone organoids encompassing functional endothelial and hematopoietic compartments, which makes these cells suited for bone tissue engineering. Ontogenic profiling of MSC populations during mouse limb and long bone development PαCD51-positive cells are the most prevalent mesenchymal population PαS cells and mSSCs arise as distinct populations within the PαCD51 progenitor pool Cartilage constructs from one PαS subpopulation are remodeled into bone organoids
Collapse
|
177
|
Arslan E, Hatip Koc M, Uysal O, Dikecoglu B, Topal AE, Garifullin R, Ozkan AD, Dana A, Hermida-Merino D, Castelletto V, Edwards-Gayle C, Baday S, Hamley I, Tekinay AB, Guler MO. Supramolecular Peptide Nanofiber Morphology Affects Mechanotransduction of Stem Cells. Biomacromolecules 2017; 18:3114-3130. [PMID: 28840715 DOI: 10.1021/acs.biomac.7b00773] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chirality and morphology are essential factors for protein function and interactions with other biomacromolecules. Extracellular matrix (ECM) proteins are also similar to other proteins in this sense; however, the complexity of the natural ECM makes it difficult to study these factors at the cellular level. The synthetic peptide nanomaterials harbor great promise in mimicking specific ECM molecules as model systems. In this work, we demonstrate that mechanosensory responses of stem cells are directly regulated by the chirality and morphology of ECM-mimetic peptide nanofibers with strictly controlled characteristics. Structural signals presented on l-amino acid containing cylindrical nanofibers (l-VV) favored the formation of integrin β1-based focal adhesion complexes, which increased the osteogenic potential of stem cells through the activation of nuclear YAP. On the other hand, twisted ribbon-like nanofibers (l-FF and d-FF) guided the cells into round shapes and decreased the formation of focal adhesion complexes, which resulted in the confinement of YAP proteins in the cytosol and a corresponding decrease in osteogenic potential. Interestingly, the d-form of twisted-ribbon like nanofibers (d-FF) increased the chondrogenic potential of stem cells more than their l-form (l-FF). Our results provide new insights into the importance and relevance of morphology and chirality of nanomaterials in their interactions with cells and reveal that precise control over the chemical and physical properties of nanostructures can affect stem cell fate even without the incorporation of specific epitopes.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruslan Garifullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University , 420021 Kazan, Russian Federation
| | | | | | | | - Valeria Castelletto
- Department of Chemistry, University of Reading , Whiteknights, Reading RG6 6AD, U.K
| | | | - Sefer Baday
- Applied Informatics Department, Informatics Institute, Istanbul Technical University , Istanbul 34469, Turkey
| | - Ian Hamley
- Department of Chemistry, University of Reading , Whiteknights, Reading RG6 6AD, U.K
| | | | - Mustafa O Guler
- Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
178
|
Chondrogenesis and osteogenesis are one continuous developmental and lineage defined biological process. Sci Rep 2017. [PMID: 28855706 DOI: 10.1038/s41598‐017‐10048‐z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although chondrogenesis and osteogenesis are considered as two separate processes during endochondral bone formation after birth, recent studies have demonstrated the direct cell transformation from chondrocytes into bone cells in postnatal bone growth. Here we use cell lineage tracing and multiple in vivo approaches to study the role of Bmpr1a in endochondrogenesis. Our data showed profound changes in skeletal shape, size and structure when Bmpr1a was deleted using Aggrecan-Cre ERT2 in early cartilage cells with a one-time tamoxifen injection. We observed the absence of lineage progression of chondrocyte-derived bone cells to form osteoblasts and osteocytes in metaphyses. Furthermore, we demonstrated the key contribution of growth plate chondrocytes and articular chondrocytes, not only for long bone growth, but also for bone remodeling. In contrast, deleting Bmpr1a in early osteoblasts with 3.6 Col 1-Cre had little impact on skeletal shape and size except for a sharp increase in osteoblasts and osteocytes, leading to a profound increase in bone volume. We conclude that chondrogenesis and osteogenesis are one continuous developmental and lineage-defined biological process, in which Bmpr1a signaling in chondrocytes is necessary for the formation of a pool or niche of osteoprogenitors that then contributes in a major way to overall bone formation and growth.
Collapse
|
179
|
Jing Y, Jing J, Ye L, Liu X, Harris SE, Hinton RJ, Feng JQ. Chondrogenesis and osteogenesis are one continuous developmental and lineage defined biological process. Sci Rep 2017; 7:10020. [PMID: 28855706 PMCID: PMC5577112 DOI: 10.1038/s41598-017-10048-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/02/2017] [Indexed: 02/05/2023] Open
Abstract
Although chondrogenesis and osteogenesis are considered as two separate processes during endochondral bone formation after birth, recent studies have demonstrated the direct cell transformation from chondrocytes into bone cells in postnatal bone growth. Here we use cell lineage tracing and multiple in vivo approaches to study the role of Bmpr1a in endochondrogenesis. Our data showed profound changes in skeletal shape, size and structure when Bmpr1a was deleted using Aggrecan-CreERT2 in early cartilage cells with a one-time tamoxifen injection. We observed the absence of lineage progression of chondrocyte-derived bone cells to form osteoblasts and osteocytes in metaphyses. Furthermore, we demonstrated the key contribution of growth plate chondrocytes and articular chondrocytes, not only for long bone growth, but also for bone remodeling. In contrast, deleting Bmpr1a in early osteoblasts with 3.6 Col 1-Cre had little impact on skeletal shape and size except for a sharp increase in osteoblasts and osteocytes, leading to a profound increase in bone volume. We conclude that chondrogenesis and osteogenesis are one continuous developmental and lineage-defined biological process, in which Bmpr1a signaling in chondrocytes is necessary for the formation of a pool or niche of osteoprogenitors that then contributes in a major way to overall bone formation and growth.
Collapse
Affiliation(s)
- Yan Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.
| | - Junjun Jing
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.,State Key Laboratory of Oral diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ling Ye
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.,Department of Dental Research, Naval Post-Graduate Dental School, Navy Medicine Professional Development Center Walter Reed National Military Medical Center; Postgraduate Dental College Uniformed Services, University of the Health Sciences, 8955 Wood Road Bethesda, MD, 20889, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Stephen E Harris
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Robert J Hinton
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA.
| |
Collapse
|
180
|
Choi H, Kim TH, Yang S, Lee JC, You HK, Cho ES. A Reciprocal Interaction between β-Catenin and Osterix in Cementogenesis. Sci Rep 2017; 7:8160. [PMID: 28811640 PMCID: PMC5558006 DOI: 10.1038/s41598-017-08607-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/12/2017] [Indexed: 01/13/2023] Open
Abstract
Although accumulating evidence indicates that both β-catenin and osterix (Osx) are essential for bone and tooth development, few studies have investigated the interaction of these two key proteins in the context of cementogenesis. In this study, we used transgenic mice with constitutively active β-catenin and inactive Osx in the dental mesenchyme to address this question. We found that cementoblasts with constitutively active β-catenin require Osx to produce excessive cellular cementum, and that ablation of Osx prevents this abnormal accumulation. Importantly, cementoblasts transduced with retrovirus expressing constitutively active β-catenin exhibited upregulation of Osx expression through direct binding to the promoter region of Osx. Osx regulates Lef1 expression and consequently could regulate T-cell factor/lymphoid enhancer factor (Tcf/Lef) binding activity in Wnt/β-catenin signaling. However, the loss of Tcf/Lef binding activity by Osx ablation was not rescued by transduction of retrovirus expressing constitutively active β-catenin or ectopic Lef1 overexpression. These results suggest that the Tcf/Lef binding activity of Wnt/β-catenin signaling is Osx-dependent during cementogenesis. Moreover, Osx differentially regulates the expression of various Tcf family members, suggesting that Osx regulates cementogenesis by utilizing various Tcf/Lef-dependent mechanisms. This is the first report to show that downstream Osx signaling through Tcf/Lefs is critical for cementogenesis.
Collapse
Affiliation(s)
- Hwajung Choi
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea
| | - Tak-Heun Kim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea
| | - Siqin Yang
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea
| | - Jeong-Chae Lee
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea
| | - Hyung-Keun You
- Department of Periodontology, School of Dentistry, Wonkwang University, Iksan, 54538, South Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, 54896, South Korea.
| |
Collapse
|
181
|
Essential roles of G9a in cell proliferation and differentiation during tooth development. Exp Cell Res 2017; 357:202-210. [DOI: 10.1016/j.yexcr.2017.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 11/19/2022]
|
182
|
Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM. Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Biol Rev Camb Philos Soc 2017. [DOI: 10.1111/brv.12349] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sara Al-Khawaga
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Alexandra E. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine; University of California; Los Angeles CA 90095 U.S.A
| | - Shahrad Taheri
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Abdul B. Abou-Samra
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Essam M. Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| |
Collapse
|
183
|
Hojo H, Chung UI, Ohba S. Identification of the gene-regulatory landscape in skeletal development and potential links to skeletal regeneration. Regen Ther 2017; 6:100-107. [PMID: 30271844 PMCID: PMC6134913 DOI: 10.1016/j.reth.2017.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
A class of gene-regulatory elements called enhancers are the main mediators controlling quantitative, temporal and spatial gene expressions. In the course of evolution, the enhancer landscape of higher organisms such as mammals has become quite complex, exerting biological functions precisely and coordinately. In mammalian skeletal development, the master transcription factors Sox9, Runx2 and Sp7/Osterix function primarily through enhancers on the genome to achieve specification and differentiation of skeletal cells. Recently developed genome-scale analyses have shed light on multiple layers of gene regulations, uncovering not only the primary mode of actions of these transcription factors on skeletal enhancers, but also the relation of the epigenetic landscape to three-dimensional chromatin architecture. Here, we review findings on the emerging framework of gene-regulatory networks involved in skeletal development. We further discuss the power of genome-scale analyses to provide new insights into genetic diseases and regenerative medicine in skeletal tissues. Skeletal development is coordinated by master transcription factors. ChIP-seq analyses for the skeletal regulators identified their modes of actions. Analyses of epigenetic landscape features distinct cell types in skeletal tissues. Integrated analyses of the gene regulatory networks link to skeletal regeneration.
Collapse
Affiliation(s)
- Hironori Hojo
- Department of Bioengineering, The University of Tokyo Graduate School of Engineering, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ung-Il Chung
- Department of Bioengineering, The University of Tokyo Graduate School of Engineering, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Ohba
- Department of Bioengineering, The University of Tokyo Graduate School of Engineering, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
184
|
Reprogramming of Dermal Fibroblasts into Osteo-Chondrogenic Cells with Elevated Osteogenic Potency by Defined Transcription Factors. Stem Cell Reports 2017; 8:1587-1599. [PMID: 28528696 PMCID: PMC5470079 DOI: 10.1016/j.stemcr.2017.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 01/07/2023] Open
Abstract
Recent studies using defined transcription factors to convert skin fibroblasts into chondrocytes have raised the question of whether osteo-chondroprogenitors expressing SOX9 and RUNX2 could also be generated during the course of the reprogramming process. Here, we demonstrated that doxycycline-inducible expression of reprogramming factors (KLF4 [K] and c-MYC [M]) for 6 days were sufficient to convert murine fibroblasts into SOX9+/RUNX2+ cellular aggregates and together with SOX9 (S) promoted the conversion efficiency when cultured in a defined stem cell medium, mTeSR. KMS-reprogrammed cells possess gene expression profiles akin to those of native osteo-chondroprogenitors with elevated osteogenic properties and can differentiate into osteoblasts and chondrocytes in vitro, but form bone tissue upon transplantation under the skin and in the fracture site of mouse tibia. Altogether, we provide a reprogramming strategy to enable efficient derivation of osteo-chondrogenic cells that may hold promise for cell replacement therapy not limited to cartilage but also for bone tissues. SOX9+/RUNX2+ nodules are generated during the course of chondrogenic reprogramming SOX9+/RUNX2+ nodules exhibit gene expression profiles of osteo-chondroprogenitors Osteo-chondrogenic cells differentiate into chondrocytes and osteoblasts in vitro Osteo-chondrogenic cells acquire elevated osteogenic potency in vivo
Collapse
|
185
|
Ge Y, Gomez NC, Adam RC, Nikolova M, Yang H, Verma A, Lu CPJ, Polak L, Yuan S, Elemento O, Fuchs E. Stem Cell Lineage Infidelity Drives Wound Repair and Cancer. Cell 2017; 169:636-650.e14. [PMID: 28434617 PMCID: PMC5510746 DOI: 10.1016/j.cell.2017.03.042] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/20/2017] [Accepted: 03/28/2017] [Indexed: 12/17/2022]
Abstract
Tissue stem cells contribute to tissue regeneration and wound repair through cellular programs that can be hijacked by cancer cells. Here, we investigate such a phenomenon in skin, where during homeostasis, stem cells of the epidermis and hair follicle fuel their respective tissues. We find that breakdown of stem cell lineage confinement-granting privileges associated with both fates-is not only hallmark but also functional in cancer development. We show that lineage plasticity is critical in wound repair, where it operates transiently to redirect fates. Investigating mechanism, we discover that irrespective of cellular origin, lineage infidelity occurs in wounding when stress-responsive enhancers become activated and override homeostatic enhancers that govern lineage specificity. In cancer, stress-responsive transcription factor levels rise, causing lineage commanders to reach excess. When lineage and stress factors collaborate, they activate oncogenic enhancers that distinguish cancers from wounds.
Collapse
Affiliation(s)
- Yejing Ge
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Nicholas C Gomez
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Rene C Adam
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Maria Nikolova
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Hanseul Yang
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Akanksha Verma
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Catherine Pei-Ju Lu
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Lisa Polak
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Shaopeng Yuan
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Elaine Fuchs
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
186
|
Tamamura Y, Katsube K, Mera H, Itokazu M, Wakitani S. Irx3 and Bmp2 regulate mouse mesenchymal cell chondrogenic differentiation in both a Sox9-dependent and -independent manner. J Cell Physiol 2017; 232:3317-3336. [PMID: 28059449 DOI: 10.1002/jcp.25776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/31/2016] [Accepted: 01/05/2017] [Indexed: 01/22/2023]
Abstract
Sox9, a master regulator of cartilage development, controls the cell fate decision to differentiate from mesenchymal to chondrogenic cells. In addition, Sox9 regulates the proliferation and differentiation of chondrocytes, as well as the production of cartilage-specific proteoglycans. The existence of Sox9-independent mechanisms in cartilage development remains to be determined. Here, we attempted to identify genes involved in such putative mechanisms via microarray analysis using a mouse chondrogenic cell line, N1511. We first focused on transcription factors that exhibited upregulated expression following Bmp2 treatment, which was not altered by subsequent treatment with Sox9 siRNA. Among these, we selected positive regulators for chondrogenesis and identified Iroquois-related homeobox 3 (Irx3) as one of the candidate genes. Irx3 expression gradually increased with chondrocyte terminal differentiation in a reciprocal manner to Sox9 expression, and promoted the chondrogenic differentiation of mesenchymal cells upon Bmp2 treatment. Furthermore, Irx3 partially rescued impaired chondrogenesis by upregulating the expression of epiphycan and lumican under reduced Sox9 expression. Finally, Irx3 was shown to act in concert with Bmp2 signaling to activate the p38 MAPK pathway, which in turn stimulated Sox9 expression, as well as the expression of epiphycan and lumican in a Sox9-independent manner. These results indicate that Irx3 represents a novel chondrogenic factor of mesenchymal cells, acts synergistically with Bmp2-mediated signaling, and regulates chondrogenesis independent of the transcriptional machinery associated with Sox9-mediated regulation.
Collapse
Affiliation(s)
- Yoshihiro Tamamura
- School of Health and Sports Science, Mukogawa Women's University, Nishinomiya, Japan
| | - Kenichi Katsube
- Faculty of Human Care, Department of Nursing Science, Tohto College of Health Sciences, Saitama, Japan
| | - Hisashi Mera
- School of Health and Sports Science, Mukogawa Women's University, Nishinomiya, Japan
| | - Maki Itokazu
- School of Health and Sports Science, Mukogawa Women's University, Nishinomiya, Japan.,Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shigeyuki Wakitani
- School of Health and Sports Science, Mukogawa Women's University, Nishinomiya, Japan
| |
Collapse
|
187
|
Huang AH. Coordinated development of the limb musculoskeletal system: Tendon and muscle patterning and integration with the skeleton. Dev Biol 2017; 429:420-428. [PMID: 28363737 DOI: 10.1016/j.ydbio.2017.03.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/16/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Functional movement and stability of the limb depends on an organized and fully integrated musculoskeletal system composed of skeleton, muscle, and tendon. Much of our current understanding of musculoskeletal development is based on studies that focused on the development and differentiation of individual tissues. Likewise, research on patterning events have been largely limited to the primary skeletal elements and the mechanisms that regulate soft tissue patterning, the development of the connections between tissues, and their interdependent development are only beginning to be elucidated. This review will therefore highlight recent exciting discoveries in this field, with an emphasis on tendon and muscle patterning and their integrated development with the skeleton and skeletal attachments.
Collapse
Affiliation(s)
- Alice H Huang
- Icahn School of Medicine at Mount Sinai, Department of Orthopaedics, 1 Gustave Levy Place, Box 1188, New York, NY 10029, United States.
| |
Collapse
|
188
|
Lin C, Yao E, Zhang K, Jiang X, Croll S, Thompson-Peer K, Chuang PT. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis. eLife 2017; 6. [PMID: 28323616 PMCID: PMC5360446 DOI: 10.7554/elife.21130] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Branching morphogenesis is a fundamental program for tissue patterning. We show that active YAP, a key mediator of Hippo signaling, is distributed throughout the murine lung epithelium and loss of epithelial YAP severely disrupts branching. Failure to branch is restricted to regions where YAP activity is removed. This suggests that YAP controls local epithelial cell properties. In support of this model, mechanical force production is compromised and cell proliferation is reduced in Yap mutant lungs. We propose that defective force generation and insufficient epithelial cell number underlie the branching defects. Through genomic analysis, we also uncovered a feedback control of pMLC levels, which is critical for mechanical force production, likely through the direct induction of multiple regulators by YAP. Our work provides a molecular pathway that could control epithelial cell properties required for proper morphogenetic movement and pattern formation. DOI:http://dx.doi.org/10.7554/eLife.21130.001 Air enters our lungs through a system of airways that spread outwards from the windpipe like the branches of a tree. Before we are born, each branch is shaped by the organization and movement of cells that form the walls of the airways, called epithelial cells. This process requires the cells to communicate and coordinate with each other by receiving and/or sending chemical signals. One important system that epithelial cells use to communicate is called the Hippo pathway, which uses a molecule called YAP to execute received messages. Exactly how YAP helps airways in the lungs to develop was not well understood. By studying developing mouse lungs, Lin et al. have now found that YAP is present in the epithelial cells of all developing airways. Inactivating YAP in specific parts of the lungs prevented the formation of new branches of the airway in just those regions that lacked YAP. This suggests that YAP is needed for airways to branch properly and form the extensive network present in healthy lungs. Further investigation using genomics approaches revealed that YAP regulates the activity of genes that control how epithelial cells divide and contract. Without YAP, fewer cells were produced and they were unable to produce the forces required to change shape and move to form airways. In particular, YAP controls the production of a modified form of a protein called phosphorylated myosin light chain (pMLC) through a regulatory pathway. The pMLC protein is critical for the cells to produce the mechanical forces that they need to be able to contract correctly. Overall, the results presented by Lin et al. suggest that YAP controls the properties of the epithelial cells to enable them to form new airway branches. Branched structures also form in a number of other organs, and the mechanisms that cause these structures to form are thought to be similar to those that form the airways. Lin et al.’s work could therefore help us to understand how organs develop more generally. DOI:http://dx.doi.org/10.7554/eLife.21130.002
Collapse
Affiliation(s)
- Chuwen Lin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Xuan Jiang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Stacey Croll
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Katherine Thompson-Peer
- Department of Physiology, Howard Hughes Medical institute, University of California, San Francisco, San Francisco, United States
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
189
|
Abstract
Nuclear receptors are a family of transcription factors that can be activated by lipophilic ligands. They are fundamental regulators of development, reproduction, and energy metabolism. In bone, nuclear receptors enable bone cells, including osteoblasts, osteoclasts, and osteocytes, to sense their dynamic microenvironment and maintain normal bone development and remodeling. Our views of the molecular mechanisms in this process have advanced greatly in the past decade. Drugs targeting nuclear receptors are widely used in the clinic for treating patients with bone disorders such as osteoporosis by modulating bone formation and resorption rates. Deficiency in the natural ligands of certain nuclear receptors can cause bone loss; for example, estrogen loss in postmenopausal women leads to osteoporosis and increases bone fracture risk. In contrast, excessive ligands of other nuclear receptors, such as glucocorticoids, can also be detrimental to bone health. Nonetheless, the ligand-induced osteoprotective effects of many other nuclear receptors, e.g., vitamin D receptor, are still in debate and require further characterizations. This review summarizes previous studies on the roles of nuclear receptors in bone homeostasis and incorporates the most recent findings. The advancement of our understanding in this field will help researchers improve the applications of agonists, antagonists, and selective modulators of nuclear receptors for therapeutic purposes; in particular, determining optimal pharmacological drug doses, preventing side effects, and designing new drugs that are more potent and specific.
Collapse
|
190
|
Taniguchi Y, Kawata M, Ho Chang S, Mori D, Okada K, Kobayashi H, Sugita S, Hosaka Y, Inui H, Taketomi S, Yano F, Ikeda T, Akiyama H, Mills AA, Chung UI, Tanaka S, Kawaguchi H, Saito T. Regulation of Chondrocyte Survival in Mouse Articular Cartilage by p63. Arthritis Rheumatol 2017; 69:598-609. [DOI: 10.1002/art.39976] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Alea A. Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor; New York
| | | | | | | | | |
Collapse
|
191
|
Bolander J, Ji W, Leijten J, Teixeira LM, Bloemen V, Lambrechts D, Chaklader M, Luyten FP. Healing of a Large Long-Bone Defect through Serum-Free In Vitro Priming of Human Periosteum-Derived Cells. Stem Cell Reports 2017; 8:758-772. [PMID: 28196691 PMCID: PMC5355567 DOI: 10.1016/j.stemcr.2017.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 12/25/2022] Open
Abstract
Clinical translation of cell-based strategies for regenerative medicine demands predictable in vivo performance where the use of sera during in vitro preparation inherently limits the efficacy and reproducibility. Here, we present a bioinspired approach by serum-free pre-conditioning of human periosteum-derived cells, followed by their assembly into microaggregates simultaneously primed with bone morphogenetic protein 2 (BMP-2). Pre-conditioning resulted in a more potent progenitor cell population, while aggregation induced osteochondrogenic differentiation, further enhanced by BMP-2 stimulation. Ectopic implantation displayed a cascade of events that closely resembled the natural endochondral process resulting in bone ossicle formation. Assessment in a critical size long-bone defect in immunodeficient mice demonstrated successful bridging of the defect within 4 weeks, with active contribution of the implanted cells. In short, the presented serum-free process represents a biomimetic strategy, resulting in a cartilage tissue intermediate that, upon implantation, robustly leads to the healing of a large long-bone defect. Serum-free pre-conditioning affects the identity of periosteal progenitor cells A reduced CD105+, elevated CD34+, and upregulated BMP receptor expression was seen Priming by aggregation and BMP stimulation induced endochondral bone formation Validation in a critical size fracture model confirmed endochondral healing
Collapse
Affiliation(s)
- Johanna Bolander
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Box 813 13, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813 13, 3000 Leuven, Belgium
| | - Wei Ji
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Box 813 13, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813 13, 3000 Leuven, Belgium
| | - Jeroen Leijten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Box 813 13, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813 13, 3000 Leuven, Belgium; Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522NB Enschede, the Netherlands
| | - Liliana Moreira Teixeira
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Box 813 13, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813 13, 3000 Leuven, Belgium
| | - Veerle Bloemen
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813 13, 3000 Leuven, Belgium; Materials Technology TC, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
| | - Dennis Lambrechts
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Box 813 13, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813 13, 3000 Leuven, Belgium
| | - Malay Chaklader
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Box 813 13, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813 13, 3000 Leuven, Belgium
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Box 813 13, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813 13, 3000 Leuven, Belgium.
| |
Collapse
|
192
|
Hall MD, Murray CA, Valdez MJ, Perantoni AO. Mesoderm-specific Stat3 deletion affects expression of Sox9 yielding Sox9-dependent phenotypes. PLoS Genet 2017; 13:e1006610. [PMID: 28166224 PMCID: PMC5319801 DOI: 10.1371/journal.pgen.1006610] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 02/21/2017] [Accepted: 01/30/2017] [Indexed: 01/14/2023] Open
Abstract
To date, mutations within the coding region and translocations around the SOX9 gene both constitute the majority of genetic lesions underpinning human campomelic dysplasia (CD). While pathological coding-region mutations typically result in a non-functional SOX9 protein, little is known about what mechanism(s) controls normal SOX9 expression, and subsequently, which signaling pathways may be interrupted by alterations occurring around the SOX9 gene. Here, we report the identification of Stat3 as a key modulator of Sox9 expression in nascent cartilage and developing chondrocytes. Stat3 expression is predominant in tissues of mesodermal origin, and its conditional ablation using mesoderm-specific TCre, in vivo, causes dwarfism and skeletal defects characteristic of CD. Specifically, Stat3 loss results in the expansion of growth plate hypertrophic chondrocytes and deregulation of normal endochondral ossification in all bones examined. Conditional deletion of Stat3 with a Sox9Cre driver produces palate and tracheal irregularities similar to those described in Sox9+/- mice. Furthermore, mesodermal deletion of Stat3 causes global embryonic down regulation of Sox9 expression and function in vivo. Mechanistic experiments ex vivo suggest Stat3 can directly activate the expression of Sox9 by binding to its proximal promoter following activation. These findings illuminate a novel role for Stat3 in chondrocytes during skeletal development through modulation of a critical factor, Sox9. Importantly, they further provide the first evidence for the modulation of a gene product other than Sox9 itself which is capable of modeling pathological aspects of CD and underscore a potentially valuable therapeutic target for patients with the disorder.
Collapse
Affiliation(s)
- Michael D. Hall
- The Cancer and Developmental Biology Laboratory, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Caroline A. Murray
- The Cancer and Developmental Biology Laboratory, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Michael J. Valdez
- The Cancer and Developmental Biology Laboratory, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Alan O. Perantoni
- The Cancer and Developmental Biology Laboratory, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
193
|
Jing Y, Hinton RJ, Chan KS, Feng JQ. Co-localization of Cell Lineage Markers and the Tomato Signal. J Vis Exp 2016. [PMID: 28060349 DOI: 10.3791/54982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The cell lineage tracing system has been used predominantly in developmental biology studies. The use of Cre recombinase allows for the activation of the reporter in a specific cell line and all progeny. Here, we used the cell lineage tracing technique to demonstrate that chondrocytes directly transform into osteoblasts and osteocytes during long bone and mandibular condyle development using two kinds of Cre, Col10a1-Cre and Aggrecan-CreERT2 (Agg-CreERT2), crossed with Rosa26tdTomato. Both Col10 and aggrecan are well-recognized markers for chondrocytes. On this basis, we developed a new method-cell lineage tracing in conjunction with fluorescent immunohistochemistry-to define cell fate by analyzing the expression of specific cell markers. Runx2 (a marker for early-stage osteogenic cells) and Dentin matrix protein1 (DMP1; a marker for late-stage osteogenic cells) were used to identify chondrocyte-derived bone cells and their differentiation status. This combination not only broadens the application of cell lineage tracing, but also simplifies the generation of compound mice. More importantly, the number, location, and differentiation statuses of parent cell progeny are displayed simultaneously, providing more information than cell lineage tracing alone. In conclusion, the co-application of cell lineage tracing techniques and immunofluorescence is a powerful tool for investigating cell biology in vivo.
Collapse
Affiliation(s)
- Yan Jing
- Department of Biomedical Sciences, Texas A&M University College of Dentistry;
| | - Robert J Hinton
- Department of Biomedical Sciences, Texas A&M University College of Dentistry
| | - Kevin S Chan
- Department of Biomedical Sciences, Texas A&M University College of Dentistry
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry;
| |
Collapse
|
194
|
Yu T, Graf M, Renn J, Schartl M, Larionova D, Huysseune A, Witten PE, Winkler C. A vertebrate-specific and essential role for osterix in osteogenesis revealed by gene knockout in the teleost medaka. Development 2016; 144:265-271. [PMID: 27993982 DOI: 10.1242/dev.139550] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022]
Abstract
osterix (osx; sp7) encodes a zinc-finger transcription factor that controls osteoblast differentiation in mammals. Although identified in all vertebrate lineages, its role in non-mammalian bone formation remains elusive. Here, we show that an osx mutation in medaka results in severe bone defects and larval lethality. Pre-osteoblasts fail to differentiate leading to severe intramembranous and perichondral ossification defects. The notochord sheath mineralizes normally, supporting the idea of an osteoblast-independent mechanism for teleost vertebral centra formation. This study establishes a key role for Osx for bone formation in a non-mammalian species, and reveals conserved and non-conserved features in vertebrate bone formation.
Collapse
Affiliation(s)
- Tingsheng Yu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.,Centre for Bioimaging Sciences (CBIS), National University of Singapore, Singapore 117543, Singapore
| | - Martin Graf
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.,Centre for Bioimaging Sciences (CBIS), National University of Singapore, Singapore 117543, Singapore
| | - Joerg Renn
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.,Centre for Bioimaging Sciences (CBIS), National University of Singapore, Singapore 117543, Singapore
| | - Manfred Schartl
- Department of Physiological Chemistry, Biocenter, University of Würzburg, and Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg 97080, Germany.,Texas Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Daria Larionova
- Department of Biology, Research Group Evolutionary Developmental Biology, Ghent University, Ghent B-9000, Belgium
| | - Ann Huysseune
- Department of Biology, Research Group Evolutionary Developmental Biology, Ghent University, Ghent B-9000, Belgium
| | - Paul Eckhard Witten
- Department of Biology, Research Group Evolutionary Developmental Biology, Ghent University, Ghent B-9000, Belgium
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore .,Centre for Bioimaging Sciences (CBIS), National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
195
|
Lilly AJ, Costa G, Largeot A, Fadlullah MZH, Lie-A-Ling M, Lacaud G, Kouskoff V. Interplay between SOX7 and RUNX1 regulates hemogenic endothelial fate in the yolk sac. Development 2016; 143:4341-4351. [PMID: 27802172 DOI: 10.1242/dev.140970] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/12/2016] [Indexed: 02/01/2023]
Abstract
Endothelial to hematopoietic transition (EHT) is a dynamic process involving the shutting down of endothelial gene expression and switching on of hematopoietic gene transcription. Although the factors regulating EHT in hemogenic endothelium (HE) of the dorsal aorta have been relatively well studied, the molecular regulation of yolk sac HE remains poorly understood. Here, we show that SOX7 inhibits the expression of RUNX1 target genes in HE, while having no effect on RUNX1 expression itself. We establish that SOX7 directly interacts with RUNX1 and inhibits its transcriptional activity. Through this interaction we demonstrate that SOX7 hinders RUNX1 DNA binding as well as the interaction between RUNX1 and its co-factor CBFβ. Finally, we show by single-cell expression profiling and immunofluorescence that SOX7 is broadly expressed across the RUNX1+ yolk sac HE population compared with SOX17. Collectively, these data demonstrate for the first time how direct protein-protein interactions between endothelial and hematopoietic transcription factors regulate contrasting transcriptional programs during HE differentiation and EHT.
Collapse
Affiliation(s)
- Andrew J Lilly
- Stem Cell Hematopoiesis, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Guilherme Costa
- Stem Cell Hematopoiesis, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Anne Largeot
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Muhammad Z H Fadlullah
- Stem Cell Hematopoiesis, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Michael Lie-A-Ling
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Valerie Kouskoff
- Stem Cell Hematopoiesis, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| |
Collapse
|
196
|
Paul S, Crump JG. Lessons on skeletal cell plasticity from studying jawbone regeneration in zebrafish. BONEKEY REPORTS 2016; 5:853. [PMID: 27867499 DOI: 10.1038/bonekey.2016.81] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/06/2016] [Indexed: 02/05/2023]
Abstract
Three major mesenchymal cell types have important roles in determining the shapes of vertebrate animals: bone-producing osteoblasts, cartilage-producing chondrocytes, and fat-producing adipocytes. Although often considered discrete cell types, accumulating evidence is revealing mesenchymal cells of intermediate identities and interconversion of cell types. Such plasticity is particularly evident during adult skeletal repair. In this Review, we highlight recent work in zebrafish showing a role for hybrid cartilage-bone cells in large-scale regeneration of the adult jawbone, as well as their origins in the periosteum. An emerging theme is that the unique mechanical and signaling environment of the adult wound causes skeletal cell differentiation to diverge from the discrete lineages seen during development, which may aid in rapid and extensive regeneration of bone.
Collapse
Affiliation(s)
- Sandeep Paul
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine , Los Angeles, CA, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine , Los Angeles, CA, USA
| |
Collapse
|
197
|
Norrie JL, Li Q, Co S, Huang BL, Ding D, Uy JC, Ji Z, Mackem S, Bedford MT, Galli A, Ji H, Vokes SA. PRMT5 is essential for the maintenance of chondrogenic progenitor cells in the limb bud. Development 2016; 143:4608-4619. [PMID: 27827819 DOI: 10.1242/dev.140715] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022]
Abstract
During embryonic development, undifferentiated progenitor cells balance the generation of additional progenitor cells with differentiation. Within the developing limb, cartilage cells differentiate from mesodermal progenitors in an ordered process that results in the specification of the correct number of appropriately sized skeletal elements. The internal pathways by which these cells maintain an undifferentiated state while preserving their capacity to differentiate is unknown. Here, we report that the arginine methyltransferase PRMT5 has a crucial role in maintaining progenitor cells. Mouse embryonic buds lacking PRMT5 have severely truncated bones with wispy digits lacking joints. This novel phenotype is caused by widespread cell death that includes mesodermal progenitor cells that have begun to precociously differentiate into cartilage cells. We propose that PRMT5 maintains progenitor cells through its regulation of Bmp4 Intriguingly, adult and embryonic stem cells also require PRMT5 for maintaining pluripotency, suggesting that similar mechanisms might regulate lineage-restricted progenitor cells during organogenesis.
Collapse
Affiliation(s)
- Jacqueline L Norrie
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Qiang Li
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Swanie Co
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Bau-Lin Huang
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, USA
| | - Ding Ding
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room E3638, Baltimore, MD 21205, USA
| | - Jann C Uy
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| | - Zhicheng Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room E3638, Baltimore, MD 21205, USA
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, MD 21702, USA
| | - Mark T Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, 1808 Park Road 1C (P.O. Box 389), Smithville, TX 78957, USA
| | - Antonella Galli
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room E3638, Baltimore, MD 21205, USA
| | - Steven A Vokes
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway Stop A4800, Austin, TX 78712, USA
| |
Collapse
|
198
|
Wang T, Zhang X, Bikle DD. Osteogenic Differentiation of Periosteal Cells During Fracture Healing. J Cell Physiol 2016; 232:913-921. [PMID: 27731505 DOI: 10.1002/jcp.25641] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
Abstract
Five to ten percent of fractures fail to heal normally leading to additional surgery, morbidity, and altered quality of life. Fracture healing involves the coordinated action of stem cells primarily coming from the periosteum which differentiate into the chondrocytes and osteoblasts, forming first the soft (cartilage) callus followed by the hard (bone) callus. These stem cells are accompanied by a vascular invasion that appears critical for the differentiation process and which may enable the entry of osteoclasts necessary for the remodeling of the callus into mature bone. However, more research is needed to clarify the signaling events that activate the osteochondroprogenitor cells of periosteum and stimulate their differentiation into chondrocytes and osteoblasts. Ultimately a thorough understanding of the mechanisms for differential regulation of these osteochondroprogenitors will aid in the treatment of bone healing and the prevention of delayed union and nonunion of fractures. In this review, evidence supporting the concept that the periosteal cells are the major cell sources of skeletal progenitors for the fracture callus will be discussed. The osteogenic differentiation of periosteal cells manipulated by Wnt/β-catenin, TGF/BMP, Ihh/PTHrP, and IGF-1/PI3K-Akt signaling in fracture repair will be examined. The effect of physical (hypoxia and hyperoxia) and chemical factors (reactive oxygen species) as well as the potential coordinated regulatory mechanisms in the periosteal progenitor cells promoting osteogenic differentiation will also be discussed. Understanding the regulation of periosteal osteochondroprogenitors during fracture healing could provide insight into possible therapeutic targets and thereby help to enhance future fracture healing and bone tissue engineering approaches. J. Cell. Physiol. 232: 913-921, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tao Wang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York.,Endocrine Unit, VA Medical Center and University of California, San Francisco, California
| | - Xinping Zhang
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Daniel D Bikle
- Endocrine Unit, VA Medical Center and University of California, San Francisco, California
| |
Collapse
|
199
|
Articular cartilage and joint development from embryogenesis to adulthood. Semin Cell Dev Biol 2016; 62:50-56. [PMID: 27771363 DOI: 10.1016/j.semcdb.2016.10.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/18/2016] [Indexed: 11/20/2022]
Abstract
Within each synovial joint, the articular cartilage is uniquely adapted to bear dynamic compressive loads and shear forces throughout the joint's range of motion. Injury and age-related degeneration of the articular cartilage often lead to significant pain and disability, as the intrinsic repair capability of the tissue is extremely limited. Current surgical and biological treatment options have been unable to restore cartilage de novo. Before successful clinical cartilage restoration strategies can be developed, a better understanding of how the cartilage forms during normal development is essential. This review focuses on recent progress made towards addressing key questions about articular cartilage morphogenesis, including the origin of synovial joint progenitor cells, postnatal development and growth of the tissue. These advances have provided novel insight into fundamental questions about the developmental biology of articular cartilage, as well as potential cell sources that may participate in joint response to injury.
Collapse
|
200
|
Huang BL, Trofka A, Furusawa A, Norrie JL, Rabinowitz AH, Vokes SA, Mark Taketo M, Zakany J, Mackem S. An interdigit signalling centre instructs coordinate phalanx-joint formation governed by 5'Hoxd-Gli3 antagonism. Nat Commun 2016; 7:12903. [PMID: 27713395 PMCID: PMC5059757 DOI: 10.1038/ncomms12903] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 08/12/2016] [Indexed: 12/20/2022] Open
Abstract
The number of phalanges and joints are key features of digit 'identity' and are central to limb functionality and evolutionary adaptation. Prior chick work indicated that digit phalanges and their associated joints arise in a different manner than the more sparsely jointed long bones, and their identity is regulated by differential signalling from adjacent interdigits. Currently, there is no genetic evidence for this model, and the molecular mechanisms governing digit joint specification remain poorly understood. Using genetic approaches in mouse, here we show that functional 5'Hoxd-Gli3 antagonism acts indirectly, through Bmp signalling from the interdigital mesenchyme, to regulate specification of joint progenitors, which arise in conjunction with phalangeal precursors at the digit tip. Phalanx number, although co-regulated, can be uncoupled from joint specification. We propose that 5'Hoxd genes and Gli3 are part of an interdigital signalling centre that sets net Bmp signalling levels from different interdigits to coordinately regulate phalanx and joint formation.
Collapse
Affiliation(s)
- Bau-Lin Huang
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| | - Anna Trofka
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| | - Aki Furusawa
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| | - Jacqueline L. Norrie
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Adam H. Rabinowitz
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Steven A. Vokes
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - M. Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606–8501, Japan
| | - Jozsef Zakany
- Department of Genetics and Evolution, University of Geneva, Geneva 4 1211, Switzerland
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| |
Collapse
|