151
|
Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy. Proc Natl Acad Sci U S A 2009; 106:1784-9. [PMID: 19179399 DOI: 10.1073/pnas.0812056106] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Photochemical interconversion between the red-absorbing (P(r)) and the far-red-absorbing (P(fr)) forms of the photosensory protein phytochrome initiates signal transduction in bacteria and higher plants. The P(r)-to-P(fr) transition commences with a rapid Z-to-E photoisomerization at the C(15)=C(16) methine bridge of the bilin prosthetic group. Here, we use femtosecond stimulated Raman spectroscopy to probe the structural changes of the phycocyanobilin chromophore within phytochrome Cph1 on the ultrafast time scale. The enhanced intensity of the C(15)-H hydrogen out-of-plane (HOOP) mode, together with the appearance of red-shifted C=C stretch and N-H in-plane rocking modes within 500 fs, reveal that initial distortion of the C(15)=C(16) bond occurs in the electronically excited I* intermediate. From I*, 85% of the excited population relaxes back to P(r) in 3 ps, whereas the rest goes on to the Lumi-R photoproduct consistent with the 15% photochemical quantum yield. The C(15)-H HOOP and skeletal modes evolve to a Lumi-R-like pattern after 3 ps, thereby indicating that the C(15)=C(16) Z-to-E isomerization occurs on the excited-state surface.
Collapse
|
152
|
Brandt S, von Stetten D, Günther M, Hildebrandt P, Frankenberg-Dinkel N. The fungal phytochrome FphA from Aspergillus nidulans. J Biol Chem 2008; 283:34605-14. [PMID: 18931394 DOI: 10.1074/jbc.m805506200] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The red light-sensing photoreceptor FphA from Aspergillus nidulans is involved in the regulation of developmental processes in response to light. Here we present extended biochemical and spectroscopic characterization of recombinant FphA using a synthetic gene with host-adapted codon usage. The recombinant photosensory domain FphAN753 was shown to display all features of a bona fide phytochrome. It covalently binds biliverdin as chromophore and undergoes red/far-red light-inducible photoconversion with both parent states being protonated. The large N-terminal variable extension of FphA exerts a stabilizing effect on the active Pfr state. Upon substitution of the highly conserved histidine 504, involved in the hydrogen-bonding network of the protein moiety and the chromophore, chromophore attachment and photoreversibility were completely impaired. FphA is a functional sensor histidine kinase with a strong red-light-dependent autophosphorylation activity. Furthermore, intermolecular trans-phosphorylation to the response regulator domain of a second monomer could be demonstrated. Interestingly, co-incubation of FphA and FphA variants led to enhanced autophosphorylation, including the "inactive" Pr form. The latter observed phenomenon might suggest that auto- and trans-phosphorylation activity is modulated by additional interaction partners leading to variable phosphorylation events that trigger a specific output response.
Collapse
Affiliation(s)
- Sonja Brandt
- Physiologie der Mikroorganismen, Ruhr-Universität Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
| | | | | | | | | |
Collapse
|
153
|
Genetically encoded photoswitching of actin assembly through the Cdc42-WASP-Arp2/3 complex pathway. Proc Natl Acad Sci U S A 2008; 105:12797-802. [PMID: 18728185 DOI: 10.1073/pnas.0801232105] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
General methods to engineer genetically encoded, reversible, light-mediated control over protein function would be useful in many areas of biomedical research and technology. We describe a system that yields such photo-control over actin assembly. We fused the Rho family GTPase Cdc42 in its GDP-bound form to the photosensory domain of phytochrome B (PhyB) and fused the Cdc42 effector, the Wiskott-Aldrich Syndrome Protein (WASP), to the light-dependent PhyB-binding domain of phytochrome interacting factor 3 (Pif3). Upon red light illumination, the fusion proteins bind each other, activating WASP, and consequently stimulating actin assembly by the WASP target, the Arp2/3 complex. Binding and WASP activation are reversed by far-red illumination. Our approach, in which the biochemical specificity of the nucleotide switch in Cdc42 is overridden by the light-dependent PhyB-Pif3 interaction, should be generally applicable to other GTPase-effector pairs.
Collapse
|
154
|
Ulijasz AT, Cornilescu G, von Stetten D, Kaminski S, Mroginski MA, Zhang J, Bhaya D, Hildebrandt P, Vierstra RD. Characterization of two thermostable cyanobacterial phytochromes reveals global movements in the chromophore-binding domain during photoconversion. J Biol Chem 2008; 283:21251-66. [PMID: 18480055 PMCID: PMC3258942 DOI: 10.1074/jbc.m801592200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/30/2008] [Indexed: 11/06/2022] Open
Abstract
Photointerconversion between the red light-absorbing (Pr) form and the far-red light-absorbing (Pfr) form is the central feature that allows members of the phytochrome (Phy) superfamily to act as reversible switches in light perception. Whereas the chromophore structure and surrounding binding pocket of Pr have been described, those for Pfr have remained enigmatic for various technical reasons. Here we describe a novel pair of Phys from two thermophilic cyanobacteria, Synechococcus sp. OS-A and OS-B', that overcome several of these limitations. Like other cyanobacterial Phys, SyA-Cph1 and SyB-Cph1 covalently bind the bilin phycocyanobilin via their cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF) domains and then assume the photointerconvertible Pr and Pfr states with absorption maxima at 630 and 704 nm, respectively. However, they are naturally missing the N-terminal Per/Arndt/Sim domain common to others in the Phy superfamily. Importantly, truncations containing only the GAF domain are monomeric, photochromic, and remarkably thermostable. Resonance Raman and NMR spectroscopy show that all four pyrrole ring nitrogens of phycocyanobilin are protonated both as Pr and following red light irradiation, indicating that the GAF domain by itself can complete the Pr to Pfr photocycle. (1)H-(15)N two-dimensional NMR spectra of isotopically labeled preparations of the SyB-Cph1 GAF domain revealed that a number of amino acids change their environment during photoconversion of Pr to Pfr, which can be reversed by subsequent photoconversion back to Pr. Through three-dimensional NMR spectroscopy before and after light photoexcitation, it should now be possible to define the movements of the chromophore and binding pocket during photoconversion. We also generated a series of strongly red fluorescent derivatives of SyB-Cph1, which based on their small size and thermostability may be useful as cell biological reporters.
Collapse
Affiliation(s)
- Andrew T. Ulijasz
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Gabriel Cornilescu
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - David von Stetten
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Steve Kaminski
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Maria Andrea Mroginski
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Junrui Zhang
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Devaki Bhaya
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Peter Hildebrandt
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Richard D. Vierstra
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| |
Collapse
|
155
|
Dammeyer T, Bagby SC, Sullivan MB, Chisholm SW, Frankenberg-Dinkel N. Efficient phage-mediated pigment biosynthesis in oceanic cyanobacteria. Curr Biol 2008; 18:442-8. [PMID: 18356052 DOI: 10.1016/j.cub.2008.02.067] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/18/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
Abstract
Although the oceanic cyanobacterium Prochlorococcus harvests light with a chlorophyll antenna [1-3] rather than with the phycobilisomes that are typical of cyanobacteria, some strains express genes that are remnants of the ancestral Synechococcus phycobilisomes [4]. Similarly, some Prochlorococcus cyanophages, which often harbor photosynthesis-related genes [5], also carry homologs of phycobilisome pigment biosynthesis genes [6, 7]. Here, we investigate four such genes in two cyanophages that both infect abundant Prochlorococcus strains [8]: homologs of heme oxygenase (ho1), 15,16-dihydrobiliverdin:ferredoxin oxidoreductase (pebA), ferredoxin (petF) in the myovirus P-SSM2, and a phycocyanobilin:ferredoxin oxidoreductase (pcyA) homolog in the myovirus P-SSM4. We demonstrate that the phage homologs mimic the respective host activities, with the exception of the divergent phage PebA homolog. In this case, the phage PebA single-handedly catalyzes a reaction for which uninfected host cells require two consecutive enzymes, PebA and PebB. We thus renamed the phage enzyme phycoerythrobilin synthase (PebS). This gene, and other pigment biosynthesis genes encoded by P-SSM2 (petF and ho1), are transcribed during infection, suggesting that they can improve phage fitness. Analyses of global ocean metagenomes show that PcyA and Ho1 occur in both cyanobacteria and their phages, whereas the novel PebS-encoding gene is exclusive to phages.
Collapse
Affiliation(s)
- Thorben Dammeyer
- Physiology of Microorganisms, Ruhr-University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
156
|
Rockwell NC, Njuguna SL, Roberts L, Castillo E, Parson VL, Dwojak S, Lagarias JC, Spiller SC. A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus. Biochemistry 2008; 47:7304-16. [PMID: 18549244 PMCID: PMC2574597 DOI: 10.1021/bi800088t] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Phytochromes are widely occurring red/far-red photoreceptors that utilize a linear tetrapyrrole (bilin) chromophore covalently bound within a knotted PAS-GAF domain pair. Cyanobacteria also contain more distant relatives of phytochromes that lack this knot, such as the phytochrome-related cyanobacteriochromes implicated to function as blue/green switchable photoreceptors. In this study, we characterize the cyanobacteriochrome Tlr0924 from the thermophilic cyanobacterium Thermosynechococcus elongatus. Full-length Tlr0924 exhibits blue/green photoconversion across a broad range of temperatures, including physiologically relevant temperatures for this organism. Spectroscopic characterization of Tlr0924 demonstrates that its green-absorbing state is in equilibrium with a labile, spectrally distinct blue-absorbing species. The photochemically generated blue-absorbing state is in equilibrium with another species absorbing at longer wavelengths, giving a total of 4 states. Cys499 is essential for this behavior, because mutagenesis of this residue results in red-absorbing mutant biliproteins. Characterization of the C 499D mutant protein by absorbance and CD spectroscopy supports the conclusion that its bilin chromophore adopts a similar conformation to the red-light-absorbing P r form of phytochrome. We propose a model photocycle in which Z/ E photoisomerization of the 15/16 bond modulates formation of a reversible thioether linkage between Cys499 and C10 of the chromophore, providing the basis for the blue/green switching of cyanobacteriochromes.
Collapse
Affiliation(s)
- Nathan C. Rockwell
- Section of Molecular and Cellular Biology, University of California, Davis CA 95616
| | | | | | | | | | | | - J. Clark Lagarias
- Section of Molecular and Cellular Biology, University of California, Davis CA 95616
| | | |
Collapse
|
157
|
Dammeyer T, Frankenberg-Dinkel N. Function and distribution of bilin biosynthesis enzymes in photosynthetic organisms. Photochem Photobiol Sci 2008; 7:1121-30. [PMID: 18846276 DOI: 10.1039/b807209b] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bilins are open-chain tetrapyrrole molecules essential for light-harvesting and/or sensing in many photosynthetic organisms. While they serve as chromophores in phytochrome-mediated light-sensing in plants, they additionally function in light-harvesting in cyanobacteria, red algae and cryptomonads. Associated to phycobiliproteins a variety of bile pigments is responsible for the specific light-absorbance properties of the organisms enabling efficient photosynthesis under different light conditions. The initial step of bilin biosynthesis is the cleavage of heme by heme oxygenases (HO) to afford the first linear molecule biliverdin. This reaction is ubiquitously found also in non-photosynthetic organisms. Biliverdin is then further reduced by site specific reductases most of them belonging to the interesting family of ferredoxin-dependent bilin reductases (FDBRs)-a new family of radical oxidoreductases. In recent years much progress has been made in the field of heme oxygenases but even more in the widespread family of FDBRs, revealing novel biochemical FDBR activities, new crystal structures and new ecological aspects, including the discovery of bilin biosynthesis genes in wild marine phage populations. The aim of this review is to summarize and discuss the recent progress in this field and to highlight the new and remaining questions.
Collapse
Affiliation(s)
- Thorben Dammeyer
- Physiology of Microorganisms, Ruhr-University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| | | |
Collapse
|
158
|
Chung YH, Masuda S, Bauer CE. Purification and reconstitution of PYP-phytochrome with biliverdin and 4-hydroxycinnamic acid. Methods Enzymol 2008; 422:184-9. [PMID: 17628140 PMCID: PMC2774280 DOI: 10.1016/s0076-6879(06)22009-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
PYP-phytochrome (Ppr) is a unique photoreceptor that contains a blue light-absorbing photoactive yellow protein (PYP) domain, a red light-absorbing phytochrome domain, and a histidine kinase domain. This chapter describes overexpression of Ppr in a strain of Escherichia coli that allows covalent attachment of substoichiometric amounts of biliverdin in vivo. Ppr is then fully reconstituted with biliverdin, followed by attachment of 4-hydroxycinnamic acid (p-coumaric acid), in vitro. Holo-Ppr with both chromophores is then isolated via an affinity tag and quantified for chromophore attachment by analysis of the absorption spectrum for biliverdin and 4-hydroxycinnamic acid. We also provide conditions for measuring autophosphorylation of Ppr.
Collapse
Affiliation(s)
- Young-Ho Chung
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | | |
Collapse
|
159
|
Noack S, Lamparter T. Light modulation of histidine-kinase activity in bacterial phytochromes monitored by size exclusion chromatography, crosslinking, and limited proteolysis. Methods Enzymol 2008; 423:203-21. [PMID: 17609133 DOI: 10.1016/s0076-6879(07)23009-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Phytochromes are photoreceptors that have been found in plants, bacteria, and fungi. Most bacterial and fungal phytochromes are histidine kinases and, for several bacterial phytochromes, light regulation of kinase activity has been demonstrated. Typical histidine kinases are homodimeric proteins in which one subunit phosphorylates the substrate histidine residue of the other subunit; dimerization is an intrinsic property of the histidine kinase itself. Truncated phytochromes which lack the histidine kinase can also form dimers, but the interaction between subunits is modulated by light. This light-dependent dimerization can give a clue to the intramolecular signal transduction of phytochromes which modulates the histidine kinase activity. Size exclusion chromatography, limited proteolysis, and protein crosslinking can be used to study light-induced conformational changes and the interaction of subunits within the homodimer.
Collapse
Affiliation(s)
- Steffi Noack
- Freie Universität Berlin, Pflanzenphysiologie, Berlin, Germany
| | | |
Collapse
|
160
|
Zhao KH, Zhang J, Tu JM, Böhm S, Plöscher M, Eichacker L, Bubenzer C, Scheer H, Wang X, Zhou M. Lyase activities of CpcS- and CpcT-like proteins from Nostoc PCC7120 and sequential reconstitution of binding sites of phycoerythrocyanin and phycocyanin beta-subunits. J Biol Chem 2007; 282:34093-103. [PMID: 17895251 DOI: 10.1074/jbc.m703038200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genes all5292 (cpcS2) and alr0617 (cpcS1) in the cyanobacterium Nostoc PCC7120 are homologous to the biliprotein lyase cpcS, and genes all5339 (cpcT1) and alr0647 (cpcT2) are homologous to the lyase cpcT. The functions of the encoded proteins were screened in vitro and in a heterologous Escherichia coli system with plasmids conferring biosynthesis of the phycocyanobilin chromophore and of the acceptor proteins beta-phycoerythrocyanin (PecB) or beta-phycocyanin (CpcB). CpcT1 is a regioselective biliprotein lyase attaching phycocyanobilin exclusively to cysteine beta155 but does not discriminate between CpcB and PecB. The in vitro reconstitutions required no cofactors, and kinetic constants were determined for CpcT1 under in vitro conditions. No lyase activity was found for the lyase homologues CpcS2 and CpcT2, but complexes are formed in vitro between CpcT1 and CpcS1, CpcT2, or PecE (subunit of phycoviolobilin:alpha-phycoerythrocyanin isomerase lyase). The genes coding the inactive homologues, cpcS2 and cpcT2, are transcribed in N-starved Nostoc. In sequential binding experiments with CpcT1 and CpcS1, a chromophore at cysteine 84 inhibited the subsequent attachment to cysteine 155, whereas the inverse sequence generates subunits carrying both chromophores.
Collapse
Affiliation(s)
- Kai-Hong Zhao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
van Thor JJ, Fisher N, Rich PR. Assignments of the Pfr-Pr FTIR difference spectrum of cyanobacterial phytochrome Cph1 using 15N and 13C isotopically labeled phycocyanobilin chromophore. J Phys Chem B 2007; 109:20597-604. [PMID: 16853666 DOI: 10.1021/jp052323t] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reversible red and far-red light-induced transitions of cyanobacterial phytochrome Cph1 from Synechocystis PCC 6803 were investigated by Fourier transform infrared (FTIR) difference spectroscopy. High-quality light-induced Pfr-Pr difference FTIR spectra were recorded for the 58 kDa N-terminal domain of Cph1 by repetitive photochemical cycling and signal averaging. The Pfr-Pr difference spectra in H(2)O and D(2)O were very similar to those previously reported for full-length 85 kDa Cph1.(1) Published assignments were extended by analysis of the effects of (13)C and (15)N isotope substitutions at selected sites in the phycocyanobilin chromophore and by (15)N global labeling of the protein. The Pfr-Pr difference spectra were dominated by an amide I peak/trough at 1653 cm(-1)(+)/1631 cm(-1)(-) and a smaller amide II band at 1554 cm(-1). Labeling effects allowed specific chromophore assignments for the C(1)=O (1736 cm(-1)(-)/1724 cm(-1)(+)) and C(19)=O (1704 cm(-1)(-)) carbonyl vibrations, C=C vibrations at 1589 cm(-1)(+), and bands at 1537(-), 1512(+), 1491(-), 1163(+), 1151(-), 1134(+), 1109(-), and 1072(-) cm(-1) that must involve chromophore C-N bonds. A variety of additional changes were insensitive to isotope labeling of the chromophore. Effects of (15)N labeling of the protein were used to tentatively assign some of these to specific amino acid changes. Those insensitive to (15)N labeling included a protonated aspartic or glutamic acid at 1734 cm(-1)(-)/1722 cm(-1)(+) and a cysteine at 2575 cm(-1)(+)/2557 cm(-1)(-). Bands sensitive to (15)N protein labeling at 1487 cm(-1)(+)/1502 cm(-1)(-) might arise from trytophan and bands at 1261 cm(-1)(+)/1244 cm(-1)(-) and 1107 cm(-1)(-)/1095 cm(-1)(+) might arise from a histidine environment or protonation change. These assignments are discussed in light of the 15Z-E photoisomerization model of phototransformation and the associated protein conformational changes.
Collapse
Affiliation(s)
- Jasper J van Thor
- Laboratory of Molecular Biophysics, Rex Richards Building, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | | | | |
Collapse
|
162
|
Jaubert M, Lavergne J, Fardoux J, Hannibal L, Vuillet L, Adriano JM, Bouyer P, Pignol D, Giraud E, Verméglio A. A singular bacteriophytochrome acquired by lateral gene transfer. J Biol Chem 2007; 282:7320-8. [PMID: 17218312 DOI: 10.1074/jbc.m611173200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacteriophytochromes are phytochrome-like proteins that mediate photosensory responses in various bacteria according to their light environment. The genome of the photosynthetic and plant-symbiotic Bradyrhizobium sp. strain ORS278 revealed the presence of a genomic island acquired by lateral transfer harboring a bacteriophytochrome gene, BrBphP3.ORS278, and genes involved in the synthesis of phycocyanobilin and gas vesicles. The corresponding protein BrBphP3.ORS278 is phylogenetically distant from the other (bacterio)phytochromes described thus far and displays a series of unusual properties. It binds phycocyanobilin as a chromophore, a unique feature for a bacteriophytochrome. Moreover, its C-terminal region is short and displays no homology with any known functional domain. Its dark-adapted state absorbs maximally around 610 nm, an unusually short wavelength for (bacterio)phytochromes. This form is designated as Po for orange-absorbing form. Upon illumination, a photo-reversible switch occurs between the Po form and a red (670 nm)-absorbing form (Pr), which rapidly backreacts in the dark. Because of this instability, illumination results in a mixture of the Po and Pr states in proportions that depend on the intensity. These uncommon features suggest that BrBphP3.ORS278 could be fitted to measure light intensity rather than color.
Collapse
Affiliation(s)
- Marianne Jaubert
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Campus de Baillarguet, 34398 Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Tarutina M, Ryjenkov DA, Gomelsky M. An unorthodox bacteriophytochrome from Rhodobacter sphaeroides involved in turnover of the second messenger c-di-GMP. J Biol Chem 2006; 281:34751-8. [PMID: 16968704 DOI: 10.1074/jbc.m604819200] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophytochromes are bacterial photoreceptors that sense red/far red light using the biliverdin chromophore. Most bacteriophytochromes work as photoactivated protein kinases. The Rhodobacter sphaeroides bacteriophytochrome BphG1 is unconventional in that it has GGDEF and EAL output domains, which are involved, respectively, in synthesis (diguanylate cyclase) and degradation (phosphodiesterase) of the bacterial second messenger c-di-GMP. The GGDEF-EAL proteins studied to date displayed either diguanylate cyclase or phosphodiesterase activity but not both. To elucidate the function of BphG1, the holoprotein was purified from an Escherichia coli overexpression system designed to produce biliverdin. The holoprotein contained covalently bound biliverdin and interconverted between the red (dark) and far red (light-activated) forms. BphG1 had c-di-GMP-specific phosphodiesterase activity. Unexpectedly for a photochromic protein, this activity was essentially light-independent. BphG1 expressed in E. coli was found to undergo partial cleavage into two species. The smaller species was identified as the EAL domain of BphG1. It possessed c-di-GMP phosphodiesterase activity. Surprisingly, the larger species lacking EAL possessed diguanylate cyclase activity, which was dependent on biliverdin and strongly activated by light. BphG1 therefore is the first phytochrome with a non-kinase photoactivated enzymatic activity. This shows that the photosensory modules of phytochromes can transmit light signals to various outputs. BphG1 is potentially the first "bifunctional" enzyme capable of both c-di-GMP synthesis and hydrolysis. A model for the regulation of the "opposite" activities of BphG1 is presented.
Collapse
Affiliation(s)
- Marina Tarutina
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, USA
| | | | | |
Collapse
|
164
|
Ishizuka T, Shimada T, Okajima K, Yoshihara S, Ochiai Y, Katayama M, Ikeuchi M. Characterization of Cyanobacteriochrome TePixJ from a Thermophilic Cyanobacterium Thermosynechococcus elongatus Strain BP-1. ACTA ACUST UNITED AC 2006; 47:1251-61. [PMID: 16887842 DOI: 10.1093/pcp/pcj095] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A putative photoreceptor gene, TepixJ, of a thermophilic cyanobacterium is homologous to SypixJ1 that mediates positive phototaxis in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. The putative chromophore-binding GAF domain of TePixJ protein was overexpressed as a fusion with a polyhistidine tag (His-TePixJ_GAF) in Synechocystis cells and isolated to homogeneity. The photoreversible conversion of His-TePixJ_GAF showed peaks at 531, 341 and 266 nm for the green light-absorbing form (Pg form), and peaks at 433 and 287 nm for the blue light-absorbing form (Pb form). At 77K, the Pg form fluoresced at 580 nm, while the Pb form did not emit any fluorescence. Mass spectrometry of the tryptic chromopeptide demonstrated that a phycocyanobilin isomer binds to the conserved cysteine at ring A via a thioether bond. It is established that TePixJ and SyPixJ1 are novel photoreceptors in cyanobacteria ('cyanobacteriochromes') that are similar, but distinct from the phytochromes and bacteriophytochromes.
Collapse
Affiliation(s)
- Takami Ishizuka
- Department of Life Sciences (Biology), The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902 Japan
| | | | | | | | | | | | | |
Collapse
|
165
|
Miller AE, Fischer AJ, Laurence T, Hollars CW, Saykally RJ, Lagarias JC, Huser T. Single-molecule dynamics of phytochrome-bound fluorophores probed by fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A 2006; 103:11136-41. [PMID: 16844775 PMCID: PMC1544054 DOI: 10.1073/pnas.0604724103] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fluorescence correlation spectroscopy (FCS) was used to investigate the hydrodynamic and photophysical properties of PR1 (phytofluor red 1), an intensely red fluorescent biliprotein variant of the truncated cyanobacterial phytochrome 1 (Cph1Delta, which consists of the N-terminal 514 amino acids). Single-molecule diffusion measurements showed that PR1 has excellent fluorescence properties at the single-molecule level, making it an interesting candidate for red fluorescent protein fusions. FCS measurements for probing dimer formation in solution over a range of protein concentrations were enabled by addition of Cph1Delta apoprotein (apoCph1Delta) to nanomolar solutions of PR1. FCS brightness analysis showed that heterodimerization of PR1 with apoCph1Delta altered the chemical environment of the PR1 chromophore to further enhance its fluorescence emission. Fluorescence correlation measurements also revealed interactions between apoCph1Delta and the red fluorescent dyes Cy5.18 and Atto 655 but not Alexa Fluor 660. The concentration dependence of protein:dye complex formation indicated that Atto 655 interacted with, or influenced the formation of, the apoCph1 dimer. These studies presage the utility of phytofluor tags for probing single-molecule dynamics in living cells in which the fluorescence signal can be controlled by the addition of various chromophores that have different structures and photophysical properties, thereby imparting different types of information, such as dimer formation or the presence of open binding faces on a protein.
Collapse
Affiliation(s)
- Abigail E. Miller
- *Department of Chemistry, University of California, Berkeley, CA 94720
- Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550; and
| | - Amanda J. Fischer
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Ted Laurence
- Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550; and
| | - Christopher W. Hollars
- Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550; and
- National Science Foundation Center for Biophotonics Science and Technology, Sacramento, CA 95817
| | | | - J. Clark Lagarias
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616
- To whom correspondence may be addressed at:
Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, One Shields Avenue, Davis, CA 95616. E-mail:
| | - Thomas Huser
- Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550; and
- National Science Foundation Center for Biophotonics Science and Technology, Sacramento, CA 95817
- To whom correspondence may be addressed at:
National Science Foundation Center for Biophotonics, 2700 Stockton Boulevard, Suite 1400, Sacramento, CA 95817. E-mail:
| |
Collapse
|
166
|
van Thor JJ, Mackeen M, Kuprov I, Dwek RA, Wormald MR. Chromophore structure in the photocycle of the cyanobacterial phytochrome Cph1. Biophys J 2006; 91:1811-22. [PMID: 16751241 PMCID: PMC1544288 DOI: 10.1529/biophysj.106.084335] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chromophore conformations of the red and far red light induced product states "Pfr" and "Pr" of the N-terminal photoreceptor domain Cph1-N515 from Synechocystis 6803 have been investigated by NMR spectroscopy, using specific 13C isotope substitutions in the chromophore. 13C-NMR spectroscopy in the Pfr and Pr states indicated reversible chemical shift differences predominantly of the C(4) carbon in ring A of the phycocyanobilin chromophore, in contrast to differences of C15 and C5, which were much less pronounced. Ab initio calculations of the isotropic shielding and optical transition energies identify a region for C4-C5-C6-N2 dihedral angle changes where deshielding of C4 is correlated with red-shifted absorption. These could occur during thermal reactions on microsecond and millisecond timescales after excitation of Pr which are associated with red-shifted absorption. A reaction pathway involving a hula-twist at C5 could satisfy the observed NMR and visible absorption changes. Alternatively, C15 Z-E photoisomerization, although expected to lead to a small change of the chemical shift of C15, in addition to changes of the C4-C5-C6-N2 dihedral angle could be consistent with visible absorption changes and the chemical shift difference at C4. NMR spectroscopy of a 13C-labeled chromopeptide provided indication for broadening due to conformational exchange reactions in the intact photoreceptor domain, which is more pronounced for the C- and D-rings of the chromophore. This broadening was also evident in the F2 hydrogen dimension from heteronuclear 1H-13C HSQC spectroscopy, which did not detect resonances for the 13C5-H, 13C10-H, and 13C15-H hydrogen atoms whereas strong signals were detected for the (13)C-labeled chromopeptide. The most pronounced 13C-chemical shift difference between chromopeptide and intact receptor domain was that of the 13C4-resonance, which could be consistent with an increased conformational energy of the C4-C5-C6-N2 dihedral angle in the intact protein in the Pr state. Nuclear Overhauser effect spectroscopy experiments of the 13C-labeled chromopeptide, where chromophore-protein interactions are expected to be reduced, were consistent with a ZZZssa conformation, which has also been found for the biliverdin chromophore in the x-ray structure of a fragment of Deinococcus radiodurans bacteriophytochrome in the Pr form.
Collapse
Affiliation(s)
- Jasper J van Thor
- Laboratory of Molecular Biophysics, University of Oxford, Oxford OX1 3QU, United Kingdom.
| | | | | | | | | |
Collapse
|
167
|
Fischer AJ, Rockwell NC, Jang AY, Ernst LA, Waggoner AS, Duan Y, Lei H, Lagarias JC. Multiple roles of a conserved GAF domain tyrosine residue in cyanobacterial and plant phytochromes. Biochemistry 2006; 44:15203-15. [PMID: 16285723 PMCID: PMC1343512 DOI: 10.1021/bi051633z] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The phytochrome family of red/far-red photoreceptors has been optimized to support photochemical isomerization of a bound bilin chromophore, a process that triggers a conformational change and modulates biochemical output from the surrounding protein scaffold. Recent studies have established that the efficiency of this photochemical process is profoundly altered by mutation of a conserved tyrosine residue (Tyr176) within the bilin-binding GAF domain of the cyanobacterial phytochrome Cph1 [Fischer, A. J., and Lagarias, J. C. (2004) Harnessing phytochrome's glowing potential, Proc. Natl. Acad. Sci. U.S.A. 101, 17334-17339]. Here, we show that the equivalent mutation in plant phytochromes behaves similarly, indicating that the function of this tyrosine in the primary photochemical mechanism is conserved. Saturation mutagenesis of Tyr176 in Cph1 establishes that no other residue can support comparably efficient photoisomerization. The spectroscopic consequences of Tyr176 mutations also reveal that Tyr176 regulates the conversion of the porphyrin-like conformation of the bilin precursor to a more extended conformation. The porphyrin-binding ability of the Tyr176Arg mutant protein indicates that Tyr176 also regulates the ligand-binding specificity of apophytochrome. On the basis of the hydrogen-bonding ability of Tyr176 substitutions that support the nonphotochemical C15-Z,syn to C15-Z,anti interconversion, we propose that Tyr176 orients the carboxyl side chain of a conserved acidic residue to stabilize protonation of the bilin chromophore. A homology model of the GAF domain of Cph1 predicts a C5-Z,syn, C10-Z,syn, C15-Z,anti configuration for the chromophore and implicates Glu189 as the proposed acidic residue stabilizing the extended conformation, an interpretation consistent with site-directed mutagenesis of this conserved acidic residue.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - J. Clark Lagarias
- * To whom correspondence should be addressed. Telephone: 530-752-1865. Fax: 530-752-3085. E-mail:
| |
Collapse
|
168
|
Zhao KH, Su P, Li J, Tu JM, Zhou M, Bubenzer C, Scheer H. Chromophore attachment to phycobiliprotein beta-subunits: phycocyanobilin:cysteine-beta84 phycobiliprotein lyase activity of CpeS-like protein from Anabaena Sp. PCC7120. J Biol Chem 2006; 281:8573-81. [PMID: 16452471 DOI: 10.1074/jbc.m513796200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gene alr0617, from the cyanobacterium Anabaena sp. PCC7120, which is homologous to cpeS from Gloeobacter violaceus PCC 7421, Fremyella diplosiphon (Calothrix PCC7601), and Synechococcus sp. WH8102, and to cpcS from Synechococcus sp. PCC7002, was overexpressed in Escherichia coli. CpeS acts as a phycocyanobilin: Cys-beta84-phycobiliprotein lyase that can attach, in vitro and in vivo, phycocyanobilin (PCB) to cysteine-beta84 of the apo-beta-subunits of C-phycocyanin (CpcB) and phycoerythrocyanin (PecB). We found the following: (a) In vitro, CpeS attaches PCB to native CpcB and PecB, and to their C155I-mutants, but not to the C84S mutants. Under optimal conditions (150 mm NaCl and 500 mm potassium phosphate, 37 degrees C, and pH 7.5), no cofactors are required, and the lyase had a Km(PCB) = 2.7 and 2.3 microm, and a kcat = 1.7 x 10(-5) and 1.1 x 10(-5) s(-1) for PCB attachment to CpcB (C155I) and PecB (C155I), respectively; (b) Reconstitution products had absorption maxima at 619 and 602 nm and fluorescence emission maxima at 643 and 629 nm, respectively; and (c) PCB-CpcB(C155I) and PCB-PecB(C155I), with the same absorption and fluorescence maxima, were also biosynthesized heterologously in vivo, when cpeS was introduced into E. coli with cpcB(C155I) or pecB(C155I), respectively, together with genes ho1 (encoding heme oxygenase) and pcyA (encoding PCB:ferredoxin oxidoreductase), thereby further proving the lyase function of CpeS.
Collapse
Affiliation(s)
- Kai-Hong Zhao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | | | | | | | | | | | | |
Collapse
|
169
|
Mukougawa K, Kanamoto H, Kobayashi T, Yokota A, Kohchi T. Metabolic engineering to produce phytochromes with phytochromobilin, phycocyanobilin, or phycoerythrobilin chromophore inEscherichia coli. FEBS Lett 2006; 580:1333-8. [PMID: 16458890 DOI: 10.1016/j.febslet.2006.01.051] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 01/16/2006] [Accepted: 01/16/2006] [Indexed: 01/19/2023]
Abstract
By co-expression of heme oxygenase and various bilin reductase(s) in a single operon in conjunction with apophytochrome using two compatible plasmids, we developed a system to produce phytochromes with various chromophores in Escherichia coli. Through the selection of different bilin reductases, apophytochromes were assembled with phytochromobilin, phycocyanobilin, and phycoerythrobilin. The blue-shifted difference spectra of truncated phytochromes were observed with a phycocyanobilin chromophore compared to a phytochromobilin chromophore. When the phycoerythrobilin biosynthetic enzymes were co-expressed, E. coli cells accumulated orange-fluorescent phytochrome. The metabolic engineering of bacteria for the production of various bilins for assembly into phytochromes will facilitate the molecular analysis of photoreceptors.
Collapse
Affiliation(s)
- Keiko Mukougawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|
170
|
Qi Q, Hao M, Ng WO, Slater SC, Baszis SR, Weiss JD, Valentin HE. Application of the Synechococcus nirA promoter to establish an inducible expression system for engineering the Synechocystis tocopherol pathway. Appl Environ Microbiol 2005; 71:5678-84. [PMID: 16204475 PMCID: PMC1265929 DOI: 10.1128/aem.71.10.5678-5684.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tocopherols are important antioxidants in lipophilic environments. They are synthesized by plants and some photosynthetic bacteria. Recent efforts to analyze and engineer tocopherol biosynthesis led to the identification of Synechocystis sp. strain PCC 6803 as a well-characterized model system. To facilitate the identification of the rate-limiting step(s) in the tocopherol biosynthetic pathway through the modulation of transgene expression, we established an inducible expression system in Synechocystis sp. strain PCC 6803. The nirA promoter from Synechococcus sp. strain PCC 7942, which is repressed by ammonium and induced by nitrite (S.-I. Maeda et al., J. Bacteriol. 180:4080-4088, 1998), was chosen to drive the expression of Arabidopsis thaliana p-hydroxyphenylpyruvate dioxygenase. The enzyme catalyzes the formation of homogentisic acid from p-hydroxyphenylpyruvate. Expression of this gene under inducing conditions resulted in up to a fivefold increase in total tocopherol levels with up to 20% of tocopherols being accumulated as tocotrienols. The culture supernatant of these cultures exhibited a brown coloration, a finding indicative of homogentisic acid excretion. Enzyme assays, functional complementation, reverse transcription-PCR, and Western blot analysis confirmed transgene expression under inducing conditions only. These data demonstrate that the nirA promoter can be used to control transgene expression in Synechocystis and that homogentisic acid is a limiting factor for tocopherol synthesis in Synechocystis sp. strain PCC 6803.
Collapse
Affiliation(s)
- Qungang Qi
- Monsanto Co., Calgene Campus, 1920 5th St., Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
171
|
Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM, Voigt CA. Engineering Escherichia coli to see light. Nature 2005; 438:441-2. [PMID: 16306980 DOI: 10.1038/nature04405] [Citation(s) in RCA: 416] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have designed a bacterial system that is switched between different states by red light. The system consists of a synthetic sensor kinase that allows a lawn of bacteria to function as a biological film, such that the projection of a pattern of light on to the bacteria produces a high-definition (about 100 megapixels per square inch), two-dimensional chemical image. This spatial control of bacterial gene expression could be used to 'print' complex biological materials, for example, and to investigate signalling pathways through precise spatial and temporal control of their phosphorylation steps.
Collapse
Affiliation(s)
- Anselm Levskaya
- Biophysics Program, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Zeng Y, Caignan GA, Bunce RA, Rodríguez JC, Wilks A, Rivera M. Azide-inhibited bacterial heme oxygenases exhibit an S = 3/2 (dxz,dyz)3(dxy)1(dz2)1 spin state: mechanistic implications for heme oxidation. J Am Chem Soc 2005; 127:9794-807. [PMID: 15998084 DOI: 10.1021/ja0425987] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The azide complexes of heme oxygenase from Pseudomonas aeruginosa (pa-HO) and Neisseriae meningitidis (nm-HO) have been studied with the aid of (1)H and (13)C NMR spectroscopy. These complexes have been shown to exist as an equilibrium mixture of two populations, one exhibiting an S = (1)/(2), (d(xy))(2)(d(xz), d(yz))(3) electron configuration and planar heme and a second with a novel S = (3)/(2), (d(xz), d(yz))(3)(d(xy))(1)(d(z)(2))(1) spin state and nonplanar heme. At physiologically relevant temperatures, the equilibrium shifts in the direction of the population exhibiting the latter electron configuration and nonplanar heme, whereas at temperatures approaching the freezing point of water, the equilibrium shifts in the direction of the population with the former electronic structure and planar heme. These findings indicate that the microenvironment of the distal pocket in heme oxygenase is unique among heme-containing proteins in that it lowers the sigma-donating (field strength) ability of the distal ligand and, therefore, promotes the attainment of heme electronic structures thus far only observed in heme oxygenase. When the field strength of the distal ligand is slightly lower than that of azide, such as OH(-) (J. Am. Chem. Soc. 2003, 125, 11842), the corresponding complex exists as a mixture of populations with nonplanar hemes and electronic structures that place significant spin density at the meso positions. The ease with which these unusual heme electronic structures are attained by heme oxygenase is likely related to activation of meso carbon reactivity which, in turn, facilitates hydroxylation of a meso carbon by the obligatory ferric hydroperoxide intermediate.
Collapse
Affiliation(s)
- Yuhong Zeng
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045-7582, USA
| | | | | | | | | | | |
Collapse
|
173
|
Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R. The Aspergillus nidulans Phytochrome FphA Represses Sexual Development in Red Light. Curr Biol 2005; 15:1833-8. [PMID: 16243030 DOI: 10.1016/j.cub.2005.08.061] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 08/16/2005] [Accepted: 08/17/2005] [Indexed: 12/13/2022]
Abstract
Phytochrome photoreceptors sense red and far-red light through photointerconversion between two stable conformations, a process mediated by a linear tetrapyrrole chromophore. Originally, phytochromes were thought to be confined to photosynthetic organisms including cyanobacteria, but they have been recently discovered in heterotrophic bacteria and fungi, where little is known about their functions. It was shown previously in the ascomycetous fungus Aspergillus nidulans that asexual sporulation is stimulated and sexual development repressed by red light. The effect was reminiscent of a phytochrome response, and indeed phytochrome-like proteins were detected in several fungal genomes. All fungal homologs are more similar to bacterial than plant phytochromes and have multifunctional domains where the phytochrome region and histidine kinase domain are combined in a single protein with a C-terminal response-regulator domain. Here, we show that the A. nidulans phytochrome FphA binds a biliverdin chromophore, acts as a red-light sensor, and represses sexual development under red-light conditions. FphA-GFP is cytoplasmic and excluded from the nuclei, suggesting that red-light photoperception occurs in the cytoplasm. This is the first phytochrome experimentally characterized outside the plant and bacterial kingdoms and the second type of fungal protein identified that functions in photoperception.
Collapse
Affiliation(s)
- Anne Blumenstein
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str., D-35042 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
174
|
Strauss HM, Schmieder P, Hughes J. Light-dependent dimerisation in the N-terminal sensory module of cyanobacterial phytochrome 1. FEBS Lett 2005; 579:3970-4. [PMID: 16004995 DOI: 10.1016/j.febslet.2005.06.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 06/03/2005] [Accepted: 06/06/2005] [Indexed: 11/25/2022]
Abstract
Phytochromes, photoreceptors controlling important physiological processes in plants and many prokaryotes, are photochromic biliproteins. The red-absorbing Pr ground state is converted by light into the farred-absorbing Pfr which can be photoconverted back to Pr. In plants at least Pfr is the physiologically active signalling state. Here, we show that the N-terminal photochromic module of Cph1 homodimerises reversibly and independently in Pr and Pfr, Pfr-dimers being significantly more stable. Implications for the mechanism of signal transduction are discussed.
Collapse
Affiliation(s)
- Holger M Strauss
- Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle Strasse 10, D-13125 Berlin, Germany.
| | | | | |
Collapse
|
175
|
Abstract
Photoreceptors allow living organisms to optimize perception of light in the natural environment and thus to gain information about their external world. In this review, we describe blue and red light photoreceptors in bacteria, plants, and animals in relation to their evolution. Analyses performed in different organisms have revealed wonderful examples of structural modifications of the light-sensing proteins themselves, as well as diversification of the signal transduction pathways they use in relation with their evolutionary history and function. In different organisms, the same photoreceptor may have a very conserved role (convergent evolution of function) or may modulate different responses (acquisition of new function). Multiple photoreceptors of the same family in the same organism indicate gene duplication events during evolution, with a consequent enhanced sensitivity to variations in ambient light. Conversely, two different photoreceptors may be involved in the control of the same physiological response. Genomic analysis in marine diatoms, combined with phylogenetic studies, has also revealed the presence of blue and red light photoreceptors in the marine environment. This discovery has intriguing implications for the understanding of light perception and its evolution in photosynthetic organisms. In addition, the characterization of these photoreceptors likely will add to our understanding of photoreceptor diversity as an adaptation to different habitats.
Collapse
Affiliation(s)
- Angela Falciatore
- Cell Signalling Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Naples, Italy
| | | |
Collapse
|
176
|
Yoshihara S, Katayama M, Geng X, Ikeuchi M. Cyanobacterial Phytochrome-like PixJ1 Holoprotein Shows Novel Reversible Photoconversion Between Blue- and Green-absorbing Forms. ACTA ACUST UNITED AC 2004; 45:1729-37. [PMID: 15653792 DOI: 10.1093/pcp/pch214] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The gene, pixJ1 (formerly pisJ1), is predicted to encode a phytochrome-like photoreceptor that is essential for positive phototaxis in the unicellular cyanobacterium Synechocystis sp. PCC 6803 [Yoshihara et al. (2000) Plant Cell Physiol. 41: 1299]. The PixJ1 protein was overexpressed as a fusion with a poly-histidine tag (His-PixJ1) and isolated from Synechocystis cells. A zinc-fluorescence assay suggested that a linear tetrapyrrole was covalently attached to the His-PixJ1 protein as a chromophore. His-PixJ1 showed novel photoreversible conversion between a blue light-absorbing form (Pb, lambdaAmax=425-435 nm) and a green light-absorbing form (Pg, lambdaAmax=535 nm). Dark incubation led Pg to revert to Pb, indicative of stability of the Pb form in darkness. Red or far-red light irradiation, which is effective for photochemical conversion of the known phytochromes, produced no change in the spectra of Pb and Pg forms. Site-directed mutagenesis revealed that a Cys-His motif in the second GAF domain of PixJ1 is responsible for binding of the chromophore. Possible chromophore species are discussed with regard to the novel photoconversion spectrum.
Collapse
Affiliation(s)
- Shizue Yoshihara
- Department of Life Sciences (Biology), University of Tokyo, Komaba 3-8-1, Meguro, Tokyo, 153-8902 Japan
| | | | | | | |
Collapse
|
177
|
Abstract
Directed evolution of a cyanobacterial phytochrome was undertaken to elucidate the structural basis of its light sensory activity by remodeling the chemical environment of its linear tetrapyrrole prosthetic group. In addition to identifying a small region of the apoprotein critical for maintaining phytochrome's native spectroscopic properties, our studies revealed a tyrosine-to-histidine mutation that transformed phytochrome into an intensely red fluorescent biliprotein. This tyrosine is conserved in all members of the phytochrome superfamily, implicating direct participation in the primary photoprocess of phytochromes. Fluorescent phytochrome mutants also hold great promise to expand the present repertoire of genetically encoded fluorescent proteins into the near infrared.
Collapse
Affiliation(s)
- Amanda J Fischer
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
178
|
Davis TH. Biography of J. Clark Lagarias. Proc Natl Acad Sci U S A 2004; 101:17331-3. [PMID: 15583120 PMCID: PMC536052 DOI: 10.1073/pnas.0408338102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
179
|
Terauchi K, Montgomery BL, Grossman AR, Lagarias JC, Kehoe DM. RcaE is a complementary chromatic adaptation photoreceptor required for green and red light responsiveness. Mol Microbiol 2004; 51:567-77. [PMID: 14756794 DOI: 10.1046/j.1365-2958.2003.03853.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The recent discovery of large numbers of phytochrome photoreceptor genes in both photosynthetic and non-photosynthetic prokaryotes has led to efforts to understand their physiological roles in environmental acclimation. One receptor in this class, RcaE, is involved in controlling complementary chromatic adaptation, a process that regulates the transcription of operons encoding light-harvesting proteins in cyanobacteria. Although all previously identified phytochrome responses are maximally sensitive to red and far red light, complementary chromatic adaptation is unique in that it is responsive to green and red light. Here, we present biochemical and genetic evidence demonstrating that RcaE is a photoreceptor and that it requires the cysteine at position 198 to ligate an open chain tetrapyrrole covalently in a manner analogous to chromophore attachment in plant phytochromes. Furthermore, although the wild-type rcaE gene can rescue red and green light photoresponses of an rcaE null mutant, a gene in which the codon for cysteine 198 is converted to an alanine codon rescues the red light but not the green light response. Thus, RcaE is a photoreceptor that is required for both green and red light responsiveness during complementary chromatic adaptation and is the first identified phytochrome class sensor that is involved in sensing and responding to green and red light rather than red and far red light.
Collapse
Affiliation(s)
- Kazuki Terauchi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | |
Collapse
|
180
|
Mutsuda M, Michel KP, Zhang X, Montgomery BL, Golden SS. Biochemical properties of CikA, an unusual phytochrome-like histidine protein kinase that resets the circadian clock in Synechococcus elongatus PCC 7942. J Biol Chem 2003; 278:19102-10. [PMID: 12626498 DOI: 10.1074/jbc.m213255200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently described the cikA (circadian input kinase A) gene, whose product supplies environmental information to the circadian oscillator in the cyanobacterium Synechococcus elongatus PCC 7942. CikA possesses three distinct domains: a GAF, a histidine protein kinase (HPK), and a receiver domain similar to those of the response regulator family. To determine how CikA functions in providing circadian input, we constructed modified alleles to tag and truncate the protein, allowing analysis of each domain individually. CikA covalently bound bilin chromophores in vitro, even though it lacks the expected ligand residues, and the GAF domain influenced but did not entirely account for this function. Full-length CikA and truncated variants that carry the HPK domain showed autophosphorylation activity. Deletion of the GAF domain or the N-terminal region adjacent to GAF dramatically reduced autophosphorylation, whereas elimination of the receiver domain increased activity 10-fold. Assays to test phosphorelay from the HPK to the cryptic receiver domain, which lacks the conserved aspartyl residue that serves as a phosphoryl acceptor in response regulators, were negative. We propose that the cryptic receiver is a regulatory domain that interacts with an unknown protein partner to modulate the autokinase activity of CikA but does not work as bona fide receiver domain in a phosphorelay.
Collapse
Affiliation(s)
- Michinori Mutsuda
- Department of Biology, Texas A & M University, College Station, Texas 77843-3258, USA
| | | | | | | | | |
Collapse
|
181
|
Frankenberg N, Lagarias JC. Phycocyanobilin:ferredoxin oxidoreductase of Anabaena sp. PCC 7120. Biochemical and spectroscopic. J Biol Chem 2003; 278:9219-26. [PMID: 12514179 DOI: 10.1074/jbc.m211643200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In cyanobacteria, the biosynthesis of the phycobiliprotein and phytochrome chromophore precursor phycocyanobilin is catalyzed by the ferredoxin-dependent enzyme phycocyanobilin:ferredoxin oxidoreductase (PcyA), which mediates an atypical four-electron reduction of biliverdin IXalpha. Here we describe the expression, affinity purification, and biochemical characterization of recombinant PcyA from Anabaena sp. PCC 7120. A monomeric protein with a native M(r) of 30,400 +/- 5,000, recombinant PcyA forms a tight and stable stoichiometric complex with its substrate biliverdin IXalpha. The enzyme exhibits a strong preference for plant type [2Fe-2S] ferredoxins; however, flavodoxin can also serve as an electron donor. HPLC analyses establish that catalysis proceeds via the two electron-reduced intermediate 18(1),18(2)-dihydrobiliverdin, indicating that exovinyl reduction precedes A-ring (endovinyl) reduction. Substrate specificity studies indicate that the arrangement of the A- and D-ring substituents alters the positioning of the bilin substrate within the enzyme, profoundly influencing the course of catalysis. Based on these observations and the apparent lack of a metal or small molecule cofactor, a radical mechanism for biliverdin IXalpha reduction by phycocyanobilin:ferredoxin oxidoreductase is envisaged.
Collapse
Affiliation(s)
- Nicole Frankenberg
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
182
|
Abstract
Advances in our capacity to design and use novel strategies for achieving inducible gene expression will improve our ability to define gene function. An extremely efficient system designed by nature -- that of the regulatable phytochrome system in plants -- has provided the basis for developing a novel inducible gene expression system.
Collapse
Affiliation(s)
- William M Keyes
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
183
|
Zhang J, Campbell RE, Ting AY, Tsien RY. Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 2002; 3:906-18. [PMID: 12461557 DOI: 10.1038/nrm976] [Citation(s) in RCA: 1428] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fluorescent probes are one of the cornerstones of real-time imaging of live cells and a powerful tool for cell biologists. They provide high sensitivity and great versatility while minimally perturbing the cell under investigation. Genetically-encoded reporter constructs that are derived from fluorescent proteins are leading a revolution in the real-time visualization and tracking of various cellular events. Recent advances include the continued development of 'passive' markers for the measurement of biomolecule expression and localization in live cells, and 'active' indicators for monitoring more complex cellular processes such as small-molecule-messenger dynamics, enzyme activation and protein-protein interactions.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Pharmacology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 18-496, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
184
|
|
185
|
Shimizu-Sato S, Huq E, Tepperman JM, Quail PH. A light-switchable gene promoter system. Nat Biotechnol 2002; 20:1041-4. [PMID: 12219076 DOI: 10.1038/nbt734] [Citation(s) in RCA: 432] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2002] [Accepted: 05/07/2002] [Indexed: 11/09/2022]
Abstract
Regulatable transgene systems providing easily controlled, conditional induction or repression of expression are indispensable tools in biomedical and agricultural research and biotechnology. Several such systems have been developed for eukaryotes. Most of these rely on the administration of either exogenous chemicals or heat shock. Despite the general success of many of these systems, the potential for problems, such as toxic, unintended, or pleiotropic effects of the inducing chemical or treatment, can impose limitations on their use. We have developed a promoter system that can be induced, rapidly and reversibly, by short pulses of light. This system is based on the known red light-induced binding of the plant photoreceptor phytochrome to the protein PIF3 and the reversal of this binding by far-red light. We show here that yeast cells expressing two chimeric proteins, a phytochrome-GAL4-DNA-binding-domain fusion and a PIF3-GAL4-activation-domain fusion, are induced by red light to express selectable or "scorable" marker genes containing promoters with a GAL4 DNA-binding site, and that this induction is rapidly abrogated by subsequent far-red light. We further show that the extent of induction can be controlled precisely by titration of the number of photons delivered to the cells by the light pulse. Thus, this system has the potential to provide rapid, noninvasive, switchable control of the expression of a desired gene to a preselected level in any suitable cell by simple exposure to a light signal.
Collapse
Affiliation(s)
- Sae Shimizu-Sato
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|