151
|
Zhang X, Feng ZJ, Chergui K. Induction of cannabinoid- and N-methyl-D-aspartate receptor-mediated long-term depression in the nucleus accumbens and dorsolateral striatum is region and age dependent. Int J Neuropsychopharmacol 2015; 18:pyu052. [PMID: 25618403 PMCID: PMC4360221 DOI: 10.1093/ijnp/pyu052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The adolescent brain is sensitive to experience-dependent plasticity and might be more vulnerable than the adult brain to the effects of some drugs of abuse. The factors that contribute to these differences are not fully identified. We have examined the ability of cannabinoids to induce a form of synaptic plasticity, long-term depression, in the nucleus accumbens and dorsolateral striatum of adolescent and adult mice. METHODS We measured field excitatory postsynaptic potentials/population spikes in brain slices. RESULTS We found that the cannabinoid receptor agonist WIN 55,212-2 (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate) induced long-term depression in the nucleus accumbens of adolescent but not adult mice and failed to induce long-term depression in the dorsolateral striatum of adolescent or adult mice. Similar results were obtained with the group I metabotropic glutamate receptor agonist (S)-3,5- dihydroxyphenylglycine, which has previously been shown to promote the release of endocannabinoids. These age-related differences were associated with reduced protein levels of the cannabinoid type 1 receptor and metabotropic glutamate receptor 1 in adult nucleus accumbens and dorsolateral striatum and with an increased tone of endocannabinoids in the dorsolateral striatum of adult mice. We also found that N-methyl-D-aspartate receptor-dependent long-term depression, which was induced in the nucleus accumbens of adolescent mice, was blunted in adult mice, possibly because of decreased levels of GluN1, the obligatory subunit of N-methyl-D-aspartate receptors. CONCLUSIONS This study identifies region- and age-specific differences in the ability of endogenous and exogenous cannabinoids, and of N-methyl-D-aspartate receptors, to induce long-term depression in the striatal complex. These observations might contribute to a better understanding of the increased sensitivity of the adolescent brain to drug induced-plasticity.
Collapse
Affiliation(s)
| | | | - Karima Chergui
- The Karolinska Institute, Department of Physiology and Pharmacology, Section of Molecular Neurophysiology, Von Eulers väg 8, 171 77 Stockholm, Sweden (Drs Zhang, Feng, and Chergui).
| |
Collapse
|
152
|
Endocannabinoid CB1 receptor-mediated rises in Ca(2+) and depolarization-induced suppression of inhibition within the laterodorsal tegmental nucleus. Brain Struct Funct 2015; 221:1255-77. [PMID: 25573246 DOI: 10.1007/s00429-014-0969-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/12/2014] [Indexed: 12/21/2022]
Abstract
Cannabinoid type 1 receptors (CB1Rs) are functionally active within the laterodorsal tegmental nucleus (LDT), which is critically involved in control of rapid eye movement sleep, cortical arousal, and motivated states. To further characterize the cellular consequences of activation of CB1Rs in this nucleus, we examined whether CB1R activation led to rises in intracellular Ca(2+) ([Ca(2+)]i) and whether processes shown in other regions to involve endocannabinoid (eCB) transmission were present in the LDT. Using a combination of Ca(2+) imaging in multiple cells loaded with Ca(2+) imaging dye via 'bulk-loading' or in single cells loaded with dye via a patch-clamp electrode, we found that WIN 55212-2 (WIN-2), a potent CB1R agonist, induced increases in [Ca(2+)]i which were sensitive to AM251, a CB1R antagonist. A proportion of rises persisted in TTX and/or low-extracellular Ca(2+) conditions. Attenuation of these increases by a reversible inhibitor of sarcoplasmic reticulum Ca(2+)-ATPases, suggests these rises occurred following release of Ca(2+) from intracellular stores. Under voltage clamp conditions, brief, direct depolarization of LDT neurons resulted in a decrease in the frequency and amplitude of AM251-sensitive, inhibitory postsynaptic currents (IPSCs), which was an action sensitive to presence of a Ca(2+) chelator. Finally, actions of DHPG, a mGlu1R agonist, on IPSC activity were examined and found to result in an AM251- and BAPTA-sensitive inhibition of both the frequency and amplitude of sIPSCs. Taken together, our data further characterize CB1R and eCB actions in the LDT and indicate that eCB transmission could play a role in the processes governed by this nucleus.
Collapse
|
153
|
Abstract
The physiological and pathophysiological functions of the endocannabinoid system have been studied extensively using transgenic and targeted knockout mouse models. The first gene deletions of the cannabinoid CB(1) receptor were described in the late 1990s, soon followed by CB(2) and FAAH mutations in early 2000. These mouse models helped to elucidate the fundamental role of endocannabinoids as retrograde transmitters in the CNS and in the discovery of many unexpected endocannabinoid functions, for example, in the skin, bone and liver. We now have knockout mouse models for almost every receptor and enzyme of the endocannabinoid system. Conditional mutant mice were mostly developed for the CB(1) receptor, which is widely expressed on many different neurons, astrocytes and microglia, as well as on many cells outside the CNS. These mouse strains include "floxed" CB(1) alleles and mice with a conditional re-expression of CB(1). The availability of these mice made it possible to decipher the function of CB(1) in specific neuronal circuits and cell populations or to discriminate between central and peripheral effects. Many of the genetic mouse models were also used in combination with viral expression systems. The purpose of this review is to provide a comprehensive overview of the existing genetic models and to summarize some of the most important discoveries that were made with these animals.
Collapse
MESH Headings
- Amidohydrolases/genetics
- Amidohydrolases/metabolism
- Animals
- Endocannabinoids/genetics
- Endocannabinoids/metabolism
- Gene Deletion
- Gene Expression Regulation
- Genotype
- Humans
- Hydrolysis
- Mice, Knockout
- Mice, Mutant Strains
- Monoacylglycerol Lipases/genetics
- Monoacylglycerol Lipases/metabolism
- Mutation
- Phenotype
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany.
| |
Collapse
|
154
|
Melis M, Greco B, Tonini R. Interplay between synaptic endocannabinoid signaling and metaplasticity in neuronal circuit function and dysfunction. Eur J Neurosci 2014; 39:1189-201. [PMID: 24712998 DOI: 10.1111/ejn.12501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/23/2013] [Accepted: 01/07/2014] [Indexed: 11/29/2022]
Abstract
Synaptic neuromodulation acts across different functional domains to regulate cognitive processing and behavior. Recent challenges are related to elucidating the molecular and cellular mechanisms through which neuromodulatory pathways act on multiple time scales to signal state-dependent contingencies at the synaptic level or to stabilise synaptic connections during behavior. Here, we present a framework with the synaptic neuromodulators endocannabinoids (eCBs) as key players in dynamic synaptic changes. Modulation of various molecular components of the eCB pathway yields interconnected functional activation states of eCB signaling (prior, tonic, and persistent), which may contribute to metaplastic control of synaptic and behavioral functions in health and disease. The emerging picture supports aberrant metaplasticity as a contributor to cognitive dysfunction associated with several pathological states in which eCB signaling, or other neuromodulatory pathways, are deregulated.
Collapse
Affiliation(s)
- Miriam Melis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | | | | |
Collapse
|
155
|
Edamura M, Murakami G, Meng H, Itakura M, Shigemoto R, Fukuda A, Nakahara D. Functional deficiency of MHC class I enhances LTP and abolishes LTD in the nucleus accumbens of mice. PLoS One 2014; 9:e107099. [PMID: 25268136 PMCID: PMC4182087 DOI: 10.1371/journal.pone.0107099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 08/13/2014] [Indexed: 01/09/2023] Open
Abstract
Major histocompatibility complex class I (MHCI) molecules were recently identified as novel regulators of synaptic plasticity. These molecules are expressed in various brain areas, especially in regions undergoing activity-dependent synaptic plasticity, but their role in the nucleus accumbens (NAc) is unknown. In this study, we investigated the effects of genetic disruption of MHCI function, through deletion of β2-microblobulin, which causes lack of cell surface expression of MHCI. First, we confirmed that MHCI molecules are expressed in the NAc core in wild-type mice. Second, we performed electrophysiological recordings with NAc core slices from wild-type and β2-microglobulin knock-out mice lacking cell surface expression of MHCI. We found that low frequency stimulation induced long-term depression in wild-type but not knock-out mice, whereas high frequency stimulation induced long-term potentiation in both genotypes, with a larger magnitude in knock-out mice. Furthermore, we demonstrated that knock-out mice showed more persistent behavioral sensitization to cocaine, which is a NAc-related behavior. Using this model, we analyzed the density of total AMPA receptors and their subunits GluR1 and GluR2 in the NAc core, by SDS-digested freeze-fracture replica labeling. After repeated cocaine exposure, the density of GluR1 was increased, but there was no change in total AMPA receptors and GluR2 levels in wild-type mice. In contrast, following repeated cocaine exposure, increased densities of total AMPA receptors, GluR1 and GluR2 were observed in knock-out mice. These results indicate that functional deficiency of MHCI enhances synaptic potentiation, induced by electrical and pharmacological stimulation.
Collapse
Affiliation(s)
- Mitsuhiro Edamura
- Division of Psychology and Behavioral Neuroscience, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
- * E-mail: (ME); (DN)
| | - Gen Murakami
- Division of Psychology and Behavioral Neuroscience, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Hongrui Meng
- Division of Psychology and Behavioral Neuroscience, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ryuichi Shigemoto
- Division of Cerebral Structure, National Institute for Physiological Sciences, Myodaiji, Okazaki, Japan
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
| | - Daiichiro Nakahara
- Division of Psychology and Behavioral Neuroscience, Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Japan
- * E-mail: (ME); (DN)
| |
Collapse
|
156
|
Atwood BK, Lovinger DM, Mathur BN. Presynaptic long-term depression mediated by Gi/o-coupled receptors. Trends Neurosci 2014; 37:663-73. [PMID: 25160683 DOI: 10.1016/j.tins.2014.07.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/09/2014] [Accepted: 07/25/2014] [Indexed: 01/20/2023]
Abstract
Long-term depression (LTD) of the efficacy of synaptic transmission is now recognized as an important mechanism for the regulation of information storage and the control of actions, as well as for synapse, neuron, and circuit development. Studies of LTD mechanisms have focused mainly on postsynaptic AMPA-type glutamate receptor trafficking. However, the focus has now expanded to include presynaptically expressed plasticity, the predominant form being initiated by presynaptically expressed Gi/o-coupled metabotropic receptor (Gi/o-GPCR) activation. Several forms of LTD involving activation of different presynaptic Gi/o-GPCRs as a 'common pathway' are described. We review here the literature on presynaptic Gi/o-GPCR-mediated LTD, discuss known mechanisms, gaps in our knowledge, and evaluate whether all Gi/o-GPCRs are capable of inducing presynaptic LTD.
Collapse
Affiliation(s)
- Brady K Atwood
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, 5625 Fishers Lane, MSC 9411, Bethesda, MD 20852-9411, USA
| | - David M Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, 5625 Fishers Lane, MSC 9411, Bethesda, MD 20852-9411, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
157
|
Rasekhi K, Oryan S, Nasehi M, Zarrindast MR. Involvement of the nucleus accumbens shell glutamatergic system in ACPA-induced impairment of inhibitory avoidance memory consolidation. Behav Brain Res 2014; 269:28-36. [DOI: 10.1016/j.bbr.2014.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/30/2022]
|
158
|
Patogeneza uzależnień – problem wciąż aktualny. ALCOHOLISM AND DRUG ADDICTION 2014. [DOI: 10.1016/s0867-4361(14)70011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
159
|
Pascoli V, Terrier J, Espallergues J, Valjent E, O’Connor EC, Lüscher C. Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 2014; 509:459-64. [DOI: 10.1038/nature13257] [Citation(s) in RCA: 310] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
|
160
|
Milella MS, Marengo L, Larcher K, Fotros A, Dagher A, Rosa-Neto P, Benkelfat C, Leyton M. Limbic system mGluR5 availability in cocaine dependent subjects: a high-resolution PET [(11)C]ABP688 study. Neuroimage 2014; 98:195-202. [PMID: 24795154 DOI: 10.1016/j.neuroimage.2014.04.061] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/25/2014] [Accepted: 04/22/2014] [Indexed: 12/13/2022] Open
Abstract
Cocaine self-administration decreases type 5 metabotropic glutamate receptor (mGluR5) tissue concentrations in laboratory rats during early abstinence. These changes are thought to influence the drug's reinforcing properties and the ability of drug-related cues to induce relapse. Here, our goal was to measure brain regional mGluR5 availability in recently abstinent cocaine dependent humans. Participants meeting DSM-IV diagnostic criteria for current cocaine dependence (n=9) were recruited from the general population. mGluR5 availability (binding potential, non-displaceable; BPND) was measured with high-resolution positron emission tomography (PET HRRT) and [(11)C]ABP688. Compared to age- and sex-matched healthy controls (n=9), cocaine dependent subjects showed significantly lower BPND values in the ventral (bilateral: -28.2%, p=0.011), associative (right: -21.4%, p=0.043), and sensorimotor striatum (bilateral: -21.7%, p=0.045), amygdala (left: -26%, p=0.046) and insula (right: -23.3%, p=0.041). Among the cocaine users, receptor availabilities were related to abstinence (range: 2 to 14days). The longer the duration of abstinence, the lower the BPND values in the sensorimotor striatum (r=-0.71, p=0.034), left amygdala (r=-0.73, p=0.026) and right insula (r=-0.67, p=0.046). Compared to healthy controls, BPND values were significantly reduced in those who tested negative for cocaine on the PET test session in the ventral (p=0.018) and sensorimotor striatum (p=0.017), left amygdala (p=0.008), and right insula (p=0.029), but not in those who tested positive. Together, these results provide evidence of time-related mGluR5 alterations in striatal and limbic regions in humans during early cocaine abstinence.
Collapse
Affiliation(s)
- M S Milella
- Department of Psychiatry, McGill University, Montreal H3A 1A1, Canada
| | - L Marengo
- Department of Psychiatry, McGill University, Montreal H3A 1A1, Canada
| | - K Larcher
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal H3A 2B4, Canada
| | - A Fotros
- Department of Psychiatry, McGill University, Montreal H3A 1A1, Canada
| | - A Dagher
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal H3A 2B4, Canada
| | - P Rosa-Neto
- Translational Neuroimaging Laboratory, Douglas Research Institute, Montreal H4H 1R3, Canada
| | - C Benkelfat
- Department of Psychiatry, McGill University, Montreal H3A 1A1, Canada; Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal H3A 2B4, Canada
| | - M Leyton
- Department of Psychiatry, McGill University, Montreal H3A 1A1, Canada; Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal H3A 2B4, Canada; Center for Studies in Behavioral Neurobiology, Concordia University, Montreal H4B 1R6, Canada.
| |
Collapse
|
161
|
A protein synthesis-dependent mechanism sustains calcium-permeable AMPA receptor transmission in nucleus accumbens synapses during withdrawal from cocaine self-administration. J Neurosci 2014; 34:3095-100. [PMID: 24553949 DOI: 10.1523/jneurosci.4940-13.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Extended-access cocaine self-administration results in withdrawal-dependent incubation of cocaine craving. Rats evaluated after ∼1 month of withdrawal from such regimens ("incubated rats") exhibit changes in medium spiny neurons (MSNs) of the nucleus accumbens (NAc) that include accumulation of Ca(2+)-permeable AMPA receptors (CP-AMPARs) and a switch in group I metabotropic glutamate receptor (mGluR)-mediated suppression of synaptic transmission from mGluR5-dependent to mGluR1-dependent. To determine the role of protein synthesis in mediating these adaptations, we conducted whole-cell patch-clamp recordings in NAc core MSNs of "incubated rats" in the presence of translational inhibitors (anisomycin, cycloheximide, rapamycin) or the transcriptional inhibitor actinomycin-D. The contribution of CP-AMPARs to synaptic transmission was determined by the rectification index and the sensitivity to the CP-AMPAR antagonist 1-naphthyl acetyl spermine. We found that CP-AMPAR-mediated transmission in the NAc of "incubated rats" was reduced to levels comparable to those found in saline control rats when brain slices were treated with translational inhibitors, whereas actinomycin-D had no effect. We also investigated the effect of protein translation inhibitors on the switch of mGluR function in MSNs of "incubated rats" using the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine in combination with either an mGluR1 (LY367385) or an mGluR5 (3-[(2-methyl-4-thiazolyl)ethynyl]pyridine) antagonist. Data revealed that inhibition of protein translation eliminated the mGluR1-mediated inhibition and restored the mGluR5 responsiveness to a state functionally similar to that of saline control rats. Together, these results suggest that aberrant regulation of local protein synthesis contributes to the maintenance of adaptations accrued at NAc MSN synapses during incubation of cocaine craving.
Collapse
|
162
|
Burattini C, Battistini G, Tamagnini F, Aicardi G. Low-frequency stimulation evokes serotonin release in the nucleus accumbens and induces long-term depression via production of endocannabinoid. J Neurophysiol 2014; 111:1046-55. [DOI: 10.1152/jn.00498.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nucleus accumbens (NAc), a major component of the mesolimbic system, is involved in the mediation of reinforcing and addictive properties of many dependence-producing drugs. Glutamatergic synapses within the NAc can express plasticity, including a form of endocannabinoid (eCB)-long-term depression (LTD). Recent evidences demonstrate cross talk between eCB signaling pathways and those of other receptor systems, including serotonin (5-HT); the extensive colocalization of CB1 and 5-HT receptors within the NAc suggests the potential for interplay between them. In the present study, we found that 20-min low-frequency (4 Hz) stimulation (LFS-4Hz) of glutamatergic afferences in rat brain slices induces a novel form of eCB-LTD in the NAc core, which requires 5-HT2 and CB1 receptor activation and L-type voltage-gated Ca2+ channel opening. Moreover, we found that exogenous 5-HT application (5 μM, 20 min) induces an analogous LTD (5-HT-LTD) at the same synapses, requiring the activation of the same receptors and the opening of the same Ca2+ channels; LFS-4Hz-LTD and 5-HT-LTD were mutually occlusive. Present results suggest that LFS-4Hz induces the release of 5-HT, which acts at 5-HT2 postsynaptic receptors, increasing Ca2+ influx through L-type voltage-gated channels and 2-arachidonoylglycerol production and release; the eCB travels retrogradely and binds to presynaptic CB1 receptors, causing a long-lasting decrease of glutamate release, resulting in LTD. These observations might be helpful to understand the neurophysiological mechanisms underlying drug addiction, major depression, and other psychiatric disorders characterized by dysfunction of 5-HT neurotransmission in the NAc.
Collapse
Affiliation(s)
- Costanza Burattini
- Department for Life Quality Studies, University of Bologna, Bologna, Italy; and
| | - Giulia Battistini
- Department for Life Quality Studies, University of Bologna, Bologna, Italy; and
| | - Francesco Tamagnini
- Department for Life Quality Studies, University of Bologna, Bologna, Italy; and
| | - Giorgio Aicardi
- Department for Life Quality Studies, University of Bologna, Bologna, Italy; and
- Interdepartmental Center “Luigi Galvani” for the Study of Biophysics, Bioinformatics and Biocomplexity, University of Bologna, Bologna, Italy
| |
Collapse
|
163
|
D'Antoni S, Spatuzza M, Bonaccorso CM, Musumeci SA, Ciranna L, Nicoletti F, Huber KM, Catania MV. Dysregulation of group-I metabotropic glutamate (mGlu) receptor mediated signalling in disorders associated with Intellectual Disability and Autism. Neurosci Biobehav Rev 2014; 46 Pt 2:228-41. [PMID: 24548786 DOI: 10.1016/j.neubiorev.2014.02.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/13/2014] [Accepted: 02/06/2014] [Indexed: 12/11/2022]
Abstract
Activation of group-I metabotropic glutamate receptors, mGlu1 and mGlu5, triggers a variety of signalling pathways in neurons and glial cells, which are differently implicated in synaptic plasticity. The earliest and much of key studies discovered abnormal mGlu5 receptor function in Fragile X syndrome (FXS) mouse models which then motivated more recent work that finds mGlu5 receptor dysfunction in related disorders such as intellectual disability (ID), obsessive-compulsive disorder (OCD) and autism. Therefore, mGlu1/5 receptor dysfunction may represent a common aetiology of these complex diseases. Furthermore, many studies have focused on dysregulation of mGlu5 signalling to synaptic protein synthesis. However, emerging evidence finds abnormal mGlu5 receptor interactions with its scaffolding proteins in FXS which results in mGlu5 receptor dysfunction and phenotypes independent of signalling to protein synthesis. Finally, both an increased and reduced mGlu5 functioning seem to be associated with ID and autism spectrum disorders, with important consequences for potential treatment of these developmental disorders.
Collapse
Affiliation(s)
- Simona D'Antoni
- Institute of Neurological Sciences, the National Research Council of Italy (CNR), Catania, Italy
| | - Michela Spatuzza
- Institute of Neurological Sciences, the National Research Council of Italy (CNR), Catania, Italy
| | | | | | - Lucia Ciranna
- Department of Biomedical Sciences, section of Physiology, University of Catania, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli (IS), Italy; University of Rome La Sapienza, Rome, Italy
| | - Kimberly M Huber
- University of Texas Southwestern Medical Center, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Maria Vincenza Catania
- Institute of Neurological Sciences, the National Research Council of Italy (CNR), Catania, Italy; IRCCS Oasi Maria SS, Troina (EN), Italy.
| |
Collapse
|
164
|
Ramírez-Franco J, Bartolomé-Martín D, Alonso B, Torres M, Sánchez-Prieto J. Cannabinoid type 1 receptors transiently silence glutamatergic nerve terminals of cultured cerebellar granule cells. PLoS One 2014; 9:e88594. [PMID: 24533119 PMCID: PMC3922925 DOI: 10.1371/journal.pone.0088594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 01/13/2014] [Indexed: 12/25/2022] Open
Abstract
Cannabinoid receptors are the most abundant G protein-coupled receptors in the brain and they mediate retrograde short-term inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at many excitatory synapses. The induction of presynaptically silent synapses is a means of modulating synaptic strength, which is important for synaptic plasticity. Persistent activation of cannabinoid type 1 receptors (CB1Rs) mutes GABAergic terminals, although it is unclear if CB1Rs can also induce silencing at glutamatergic synapses. Cerebellar granule cells were transfected with VGLUT1-pHluorin to visualise the exo-endocytotic cycle. We found that prolonged stimulation (10 min) of cannabinoid receptors with the agonist HU-210 induces the silencing of previously active synapses. However, the presynaptic silencing induced by HU-210 is transient as it reverses after 20 min. cAMP with forskolin prevented CB1R-induced synaptic silencing, via activation of the Exchange Protein directly Activated by cAMP (Epac). Furthermore, Epac activation accelerated awakening of already silent boutons. Electron microscopy revealed that silencing was associated with synaptic vesicle (SV) redistribution within the nerve terminal, which diminished the number of vesicles close to the active zone of the plasma membrane. Finally, by combining functional and immunocytochemical approaches, we observed a strong correlation between the release capacity of the nerve terminals and RIM1α protein content, but not that of Munc13-1 protein. These results suggest that prolonged stimulation of cannabinoid receptors can transiently silence glutamatergic nerve terminals.
Collapse
Affiliation(s)
- Jorge Ramírez-Franco
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - David Bartolomé-Martín
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Beatris Alonso
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Magdalena Torres
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
- * E-mail: (JSP); (MT)
| | - José Sánchez-Prieto
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
- * E-mail: (JSP); (MT)
| |
Collapse
|
165
|
Acute and chronic effects of ethanol on learning-related synaptic plasticity. Alcohol 2014; 48:1-17. [PMID: 24447472 DOI: 10.1016/j.alcohol.2013.09.045] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 11/23/2022]
Abstract
Alcoholism is associated with acute and long-term cognitive dysfunction including memory impairment, resulting in substantial disability and cost to society. Thus, understanding how ethanol impairs cognition is essential for developing treatment strategies to dampen its adverse impact. Memory processing is thought to involve persistent, use-dependent changes in synaptic transmission, and ethanol alters the activity of multiple signaling molecules involved in synaptic processing, including modulation of the glutamate and gamma-aminobutyric acid (GABA) transmitter systems that mediate most fast excitatory and inhibitory transmission in the brain. Effects on glutamate and GABA receptors contribute to ethanol-induced changes in long-term potentiation (LTP) and long-term depression (LTD), forms of synaptic plasticity thought to underlie memory acquisition. In this paper, we review the effects of ethanol on learning-related forms of synaptic plasticity with emphasis on changes observed in the hippocampus, a brain region that is critical for encoding contextual and episodic memories. We also include studies in other brain regions as they pertain to altered cognitive and mental function. Comparison of effects in the hippocampus to other brain regions is instructive for understanding the complexities of ethanol's acute and long-term pharmacological consequences.
Collapse
|
166
|
Thomazeau A, Lassalle O, Iafrati J, Souchet B, Guedj F, Janel N, Chavis P, Delabar J, Manzoni OJ. Prefrontal deficits in a murine model overexpressing the down syndrome candidate gene dyrk1a. J Neurosci 2014; 34:1138-47. [PMID: 24453307 PMCID: PMC3953590 DOI: 10.1523/jneurosci.2852-13.2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/29/2013] [Accepted: 12/06/2013] [Indexed: 12/16/2022] Open
Abstract
The gene Dyrk1a is the mammalian ortholog of Drosophila minibrain. Dyrk1a localizes in the Down syndrome (DS) critical region of chromosome 21q22.2 and is a major candidate for the behavioral and neuronal abnormalities associated with DS. PFC malfunctions are a common denominator in several neuropsychiatric diseases, including DS, but the contribution of DYRK1A in PFC dysfunctions, in particular the synaptic basis for impairments of executive functions reported in DS patients, remains obscure. We quantified synaptic plasticity, biochemical synaptic markers, and dendritic morphology of deep layer pyramidal PFC neurons in adult mBACtgDyrk1a transgenic mice that overexpress Dyrk1a under the control of its own regulatory sequences. We found that overexpression of Dyrk1a largely increased the number of spines on oblique dendrites of pyramidal neurons, as evidenced by augmented spine density, higher PSD95 protein levels, and larger miniature EPSCs. The dendritic alterations were associated with anomalous NMDAR-mediated long-term potentiation and accompanied by a marked reduction in the pCaMKII/CaMKII ratio in mBACtgDyrk1a mice. Retrograde endocannabinoid-mediated long-term depression (eCB-LTD) was ablated in mBACtgDyrk1a mice. Administration of green tea extracts containing epigallocatechin 3-gallate, a potent DYRK1A inhibitor, to adult mBACtgDyrk1a mice normalized long-term potentiation and spine anomalies but not eCB-LTD. However, inhibition of the eCB deactivating enzyme monoacylglycerol lipase normalized eCB-LTD in mBACtgDyrk1a mice. These data shed light on previously undisclosed participation of DYRK1A in adult PFC dendritic structures and synaptic plasticity. Furthermore, they suggest its involvement in DS-related endophenotypes and identify new potential therapeutic strategies.
Collapse
Affiliation(s)
- Aurore Thomazeau
- Institut National de la Santé et de la Recherche Médicale U901, Marseille, 13009, France, Université Aix-Marseille UMR S901, Marseille, 13009, France, INMED, Marseille, 13009, France, and Université Paris Diderot, Sorbonne Paris Cité, Adaptive Functional Biology, EAC Centre National de la Recherche Scientifique 4413, Paris, 75205, France
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Banks PJ, Warburton EC, Brown MW, Bashir ZI. Mechanisms of synaptic plasticity and recognition memory in the perirhinal cortex. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:193-209. [PMID: 24484702 DOI: 10.1016/b978-0-12-420170-5.00007-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Learning is widely believed to involve synaptic plasticity, employing mechanisms such as those used in long-term potentiation (LTP) and long-term depression (LTD). In this chapter, we will review work on mechanisms of synaptic plasticity in perirhinal cortex in vitro and relate these findings to studies underlying recognition memory in vivo. We describe how antagonism of different glutamate and acetylcholine receptors, inhibition of nitric oxide synthase, inhibition of CREB phosphorylation, and interfering with glutamate AMPA receptor internalization can produce deficits in synaptic plasticity in vitro. Inhibition of each of these different mechanisms in vivo also results in recognition memory deficits. Therefore, we provide strong evidence that synaptic plastic mechanisms are necessary for the information processing and storage that underlies object recognition memory.
Collapse
Affiliation(s)
- P J Banks
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - E C Warburton
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - M W Brown
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Z I Bashir
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
168
|
KANO M. Control of synaptic function by endocannabinoid-mediated retrograde signaling. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2014; 90:235-250. [PMID: 25169670 PMCID: PMC4237895 DOI: 10.2183/pjab.90.235] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
Since the first reports in 2001, great advances have been made towards the understanding of endocannabinoid-mediated synaptic modulation. Electrophysiological studies have revealed that one of the two major endocannabinoids, 2-arachidonoylglycerol (2-AG), is produced from membrane lipids upon postsynaptic Ca(2+) elevation and/or activation of Gq/11-coupled receptors, and released from postsynaptic neurons. The released 2-AG then acts retrogradely onto presynaptic cannabinoid CB1 receptors and induces suppression of neurotransmitter release either transiently or persistently. These forms of 2-AG-mediated retrograde synaptic modulation are functional throughout the brain. The other major endocannabinoid, anandamide, mediates a certain form of endocannabinoid-mediated long-term depression (LTD). Anandamide also functions as an agonist for transient receptor potential vanilloid receptor type 1 (TRPV1) and mediates endocannabinoid-independent and TRPV1-dependent forms of LTD. It has also been demonstrated that the endocannabinoid system itself is plastic, which can be either up- or down-regulated by experimental or environmental conditions. In this review, I will make an overview of the mechanisms underlying endocannabinoid-mediated synaptic modulation.
Collapse
Affiliation(s)
- Masanobu KANO
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
169
|
Plescia F, Brancato A, Marino RAM, Vita C, Navarra M, Cannizzaro C. Effect of Acetaldehyde Intoxication and Withdrawal on NPY Expression: Focus on Endocannabinoidergic System Involvement. Front Psychiatry 2014; 5:138. [PMID: 25324788 PMCID: PMC4181239 DOI: 10.3389/fpsyt.2014.00138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/18/2014] [Indexed: 01/17/2023] Open
Abstract
Acetaldehyde (ACD), the first alcohol metabolite, plays a pivotal role in the rewarding, motivational, and addictive properties of the parental compound. Many studies have investigated the role of ACD in mediating neurochemical and behavioral effects induced by alcohol administration, but very little is known about the modulation of neuropeptide systems following ACD intoxication and withdrawal. Indeed, the neuropeptide Y (NPY) system is altered during alcohol withdrawal in key regions for cerebrocortical excitability and neuroplasticity. The primary goal of this research was to investigate the effects of ACD intoxication and withdrawal by recording rat behavior and by measuring NPY immunoreactivity in hippocampus and NAcc, two brain regions mainly involved in processes which encompass neuroplasticity in alcohol dependence. Furthermore, on the basis of the involvement of endocannabinoidergic system in alcohol and ACD reinforcing effects, the role of the selective CB1 receptor antagonist AM281 in modulating NPY expression during withdrawal was assessed. Our results indicate that (i) ACD intoxication induced a reduction in NPY expression in hippocampus and NAcc; (ii) symptoms of physical dependence, similar to alcohol's, were scored at 12 h from the last administration of ACD; and (iii) NPY levels increased in early and prolonged acute withdrawal in both brain regions examined. The administration of AM281 was able to blunt signs of ACD-induced physical dependence, to modulate NPY levels, and to further increase NPY expression during ACD withdrawal both in hippocampus and NAcc. In conclusion, the present study shows that complex plastic changes take place in NPY system during ACD intoxication and subsequent withdrawal in rat hippocampal formation and NAcc. The pharmacological inhibition of CB1 signaling could counteract the neurochemical imbalance associated with ACD, and alcohol withdrawal, likely boosting the setting up of homeostatic functional recovery.
Collapse
Affiliation(s)
- Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| | - Anna Brancato
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| | - Rosa Anna Maria Marino
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| | - Carlotta Vita
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| | - Michele Navarra
- Department of Drug Sciences and Products for Health, University of Messina , Messina , Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo , Palermo , Italy
| |
Collapse
|
170
|
Synaptic depression via mGluR1 positive allosteric modulation suppresses cue-induced cocaine craving. Nat Neurosci 2013; 17:73-80. [PMID: 24270186 PMCID: PMC3971923 DOI: 10.1038/nn.3590] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/31/2013] [Indexed: 01/25/2023]
Abstract
Cue-induced cocaine craving is a major cause of relapse in abstinent addicts. In rats, cue-induced craving progressively intensifies (incubates) during withdrawal from extended-access cocaine self-administration. After ~1 month of withdrawal, incubated craving is mediated by Ca2+-permeable AMPARs (CP-AMPARs) that accumulate in the nucleus accumbens (NAc). We found that decreased mGluR1 surface expression in the NAc precedes and enables CP-AMPAR accumulation. Thus, restoring mGluR1 tone by administering repeated injections of an mGluR1 positive allosteric modulator (PAM) prevented CP-AMPAR accumulation and incubation, whereas blocking mGluR1 transmission at even earlier withdrawal times accelerated CP-AMPAR accumulation. In studies conducted after prolonged withdrawal, when CP-AMPAR levels and cue-induced craving are high, we found that systemic administration of an mGluR1 PAM attenuated the expression of incubated craving by reducing CP-AMPAR transmission in the NAc to control levels. These results demonstrate a strategy whereby recovering addicts could use a systemically active compound to protect against cue-induced relapse.
Collapse
|
171
|
Yang Y, Calakos N. Presynaptic long-term plasticity. Front Synaptic Neurosci 2013; 5:8. [PMID: 24146648 PMCID: PMC3797957 DOI: 10.3389/fnsyn.2013.00008] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/09/2013] [Indexed: 01/01/2023] Open
Abstract
Long-term synaptic plasticity is a major cellular substrate for learning, memory, and behavioral adaptation. Although early examples of long-term synaptic plasticity described a mechanism by which postsynaptic signal transduction was potentiated, it is now apparent that there is a vast array of mechanisms for long-term synaptic plasticity that involve modifications to either or both the presynaptic terminal and postsynaptic site. In this article, we discuss current and evolving approaches to identify presynaptic mechanisms as well as discuss their limitations. We next provide examples of the diverse circuits in which presynaptic forms of long-term synaptic plasticity have been described and discuss the potential contribution this form of plasticity might add to circuit function. Finally, we examine the present evidence for the molecular pathways and cellular events underlying presynaptic long-term synaptic plasticity.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pediatrics, Stanford University School of Medicine Stanford, CA, USA
| | | |
Collapse
|
172
|
Murray RM, Paparelli A, Morrison PD, Marconi A, Di Forti M. What can we learn about schizophrenia from studying the human model, drug-induced psychosis? Am J Med Genet B Neuropsychiatr Genet 2013; 162B:661-70. [PMID: 24132898 DOI: 10.1002/ajmg.b.32177] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 11/09/2022]
Abstract
When drug-induced psychoses were first identified in the mid-20th century, schizophrenia was considered a discrete disease with a likely genetic cause. Consequently, drug-induced psychoses were not considered central to understanding schizophrenia as they were thought to be phenocopies rather than examples of the illness secondary to a particular known cause. However, now that we know that schizophrenia is a clinical syndrome with multiple component causes, then it is clear that the drug-induced psychoses have much to teach us. This article shows how the major neuropharmacological theories of schizophrenia have their origins in studies of the effects of drugs of abuse. Research into the effects of LSD initiated the serotonergic model; amphetamines the dopamine hypothesis, PCP and ketamine the glutamatergic hypothesis, while most recently the effects of cannabis have provoked interest in the role of endocannabinoids in schizophrenia. None of these models account for the complete picture of schizophrenia; rather the various drug models mimic different aspects of the illness. Determining the different molecular effects of those drugs whose pharmacological effects do and do not mimic the various aspects of schizophrenia has much to teach us concerning the pathogenesis of the illness.
Collapse
Affiliation(s)
- Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Kings College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
173
|
Ahumada J, de Sevilla DF, Couve A, Buño W, Fuenzalida M. Long-term depression of inhibitory synaptic transmission induced by spike-timing dependent plasticity requires coactivation of endocannabinoid and muscarinic receptors. Hippocampus 2013; 23:1439-52. [DOI: 10.1002/hipo.22196] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Juan Ahumada
- Centro de Neurobiología y Plasticidad Cerebral; Departamento de Fisiología; Facultad de Ciencias, Universidad Valparaíso; Chile
| | - David Fernández de Sevilla
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal; CSIC; Av. Dr. Arce 37 28002 Madrid Spain
- Departamento de Anatomía; Histología y Neurociencia, Facultad de Medicina. UAM; Madrid Spain
| | - Alejandro Couve
- Centro de Neurobiología y Plasticidad Cerebral; Departamento de Fisiología; Facultad de Ciencias, Universidad Valparaíso; Chile
| | - Washington Buño
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal; CSIC; Av. Dr. Arce 37 28002 Madrid Spain
| | - Marco Fuenzalida
- Centro de Neurobiología y Plasticidad Cerebral; Departamento de Fisiología; Facultad de Ciencias, Universidad Valparaíso; Chile
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal; CSIC; Av. Dr. Arce 37 28002 Madrid Spain
| |
Collapse
|
174
|
Hoffman AF, Lupica CR. Synaptic targets of Δ9-tetrahydrocannabinol in the central nervous system. Cold Spring Harb Perspect Med 2013; 3:cshperspect.a012237. [PMID: 23209160 DOI: 10.1101/cshperspect.a012237] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The availability of potent synthetic agonists for cannabinoid receptors has facilitated our understanding of cannabinoid actions on synaptic transmission in the central nervous system. Moreover, the ability of these compounds to inhibit neurotransmitter release at many central synapses is thought to underlie most of the behavioral effects of cannabinoid agonists. However, despite the widespread use and misuse of marijuana, and recognition of its potential adverse psychological effects in humans, comparatively few studies have examined the actions of its primary psychoactive constituent, Δ(9)-tetrahydrocannabinol (THC), at well-defined synaptic pathways. Here we examine the recent literature describing the effects of acute and repeated THC exposure on synaptic function in several brain regions and explore the importance of these neurobiological actions of THC in drug addiction.
Collapse
Affiliation(s)
- Alexander F Hoffman
- U.S. Department of Health and Human Services, National Institutes of Health, National Institute on Drug Abuse Intramural Research Program, Electrophysiology Research Section, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
175
|
Cerovic M, d'Isa R, Tonini R, Brambilla R. Molecular and cellular mechanisms of dopamine-mediated behavioral plasticity in the striatum. Neurobiol Learn Mem 2013; 105:63-80. [PMID: 23827407 DOI: 10.1016/j.nlm.2013.06.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/20/2013] [Accepted: 06/23/2013] [Indexed: 12/25/2022]
Abstract
The striatum is the input structure of the basal ganglia system. By integrating glutamatergic signals from cortical and subcortical regions and dopaminergic signals from mesolimbic nuclei the striatum functions as an important neural substrate for procedural and motor learning as well as for reward-guided behaviors. In addition, striatal activity is significantly altered in pathological conditions in which either a loss of dopamine innervation (Parkinson's disease) or aberrant dopamine-mediated signaling (drug addiction and L-DOPA induced dyskinesia) occurs. Here we discuss cellular mechanisms of striatal synaptic plasticity and aspects of cell signaling underlying striatum-dependent behavior, with a major focus on the neuromodulatory action of the endocannabinoid system and on the role of the Ras-ERK cascade.
Collapse
Affiliation(s)
- Milica Cerovic
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, UK
| | | | | | | |
Collapse
|
176
|
Fagundo AB, de la Torre R, Jiménez-Murcia S, Agüera Z, Pastor A, Casanueva FF, Granero R, Baños R, Botella C, del Pino-Gutierrez A, Fernández-Real JM, Fernández-García JC, Frühbeck G, Gómez-Ambrosi J, Menchón JM, Moragrega I, Rodríguez R, Tárrega S, Tinahones FJ, Fernández-Aranda F. Modulation of the Endocannabinoids N-Arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) on Executive Functions in Humans. PLoS One 2013; 8:e66387. [PMID: 23840456 PMCID: PMC3686875 DOI: 10.1371/journal.pone.0066387] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/05/2013] [Indexed: 12/20/2022] Open
Abstract
Animal studies point to an implication of the endocannabinoid system on executive functions. In humans, several studies have suggested an association between acute or chronic use of exogenous cannabinoids (Δ9-tetrahydrocannabinol) and executive impairments. However, to date, no published reports establish the relationship between endocannabinoids, as biomarkers of the cannabinoid neurotransmission system, and executive functioning in humans. The aim of the present study was to explore the association between circulating levels of plasma endocannabinoids N-arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) and executive functions (decision making, response inhibition and cognitive flexibility) in healthy subjects. One hundred and fifty seven subjects were included and assessed with the Wisconsin Card Sorting Test; Stroop Color and Word Test; and Iowa Gambling Task. All participants were female, aged between 18 and 60 years and spoke Spanish as their first language. Results showed a negative correlation between 2-AG and cognitive flexibility performance (r = −.37; p<.05). A positive correlation was found between AEA concentrations and both cognitive flexibility (r = .59; p<.05) and decision making performance (r = .23; P<.05). There was no significant correlation between either 2-AG (r = −.17) or AEA (r = −.08) concentrations and inhibition response. These results show, in humans, a relevant modulation of the endocannabinoid system on prefrontal-dependent cognitive functioning. The present study might have significant implications for the underlying executive alterations described in some psychiatric disorders currently associated with endocannabinoids deregulation (namely drug abuse/dependence, depression, obesity and eating disorders). Understanding the neurobiology of their dysexecutive profile might certainly contribute to the development of new treatments and pharmacological approaches.
Collapse
Affiliation(s)
- Ana B. Fagundo
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
| | - Rafael de la Torre
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Zaida Agüera
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
| | - Antoni Pastor
- Human Pharmacology and Clinical Neurosciences Research Group, Neuroscience Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Department of Pharmacology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Felipe F. Casanueva
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Endocrine Division, Complejo Hospitalario U. de Santiago, Santiago de Compostela University, Santiago de Compostela, Spain
| | - Roser Granero
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Departament de Psicobiologia i Metodologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosa Baños
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Personality, Evaluation and Psychological Treatment of the University of Valencia, Valencia, Spain
| | - Cristina Botella
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Basic Psychology, Clinic and Psychobiology of the University Jaume I, Castelló, Spain
| | - Amparo del Pino-Gutierrez
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- Nursing Department of Public Health, Maternal and Child Health the Nursing School of the University of Barcelona, Barcelona, Spain
| | - Jose M. Fernández-Real
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdlBGi) Hospital Dr Josep Trueta, Girona, Spain
| | - Jose C. Fernández-García
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria, Málaga, Spain
| | - Gema Frühbeck
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Javier Gómez-Ambrosi
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - José M. Menchón
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
- CIBER Salud Mental (CIBERsam), Instituto Salud Carlos III, Barcelona, Spain
| | - Inés Moragrega
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Basic Psychology, Clinic and Psychobiology of the University Jaume I, Castelló, Spain
| | - Roser Rodríguez
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona (IdlBGi) Hospital Dr Josep Trueta, Girona, Spain
| | - Salomé Tárrega
- Departament de Psicobiologia i Metodologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco J. Tinahones
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria, Málaga, Spain
| | - Fernando Fernández-Aranda
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
177
|
Metabotropic glutamate receptor I (mGluR1) antagonism impairs cocaine-induced conditioned place preference via inhibition of protein synthesis. Neuropsychopharmacology 2013; 38:1308-21. [PMID: 23348064 PMCID: PMC3656374 DOI: 10.1038/npp.2013.29] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antagonism of group I metabotropic glutamate receptors (mGluR1 and mGluR5) reduces behavioral effects of drugs of abuse, including cocaine. However, the underlying mechanisms remain poorly understood. Activation of mGluR5 increases protein synthesis at synapses. Although mGluR5-induced excessive protein synthesis has been implicated in the pathology of fragile X syndrome, it remains unknown whether group I mGluR-mediated protein synthesis is involved in any behavioral effects of drugs of abuse. We report that group I mGluR agonist DHPG induced more pronounced initial depression of inhibitory postsynaptic currents (IPSCs) followed by modest long-term depression (I-LTD) in dopamine neurons of rat ventral tegmental area (VTA) through the activation of mGluR1. The early component of DHPG-induced depression of IPSCs was mediated by the cannabinoid CB1 receptors, while DHPG-induced I-LTD was dependent on protein synthesis. Western blotting analysis indicates that mGluR1 was coupled to extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) signaling pathways to increase translation. We also show that cocaine conditioning activated translation machinery in the VTA via an mGluR1-dependent mechanism. Furthermore, intra-VTA microinjections of mGluR1 antagonist JNJ16259685 and protein synthesis inhibitor cycloheximide significantly attenuated or blocked the acquisition of cocaine-induced conditioned place preference (CPP) and activation of translation elongation factors. Taken together, these results suggest that mGluR1 antagonism inhibits de novo protein synthesis; this effect may block the formation of cocaine-cue associations and thus provide a mechanism for the reduction in CPP to cocaine.
Collapse
|
178
|
Adaptations in AMPA receptor transmission in the nucleus accumbens contributing to incubation of cocaine craving. Neuropharmacology 2013; 76 Pt B:287-300. [PMID: 23727437 DOI: 10.1016/j.neuropharm.2013.04.061] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 12/23/2022]
Abstract
Cue-induced cocaine craving in rodents intensifies or "incubates" during the first months of withdrawal from long access cocaine self-administration. This incubation phenomenon is relevant to human users who achieve abstinence but exhibit persistent vulnerability to cue-induced relapse. It is well established that incubation of cocaine craving involves complex neuronal circuits. Here we will focus on neuroadaptations in the nucleus accumbens (NAc), a region of convergence for pathways that control cocaine seeking. A key adaptation is a delayed (~3-4 weeks) accumulation of Ca(2+)-permeable AMPAR receptors (CP-AMPARs) in synapses on medium spiny neurons (MSN) of the NAc. These CP-AMPARs mediate the expression of incubation after prolonged withdrawal, although different mechanisms must be responsible during the first weeks of withdrawal, prior to CP-AMPAR accumulation. The cascade of events leading to CP-AMPAR accumulation is still unclear. However, several candidate mechanisms have been identified. First, mGluR1 has been shown to negatively regulate CP-AMPAR levels in NAc synapses, and it is possible that a withdrawal-dependent decrease in this effect may help explain CP-AMPAR accumulation during incubation. Second, an increase in phosphorylation of GluA1 subunits (at the protein kinase A site) within extrasynaptic homomeric GluA1 receptors (CP-AMPARs) may promote their synaptic insertion and oppose their removal. Finally, elevation of brain-derived neurotrophic factor (BDNF) levels in the NAc may contribute to maintenance of incubation after months of withdrawal, although incubation-related increases in BDNF accumulation do not account for CP-AMPAR accumulation. Receptors and pathways that negatively regulate incubation, such as mGluR1, are promising targets for the development of therapeutic strategies to help recovering addicts maintain abstinence. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
|
179
|
Tamagnini F, Barker G, Warburton EC, Burattini C, Aicardi G, Bashir ZI. Nitric oxide-dependent long-term depression but not endocannabinoid-mediated long-term potentiation is crucial for visual recognition memory. J Physiol 2013; 591:3963-79. [PMID: 23671159 PMCID: PMC3764640 DOI: 10.1113/jphysiol.2013.254862] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Synaptic plasticity in perirhinal cortex is essential for recognition memory. Nitric oxide and endocannabinoids (eCBs), which are produced in the postsynaptic cell and act on the presynaptic terminal, are implicated in mechanisms of long-term potentiation (LTP) and long-term depression (LTD) in other brain regions. In this study, we examine these two retrograde signalling cascades in perirhinal cortex synaptic plasticity and in visual recognition memory in the rat. We show that inhibition of NO-dependent signalling prevented both carbachol- and activity (5 Hz)-dependent LTD but not activity (100 Hz theta burst)-dependent LTP in the rat perirhinal cortex in vitro. In contrast, inhibition of the eCB-dependent signalling prevented LTP but not the two forms of LTD in vitro. Local administration into perirhinal cortex of the nitric oxide synthase inhibitor NPA (2 μm) disrupted acquisition of long-term visual recognition memory. In contrast, AM251 (10 μm), a cannabinoid receptor 1 antagonist, did not impair visual recognition memory. The results of this study demonstrate dissociation between putative retrograde signalling mechanisms in LTD and LTP in perirhinal cortex. Thus, LTP relies on cannabinoid but not NO signalling, whilst LTD relies on NO- but not eCB-dependent signalling. Critically, these results also establish, for the first time, that NO- but not eCB-dependent signalling is important in perirhinal cortex-dependent visual recognition memory.
Collapse
Affiliation(s)
- Francesco Tamagnini
- School of Physiology and Pharmacology, Medical Research Council Centre for Synaptic Plasticity, Bristol University, UK
| | | | | | | | | | | |
Collapse
|
180
|
Locomotor sensitization to ethanol impairs NMDA receptor-dependent synaptic plasticity in the nucleus accumbens and increases ethanol self-administration. J Neurosci 2013; 33:4834-42. [PMID: 23486954 DOI: 10.1523/jneurosci.5839-11.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although alcoholism is a worldwide problem resulting in millions of deaths, only a small percentage of alcohol users become addicted. The specific neural substrates responsible for individual differences in vulnerability to alcohol addiction are not known. In this study, we used rodent models to study behavioral and synaptic correlates related to individual differences in the development of ethanol locomotor sensitization, a form of drug-dependent behavioral plasticity associated with addiction vulnerability. Male Swiss Webster mice were treated daily with saline or 1.8 g/kg ethanol for 21 d. Locomotor activity tests were performed once a week for 15 min immediately after saline or ethanol injections. After at least 11 d of withdrawal, cohorts of saline- or ethanol-treated mice were used to characterize the relationships between locomotor sensitization, ethanol drinking, and glutamatergic synaptic transmission in the nucleus accumbens. Ethanol-treated mice that expressed locomotor sensitization to ethanol drank significantly more ethanol than saline-treated subjects and ethanol-treated animals resilient to this form of behavioral plasticity. Moreover, ethanol-sensitized mice also had reduced accumbal NMDA receptor function and expression, as well as deficits in NMDA receptor-dependent long-term depression in the nucleus accumbens core after a protracted withdrawal. These findings suggest that disruption of accumbal core NMDA receptor-dependent plasticity may represent a synaptic correlate associated with ethanol-induced locomotor sensitization and increased propensity to consume ethanol.
Collapse
|
181
|
Loweth JA, Tseng KY, Wolf ME. Using metabotropic glutamate receptors to modulate cocaine's synaptic and behavioral effects: mGluR1 finds a niche. Curr Opin Neurobiol 2013; 23:500-6. [PMID: 23385114 DOI: 10.1016/j.conb.2013.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 11/29/2022]
Abstract
Group I metabotropic glutamate receptors (mGluR) are important modulators of excitatory synaptic transmission and therefore potential targets for drug development. In several brain regions (ventral tegmental area (VTA), cerebellum, and amygdala), stimulation of mGluR1 selectively inhibits synaptic transmission mediated by calcium-permeable AMPA receptors (CP-AMPARs) and thus produces synaptic depression. The same relationship has now been demonstrated in the nucleus accumbens (NAc), a region that is critical for cocaine craving. CP-AMPAR levels in NAc synapses are normally low, but they increase after prolonged withdrawal from extended-access cocaine self-administration (SA). These CP-AMPARs mediate the intensified ('incubated') cue-induced cocaine craving observed under these conditions. Therefore, activation of mGluR1 with positive allosteric modulators (PAM) may reduce cue-induced relapse in abstinent cocaine addicts.
Collapse
Affiliation(s)
- Jessica A Loweth
- Department of Neuroscience, Rosalind Franklin University of Medicine, USA
| | | | | |
Collapse
|
182
|
Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome. Nat Commun 2013; 3:1080. [PMID: 23011134 PMCID: PMC3657999 DOI: 10.1038/ncomms2045] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/01/2012] [Indexed: 11/25/2022] Open
Abstract
Fragile X syndrome, the most commonly known genetic cause of autism, is due to loss of the fragile X mental retardation protein, which regulates signal transduction at metabotropic glutamate receptor-5 in the brain. Fragile X mental retardation protein deletion in mice enhances metabotropic glutamate receptor-5-dependent long-term depression in the hippocampus and cerebellum. Here we show that a distinct type of metabotropic glutamate receptor-5-dependent long-term depression at excitatory synapses of the ventral striatum and prefrontal cortex, which is mediated by the endocannabinoid 2-arachidonoyl-sn-glycerol, is absent in fragile X mental retardation protein-null mice. In these mutants, the macromolecular complex that links metabotropic glutamate receptor-5 to the 2-arachidonoyl-sn-glycerol-producing enzyme, diacylglycerol lipase-α (endocannabinoid signalosome), is disrupted and metabotropic glutamate receptor-5-dependent 2-arachidonoyl-sn-glycerol formation is compromised. These changes are accompanied by impaired endocannabinoid-dependent long-term depression. Pharmacological enhancement of 2-arachidonoyl-sn-glycerol signalling normalizes this synaptic defect and corrects behavioural abnormalities in fragile X mental retardation protein-deficient mice. The results identify the endocannabinoid signalosome as a molecular substrate for fragile X syndrome, which might be targeted by therapy. Fragile X syndrome is a major genetic cause of autism and is caused by loss of the fragile X mental retardation protein. In a mouse model of fragile X syndrome, Jung et al. show that an absence of neuronal endocannabinoid signalling is responsible for the neurophysiological and behavioural defects.
Collapse
|
183
|
Pierce RC, Wolf ME. Psychostimulant-induced neuroadaptations in nucleus accumbens AMPA receptor transmission. Cold Spring Harb Perspect Med 2013; 3:a012021. [PMID: 23232118 PMCID: PMC3552338 DOI: 10.1101/cshperspect.a012021] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Medium spiny neurons of the nucleus accumbens serve as the interface between corticolimbic regions that elicit and modulate motivated behaviors, including those related to drugs of abuse, and motor regions responsible for their execution. Medium spiny neurons are excited primarily by AMPA-type glutamate receptors, making AMPA receptor transmission in the accumbens a key regulatory point for addictive behaviors. In animal models of cocaine addiction, changes in the strength of AMPA receptor transmission onto accumbens medium spiny neurons have been shown to underlie cocaine-induced behavioral adaptations related to cocaine seeking. Here we review changes in AMPA receptor levels and subunit composition that occur after discontinuing different types of cocaine exposure, as well as changes elicited by cocaine reexposure following abstinence or extinction. Signaling pathways that regulate these cocaine-induced adaptations will also be considered, as they represent potential targets for addiction pharmacotherapies.
Collapse
Affiliation(s)
- R Christopher Pierce
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
184
|
Panlilio LV, Justinova Z, Goldberg SR. Inhibition of FAAH and activation of PPAR: new approaches to the treatment of cognitive dysfunction and drug addiction. Pharmacol Ther 2013; 138:84-102. [PMID: 23333350 DOI: 10.1016/j.pharmthera.2013.01.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 12/16/2022]
Abstract
Enhancing the effects of endogenously-released cannabinoid ligands in the brain might provide therapeutic effects more safely and effectively than administering drugs that act directly at the cannabinoid receptor. Inhibitors of fatty acid amide hydrolase (FAAH) prevent the breakdown of endogenous ligands for cannabinoid receptors and peroxisome proliferator-activated receptors (PPAR), prolonging and enhancing the effects of these ligands when they are naturally released. This review considers recent research on the effects of FAAH inhibitors and PPAR activators in animal models of addiction and cognition (specifically learning and memory). These studies show that FAAH inhibitors can produce potentially therapeutic effects, some through cannabinoid receptors and some through PPAR. These effects include enhancing certain forms of learning, counteracting the rewarding effects of nicotine and alcohol, relieving symptoms of withdrawal from cannabis and other drugs, and protecting against relapse-like reinstatement of drug self-administration. Since FAAH inhibition might have a wide range of therapeutic actions but might also share some of the adverse effects of cannabis, it is noteworthy that at least one FAAH-inhibiting drug (URB597) has been found to have potentially beneficial effects but no indication of liability for abuse or dependence. Although these areas of research are new, the preliminary evidence indicates that they might lead to improved therapeutic interventions and a better understanding of the brain mechanisms underlying addiction and memory.
Collapse
Affiliation(s)
- Leigh V Panlilio
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
185
|
Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y. Endocannabinoid signaling and synaptic function. Neuron 2012; 76:70-81. [PMID: 23040807 DOI: 10.1016/j.neuron.2012.09.020] [Citation(s) in RCA: 776] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2012] [Indexed: 12/17/2022]
Abstract
Endocannabinoids are key modulators of synaptic function. By activating cannabinoid receptors expressed in the central nervous system, these lipid messengers can regulate several neural functions and behaviors. As experimental tools advance, the repertoire of known endocannabinoid-mediated effects at the synapse, and their underlying mechanism, continues to expand. Retrograde signaling is the principal mode by which endocannabinoids mediate short- and long-term forms of plasticity at both excitatory and inhibitory synapses. However, growing evidence suggests that endocannabinoids can also signal in a nonretrograde manner. In addition to mediating synaptic plasticity, the endocannabinoid system is itself subject to plastic changes. Multiple points of interaction with other neuromodulatory and signaling systems have now been identified. In this Review, we focus on new advances in synaptic endocannabinoid signaling in the mammalian brain. The emerging picture not only reinforces endocannabinoids as potent regulators of synaptic function but also reveals that endocannabinoid signaling is mechanistically more complex and diverse than originally thought.
Collapse
Affiliation(s)
- Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
186
|
Ievglevskyi O, Palygin O, Kondratskaya E, Grebenyuk S, Krishtal O. Modulation of ATP-induced LTP by cannabinoid receptors in rat hippocampus. Purinergic Signal 2012; 8:705-13. [PMID: 22453905 PMCID: PMC3486163 DOI: 10.1007/s11302-012-9296-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 02/05/2012] [Indexed: 10/28/2022] Open
Abstract
Cannabinoids exert powerful action on various forms of synaptic plasticity. These retrograde messengers modulate GABA and glutamate release from presynaptic terminals by acting on presynaptic CB1 receptors. In particular, they inhibit long-term potentiation (LTP) elicited by electrical stimulation of excitatory pathways in rat hippocampus. Recently, LTP of the field excitatory postsynaptic potential (fEPSP) induced by exogenous ATP has been thoroughly explored. The present study demonstrates that cannabinoids inhibit ATP-induced LTP in hippocampal slices of rat. Administration of 10 μM of ATP led to strong inhibition of fEPSPs in CA1/CA3 hippocampal synapses. Within 40 min after ATP removal from bath solution, robust LTP was observed (fEPSP amplitude comprised 130.1 ± 3.8% of control, n = 10). This LTP never appeared when ATP was applied in addition to cannabinoid receptor agonist WIN55,212-2 (100 nM). Selective CB1 receptor antagonist, AM251 (500 nM), completely abolished this effect of WIN55,212-2. Our data indicate that like canonical LTP elicited by electrical stimulation, ATP-induced LTP is under control of CB1 receptors.
Collapse
Affiliation(s)
- Olexandr Ievglevskyi
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Oleg Palygin
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Elena Kondratskaya
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Sergei Grebenyuk
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Oleg Krishtal
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kiev, Ukraine
- State Key Laboratory for Molecular and Cellular Biology, Kiev, Ukraine
| |
Collapse
|
187
|
Huang CC, Hsu KS. Activation of NMDA receptors reduces metabotropic glutamate receptor-induced long-term depression in the nucleus accumbens via a CaMKII-dependent mechanism. Neuropharmacology 2012; 63:1298-307. [DOI: 10.1016/j.neuropharm.2012.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/30/2012] [Accepted: 08/14/2012] [Indexed: 01/12/2023]
|
188
|
Effect of CB1 receptor blockade on food-reinforced responding and associated nucleus accumbens neuronal activity in rats. J Neurosci 2012; 32:11467-77. [PMID: 22895729 DOI: 10.1523/jneurosci.1833-12.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies have shown that disruption of cannabinoid receptor signaling reduces operant responses for rewards; yet it is unknown whether changes in neural activity at dopamine terminal regions such as the nucleus accumbens (NAc) underlie these behavioral effects. To study the neural correlates that accompany the disruption of endogenous cannabinoid (eCB) signaling in a food-motivated task, we recorded the neural activity and local field potentials (LFPs) from the NAc. A within-subject design was used for recordings as rats engaged in lever-pressing behavior for sucrose chocolate-flavored pellets delivered during responding in a progressive ratio (PR) schedule of reinforcement. Rats were food restricted to 85 ± 5% of their free body weight and trained under a PR until a stable breakpoint was observed (12 sessions ± 3). Once performance was stable, recordings were made under baseline, vehicle, and following administration of the cannabinoid inverse agonist rimonabant (150 μg/kg, i.v). NAc neurons encoded reward-predictive cues as well as food reward delivery. Rimonabant administration robustly reduced breakpoints in all rats tested, as previously reported. We found that this reduction is accompanied by a profound attenuation in the strength and coordination of specific event-related spiking activity. Moreover, rimonabant decreased LFP gamma power at 80 Hz (high gamma) at reward delivery and gamma power at 50 Hz (low gamma) at cue onset. Together the present results indicate that the eCB system sculpts neural activity patterns that accompany PR performance and reward consumption.
Collapse
|
189
|
Péterfi Z, Urbán GM, Papp OI, Németh B, Monyer H, Szabó G, Erdélyi F, Mackie K, Freund TF, Hájos N, Katona I. Endocannabinoid-mediated long-term depression of afferent excitatory synapses in hippocampal pyramidal cells and GABAergic interneurons. J Neurosci 2012; 32:14448-63. [PMID: 23055515 PMCID: PMC3494839 DOI: 10.1523/jneurosci.1676-12.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/22/2012] [Accepted: 08/25/2012] [Indexed: 11/21/2022] Open
Abstract
Although endocannabinoids have emerged as essential retrograde messengers in several forms of synaptic plasticity, it remains controversial whether they mediate long-term depression (LTD) of glutamatergic synapses onto excitatory and inhibitory neurons in the hippocampus. Here, we show that parvalbumin- and somatostatin/metabotropic glutamate receptor 1(a) (mGlu(1a))-positive GABAergic interneurons express diacylglycerol lipase-α (DGL-α), a synthesizing enzyme of the endocannabinoid 2-arachidonoylglycerol (2-AG), albeit at lower levels than principal cells. Moreover, this lipase accumulates postsynaptically around afferent excitatory synapses in all three cell types. To address the role of retrograde 2-AG signaling in LTD, we investigated two forms: (1) produced by postsynaptic spiking paired with subsequent presynaptic stimulation or (2) induced by group I mGlu activation by (S)-3,5-dihydroxyphenylglycine (DHPG). Neither form of LTD was evoked in the presence of the mGlu(5) antagonist MPEP [2-methyl-6-(phenylethynyl)-pyridine], the DGL inhibitor THL [N-formyl-l-leucine (1S)-1-[[(2S,3S)-3-hexyl-4-oxo-2-oxetanyl]methyl]dodecyl ester], or the intracellularly applied Ca(2+) chelator BAPTA in CA1 pyramidal cells, fast-spiking interneurons (representing parvalbumin-containing cells) and interneurons projecting to stratum lacunosum-moleculare (representing somatostatin/mGlu(1a)-expressing interneurons). Both forms of LTD were completely absent in CB(1) cannabinoid receptor knock-out mice, whereas pharmacological blockade of CB(1) led to inconsistent results. Notably, in accordance with their lower DGL-α level, a higher stimulation frequency or higher DHPG concentration was required for LTD induction in interneurons compared with pyramidal cells. These findings demonstrate that hippocampal principal cells and interneurons produce endocannabinoids to mediate LTD in a qualitatively similar, but quantitatively different manner. The shifted induction threshold implies that endocannabinoid-LTD contributes to cortical information processing during distinct network activity patterns in a cell type-specific manner.
Collapse
Affiliation(s)
- Zoltán Péterfi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary
| | - Gabriella M. Urbán
- Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary
| | - Orsolya I. Papp
- Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary
| | - Beáta Németh
- Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary
| | - Hannah Monyer
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (Deutsches Krebsforschungszentrum), 69120 Heidelberg, Germany, and
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary
| | - Ferenc Erdélyi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary
| | - Ken Mackie
- Department of Psychological and Brain Sciences and Gill Center, Indiana University, Bloomington, Indiana 47405
| | - Tamás F. Freund
- Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary
| | - Norbert Hájos
- Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary
| | - István Katona
- Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary
| |
Collapse
|
190
|
Ji X, Martin GE. New rules governing synaptic plasticity in core nucleus accumbens medium spiny neurons. Eur J Neurosci 2012; 36:3615-27. [PMID: 23013293 DOI: 10.1111/ejn.12002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 08/08/2012] [Accepted: 08/15/2012] [Indexed: 11/29/2022]
Abstract
The nucleus accumbens is a forebrain region responsible for drug reward and goal-directed behaviors. It has long been believed that drugs of abuse exert their addictive properties on behavior by altering the strength of synaptic communication over long periods of time. To date, attempts at understanding the relationship between drugs of abuse and synaptic plasticity have relied on the high-frequency long-term potentiation model of T.V. Bliss & T. Lømo [(1973) Journal of Physiology, 232, 331-356]. We examined synaptic plasticity using spike-timing-dependent plasticity, a stimulation paradigm that reflects more closely the in vivo firing patterns of mouse core nucleus accumbens medium spiny neurons and their afferents. In contrast to other brain regions, the same stimulation paradigm evoked bidirectional long-term plasticity. The magnitude of spike-timing-dependent long-term potentiation (tLTP) changed with the delay between action potentials and excitatory post-synaptic potentials, and frequency, whereas that of spike-timing-dependent long-term depression (tLTD) remained unchanged. We showed that tLTP depended on N-methyl-d-aspartate receptors, whereas tLTD relied on action potentials. Importantly, the intracellular calcium signaling pathways mobilised during tLTP and tLTD were different. Thus, calcium-induced calcium release underlies tLTD but not tLTP. Finally, we found that the firing pattern of a subset of medium spiny neurons was strongly inhibited by dopamine receptor agonists. Surprisingly, these neurons were exclusively associated with tLTP but not with tLTD. Taken together, these data point to the existence of two subgroups of medium spiny neurons with distinct properties, each displaying unique abilities to undergo synaptic plasticity.
Collapse
Affiliation(s)
- Xincai Ji
- Department of Psychiatry, University of Massachusetts Medical School, The Brudnick Neuropsychiatric Research Institute, 303 Belmont Street, Worcester, MA 01604, USA
| | | |
Collapse
|
191
|
Kato A, Punnakkal P, Pernía-Andrade AJ, von Schoultz C, Sharopov S, Nyilas R, Katona I, Zeilhofer HU. Endocannabinoid-dependent plasticity at spinal nociceptor synapses. J Physiol 2012; 590:4717-33. [PMID: 22826132 DOI: 10.1113/jphysiol.2012.234229] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Neuroplastic changes at the spinal synapses between primary nociceptors and second order dorsal horn neurons play key roles in pain and analgesia. NMDA receptor-dependent forms of long-term plasticity have been studied extensively at these synapses, but little is known about possible contributions of the endocannabinoid system. Here, we addressed the role of cannabinoid (CB)1 receptors in activity-dependent plasticity at these synapses. We report that conditional low-frequency stimulation of high-threshold primary sensory nerve fibres paired with depolarisation of the postsynaptic neuron evoked robust long-term depression (LTD)of excitatory synaptic transmission by about 40% in the vast majority (90%) of recordings made in wild-type mice. When recordings were made from global or nociceptor-specific CB(1) receptor-deficient mice (CB(1) (−/− ) mice and sns-CB(1)(−/−) mice), the portion of neurons exhibiting LTD was strongly reduced to about 25%. Accordingly, LTD was prevented to a similar extent by the CB1 receptor antagonist AM251 and mimicked by pharmacological activation of CB1 receptors. In a subset of neurons with EPSCs of particularly high stimulation thresholds, we furthermore found that the absence of CB(1) receptors in CB(1)(−/−) and sns-CB(1)(−/−) mice converted the response to the paired conditioning stimulation protocol from LTD to long-term potentiation (LTP). Our results identify CB1 receptor-dependent LTD as a form of synaptic plasticity previously unknown in spinal nociceptors. They furthermore suggest that prevention of LTP may be a second hither to unknown function of CB1 receptors in primary nociceptors. Both findings may have important implications for our understanding of endogenous pain control mechanisms and of analgesia evoked by cannabinoid receptor agonists.
Collapse
Affiliation(s)
- Ako Kato
- Institute of Pharmacology and Toxicology, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Luchicchi A, Pistis M. Anandamide and 2-arachidonoylglycerol: Pharmacological Properties, Functional Features, and Emerging Specificities of the Two Major Endocannabinoids. Mol Neurobiol 2012; 46:374-92. [DOI: 10.1007/s12035-012-8299-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 07/03/2012] [Indexed: 12/18/2022]
|
193
|
Gregg LC, Jung KM, Spradley JM, Nyilas R, Suplita RL, Zimmer A, Watanabe M, Mackie K, Katona I, Piomelli D, Hohmann AG. Activation of type 5 metabotropic glutamate receptors and diacylglycerol lipase-α initiates 2-arachidonoylglycerol formation and endocannabinoid-mediated analgesia. J Neurosci 2012; 32:9457-68. [PMID: 22787031 PMCID: PMC3652685 DOI: 10.1523/jneurosci.0013-12.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 05/11/2012] [Accepted: 05/17/2012] [Indexed: 11/21/2022] Open
Abstract
Acute stress reduces pain sensitivity by engaging an endocannabinoid signaling circuit in the midbrain. The neural mechanisms governing this process and molecular identity of the endocannabinoid substance(s) involved are unknown. We combined behavior, pharmacology, immunohistochemistry, RNA interference, quantitative RT-PCR, enzyme assays, and lipidomic analyses of endocannabinoid content to uncover the role of the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG) in controlling pain sensitivity in vivo. Here, we show that footshock stress produces antinociception in rats by activating type 5 metabotropic glutamate receptors (mGlu(5)) in the dorsolateral periaqueductal gray (dlPAG) and mobilizing 2-AG. Stimulation of mGlu(5) in the dlPAG with DHPG [(S)-3,5-dihydroxyphenylglycine] triggered 2-AG formation and enhanced stress-dependent antinociception through a mechanism dependent upon both postsynaptic diacylglycerol lipase (DGL) activity, which releases 2-AG, and presynaptic CB(1) cannabinoid receptors. Pharmacological blockade of DGL activity in the dlPAG with RHC80267 [1,6-bis(cyclohexyloximinocarbonylamino)hexane] and (-)-tetrahydrolipstatin (THL), which inhibit activity of DGL-α and DGL-β isoforms, suppressed stress-induced antinociception. Inhibition of DGL activity in the dlPAG with THL selectively decreased accumulation of 2-AG without altering levels of anandamide. The putative 2-AG-synthesizing enzyme DGL-α colocalized with mGlu(5) at postsynaptic sites of the dlPAG, whereas CB(1) was confined to presynaptic terminals, consistent with a role for 2-AG as a retrograde signaling messenger. Finally, virally mediated silencing of DGL-α, but not DGL-β, transcription in the dlPAG mimicked effects of DGL inhibition in suppressing both endocannabinoid-mediated stress antinociception and 2-AG formation. The results indicate that activation of the postsynaptic mGlu(5)-DGL-α cascade triggers retrograde 2-AG signaling in vivo. This pathway is required for endocannabinoid-mediated stress-induced analgesia.
Collapse
Affiliation(s)
- Laura C. Gregg
- Neuroscience Program, Biomedical and Health Sciences Institute, and
| | - Kwang-Mook Jung
- Department of Pharmacology, University of California, Irvine, Irvine, California 92697
| | | | - Rita Nyilas
- Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary
| | - Richard L. Suplita
- Psychology Department, University of Georgia, Athens, Georgia 30602-3013
| | - Andreas Zimmer
- Insitute of Molecular Psychiatry, University of Bonn, 53105 Bonn, Germany
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405-2204, and
| | - István Katona
- Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary
| | - Daniele Piomelli
- Department of Pharmacology, University of California, Irvine, Irvine, California 92697
- Unit of Drug Discovery and Development, Italian Institute of Technology, 16163 Genoa, Italy
| | - Andrea G. Hohmann
- Neuroscience Program, Biomedical and Health Sciences Institute, and
- Psychology Department, University of Georgia, Athens, Georgia 30602-3013
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405-2204, and
| |
Collapse
|
194
|
Filbey FM, DeWitt SJ. Cannabis cue-elicited craving and the reward neurocircuitry. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:30-5. [PMID: 22100353 PMCID: PMC3623277 DOI: 10.1016/j.pnpbp.2011.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 10/26/2011] [Accepted: 11/01/2011] [Indexed: 01/02/2023]
Abstract
Cue-elicited craving or the intense desire to consume a substance following exposure to a conditioned drug cue is one of the primary behavioral symptoms of substance use disorders (SUDs). While the concept of cue-elicited craving is well characterized in alcohol and other substances of abuse, only recently has it been described in cannabis. A review of the extant literature has established that cue-elicited craving is a powerful reinforcer that contributes to drug-seeking for cannabis. Further, emergent research has begun to identify the neurobiological systems and neural mechanisms associated with this behavior. What research shows is that while theories of THC's effects on the dopaminergic-reward system remain divergent, cannabis cues elicit neural activation in the brain's reward network.
Collapse
Affiliation(s)
- Francesca M. Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas
| | - Samuel J. DeWitt
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas
| |
Collapse
|
195
|
El Khoury MA, Gorgievski V, Moutsimilli L, Giros B, Tzavara ET. Interactions between the cannabinoid and dopaminergic systems: evidence from animal studies. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:36-50. [PMID: 22300746 DOI: 10.1016/j.pnpbp.2011.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 12/18/2011] [Accepted: 12/18/2011] [Indexed: 12/16/2022]
Abstract
There is a prominent role of the cannabinoid system to control basal ganglia function, in respect to reward, psychomotor function and motor control. Cannabinoid dysregulations might have a pathogenetic role in dopamine- and basal ganglia related neuropsychiatric disorders, such as drug addiction, psychosis, Parkinson's disease and Huntington's disease. This review highlights interactions between cannabinoids, and dopamine, to modulate neurotransmitter release and synaptic plasticity in the context of drug addiction, psychosis and cognition. Modulating endocannabinoid function, as a plasticity based therapeutic strategy, in the above pathologies with particular focus on cannabinoid receptor type 1 (CB1 receptor) antagonists/inverse agonists, is discussed. On the basis of the existing literature and of new experimental evidence presented here, CB1 receptor antagonists might be beneficial in disease states associated with hedonic dysregulation, and with cognitive dysfunction in particular in the context of psychosis. It is suggested that this effects might be mediated via a hyperglutamatergic state through metabotropic glutamate activation. Indications for endocannabinoid catabolism inhibitors in psychiatric disorders, that might be CB1 receptor independent and might involve TRPV1 receptors, are also discussed.
Collapse
Affiliation(s)
- Marie-Anne El Khoury
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-952, Université Pierre et Marie Curie, 9 quai St Bernard, 75005 Paris, France
| | | | | | | | | |
Collapse
|
196
|
Wolf ME, Tseng KY. Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: when, how, and why? Front Mol Neurosci 2012; 5:72. [PMID: 22754497 PMCID: PMC3384237 DOI: 10.3389/fnmol.2012.00072] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/21/2012] [Indexed: 11/13/2022] Open
Abstract
In animal models of drug addiction, cocaine exposure has been shown to increase levels of calcium-permeable AMPA receptors (CP-AMPARs) in two brain regions that are critical for motivation and reward-the ventral tegmental area (VTA) and the nucleus accumbens (NAc). This review compares CP-AMPAR plasticity in the two brain regions and addresses its functional significance. In VTA dopamine neurons, cocaine exposure results in synaptic insertion of high conductance CP-AMPARs in exchange for lower conductance calcium-impermeable AMPARs (CI-AMPARs). This plasticity is rapid in onset (hours), GluA2-dependent, and can be observed with a single cocaine injection. Whereas it is short-lived after experimenter-administered cocaine, it persists for months after cocaine self-administration. In addition to strengthening synapses and altering Ca(2+) signaling, CP-AMPAR insertion alters subsequent induction of plasticity at VTA synapses. However, CP-AMPAR insertion is unlikely to mediate the increased DA cell activity that occurs during early withdrawal from cocaine exposure. Metabotropic glutamate receptor 1 (mGluR1) exerts a negative influence on CP-AMPAR accumulation in the VTA. Acutely, mGluR1 stimulation elicits a form of LTD resulting from CP-AMPAR removal and CI-AMPAR insertion. In medium spiny neurons (MSNs) of the NAc, extended access cocaine self-administration is required to increase CP-AMPAR levels. This is first detected after approximately a month of withdrawal and then persists. Once present in NAc synapses, CP-AMPARs mediate the expression of incubation of cue-induced cocaine craving. The mechanism of their accumulation may be GluA1-dependent, which differs from that observed in the VTA. However, similar to VTA, mGluR1 stimulation removes CP-AMPARs from MSN synapses. Loss of mGluR1 tone during cocaine withdrawal may contribute to CP-AMPAR accumulation in the NAc. Thus, results in both brain regions point to the possibility of using positive modulators of mGluR1 as treatments for cocaine addiction.
Collapse
Affiliation(s)
- Marina E. Wolf
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North ChicagoIL, USA
| | - Kuei Y. Tseng
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, North ChicagoIL, USA
| |
Collapse
|
197
|
Cannabinoid receptors mediate methamphetamine induction of high frequency gamma oscillations in the nucleus accumbens. Neuropharmacology 2012; 63:565-74. [PMID: 22609048 DOI: 10.1016/j.neuropharm.2012.04.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 11/20/2022]
Abstract
Patients suffering from amphetamine-induced psychosis display repetitive behaviors, partially alleviated by antipsychotics, which are reminiscent of rodent stereotypies. Due to recent evidence implicating endocannabinoid involvement in brain disorders, including psychosis, we studied the effects of endocannabinoid signaling on neuronal oscillations of rats exhibiting methamphetamine stereotypy. Neuronal network oscillations were recorded with multiple single electrode arrays aimed at the nucleus accumbens of freely-moving rats. During the experiments, animals were dosed intravenously with the CB1 receptor antagonist rimonabant (0.3 mg/kg) or vehicle followed by an ascending dose regimen of methamphetamine (0.01, 0.1, 1, and 3 mg/kg; cumulative dosing). The effects of drug administration on stereotypy and local gamma oscillations were evaluated. Methamphetamine treatment significantly increased high frequency gamma oscillations (∼80 Hz). Entrainment of a subpopulation of nucleus accumbens neurons to high frequency gamma was associated with stereotypy encoding in putative fast-spiking interneurons, but not in putative medium spiny neurons. The observed ability of methamphetamine to induce both stereotypy and high frequency gamma power was potently disrupted following CB1 receptor blockade. The present data suggest that CB1 receptor-dependent mechanisms are recruited by methamphetamine to modify striatal interneuron oscillations that accompany changes in psychomotor state, further supporting the link between endocannabinoids and schizophrenia spectrum disorders.
Collapse
|
198
|
Mishra D, Zhang X, Chergui K. Ethanol disrupts the mechanisms of induction of long-term potentiation in the mouse nucleus accumbens. Alcohol Clin Exp Res 2012; 36:2117-25. [PMID: 22551245 DOI: 10.1111/j.1530-0277.2012.01824.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 03/06/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Long-term changes in the efficacy of glutamatergic synaptic transmission in reward-related brain regions such as the nucleus accumbens (NAc) are proposed to contribute to neuroadaptations that lead to drug addiction. Although alcohol is a widely used addictive substance, the cellular mechanisms by which it influences synaptic plasticity in the NAc are not elucidated. We therefore examined whether acute ethanol (EtOH) alters long-term potentiation (LTP) in the core region of the NAc and investigated the possible underlying mechanisms. METHODS We measured field excitatory postsynaptic potential/population spike (fEPSP/PS) amplitude in mouse brain slices containing the NAc. We also used amperometry to detect, with carbon fiber electrode, evoked dopamine release in brain slices. RESULTS In control slices, high-frequency stimulation (HFS) induced a stable LTP. LTP was reduced in slices perfused with EtOH (50 mM). Given that induction of LTP is dependent on glutamate acting on N-methyl-d-aspartate (NMDA) receptors and group I metabotropic glutamate receptors (mGluRs), we studied the ability of EtOH to modulate these 2 classes of receptors. NMDA (20 μM) depressed the amplitude of the fEPSP/PS, but this effect was not altered by EtOH in our experimental conditions. However, EtOH reversed the ability of the group I mGluR agonist (S)-3,5-Dihydroxyphenylglycine (DHPG) (50 μM) to potentiate the depressant action of NMDA on the fEPSP/PS. We also examined whether EtOH could modulate dopamine release given that dopamine plays important roles in mediating the reinforcing actions of abused drugs and in the induction of LTP in the NAc. We found that EtOH reversibly decreased action potential-dependent dopamine release evoked by single stimulation pulses and by HFS trains in NAc slices. CONCLUSIONS These results show that EtOH impairs the induction of LTP possibly through several mechanisms that include inhibition of group I mGluR-mediated potentiation of NMDA receptor function and of evoked dopamine release. This study provides additional support for a key role of glutamatergic and dopaminergic neurotransmission in the NAc in mediating the reinforcing effects of acute alcohol.
Collapse
Affiliation(s)
- Devesh Mishra
- Section of Molecular Neurophysiology , Department of Physiology and Pharmacology, The Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
199
|
Mathur BN, Lovinger DM. Endocannabinoid-dopamine interactions in striatal synaptic plasticity. Front Pharmacol 2012; 3:66. [PMID: 22529814 PMCID: PMC3329863 DOI: 10.3389/fphar.2012.00066] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/02/2012] [Indexed: 11/13/2022] Open
Abstract
The nigrostriatal dopaminergic system is implicated in action control and learning. A large body of work has focused on the contribution of this system to modulation of the corticostriatal synapse, the predominant synapse type in the striatum. Signaling through the D2 dopamine receptor is necessary for endocannabinoid-mediated depression of corticostriatal glutamate release. Here we review the known details of this mechanism and discuss newly discovered signaling pathways interacting with this system that ultimately exert dynamic control of cortical input to the striatum and striatal output. This topic is timely with respect to Parkinson's disease given recent data indicating changes in the striatal endocannabinoid system in patients with this disorder.
Collapse
Affiliation(s)
- Brian N Mathur
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, U.S. National Institutes of Health Rockville, MD, USA
| | | |
Collapse
|
200
|
Abstract
Despite being regarded as a hippie science for decades, cannabinoid research has finally found its well-deserved position in mainstream neuroscience. A series of groundbreaking discoveries revealed that endocannabinoid molecules are as widespread and important as conventional neurotransmitters such as glutamate or GABA, yet they act in profoundly unconventional ways. We aim to illustrate how uncovering the molecular, anatomical, and physiological characteristics of endocannabinoid signaling has revealed new mechanistic insights into several fundamental phenomena in synaptic physiology. First, we summarize unexpected advances in the molecular complexity of biogenesis and inactivation of the two endocannabinoids, anandamide and 2-arachidonoylglycerol. Then, we show how these new metabolic routes are integrated into well-known intracellular signaling pathways. These endocannabinoid-producing signalosomes operate in phasic and tonic modes, thereby differentially governing homeostatic, short-term, and long-term synaptic plasticity throughout the brain. Finally, we discuss how cell type- and synapse-specific refinement of endocannabinoid signaling may explain the characteristic behavioral effects of cannabinoids.
Collapse
Affiliation(s)
- István Katona
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 1051 Budapest, Hungary.
| | | |
Collapse
|