151
|
Zhang P, Crow J, Lella D, Zhou X, Samuel G, Godwin AK, Zeng Y. Ultrasensitive quantification of tumor mRNAs in extracellular vesicles with an integrated microfluidic digital analysis chip. LAB ON A CHIP 2018; 18:3790-3801. [PMID: 30474100 PMCID: PMC6310142 DOI: 10.1039/c8lc01071d] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Extracellular vesicles (EVs) present a promising liquid biopsy for cancer diagnosis. However, it remains a daunting challenge to quantitatively measure molecular contents of EVs including tumor-associated mRNAs. Herein, we report a configurable microwell-patterned microfluidic digital analysis platform combined with a dual-probe hybridization assay for PCR-free, single-molecule detection of specific mRNAs in EVs. The microwell array in our device is configurable between the flow-through assay mode for enhanced hybridization capture and tagging of mRNAs and the digital detection mode based on femtoliter-scale enzymatic signal amplification for single-molecule counting of surface-bound targets. Furthermore, a dual-probe hybridization assay has been developed to enhance the sensitivity of the digital single-molecule detection of EV mRNAs. Combining the merits of the chip design and the dual-probe digital mRNA hybridization assay, the integrated microfluidic system has been demonstrated to afford quantitative detection of synthetic GAPDH mRNA with a LOD as low as 20 aM. Using this technology, we quantified the level of GAPDH and EWS-FLI1 mRNAs in EVs derived from two cell lines of peripheral primitive neuroectodermal tumor (PNET), CHLA-9 and CHLA-258. Our measurements detected 64.6 and 43.5 copies of GAPDH mRNA and 6.5 and 0.277 copies of EWS-FLI1 fusion transcripts per 105 EVs derived from CHLA-9 and CHLA-258 cells, respectively. To our knowledge, this is the first demonstration of quantitative measurement of EWS-FLI1 mRNA copy numbers in Ewing Sarcoma (EWS)-derived EVs. These results highlight the ultralow frequency of tumor-specific mRNA markers in EVs and the necessity of developing highly sensitive methods for analysis of EV mRNAs. The microfluidic digital mRNA analysis platform presented here would provide a useful tool to facilitate quantitative analysis of tumor-associated EV mRNAs for liquid biopsy-based cancer diagnosis and monitoring.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Chemistry, University of Kansas, Lawrence, KS USA
| | - Jennifer Crow
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Divya Lella
- Department of Chemistry, University of Kansas, Lawrence, KS USA
| | - Xin Zhou
- Department of Chemistry, University of Kansas, Lawrence, KS USA
| | - Glenson Samuel
- Division of Hematology Oncology and Bone Marrow Transplantation, Children’s Mercy Hospitals & Clinics, Kansas City, MO, USA
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Cancer Center, Kansas City, KS, USA
| | - Yong Zeng
- Department of Chemistry, University of Kansas, Lawrence, KS USA
- University of Kansas Cancer Center, Kansas City, KS, USA
| |
Collapse
|
152
|
Li M, van Zee M, Riche CT, Tofig B, Gallaher SD, Merchant SS, Damoiseaux R, Goda K, Di Carlo D. A Gelatin Microdroplet Platform for High-Throughput Sorting of Hyperproducing Single-Cell-Derived Microalgal Clones. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803315. [PMID: 30369052 DOI: 10.1002/smll.201803315] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/06/2018] [Indexed: 05/08/2023]
Abstract
Microalgae are an attractive feedstock organism for sustainable production of biofuels, chemicals, and biomaterials, but the ability to rationally engineer microalgae to enhance production has been limited. To enable the evolution-based selection of new hyperproducing variants of microalgae, a method is developed that combines phase-transitioning monodisperse gelatin hydrogel droplets with commercial flow cytometric instruments for high-throughput screening and selection of clonal populations of cells with desirable properties, such as high lipid productivity per time traced over multiple cell cycles. It is found that gelatin microgels enable i) the growth and metabolite (e.g., chlorophyll and lipids) production of single microalgal cells within the compartments, ii) infusion of fluorescent reporter molecules into the hydrogel matrices following a sol-gel transition, iii) selection of high-producing clonal populations of cells using flow cytometry, and iv) cell recovery under mild conditions, enabling regrowth after sorting. This user-friendly method is easily integratable into directed cellular evolution pipelines for strain improvement and can be adopted for other applications that require high-throughput processing, e.g., cellular secretion phenotypes and intercellular interactions.
Collapse
Affiliation(s)
- Ming Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- School of Engineering, Macquarie University, Sydney, NSW, 2122, Australia
| | - Mark van Zee
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Carson T Riche
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bobby Tofig
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sean D Gallaher
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Robert Damoiseaux
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular and Medicinal Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Keisuke Goda
- Department of Chemistry, University of Tokyo, Tokyo, 113-8655, Japan
- Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan
- Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
153
|
Sugiyama H, Toyota T. Toward Experimental Evolution with Giant Vesicles. Life (Basel) 2018; 8:life8040053. [PMID: 30384503 PMCID: PMC6316375 DOI: 10.3390/life8040053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 01/19/2023] Open
Abstract
Experimental evolution in chemical models of cells could reveal the fundamental mechanisms of cells today. Various chemical cell models, water-in-oil emulsions, oil-on-water droplets, and vesicles have been constructed in order to conduct research on experimental evolution. In this review, firstly, recent studies with these candidate models are introduced and discussed with regards to the two hierarchical directions of experimental evolution (chemical evolution and evolution of a molecular self-assembly). Secondly, we suggest giant vesicles (GVs), which have diameters larger than 1 µm, as promising chemical cell models for studying experimental evolution. Thirdly, since technical difficulties still exist in conventional GV experiments, recent developments of microfluidic devices to deal with GVs are reviewed with regards to the realization of open-ended evolution in GVs. Finally, as a future perspective, we link the concept of messy chemistry to the promising, unexplored direction of experimental evolution in GVs.
Collapse
Affiliation(s)
- Hironori Sugiyama
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
154
|
Li X, Hu J, Easley CJ. Automated microfluidic droplet sampling with integrated, mix-and-read immunoassays to resolve endocrine tissue secretion dynamics. LAB ON A CHIP 2018; 18:2926-2935. [PMID: 30112543 PMCID: PMC6234046 DOI: 10.1039/c8lc00616d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A fully automated droplet generation and analysis device based on pressure driven push-up valves for precise pumping of fluid and volumetric metering has been developed for high resolution hormone secretion sampling and measurement. The device consists of a 3D-printer templated reservoir for single cells or single tissue culturing, a Y-shaped channel for reagents and sample mixing, a T-junction channel for droplet formation, a reference channel to overcome drifts in fluorescence signal, and a long droplet storage channel allowing incubation for homogeneous immunoassays. The droplets were made by alternating peristaltic pumping of aqueous and oil phases. Device operation was automated, giving precise control over several droplet parameters such as size, oil spacing, and ratio of sample and reference droplets. By integrating an antibody-oligonucleotide based homogeneous immunoassay on-chip, high resolution temporal sampling into droplets was combined with separation-free quantification of insulin secretion from single islets of Langerhans using direct optical readout from the droplets. Quantitative assays of glucose-stimulated insulin secretion were demonstrated at 15 second temporal resolution while detecting as low as 10 amol per droplet, revealing fast insulin oscillations that mirror well-known intracellular calcium signals. This droplet sampling and direct optical analysis approach effectively digitizes the secretory time record from cells into droplets, and the system should be generalizable to a variety of cells and tissue types.
Collapse
Affiliation(s)
- Xiangpeng Li
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | | | | |
Collapse
|
155
|
Sahore V, Doonan SR, Bailey RC. Droplet Microfluidics in Thermoplastics: Device Fabrication, Droplet Generation, and Content Manipulation using Integrated Electric and Magnetic Fields. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2018; 10:4264-4274. [PMID: 30886651 PMCID: PMC6419776 DOI: 10.1039/c8ay01474d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have developed droplet microfluidic devices in thermoplastics and demonstrated the integration of key functional components that not only facilitate droplet generation, but also include electric field-assisted reagent injection, droplet splitting, and magnetic field-assisted bead extraction. We manufactured devices in poly(methyl methacrylate) and cyclic olefin polymer using a hot-embossing procedure employing silicon masters fabricated via photolithography and deep reactive ion etching techniques. Device characterization showed robust fabrication with uniform feature transfer and good embossing yield. Channel modification with heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane increased device hydrophobicity, allowing stable generation of 330-pL aqueous droplets using T-junction configuration. Picoinjector and K-channel motifs were also both successfully integrated into the thermoplastic devices, allowing for robust control over electric field-assisted reagent injection, as well as droplet splitting with the K-channel. A magnetic field was also introduced to the K-channel geometry to allow for selective concentration of magnetic beads while decanting waste volume through droplet splitting. To show the ability to link multiple, modular features in a single thermoplastic device, we integrated droplet generation, reagent injection, and magnetic field-assisted droplet splitting on a single device, realizing a magnetic bead washing scheme to selectively exchange the fluid composition around the magnetic particles, analogous to the washing steps in many common biochemical assays. Finally, integrated devices were used to perform a proof-of-concept in-droplet β-galactosidase enzymatic assay combining enzyme-magnetic bead containing droplet generation, resorufin-β-D-galactopyranoside substrate injection, enzyme-substrate reaction, and enzyme-magnetic bead washing. By integrating multiple droplet operations and actuation forces we have demonstrated the potential of thermoplastic droplet microfluidic devices for complex (bio)chemical analysis, and we envision a path toward mass fabrication of droplet microfluidic devices for a range of (bio)chemical applications.
Collapse
|
156
|
Schwille P, Spatz J, Landfester K, Bodenschatz E, Herminghaus S, Sourjik V, Erb TJ, Bastiaens P, Lipowsky R, Hyman A, Dabrock P, Baret JC, Vidakovic-Koch T, Bieling P, Dimova R, Mutschler H, Robinson T, Tang TYD, Wegner S, Sundmacher K. MaxSynBio: Wege zur Synthese einer Zelle aus nicht lebenden Komponenten. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802288] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Petra Schwille
- Zelluläre und molekulare Biophysik; MPI für Biochemie; Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Joachim Spatz
- MPI für medizinische Forschung; Jahnstraße 29 69120 Heidelberg Deutschland
| | | | - Eberhard Bodenschatz
- MPI für Dynamik und Selbstorganisation; Am Fassberg 17 37077 Göttingen Deutschland
| | - Stephan Herminghaus
- MPI für Dynamik und Selbstorganisation; Am Fassberg 17 37077 Göttingen Deutschland
| | - Victor Sourjik
- MPI für terrestrische Mikrobiologie; Karl-von-Frisch-Str. 16 35043 Marburg Deutschland
| | - Tobias J. Erb
- MPI für terrestrische Mikrobiologie; Karl-von-Frisch-Str. 16 35043 Marburg Deutschland
| | - Philippe Bastiaens
- MPI für molekulare Physiologie; Otto-Hahn-Str. 11 44227 Dortmund Deutschland
| | - Reinhard Lipowsky
- MPI für Kolloide und Grenzflächen; Wissenschaftspark Golm 14424 Potsdam Deutschland
| | - Anthony Hyman
- MPI für molekulare Zellbiologie und Genetik; Pfotenhauerstraße 108 01307 Dresden Deutschland
| | - Peter Dabrock
- Friedrich-Alexander-Universität Erlangen-Nürnberg; Fachbereich Theologie; Kochstraße 6 91054 Erlangen Deutschland
| | - Jean-Christophe Baret
- University of Bordeaux - Centre de Recherches Paul Pascal; 115 Avenue Schweitze 33600 Pessac Frankreich
| | - Tanja Vidakovic-Koch
- MPI für Dynamik komplexer technischer Systeme; Sandtorstraße 1 39106 Magdeburg Deutschland
| | - Peter Bieling
- MPI für molekulare Physiologie; Otto-Hahn-Str. 11 44227 Dortmund Deutschland
| | - Rumiana Dimova
- MPI für Kolloide und Grenzflächen; Wissenschaftspark Golm 14424 Potsdam Deutschland
| | - Hannes Mutschler
- Zelluläre und molekulare Biophysik; MPI für Biochemie; Am Klopferspitz 18 82152 Martinsried Deutschland
| | - Tom Robinson
- MPI für Kolloide und Grenzflächen; Wissenschaftspark Golm 14424 Potsdam Deutschland
| | - T.-Y. Dora Tang
- MPI für molekulare Zellbiologie und Genetik; Pfotenhauerstraße 108 01307 Dresden Deutschland
| | - Seraphine Wegner
- MPI für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Kai Sundmacher
- MPI für Dynamik komplexer technischer Systeme; Sandtorstraße 1 39106 Magdeburg Deutschland
| |
Collapse
|
157
|
Schwille P, Spatz J, Landfester K, Bodenschatz E, Herminghaus S, Sourjik V, Erb TJ, Bastiaens P, Lipowsky R, Hyman A, Dabrock P, Baret JC, Vidakovic-Koch T, Bieling P, Dimova R, Mutschler H, Robinson T, Tang TYD, Wegner S, Sundmacher K. MaxSynBio: Avenues Towards Creating Cells from the Bottom Up. Angew Chem Int Ed Engl 2018; 57:13382-13392. [PMID: 29749673 DOI: 10.1002/anie.201802288] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/03/2018] [Indexed: 12/18/2022]
Abstract
A large German research consortium mainly within the Max Planck Society ("MaxSynBio") was formed to investigate living systems from a fundamental perspective. The research program of MaxSynBio relies solely on the bottom-up approach to synthetic biology. MaxSynBio focuses on the detailed analysis and understanding of essential processes of life through modular reconstitution in minimal synthetic systems. The ultimate goal is to construct a basic living unit entirely from non-living components. The fundamental insights gained from the activities in MaxSynBio could eventually be utilized for establishing a new generation of biotechnological processes, which would be based on synthetic cell constructs that replace the natural cells currently used in conventional biotechnology.
Collapse
Affiliation(s)
- Petra Schwille
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Joachim Spatz
- MPI for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany
| | | | - Eberhard Bodenschatz
- MPI for Dynamics and Self-Organization, Am Fassberg 17, 37077, Göttingen, Germany
| | - Stephan Herminghaus
- MPI for Dynamics and Self-Organization, Am Fassberg 17, 37077, Göttingen, Germany
| | - Victor Sourjik
- MPI for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Tobias J Erb
- MPI for Terrestrial Microbiology, Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Philippe Bastiaens
- MPI for Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Reinhard Lipowsky
- MPI of Colloids and Interfaces, Wissenschaftspark Golm, 14424, Potsdam, Germany
| | - Anthony Hyman
- MPI of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Peter Dabrock
- Friedrich-Alexander University Erlangen-Nuremberg, Department of Theology, Kochstraße 6, 91054, Erlangen, Germany
| | - Jean-Christophe Baret
- University of Bordeaux -Centre de Recherches Paul Pascal, 115 Avenue Schweitze, 33600, Pessac, France
| | - Tanja Vidakovic-Koch
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Peter Bieling
- MPI for Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Rumiana Dimova
- MPI of Colloids and Interfaces, Wissenschaftspark Golm, 14424, Potsdam, Germany
| | - Hannes Mutschler
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Tom Robinson
- MPI of Colloids and Interfaces, Wissenschaftspark Golm, 14424, Potsdam, Germany
| | - T-Y Dora Tang
- MPI of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany
| | - Seraphine Wegner
- MPI for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Kai Sundmacher
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| |
Collapse
|
158
|
Detection of antibiotics synthetized in microfluidic picolitre-droplets by various actinobacteria. Sci Rep 2018; 8:13087. [PMID: 30166560 PMCID: PMC6117260 DOI: 10.1038/s41598-018-31263-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
The natural bacterial diversity is regarded as a treasure trove for natural products. However, accessing complex cell mixtures derived from environmental samples in standardized high-throughput screenings is challenging. Here, we present a droplet-based microfluidic platform for ultrahigh-throughput screenings able to directly harness the diversity of entire microbial communities. This platform combines extensive cultivation protocols in aqueous droplets starting from single cells or spores with modular detection methods for produced antimicrobial compounds. After long-term incubation for bacterial cell propagation and metabolite production, we implemented a setup for mass spectrometric analysis relying on direct electrospray ionization and injection of single droplets. Even in the presence of dense biomass we show robust detection of streptomycin on the single droplet level. Furthermore, we developed an ultrahigh-throughput screening based on a functional whole-cell assay by picoinjecting reporter cells into droplets. Depending on the survival of reporter cells, droplets were selected for the isolation of producing bacteria, which we demonstrated for a microbial soil community. The established ultrahigh-throughput screening for producers of antibiotics in miniaturized bioreactors in which diverse cell mixtures can be screened on the single cell level is a promising approach to find novel antimicrobial scaffolds.
Collapse
|
159
|
Xu Y, Lee JH, Li Z, Wang L, Ordog T, Bailey RC. A droplet microfluidic platform for efficient enzymatic chromatin digestion enables robust determination of nucleosome positioning. LAB ON A CHIP 2018; 18:2583-2592. [PMID: 30046796 PMCID: PMC6103843 DOI: 10.1039/c8lc00599k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The first step in chromatin-based epigenetic assays involves the fragmentation of chromatin to facilitate precise genomic localization of the associated DNA. Here, we report the development of a droplet microfluidic device that can rapidly and efficiently digest chromatin into single nucleosomes starting from whole-cell input material offering simplified and automated processing compared to conventional manual preparation. We demonstrate the digestion of chromatin from 2500-125 000 Jurkat cells using micrococcal nuclease for enzymatic processing. We show that the yield of mononucleosomal DNA can be optimized by controlling enzyme concentration and incubation time, with resulting mononucleosome yields exceeding 80%. Bioinformatic analysis of sequenced mononucleosomal DNA (MNase-seq) indicated a high degree of reproducibility and concordance (97-99%) compared with conventionally processed preparations. Our results demonstrate the feasibility of robust and automated nucleosome preparation using a droplet microfluidic platform for nucleosome positioning and downstream epigenomic assays.
Collapse
Affiliation(s)
- Yi Xu
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | |
Collapse
|
160
|
Haller B, Göpfrich K, Schröter M, Janiesch JW, Platzman I, Spatz JP. Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems. LAB ON A CHIP 2018; 18:2665-2674. [PMID: 30070293 DOI: 10.1039/c8lc00582f] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this manuscript, we introduce a simple, off-the-shelf approach for the on-demand creation of giant unilamellar vesicles (GUVs) or multicompartment synthetic cell model systems in a high-throughput manner. To achieve this, we use microfluidics to encapsulate small unilamellar vesicles in block-copolymer surfactant-stabilized water-in-oil droplets. By tuning the charge of the inner droplet interface, adsorption of lipids can be either inhibited, leading to multicompartment systems, or induced, leading to the formation of droplet-stabilized GUVs. To control the charge density, we formed droplets using different molar ratios of an uncharged PEG-based fluorosurfactant and a negatively-charged PFPE carboxylic acid fluorosurfactant (Krytox). We systematically studied the transition from a multicompartment system to 3D-supported lipid bilayers as a function of lipid charge and Krytox concentration using confocal fluorescence microscopy, cryo-scanning electron microscopy and interfacial tension measurements. Moreover, we demonstrate a simple method to release GUVs from the surfactant shell and the oil phase into a physiological buffer - providing a remarkably high-yield approach for GUV formation. This widely applicable microfluidics-based technology will increase the scope of GUVs as adaptable cell-like compartments in bottom-up synthetic biology applications and beyond.
Collapse
Affiliation(s)
- Barbara Haller
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
161
|
Postek W, Kaminski TS, Garstecki P. A precise and accurate microfluidic droplet dilutor. Analyst 2018; 142:2901-2911. [PMID: 28676870 DOI: 10.1039/c7an00679a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We demonstrate a microfluidic system for the precise (coefficient of variance between repetitions below 4%) and highly accurate (average difference from two-fold dilution below 1%) serial dilution of solutions inside droplets with a volume of ca. 1 μl. The two-fold dilution series can be prepared with the correlation coefficient as high as R2 = 0.999. The technique that we here describe uses hydrodynamic traps to precisely meter every droplet used in subsequent dilutions. We use only one metering trap to meter each and every droplet involved in the process of preparation of the dilution series. This eliminates the error of metering that would arise from the finite fidelity of fabrication of multiple metering traps. Metering every droplet at the same trap provides for high reproducibility of the volumes of the droplets, and thus high reproducibility of dilutions. We also present a device and method to precisely and accurately dilute one substance and simultaneously maintain the concentration of another substance throughout the dilution series without mixing their stock solutions. We compare the here-described precise and accurate dilution systems with a simple microdroplet dilutor that comprises several traps - each trap for a subsequent dilution. We describe the effect of producing more reproducible dilutions in a simple microdroplet dilutor thanks to the application of an alternating electric field.
Collapse
Affiliation(s)
- W Postek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | |
Collapse
|
162
|
Du L, Li Y, Gao R, Yin J, Shen C, Wang Y, Luo G. Controllability and flexibility in particle manufacturing of a segmented microfluidic device with passive picoinjection. AIChE J 2018. [DOI: 10.1002/aic.16356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Le Du
- The State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Membrane Science and Technology; Beijing University of Chemical Technology; Beijing 100029 China
| | - Yang Li
- The State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Membrane Science and Technology; Beijing University of Chemical Technology; Beijing 100029 China
| | - Ruomei Gao
- The State Key Lab of Chemical Engineering, Dept. of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Jiabin Yin
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology; Beijing University of Chemical Technology; Beijing 100029 China
| | - Chun Shen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology; Beijing University of Chemical Technology; Beijing 100029 China
| | - Yujun Wang
- The State Key Lab of Chemical Engineering, Dept. of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Guangsheng Luo
- The State Key Lab of Chemical Engineering, Dept. of Chemical Engineering; Tsinghua University; Beijing 100084 China
| |
Collapse
|
163
|
Stephenson W. High-throughput magnetic particle washing in nanoliter droplets using serial injection and splitting. MICRO AND NANO SYSTEMS LETTERS 2018. [DOI: 10.1186/s40486-018-0065-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
164
|
Beneyton T, Krafft D, Bednarz C, Kleineberg C, Woelfer C, Ivanov I, Vidaković-Koch T, Sundmacher K, Baret JC. Out-of-equilibrium microcompartments for the bottom-up integration of metabolic functions. Nat Commun 2018; 9:2391. [PMID: 29921909 PMCID: PMC6008305 DOI: 10.1038/s41467-018-04825-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
Self-sustained metabolic pathways in microcompartments are the corner-stone for living systems. From a technological viewpoint, such pathways are a mandatory prerequisite for the reliable design of artificial cells functioning out-of-equilibrium. Here we develop a microfluidic platform for the miniaturization and analysis of metabolic pathways in man-made microcompartments formed of water-in-oil droplets. In a modular approach, we integrate in the microcompartments a nicotinamide adenine dinucleotide (NAD)-dependent enzymatic reaction and a NAD-regeneration module as a minimal metabolism. We show that the microcompartments sustain a metabolically active state until the substrate is fully consumed. Reversibly, the external addition of the substrate reboots the metabolic activity of the microcompartments back to an active state. We therefore control the metabolic state of thousands of independent monodisperse microcompartments, a step of relevance for the construction of large populations of metabolically active artificial cells.
Collapse
Affiliation(s)
- Thomas Beneyton
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, 115 Avenue Schweitzer, 33600, Pessac, France
| | - Dorothee Krafft
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Claudia Bednarz
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Christin Kleineberg
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Christian Woelfer
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Ivan Ivanov
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Tanja Vidaković-Koch
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Kai Sundmacher
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
- Otto-von-Guericke University, Process Systems Engineering, Universitätsplatz 2, 39106, Magdeburg, Germany
| | | |
Collapse
|
165
|
Chang JC, Swank Z, Keiser O, Maerkl SJ, Amstad E. Microfluidic device for real-time formulation of reagents and their subsequent encapsulation into double emulsions. Sci Rep 2018; 8:8143. [PMID: 29802303 PMCID: PMC5970246 DOI: 10.1038/s41598-018-26542-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/11/2018] [Indexed: 01/04/2023] Open
Abstract
Emulsion drops are often employed as picoliter-sized containers to perform screening assays. These assays usually entail the formation of drops encompassing discrete objects such as cells or microparticles and reagents to study interactions between the different encapsulants. Drops are also used to screen influences of reagent concentrations on the final product. However, these latter assays are less frequently performed because it is difficult to change the reagent concentration over a wide range and with high precision within a single experiment. In this paper, we present a microfluidic double emulsion drop maker containing pneumatic valves that enable real-time formulation of different reagents using pulse width modulation and consequent encapsulation of the mixed solutions. This device can produce drops from reagent volumes as low as 10 µL with minimal sample loss, thereby enabling experiments that would be prohibitively expensive using drop generators that do not contain valves. We employ this device to monitor the kinetics of the cell-free synthesis of green fluorescent proteins inside double emulsions. To demonstrate the potential of this device for real-time formulation, we perform DNA titration experiments to test the influence of DNA concentration on the amount of green fluorescence protein produced in double emulsions by a coupled cell-free transcription / translation system.
Collapse
Affiliation(s)
- Jui-Chia Chang
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zoe Swank
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Oliver Keiser
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sebastian J Maerkl
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Esther Amstad
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
166
|
Siltanen CA, Cole RH, Poust S, Chao L, Tyerman J, Kaufmann-Malaga B, Ubersax J, Gartner ZJ, Abate AR. An Oil-Free Picodrop Bioassay Platform for Synthetic Biology. Sci Rep 2018; 8:7913. [PMID: 29784937 PMCID: PMC5962535 DOI: 10.1038/s41598-018-25577-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/19/2018] [Indexed: 01/14/2023] Open
Abstract
Droplet microfluidics enables massively-parallel analysis of single cells, biomolecules, and chemicals, making it valuable for high-throughput screens. However, many hydrophobic analytes are soluble in carrier oils, preventing their quantitative analysis with the method. We apply Printed Droplet Microfluidics to construct defined reactions with chemicals and cells incubated under air on an open array. The method interfaces with most bioanalytical tools and retains hydrophobic compounds in compartmentalized reactors, allowing their quantitation.
Collapse
Affiliation(s)
- Christian A Siltanen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Russell H Cole
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Sean Poust
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | | | - Jabus Tyerman
- Amyris, Inc. Emeryville, California, USA.,Delv Bio, Sacramento, California, USA
| | | | | | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.,Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA. .,Chan Zuckerberg Biohub, San Francisco, California, USA.
| |
Collapse
|
167
|
Lee JJ, Berthier J, Brakke KA, Dostie AM, Theberge AB, Berthier E. Droplet Behavior in Open Biphasic Microfluidics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5358-5366. [PMID: 29692173 DOI: 10.1021/acs.langmuir.8b00380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Capillary open microsystems are attractive and increasingly used in biotechnology, biology, and diagnostics as they allow simple and reliable control of fluid flows. In contrast to closed microfluidic systems, however, two-phase capillary flows in open microfluidics have remained largely unexplored. In this work, we present the theoretical basis and experimental demonstration of a spontaneous capillary flow (SCF) of two-phase systems in open microchannels. Analytical results show that an immiscible plug placed in an open channel can never stop the SCF of a fluid in a uniform cross-section microchannel. Numerical investigations of the morphologies of immiscible plugs in a capillary flow reveal three different possible behaviors. Finally, the predicted behaviors of the plugs are demonstrated experimentally, revealing an effect of inertial forces on the plug behavior. A model for predicting plug behaviors in SCFs is proposed, enabling the design of open microfluidic droplet-based systems that are simple to fabricate and use. The open-channel approach to droplet-based microfluidics has the potential to enable applications in which each drop can be accessed at any time and any location with simple pipettes or other fluid dispensing systems.
Collapse
Affiliation(s)
- Jing J Lee
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| | - Jean Berthier
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
- University of Grenoble Alpes , F-38000 Grenoble , France
- CEA, LETI , MlNATEC Campus , F-38054 Grenoble , France
| | - Kenneth A Brakke
- Department of Mathematics , Susquehanna University , Selinsgrove , Pennsylvania 17870 , United States
| | - Ashley M Dostie
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| | - Ashleigh B Theberge
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
- Department of Urology , University of Washington School of Medicine , Seattle , Washington 98105 , United States
| | - Erwin Berthier
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195 , United States
| |
Collapse
|
168
|
Gu T, Zheng C, He F, Zhang Y, Khan SA, Hatton TA. Electrically controlled mass transport into microfluidic droplets from nanodroplet carriers with application in controlled nanoparticle flow synthesis. LAB ON A CHIP 2018; 18:1330-1340. [PMID: 29619469 DOI: 10.1039/c8lc00114f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microfluidic droplets have been applied extensively as reaction vessels in a wide variety of chemical and biological applications. Typically, once the droplets are formed in a flow channel, it is a challenge to add new chemicals to the droplets for subsequent reactions in applications involving multiple processing steps. Here, we present a novel and versatile method that employs a high strength alternating electrical field to tunably transfer chemicals into microfluidic droplets using nanodroplets as chemical carriers. We show that the use of both continuous and cyclic burst square wave signals enables extremely sensitive control over the total amount of chemical added and, equally importantly, the rate of addition of the chemical from the nanodroplet carriers to the microfluidic droplets. An a priori theoretical model was developed to model the mass transport process under the convection-controlled scenario and compared with experimental results. We demonstrate an application of this method in the controlled preparation of gold nanoparticles by reducing chloroauric acid pre-loaded in microfluidic droplets with l-ascorbic acid supplied from miniemulsion nanodroplets. Under different field strengths, l-ascorbic acid is supplied in controllable quantities and addition rates, rendering the particle size and size distribution tunable. Finally, this method also enables multistep synthesis by the stepwise supply of miniemulsions containing different chemical species. We highlight this with a first report of a three-step Au-Pd core-shell nanoparticle synthesis under continuous flow conditions.
Collapse
Affiliation(s)
- Tonghan Gu
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Cao Zheng
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Fan He
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Yunfei Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Saif A Khan
- National University of Singapore, Department of Chemical and Bimolecular Engineering, 4 Engineering Drive 4 E5-02-28, 117576 Singapore.
| | - T Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
169
|
Abstract
How do the cells in our body reconfigure their shape to achieve complex tasks like migration and mitosis, yet maintain their shape in response to forces exerted by, for instance, blood flow and muscle action? Cell shape control is defined by a delicate mechanical balance between active force generation and passive material properties of the plasma membrane and the cytoskeleton. The cytoskeleton forms a space-spanning fibrous network comprising three subsystems: actin, microtubules and intermediate filaments. Bottom-up reconstitution of minimal synthetic cells where these cytoskeletal subsystems are encapsulated inside a lipid vesicle provides a powerful avenue to dissect the force balance that governs cell shape control. Although encapsulation is technically demanding, a steady stream of advances in this technique has made the reconstitution of shape-changing minimal cells increasingly feasible. In this topical review we provide a route-map of the recent advances in cytoskeletal encapsulation techniques and outline recent reports that demonstrate shape change phenomena in simple biomimetic vesicle systems. We end with an outlook toward the next steps required to achieve more complex shape changes with the ultimate aim of building a fully functional synthetic cell with the capability to autonomously grow, divide and move.
Collapse
Affiliation(s)
- Yuval Mulla
- These authors contributed equally to this work
| | | | | |
Collapse
|
170
|
Göpfrich K, Platzman I, Spatz JP. Mastering Complexity: Towards Bottom-up Construction of Multifunctional Eukaryotic Synthetic Cells. Trends Biotechnol 2018; 36:938-951. [PMID: 29685820 PMCID: PMC6100601 DOI: 10.1016/j.tibtech.2018.03.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
With the ultimate aim to construct a living cell, bottom-up synthetic biology strives to reconstitute cellular phenomena in vitro - disentangled from the complex environment of a cell. Recent work towards this ambitious goal has provided new insights into the mechanisms governing life. With the fast-growing library of functional modules for synthetic cells, their classification and integration become increasingly important. We discuss strategies to reverse-engineer and recombine functional parts for synthetic eukaryotes, mimicking the characteristics of nature's own prototype. Particularly, we focus on large outer compartments, complex endomembrane systems with organelles, and versatile cytoskeletons as hallmarks of eukaryotic life. Moreover, we identify microfluidics and DNA nanotechnology as two technologies that can integrate these functional modules into sophisticated multifunctional synthetic cells.
Collapse
Affiliation(s)
- Kerstin Göpfrich
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany; Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany.
| | - Ilia Platzman
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany; Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany.
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany; Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany.
| |
Collapse
|
171
|
Axt B, Hsieh YF, Nalayanda D, Wang TH. Impedance feedback control of microfluidic valves for reliable post processing combinatorial droplet injection. Biomed Microdevices 2018; 19:61. [PMID: 28681238 DOI: 10.1007/s10544-017-0203-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Droplet microfluidics has found use in many biological assay applications as a means of high-throughput sample processing. One of the challenges of the technology, however, is the ability to control and merge droplets on-demand as they flow through the microdevices. It is in the interest of developing lab-on-chip devices to be able to combinatorically program additive mixing steps for more complex multistep and multiplex assays. Existing technologies to merge droplets are either passive in nature or require highly predictable droplet movement for feedforward control, making them vulnerable to errors during high throughput operation. In this paper, we describe and demonstrate a microfluidic valve-based device for the purpose of combinatorial droplet injection at any stage in a multistep assay. Microfluidic valves are used to robustly control fluid flow, droplet generation, and droplet mixing in the device on-demand, while on-chip impedance measurements taken in real time are used as feedback to accurately time the droplet injections. The presented system is contrasted to attempts without feedback, and is shown to be 100% reliable over long durations. Additionally, content detection and discretionary injections are explored and successfully executed.
Collapse
Affiliation(s)
- Brant Axt
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Clark Hall 118B, Baltimore, MD, 21218, USA
| | - Yi-Fan Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles Street, Shaffer Hall 200A, Baltimore, MD, 21218, USA
| | - Divya Nalayanda
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Clark Hall 118B, Baltimore, MD, 21218, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Clark Hall 118B, Baltimore, MD, 21218, USA. .,Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles Street, Shaffer Hall 200A, Baltimore, MD, 21218, USA.
| |
Collapse
|
172
|
Charmet J, Arosio P, Knowles TP. Microfluidics for Protein Biophysics. J Mol Biol 2018; 430:565-580. [DOI: 10.1016/j.jmb.2017.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/09/2023]
|
173
|
Abstract
We present a microfluidic chip that enables electrofusion of cells in microdroplets, with exchange of nuclear components. It is shown, to our knowledge for the first time, electrofusion of two HL60 cells, inside a microdroplet. This is the crucial intermediate step for controlled hybridoma formation where a B cell is electrofused with a myeloma cell. We use a microfluidic device consisting of a microchannel structure in PDMS bonded to a glass substrate through which droplets with two differently stained HL60 cells are transported. An array of six recessed platinum electrode pairs is used for electrofusion. When applying six voltage pulses of 2–3 V, the membrane electrical field is about 1 MV/cm for 1 ms. This results in electrofusion of these cells with a fusion yield of around 5%. The operation with individual cell pairs, the appreciable efficiency and the potential to operate in high-throughput (up to 500 cells sec−1) makes the microdroplet fusion technology a promising platform for cell electrofusion, which has the potential to compete with the conventional methods. Besides, this platform is not restricted to cell fusion but is also applicable to various other cell-based assays such as single cell analysis and differentiation assays.
Collapse
|
174
|
Zhu XD, Chu J, Wang YH. Advances in Microfluidics Applied to Single Cell Operation. Biotechnol J 2018; 13. [DOI: 10.1002/biot.201700416] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/11/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Xu-Dong Zhu
- National Engineering Centre for Biotechnology (Shanghai); College of Biotechnology; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Ju Chu
- National Engineering Centre for Biotechnology (Shanghai); College of Biotechnology; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| | - Yong-Hong Wang
- National Engineering Centre for Biotechnology (Shanghai); College of Biotechnology; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
175
|
Weiss M, Frohnmayer JP, Benk LT, Haller B, Janiesch JW, Heitkamp T, Börsch M, Lira RB, Dimova R, Lipowsky R, Bodenschatz E, Baret JC, Vidakovic-Koch T, Sundmacher K, Platzman I, Spatz JP. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. NATURE MATERIALS 2018; 17:89-96. [PMID: 29035355 DOI: 10.1038/nmat5005] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/12/2017] [Indexed: 05/21/2023]
Abstract
Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed 'droplet-stabilized giant unilamellar vesicles (dsGUVs)'. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.
Collapse
Affiliation(s)
- Marian Weiss
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Johannes Patrick Frohnmayer
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Lucia Theresa Benk
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Barbara Haller
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Jan-Willi Janiesch
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Thomas Heitkamp
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Rafael B Lira
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Rumiana Dimova
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Reinhard Lipowsky
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Eberhard Bodenschatz
- Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Jean-Christophe Baret
- Droplets, Membranes and Interfaces, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Soft Micro Systems, CNRS, Univ. Bordeaux, CRPP, UPR 8641, 115 Avenue Schweitzer, 33600 Pessac, France
| | - Tanja Vidakovic-Koch
- Process System Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Kai Sundmacher
- Process System Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
- Otto-von-Guericke University Magdeburg, Process Systems Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Ilia Platzman
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| |
Collapse
|
176
|
Tarn MD, Sikora SNF, Porter GCE, O’Sullivan D, Adams M, Whale TF, Harrison AD, Vergara-Temprado J, Wilson TW, Shim JU, Murray BJ. The study of atmospheric ice-nucleating particles via microfluidically generated droplets. MICROFLUIDICS AND NANOFLUIDICS 2018; 22:52. [PMID: 29720926 PMCID: PMC5915516 DOI: 10.1007/s10404-018-2069-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/05/2018] [Indexed: 05/10/2023]
Abstract
Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 103-106 ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK's annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies.
Collapse
Affiliation(s)
- Mark D. Tarn
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | | | - Grace C. E. Porter
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | - Daniel O’Sullivan
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | - Mike Adams
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | - Thomas F. Whale
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
| | | | - Jesús Vergara-Temprado
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- Present Address: Institute for Atmospheric and Climate Science, ETH Zürich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Theodore W. Wilson
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT UK
- Present Address: Owlstone Medical Ltd., 127 Science Park, Cambridge, CB4 0GD UK
| | - Jung-uk Shim
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT UK
| | | |
Collapse
|
177
|
Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem Soc Rev 2018; 47:8572-8610. [DOI: 10.1039/c8cs00162f] [Citation(s) in RCA: 521] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Minimal cells: we compare and contrast liposomes and polymersomes for a bettera priorichoice and design of vesicles and try to understand the advantages and shortcomings associated with using one or the other in many different aspects (properties, synthesis, self-assembly, applications).
Collapse
Affiliation(s)
- Emeline Rideau
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Rumiana Dimova
- Max Planck Institute for Colloids and Interfaces
- Wissenschaftspark Potsdam-Golm
- 14476 Potsdam
- Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry
- 82152 Martinsried
- Germany
| | | | | |
Collapse
|
178
|
Tenje M, Fornell A, Ohlin M, Nilsson J. Particle Manipulation Methods in Droplet Microfluidics. Anal Chem 2017; 90:1434-1443. [PMID: 29188994 DOI: 10.1021/acs.analchem.7b01333] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This Feature describes the different particle manipulation techniques available in the droplet microfluidics toolbox to handle particles encapsulated inside droplets and to manipulate whole droplets. We address the advantages and disadvantages of the different techniques to guide new users.
Collapse
Affiliation(s)
- Maria Tenje
- Department of Engineering Sciences, Science for Life Laboratory, Uppsala University , Uppsala, 751 21, Sweden.,Department of Biomedical Engineering, Lund University , Lund, 223 63, Sweden
| | - Anna Fornell
- Department of Biomedical Engineering, Lund University , Lund, 223 63, Sweden
| | - Mathias Ohlin
- Department of Engineering Sciences, Uppsala University , Uppsala, 751 21, Sweden
| | - Johan Nilsson
- Department of Biomedical Engineering, Lund University , Lund, 223 63, Sweden
| |
Collapse
|
179
|
Qiao Y, Zhao X, Zhu J, Tu R, Dong L, Wang L, Dong Z, Wang Q, Du W. Fluorescence-activated droplet sorting of lipolytic microorganisms using a compact optical system. LAB ON A CHIP 2017; 18:190-196. [PMID: 29227495 DOI: 10.1039/c7lc00993c] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Lipases are ubiquitous enzymes of great physiological significance that have been used extensively in multiple industries. Environmental microorganisms are a major source for the discovery of novel lipases with high catalytic efficiency and selectivity. However, current plate-based screening of lipase-producing strains is time consuming, labour intensive and inefficient. In this study, we developed an ultra-high throughput screening pipeline for lipase-producing strains based on fluorescence-activated droplet sorting (FADS) using a compact optical system that could be easily set up in an alignment-free manner. The pipeline includes droplet generation, droplet incubation, picoinjection of the fluorescence probe, and sorting of droplets with a throughput of 2 × 106 drops per h. We applied the pipeline to screen samples collected from different locations, including sediments from a hot spring in Tibet, soils from the Zoige wetland, contaminated soils from an abandoned oilfield, and a Chinese Daqu starter. In total, we obtained 47 lipase-producing bacterial strains belonging to seven genera, including Staphylococcus, Bacillus, Enterobacter, Serratia, Prolinoborus, Acinetobacter, and Leclercia. We believe that this FADS-based pipeline could be extended to screen various enzymes from the environment, and may find wide applications in breeding of industrial microorganisms.
Collapse
Affiliation(s)
- Yuxin Qiao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Cochrane WG, Hackler AL, Cavett VJ, Price AK, Paegel BM. Integrated, Continuous Emulsion Creamer. Anal Chem 2017; 89:13227-13234. [PMID: 29124927 DOI: 10.1021/acs.analchem.7b03070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Automated and reproducible sample handling is a key requirement for high-throughput compound screening and currently demands heavy reliance on expensive robotics in screening centers. Integrated droplet microfluidic screening processors are poised to replace robotic automation by miniaturizing biochemical reactions to the droplet scale. These processors must generate, incubate, and sort droplets for continuous droplet screening, passively handling millions of droplets with complete uniformity, especially during the key step of sample incubation. Here, we disclose an integrated microfluidic emulsion creamer that packs ("creams") assay droplets by draining away excess oil through microfabricated drain channels. The drained oil coflows with creamed emulsion and then reintroduces the oil to disperse the droplets at the circuit terminus for analysis. Creamed emulsion assay incubation time dispersion was 1.7%, 3-fold less than other reported incubators. The integrated, continuous emulsion creamer (ICEcreamer) was used to miniaturize and optimize measurements of various enzymatic activities (phosphodiesterase, kinase, bacterial translation) under multiple- and single-turnover conditions. Combining the ICEcreamer with current integrated microfluidic DNA-encoded library bead processors eliminates potentially cumbersome instrumentation engineering challenges and is compatible with assays of diverse target class activities commonly investigated in drug discovery.
Collapse
Affiliation(s)
- Wesley G Cochrane
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Amber L Hackler
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Valerie J Cavett
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Alexander K Price
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Brian M Paegel
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
181
|
Li S, Zeng M, Gaule T, McPherson MJ, Meldrum FC. Passive Picoinjection Enables Controlled Crystallization in a Droplet Microfluidic Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1702154. [PMID: 28873281 DOI: 10.1002/smll.201702154] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Indexed: 06/07/2023]
Abstract
Segmented flow microfluidic devices offer an attractive means of studying crystallization processes. However, while they are widely employed for protein crystallization, there are few examples of their use for sparingly soluble compounds due to problems with rapid device fouling and irreproducibility over longer run-times. This article presents a microfluidic device which overcomes these issues, as this is constructed around a novel design of "picoinjector" that facilitates direct injection into flowing droplets. Exploiting a Venturi junction to reduce the pressure within the droplet, it is shown that passive injection of solution from a side-capillary can be achieved in the absence of an applied electric field. The operation of this device is demonstrated for calcium carbonate, where highly reproducible results are obtained over long run-times at high supersaturations. This compares with conventional devices that use a Y-junction to achieve solution loading, where in-channel precipitation of calcium carbonate occurs even at low supersaturations. This work not only opens the door to the use of microfluidics to study the crystallization of low solubility compounds, but the simple design of a passive picoinjector will find wide utility in areas including multistep reactions and investigation of reaction dynamics.
Collapse
Affiliation(s)
- Shunbo Li
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Muling Zeng
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Thembaninkosi Gaule
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael J McPherson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
182
|
Gach PC, Iwai K, Kim PW, Hillson NJ, Singh AK. Droplet microfluidics for synthetic biology. LAB ON A CHIP 2017; 17:3388-3400. [PMID: 28820204 DOI: 10.1039/c7lc00576h] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Synthetic biology is an interdisciplinary field that aims to engineer biological systems for useful purposes. Organism engineering often requires the optimization of individual genes and/or entire biological pathways (consisting of multiple genes). Advances in DNA sequencing and synthesis have recently begun to enable the possibility of evaluating thousands of gene variants and hundreds of thousands of gene combinations. However, such large-scale optimization experiments remain cost-prohibitive to researchers following traditional molecular biology practices, which are frequently labor-intensive and suffer from poor reproducibility. Liquid handling robotics may reduce labor and improve reproducibility, but are themselves expensive and thus inaccessible to most researchers. Microfluidic platforms offer a lower entry price point alternative to robotics, and maintain high throughput and reproducibility while further reducing operating costs through diminished reagent volume requirements. Droplet microfluidics have shown exceptional promise for synthetic biology experiments, including DNA assembly, transformation/transfection, culturing, cell sorting, phenotypic assays, artificial cells and genetic circuits.
Collapse
Affiliation(s)
- Philip C Gach
- Technology Division, DOE Joint BioEnergy Institute, Emeryville, California 94608, USA
| | | | | | | | | |
Collapse
|
183
|
Magnetophoretic sorting of microdroplets with different microalgal cell densities for rapid isolation of fast growing strains. Sci Rep 2017; 7:10390. [PMID: 28871196 PMCID: PMC5583291 DOI: 10.1038/s41598-017-10764-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/14/2017] [Indexed: 01/13/2023] Open
Abstract
Microalgae - unicellular photosynthetic organisms - have received increasing attention for their ability to biologically convert CO2 into valuable products. The commercial use of microalgae requires screening strains to improve the biomass productivity to achieve a high-throughput. Here, we developed a microfluidic method that uses a magnetic field to separate the microdroplets containing different concentrations of microalgal cells. The separation efficiency is maximized using the following parameters that influence the amount of lateral displacement of the microdroplets: magnetic nanoparticle concentration, flow rate of droplets, x- and y-axis location of the magnet, and diameter of the droplets. Consequently, 91.90% of empty, 87.12% of low-, and 90.66% of high-density droplets could be separated into different outlets through simple manipulation of the magnetic field in the microfluidic device. These results indicate that cell density-based separation of microdroplets using a magnetic force can provide a promising platform to isolate microalgal species with a high growth performance.
Collapse
|
184
|
Jin SH, Lee SS, Lee B, Jeong SG, Peter M, Lee CS. Programmable Static Droplet Array for the Analysis of Cell–Cell Communication in a Confined Microenvironment. Anal Chem 2017; 89:9722-9729. [DOI: 10.1021/acs.analchem.7b01462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Si Hyung Jin
- Department
of Chemical Engineering, Chungnam National University, 99 Daehak-ro,
Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | | | - Byungjin Lee
- Department
of Chemical Engineering, Chungnam National University, 99 Daehak-ro,
Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | - Seong-Geun Jeong
- Department
of Chemical Engineering, Chungnam National University, 99 Daehak-ro,
Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | | | - Chang-Soo Lee
- Department
of Chemical Engineering, Chungnam National University, 99 Daehak-ro,
Yuseong-Gu, Daejeon, 34134, Republic of Korea
| |
Collapse
|
185
|
Baccouche A, Okumura S, Sieskind R, Henry E, Aubert-Kato N, Bredeche N, Bartolo JF, Taly V, Rondelez Y, Fujii T, Genot AJ. Massively parallel and multiparameter titration of biochemical assays with droplet microfluidics. Nat Protoc 2017; 12:1912-1932. [PMID: 28837132 DOI: 10.1038/nprot.2017.092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biochemical systems in which multiple components take part in a given reaction are of increasing interest. Because the interactions between these different components are complex and difficult to predict from basic reaction kinetics, it is important to test for the effect of variations in the concentration for each reagent in a combinatorial manner. For example, in PCR, an increase in the concentration of primers initially increases template amplification, but large amounts of primers result in primer-dimer by-products that inhibit the amplification of the template. Manual titration of biochemical mixtures rapidly becomes costly and laborious, forcing scientists to settle for suboptimal concentrations. Here we present a droplet-based microfluidics platform for mapping of the concentration space of up to three reaction components followed by detection with a fluorescent readout. The concentration of each reaction component is read through its internal standard (barcode), which is fluorescent but chemically orthogonal. We describe in detail the workflow, which comprises the following: (i) production of the microfluidics chips, (ii) preparation of the biochemical mixes, (iii) their mixing and compartmentalization into water-in-oil emulsion droplets via microfluidics, (iv) incubation and imaging of the fluorescent barcode and reporter signals by fluorescence microscopy and (v) image processing and data analysis. We also provide recommendations for choosing the appropriate fluorescent markers, programming the pressure profiles and analyzing the generated data. Overall, this platform allows a researcher with a few weeks of training to acquire ∼10,000 data points (in a 1D, 2D or 3D concentration space) over the course of a day from as little as 100-1,000 μl of reaction mix.
Collapse
Affiliation(s)
- Alexandre Baccouche
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan.,Earth Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Shu Okumura
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan.,CIBIS, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Rémi Sieskind
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan.,Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Elia Henry
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan.,Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Nathanaël Aubert-Kato
- Earth Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Department of Information Science, Ochanomizu University, Tokyo, Japan.,Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institute of Intelligent Systems and Robotics (ISIR), Paris, France
| | - Nicolas Bredeche
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Institute of Intelligent Systems and Robotics (ISIR), Paris, France
| | | | - Valérie Taly
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, Equipe labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Yannick Rondelez
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan.,Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Teruo Fujii
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan.,CIBIS, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Anthony J Genot
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
186
|
Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells. Proc Natl Acad Sci U S A 2017; 114:8728-8733. [PMID: 28760972 DOI: 10.1073/pnas.1704020114] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single-cell printer, enabling high-throughput generation of intricate arrays of droplets, cells, and microparticles. Printed droplet microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay.
Collapse
|
187
|
Hosokawa M, Nishikawa Y, Kogawa M, Takeyama H. Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics. Sci Rep 2017; 7:5199. [PMID: 28701744 PMCID: PMC5507899 DOI: 10.1038/s41598-017-05436-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/30/2017] [Indexed: 11/17/2022] Open
Abstract
Massively parallel single-cell genome sequencing is required to further understand genetic diversities in complex biological systems. Whole genome amplification (WGA) is the first step for single-cell sequencing, but its throughput and accuracy are insufficient in conventional reaction platforms. Here, we introduce single droplet multiple displacement amplification (sd-MDA), a method that enables massively parallel amplification of single cell genomes while maintaining sequence accuracy and specificity. Tens of thousands of single cells are compartmentalized in millions of picoliter droplets and then subjected to lysis and WGA by passive droplet fusion in microfluidic channels. Because single cells are isolated in compartments, their genomes are amplified to saturation without contamination. This enables the high-throughput acquisition of contamination-free and cell specific sequence reads from single cells (21,000 single-cells/h), resulting in enhancement of the sequence data quality compared to conventional methods. This method allowed WGA of both single bacterial cells and human cancer cells. The obtained sequencing coverage rivals those of conventional techniques with superior sequence quality. In addition, we also demonstrate de novo assembly of uncultured soil bacteria and obtain draft genomes from single cell sequencing. This sd-MDA is promising for flexible and scalable use in single-cell sequencing.
Collapse
Affiliation(s)
- Masahito Hosokawa
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.,PRESTO, Japan Science and Technology Agency (JST), 5-3 Yonban-cho, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Yohei Nishikawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Masato Kogawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-0072, Japan
| | - Haruko Takeyama
- Research Organization for Nano & Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan. .,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan. .,Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-0072, Japan.
| |
Collapse
|
188
|
Sesen M, Alan T, Neild A. Droplet control technologies for microfluidic high throughput screening (μHTS). LAB ON A CHIP 2017. [PMID: 28631799 DOI: 10.1039/c7lc00005g] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The transition from micro well plate and robotics based high throughput screening (HTS) to chip based screening has already started. This transition promises reduced droplet volumes thereby decreasing the amount of fluids used in these studies. Moreover, it significantly boosts throughput allowing screening to keep pace with the overwhelming number of molecular targets being discovered. In this review, we analyse state-of-the-art droplet control technologies that exhibit potential to be used in this new generation of screening devices. Since these systems are enclosed and usually planar, even some of the straightforward methods used in traditional HTS such as pipetting and reading can prove challenging to replicate in microfluidic high throughput screening (μHTS). We critically review the technologies developed for this purpose in depth, describing the underlying physics and discussing the future outlooks.
Collapse
Affiliation(s)
- Muhsincan Sesen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | | | | |
Collapse
|
189
|
Karbaschi M, Shahi P, Abate AR. Rapid, chemical-free breaking of microfluidic emulsions with a hand-held antistatic gun. BIOMICROFLUIDICS 2017; 11:044107. [PMID: 28794817 PMCID: PMC5519397 DOI: 10.1063/1.4995479] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/10/2017] [Indexed: 05/27/2023]
Abstract
Droplet microfluidics can form and process millions of picoliter droplets with speed and ease, allowing the execution of huge numbers of biological reactions for high-throughput studies. However, at the conclusion of most experiments, the emulsions must be broken to recover and analyze their contents. This is usually achieved with demulsifiers, like perfluorooctanol and chloroform, which can interfere with downstream reactions and harm cells. Here, we describe a simple approach to rapidly and efficiently break microfluidic emulsions, which requires no chemicals. Our method allows one-pot multi-step reactions, making it useful for large scale automated processing of reactions requiring demulsification. Using a hand-held antistatic gun, we pulse emulsions with the electric field, coalescing ∼100 μl of droplets in ∼10 s. We show that while emulsions broken with chemical demulsifiers exhibit potent PCR inhibition, the antistatic-broken emulsions amplify efficiently. The ability to break emulsions quickly without chemicals should make our approach valuable for most demulsification needs in microfluidics.
Collapse
Affiliation(s)
- Mohsen Karbaschi
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, California 94158, USA
| | - Payam Shahi
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, California 94158, USA
| | | |
Collapse
|
190
|
Sauzade M, Brouzes E. Deterministic trapping, encapsulation and retrieval of single-cells. LAB ON A CHIP 2017; 17:2186-2192. [PMID: 28585962 PMCID: PMC5541261 DOI: 10.1039/c7lc00283a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present a novel method for conducting true single-cell encapsulation at very high efficiency for the manipulation of precious samples. Our unique strategy is based on the sequential capture and original encapsulation of single-cells into a series of hydrodynamic traps. We identified two distinct modes of encapsulation and we established their associated design rules. We improved the trapping scheme to reach a near perfect capture efficiency and make it compatible with the encapsulation process. Finally, we developed the complete device operation that permits highly efficient single-cell encapsulation and droplet retrieval. This platform provides the foundation to a fully integrated multiparameter platform that will impact the analysis of tissues at single-cell resolution.
Collapse
Affiliation(s)
- M Sauzade
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA.
| | | |
Collapse
|
191
|
Liu Y, Lu H. Microfluidics in systems biology-hype or truly useful? Curr Opin Biotechnol 2017; 39:215-220. [PMID: 27267565 DOI: 10.1016/j.copbio.2016.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022]
Abstract
Systems biology often relies on large-scale measurements and model-building to understand how complex biological systems function. Microfluidic technology has been touted as a tool for high-throughput experiments and has been a valuable tool to some systems biology research. This review focuses on applications where microfluidics can enhance experimental sensitivity and throughput, particularly in recent development in single-cell analyses and analyses on multi-cellular or complex biological entities. We conclude that microfluidics is not necessarily always useful for systems biology, but when used appropriately can greatly enhance experimentalists' ability to measure and control, and thereby enhance the understanding of and expand the utility of biological systems.
Collapse
Affiliation(s)
- Yi Liu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, United States.
| |
Collapse
|
192
|
Herling TW, O'Connell DJ, Bauer MC, Persson J, Weininger U, Knowles TPJ, Linse S. A Microfluidic Platform for Real-Time Detection and Quantification of Protein-Ligand Interactions. Biophys J 2017; 110:1957-66. [PMID: 27166804 DOI: 10.1016/j.bpj.2016.03.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/25/2016] [Accepted: 03/25/2016] [Indexed: 11/28/2022] Open
Abstract
The key steps in cellular signaling and regulatory pathways rely on reversible noncovalent protein-ligand binding, yet the equilibrium parameters for such events remain challenging to characterize and quantify in solution. Here, we demonstrate a microfluidic platform for the detection of protein-ligand interactions with an assay time on the second timescale and without the requirement for immobilization or the presence of a highly viscous matrix. Using this approach, we obtain absolute values for the electrophoretic mobilities characterizing solvated proteins and demonstrate quantitative comparison of results obtained under different solution conditions. We apply this strategy to characterize the interaction between calmodulin and creatine kinase, which we identify as a novel calmodulin target. Moreover, we explore the differential calcium ion dependence of calmodulin ligand-binding affinities, a system at the focal point of calcium-mediated cellular signaling pathways. We further explore the effect of calmodulin on creatine kinase activity and show that it is increased by the interaction between the two proteins. These findings demonstrate the potential of quantitative microfluidic techniques to characterize binding equilibria between biomolecules under native solution conditions.
Collapse
Affiliation(s)
- Therese W Herling
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - David J O'Connell
- School of Biomolecular and Biomedical Science, University of College Dublin, Dublin, Ireland
| | - Mikael C Bauer
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Jonas Persson
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ulrich Weininger
- Department of Biophysical Chemistry, Lund University, Lund, Sweden
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| |
Collapse
|
193
|
Dressler OJ, Casadevall I Solvas X, deMello AJ. Chemical and Biological Dynamics Using Droplet-Based Microfluidics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:1-24. [PMID: 28375703 DOI: 10.1146/annurev-anchem-061516-045219] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Recent years have witnessed an increased use of droplet-based microfluidic techniques in a wide variety of chemical and biological assays. Nevertheless, obtaining dynamic data from these platforms has remained challenging, as this often requires reading the same droplets (possibly thousands of them) multiple times over a wide range of intervals (from milliseconds to hours). In this review, we introduce the elemental techniques for the formation and manipulation of microfluidic droplets, together with the most recent developments in these areas. We then discuss a wide range of analytical methods that have been successfully adapted for analyte detection in droplets. Finally, we highlight a diversity of studies where droplet-based microfluidic strategies have enabled the characterization of dynamic systems that would otherwise have remained unexplorable.
Collapse
Affiliation(s)
- Oliver J Dressler
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland;
| | | | - Andrew J deMello
- Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland;
| |
Collapse
|
194
|
Abstract
Droplet microfluidics generates and manipulates discrete droplets through immiscible multiphase flows inside microchannels. Due to its remarkable advantages, droplet microfluidics bears significant value in an extremely wide range of area. In this review, we provide a comprehensive and in-depth insight into droplet microfluidics, covering fundamental research from microfluidic chip fabrication and droplet generation to the applications of droplets in bio(chemical) analysis and materials generation. The purpose of this review is to convey the fundamentals of droplet microfluidics, a critical analysis on its current status and challenges, and opinions on its future development. We believe this review will promote communications among biology, chemistry, physics, and materials science.
Collapse
Affiliation(s)
- Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yao Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| |
Collapse
|
195
|
Toor A, Helms BA, Russell TP. Effect of Nanoparticle Surfactants on the Breakup of Free-Falling Water Jets during Continuous Processing of Reconfigurable Structured Liquid Droplets. NANO LETTERS 2017; 17:3119-3125. [PMID: 28358213 DOI: 10.1021/acs.nanolett.7b00556] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Structured liquids, whose 3-D morphology can adapt and respond to external stimuli, represent a revolutionary materials platform for next-generation energy technologies, such as batteries, photovoltaics, and thermoelectrics. Structured liquids can be crafted by the jamming of interfacial assemblies of nanoparticle (NP) surfactants. Due to the interactions between functional groups on nanoparticles dispersed in one liquid and polymers having complementary end-functionality dissolved in a second immiscible fluid, the anchoring of a well-defined number of polymer chains onto the NPs leads to the formation of NP surfactants that assemble at the interface and reduce the interfacial energy. Microfluidic techniques provide a simple and versatile route to produce one liquid phase in a second where the shape of the dispersed liquid phase can range from droplets to tubules depending on the flow conditions and the interfacial energies. In this study, the effect of NP surfactants on Plateau-Rayleigh (PR) instabilities of a free-falling jet of an aqueous dispersion of carboxylic acid functionalized silica NPs into a toluene phase containing amine-terminated polydimethylsiloxane (PDMS-NH2) is investigated. NP surfactants were found to significantly affect the breakup of laminar liquid jets, resulting in longer jet breakup lengths and dripping to jetting flow transitions.
Collapse
Affiliation(s)
- Anju Toor
- Department of Mechanical Engineering, University of California , 6141 Etcheverry Hall, Berkeley, California 94720, United States
| | | | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts Amherst , 120 Governors Drive, Amherst, Massachusetts 01003, United States
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| |
Collapse
|
196
|
Lu H, Caen O, Vrignon J, Zonta E, El Harrak Z, Nizard P, Baret JC, Taly V. High throughput single cell counting in droplet-based microfluidics. Sci Rep 2017; 7:1366. [PMID: 28465615 PMCID: PMC5431057 DOI: 10.1038/s41598-017-01454-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/30/2017] [Indexed: 12/03/2022] Open
Abstract
Droplet-based microfluidics is extensively and increasingly used for high-throughput single-cell studies. However, the accuracy of the cell counting method directly impacts the robustness of such studies. We describe here a simple and precise method to accurately count a large number of adherent and non-adherent human cells as well as bacteria. Our microfluidic hemocytometer provides statistically relevant data on large populations of cells at a high-throughput, used to characterize cell encapsulation and cell viability during incubation in droplets.
Collapse
Affiliation(s)
- Heng Lu
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | - Ouriel Caen
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | - Jeremy Vrignon
- CNRS, Univ. Bordeaux, CRPP, UPR 8641, 115 Avenue Schweitzer, 33600, Pessac, France
| | - Eleonora Zonta
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | - Zakaria El Harrak
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | - Philippe Nizard
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer, Paris, France
| | | | - Valérie Taly
- INSERM UMR-S1147, CNRS SNC5014, Paris Descartes University, Equipe labellisée Ligue Nationale contre le cancer, Paris, France.
| |
Collapse
|
197
|
Fornell A, Ohlin M, Garofalo F, Nilsson J, Tenje M. An intra-droplet particle switch for droplet microfluidics using bulk acoustic waves. BIOMICROFLUIDICS 2017; 11:031101. [PMID: 28580044 PMCID: PMC5446280 DOI: 10.1063/1.4984131] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/13/2017] [Indexed: 05/18/2023]
Abstract
To transfer cell- and bead-assays into droplet-based platforms typically requires the use of complex microfluidic circuits, which calls for methods to switch the direction of the encapsulated particles. We present a microfluidic chip where the combination of acoustic manipulation at two different harmonics and a trident-shaped droplet-splitter enables direction-switching of microbeads and yeast cells in droplet microfluidic circuits. At the first harmonic, the encapsulated particles exit the splitter in the center daughter droplets, while at the second harmonic, the particles exit in the side daughter droplets. This method holds promises for droplet-based assays where particle-positioning needs to be selectively controlled.
Collapse
Affiliation(s)
- Anna Fornell
- Department Biomedical Engineering, Lund University, Lund, Sweden
| | - Mathias Ohlin
- Department Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Fabio Garofalo
- Department Biomedical Engineering, Lund University, Lund, Sweden
| | - Johan Nilsson
- Department Biomedical Engineering, Lund University, Lund, Sweden
| | | |
Collapse
|
198
|
Haliburton JR, Kim SC, Clark IC, Sperling RA, Weitz DA, Abate AR. Efficient extraction of oil from droplet microfluidic emulsions. BIOMICROFLUIDICS 2017; 11:034111. [PMID: 28611871 PMCID: PMC5438281 DOI: 10.1063/1.4984035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Droplet microfluidic techniques can perform large numbers of single molecule and cell reactions but often require controlled, periodic flow to merge, split, and sort droplets. Here, we describe a simple method to convert aperiodic flows into periodic ones. Using an oil extraction module, we efficiently remove oil from emulsions to readjust the droplet volume fraction, velocity, and packing, producing periodic flows. The extractor acts as a universal adaptor to connect microfluidic modules that do not operate under identical flow conditions, such as droplet generators, incubators, and merger devices.
Collapse
Affiliation(s)
| | - S C Kim
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California 94158, USA
| | - I C Clark
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California 94158, USA
| | - R A Sperling
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - D A Weitz
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
199
|
Autour A, Ryckelynck M. Ultrahigh-Throughput Improvement and Discovery of Enzymes Using Droplet-Based Microfluidic Screening. MICROMACHINES 2017. [PMCID: PMC6189954 DOI: 10.3390/mi8040128] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Enzymes are extremely valuable tools for industrial, environmental, and biotechnological applications and there is a constant need for improving existing biological catalysts and for discovering new ones. Screening microbe or gene libraries is an efficient way of identifying new enzymes. In this view, droplet-based microfluidics appears to be one of the most powerful approaches as it allows inexpensive screenings in well-controlled conditions and an ultrahigh-throughput regime. This review aims to introduce the main microfluidic devices and concepts to be considered for such screening before presenting and discussing the latest successful applications of the technology for enzyme discovery.
Collapse
|
200
|
Ochoa A, Álvarez-Bohórquez E, Castillero E, Olguin LF. Detection of Enzyme Inhibitors in Crude Natural Extracts Using Droplet-Based Microfluidics Coupled to HPLC. Anal Chem 2017; 89:4889-4896. [DOI: 10.1021/acs.analchem.6b04988] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Abraham Ochoa
- Laboratorio de Biofisicoquímica,
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Enrique Álvarez-Bohórquez
- Laboratorio de Biofisicoquímica,
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Eduardo Castillero
- Laboratorio de Biofisicoquímica,
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Luis F. Olguin
- Laboratorio de Biofisicoquímica,
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|