151
|
α-Synuclein Aggregates with β-Amyloid or Tau in Human Red Blood Cells: Correlation with Antioxidant Capability and Physical Exercise in Human Healthy Subjects. Mol Neurobiol 2017; 55:2653-2675. [PMID: 28421539 DOI: 10.1007/s12035-017-0523-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
Neurodegenerative disorders (NDs) are characterized by abnormal accumulation/misfolding of specific proteins, primarily α-synuclein (α-syn), β-amyloid1-42 (Aβ), and tau, in both brain and peripheral tissue. In addition to homo-oligomers, the role of α-syn interactions with Aβ or tau has gradually emerged. The altered protein accumulation has been related to both oxidative stress and physical activity; nevertheless, no correlation among the presence of peripheral α-syn hetero-aggregates, antioxidant capacity, and physical exercise has been discovered as of yet. Herein, the content of α-syn, Aβ, tau, and of their heterocomplexes was determined in red blood cells (RBCs) of healthy subjects (sedentary and athletes). Such parameters were related to the extent of the antioxidant capability (AOC), a key marker of oxidative stress in aging-related pathologies, and to physical exercise, which is known to play an important preventive role in NDs and to modulate oxidative stress. Tau content and plasma AOC toward hydroxyl radicals were both reduced in older or sedentary subjects; in contrast, α-syn and Aβ accumulated in elderly subjects and showed an inverse correlation with both hydroxyl AOC and the level of physical activity. For the first time, α-syn heterocomplexes with Aβ or tau were quantified and demonstrated to be inversely related to hydroxyl AOC. Furthermore, α-syn/Aβ aggregates were significantly reduced in athletes and inversely correlated with physical activity level, independent of age. The positive correlation between antioxidant capability/physical activity and reduced protein accumulation was confirmed by these data and suggested that peripheral α-syn heterocomplexes may represent new indicators of ND-related protein misfolding.
Collapse
|
152
|
Expanded and Wild-type Ataxin-3 Modify the Redox Status of SH-SY5Y Cells Overexpressing α-Synuclein. Neurochem Res 2017; 42:1430-1437. [PMID: 28236214 DOI: 10.1007/s11064-017-2199-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 12/30/2016] [Accepted: 02/01/2017] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are considered to be distinct clinical entities, although they share the formation of proteinaceous aggregates and several neuropathological mechanisms. Increasing evidence suggest a possible interaction between proteins that have been classically associated to distinct neurodegenerative diseases. Thus, common molecular and cellular pathways might explain similarities between disease phenotypes. Interestingly, the characteristic Parkinson's disease (PD) phenotype linked to bradykinesia is also a clinical presentation of other neurodegenerative diseases. An example is Machado-Joseph disease (MJD), with some patients presenting parkinsonism and a positive response to levodopa (L-DOPA). Protein aggregates positive for α-synuclein (α-Syn), a protein associated with PD, in the substantia nigra of MJD models made us hypothesize a putative additive biological effect induced by expression of α-Syn and ataxin-3 (Atx3), the protein affected in MJD. Hence, in this study we analysed the influence of these two proteins (α-Syn and wild-type or mutant Atx3) on modified redox signaling, a pathological process potentially linked to both diseases, and also the impact of exposure to iron and rotenone in SH-SY5Y neuroblastoma cells. Our results show that both α-Syn and mutant Atx3 overexpression per se increased oxidation of dichlorodihydrofluorescein (DCFH2), and co-expression of these proteins exhibited additive effect on intracellular oxidation, with no correlation with apoptotic features. Mutant Atx3 and α-Syn also potentiated altered redox status induced by iron and rotenone, a hint to how these proteins might influence neuronal dysfunction under pro-oxidant conditions. We further show that overexpression of wild-type Atx3 decreased intracellular DCFH2 oxidation, possibly exerting a neuroprotective role.
Collapse
|
153
|
Roberts HL, Schneider BL, Brown DR. α-Synuclein increases β-amyloid secretion by promoting β-/γ-secretase processing of APP. PLoS One 2017; 12:e0171925. [PMID: 28187176 PMCID: PMC5302447 DOI: 10.1371/journal.pone.0171925] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/29/2017] [Indexed: 11/18/2022] Open
Abstract
α-Synuclein misfolding and aggregation is often accompanied by β-amyloid deposition in some neurodegenerative diseases. We hypothesised that α-synuclein promotes β-amyloid production from APP. β-Amyloid levels and APP amyloidogenic processing were investigated in neuronal cell lines stably overexpressing wildtype and mutant α-synuclein. γ-Secretase activity and β-secretase expression were also measured. We show that α-synuclein expression induces β-amyloid secretion and amyloidogenic processing of APP in neuronal cell lines. Certain mutations of α-synuclein potentiate APP amyloidogenic processing. γ-Secretase activity was not enhanced by wildtype α-synuclein expression, however β-secretase protein levels were induced. Furthermore, a correlation between α-synuclein and β-secretase protein was seen in rat brain striata. Iron chelation abolishes the effect of α-synuclein on neuronal cell β-amyloid secretion, whereas overexpression of the ferrireductase enzyme Steap3 is robustly pro-amyloidogenic. We propose that α-synuclein promotes β-amyloid formation by modulating β-cleavage of APP, and that this is potentially mediated by the levels of reduced iron and oxidative stress.
Collapse
Affiliation(s)
- Hazel L. Roberts
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Bernard L. Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David R. Brown
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
154
|
Wong YC, Krainc D. α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med 2017; 23:1-13. [PMID: 28170377 PMCID: PMC8480197 DOI: 10.1038/nm.4269] [Citation(s) in RCA: 580] [Impact Index Per Article: 82.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
Alterations in α-synuclein dosage lead to familial Parkinson's disease (PD), and its accumulation results in synucleinopathies that include PD, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Furthermore, α-synuclein contributes to the fibrilization of amyloid-b and tau, two key proteins in Alzheimer's disease, which suggests a central role for α-synuclein toxicity in neurodegeneration. Recent studies of factors contributing to α-synuclein toxicity and its disruption of downstream cellular pathways have expanded our understanding of disease pathogenesis in synucleinopathies. In this Review, we discuss these emerging themes, including the contributions of aging, selective vulnerability and non-cell-autonomous factors such as α-synuclein cell-to-cell propagation and neuroinflammation. Finally, we summarize recent efforts toward the development of targeted therapies for PD and related synucleinopathies.
Collapse
Affiliation(s)
- Yvette C Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
155
|
Giacomelli C, Daniele S, Martini C. Potential biomarkers and novel pharmacological targets in protein aggregation-related neurodegenerative diseases. Biochem Pharmacol 2017; 131:1-15. [PMID: 28159621 DOI: 10.1016/j.bcp.2017.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
The aggregation of specific proteins plays a pivotal role in the etiopathogenesis of several neurodegenerative diseases (NDs). β-Amyloid (Aβ) peptide-containing plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated protein tau are the two main neuropathological lesions in Alzheimer's disease. Meanwhile, Parkinson's disease is defined by the presence of intraneuronal inclusions (Lewy bodies), in which α-synuclein (α-syn) has been identified as a major protein component. The current literature provides considerable insights into the mechanisms underlying oligomeric-related neurodegeneration, as well as the relationship between protein aggregation and ND, thus facilitating the development of novel putative biomarkers and/or pharmacological targets. Recently, α-syn, tau and Aβ have been shown to interact each other or with other "pathological proteins" to form toxic heteroaggregates. These latest findings are overcoming the concept that each neurodegenerative disease is related to the misfolding of a single specific protein. In this review, potential opportunities and pharmacological approaches targeting α-syn, tau and Aβ and their oligomeric forms are highlighted with examples from recent studies. Protein aggregation as a biomarker of NDs, in both the brain and peripheral fluids, is deeply explored. Finally, the relationship between biomarker establishment and assessment and their use as diagnostics or therapeutic targets are discussed.
Collapse
Affiliation(s)
- Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| |
Collapse
|
156
|
Takamatsu Y, Ho G, Koike W, Sugama S, Takenouchi T, Waragai M, Wei J, Sekiyama K, Hashimoto M. Combined immunotherapy with "anti-insulin resistance" therapy as a novel therapeutic strategy against neurodegenerative diseases. NPJ Parkinsons Dis 2017; 3:4. [PMID: 28649604 PMCID: PMC5445606 DOI: 10.1038/s41531-016-0001-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/07/2016] [Accepted: 10/30/2016] [Indexed: 12/22/2022] Open
Abstract
Protein aggregation is a pathological hallmark of and may play a central role in the neurotoxicity in age-associated neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Accordingly, inhibiting aggregation of amyloidogenic proteins, including amyloid β and α-synuclein, has been a main therapeutic target for these disorders. Among various strategies, amyloid β immunotherapy has been extensively investigated in Alzheimer's disease, followed by similar studies of α-synuclein in Parkinson's disease. Notably, a recent study of solanezumab, an amyloid β monoclonal antibody, raises hope for the further therapeutic potential of immunotherapy, not only in Alzheimer's disease, but also for other neurodegenerative disorders, including Parkinson's disease. Thus, it is expected that further refinement of immunotherapy against neurodegenerative diseases may lead to increasing efficacy. Meanwhile, type II diabetes mellitus has been associated with an increased risk of neurodegenerative disease, such as Alzheimer's disease and Parkinson's disease, and studies have shown that metabolic dysfunction and abnormalities surrounding insulin signaling may underlie disease progression. Naturally, "anti-insulin resistance" therapy has emerged as a novel paradigm in the therapy of neurodegenerative diseases. Indeed, incretin agonists, which stimulate pancreatic insulin secretion, reduce dopaminergic neuronal loss and suppress Parkinson's disease disease progression in clinical trials. Similar studies are ongoing also in Alzheimer's disease. This paper focuses on critical issues in "immunotherapy" and "anti-insulin resistance" therapy in relation to therapeutic strategies against neurodegenerative disease, and more importantly, how they might merge mechanistically at the point of suppression of protein aggregation, raising the possibility that combined immunotherapy and "anti-insulin resistance" therapy may be superior to either monotherapy.
Collapse
Affiliation(s)
- Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057 Japan
| | - Gilbert Ho
- The PCND Neuroscience Research Institute, Poway, CA 92064 USA
| | - Wakako Koike
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057 Japan
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, 113-8602 Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634 Japan
| | - Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057 Japan
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Kazunari Sekiyama
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057 Japan
| | - Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Sciences, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057 Japan
| |
Collapse
|
157
|
Spencer B, Valera E, Rockenstein E, Overk C, Mante M, Adame A, Zago W, Seubert P, Barbour R, Schenk D, Games D, Rissman RA, Masliah E. Anti-α-synuclein immunotherapy reduces α-synuclein propagation in the axon and degeneration in a combined viral vector and transgenic model of synucleinopathy. Acta Neuropathol Commun 2017; 5:7. [PMID: 28086964 PMCID: PMC5237270 DOI: 10.1186/s40478-016-0410-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/20/2016] [Indexed: 11/10/2022] Open
Abstract
Neurodegenerative disorders such as Parkinson's Disease (PD), PD dementia (PDD) and Dementia with Lewy bodies (DLB) are characterized by progressive accumulation of α-synuclein (α-syn) in neurons. Recent studies have proposed that neuron-to-neuron propagation of α-syn plays a role in the pathogenesis of these disorders. We have previously shown that antibodies against the C-terminus of α-syn reduce the intra-neuronal accumulation of α-syn and related deficits in transgenic models of synucleinopathy, probably by abrogating the axonal transport and accumulation of α-syn in in vivo models. Here, we assessed the effect of passive immunization against α-syn in a new mouse model of axonal transport and accumulation of α-syn. For these purpose, non-transgenic, α-syn knock-out and mThy1-α-syn tg (line 61) mice received unilateral intra-cerebral injections with a lentiviral (LV)-α-syn vector construct followed by systemic administration of the monoclonal antibody 1H7 (recognizes amino acids 91-99) or control IgG for 3 months. Cerebral α-syn accumulation and axonopathy was assessed by immunohistochemistry and effects on behavior were assessed by Morris water maze. Unilateral LV-α-syn injection resulted in axonal propagation of α-syn in the contra-lateral site with subsequent behavioral deficits and axonal degeneration. Passive immunization with 1H7 antibody reduced the axonal accumulation of α-syn in the contra-lateral side and ameliorated the behavioral deficits. Together this study supports the notion that immunotherapy might improve the deficits in models of synucleinopathy by reducing the axonal propagation and accumulation of α-syn. This represents a potential new mode of action through which α-syn immunization might work.
Collapse
|
158
|
Modreanu R, Cerquera SC, Martí MJ, Ríos J, Sánchez-Gómez A, Cámara A, Fernández M, Compta Y. Cross-sectional and longitudinal associations of motor fluctuations and non-motor predominance with cerebrospinal τ and Aβ as well as dementia-risk in Parkinson's disease. J Neurol Sci 2016; 373:223-229. [PMID: 28131192 DOI: 10.1016/j.jns.2016.12.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/19/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
Abstract
Experimental, neuropathological and cerebrospinal fluid (CSF) studies support τ and amyloid-β (Aβ) relevance in Parkinson's disease (PD) related dementia. Lesser motor fluctuations (MFs) and non-motor features have also been related to PD-dementia. Yet, little is known about the association of MFs and non-motor symptoms with CSF τ and Aβ in PD. We hypothesized that lesser MFs and non-motor predominance are related to these CSF markers and dementia-risk in PD. We studied 58 PD patients (dementia at baseline, n=21; dementia at 18-months, n=35) in whom CSF Aβ and τ had been determined with ELISA techniques. MFs and a number of non-motor symptoms (apathy, anxiety, irritability, depression, visual hallucinations, spatial disorientation, memory complaints) over disease course were dichotomized as absent-mild vs. moderate-severe by retrospective clinical chart review blind to CSF findings. Non-motor predominance was defined as ≥3 non-motor symptoms (after the cohort-median of non-motor symptoms per patient) with ≥2 being moderate-severe and ≥1 having been present from onset, with all these being more disabling overall than motor features. Cross-sectionally, CSF biomarkers were non-parametrically compared according to dichotomized MFs and non-motor predominance. Longitudinally, dementia was the outcome (dependent variable), CSF markers, MFs and non-motor predominance were the predictors (independent variables), and potential modifiers as age, sex, and memory complaints were the covariates in binary regression models. Absent-mild MFs were associated with higher CSF τ markers and shorter time-to-dementia, while non-motor predominance and decreasing CSF Aβ independently increased longitudinal dementia-risk. In summary, absent-mild MFs, non-motor predominance and CSF τ and Aβ might define endophenotypes related to the timing or risk of dementia in PD.
Collapse
Affiliation(s)
- Raluca Modreanu
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, ICN, Hospital Clínic, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Catalonia, Spain; Parkinson's Disease and Movement Disorders Unit, Neurology Service, Segeberger Kliniken, Bad Segeberg, Germany
| | - Sonia Catalina Cerquera
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, ICN, Hospital Clínic, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Catalonia, Spain; Neurology Unit, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - María José Martí
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, ICN, Hospital Clínic, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Catalonia, Spain
| | - José Ríos
- Statistics and Methodologic Support Unit, Unitat d'Avaluació, Suport i Prevenció (UASP), Hospital Clínic, IDIBAPS, Barcelona, Catalonia, Spain
| | - Almudena Sánchez-Gómez
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, ICN, Hospital Clínic, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Catalonia, Spain
| | - Ana Cámara
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, ICN, Hospital Clínic, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Catalonia, Spain
| | - Manel Fernández
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, ICN, Hospital Clínic, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Catalonia, Spain
| | - Yaroslau Compta
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, ICN, Hospital Clínic, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
159
|
Tran J, Chang D, Hsu F, Wang H, Guo Z. Cross-seeding between Aβ40 and Aβ42 in Alzheimer's disease. FEBS Lett 2016; 591:177-185. [PMID: 27981583 DOI: 10.1002/1873-3468.12526] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 12/23/2022]
Abstract
Aβ42 is the major component of parenchymal plaques in the brain of Alzheimer's patients, while Aβ40 is the major component of cerebrovascular plaques. Since Aβ40 and Aβ42 coexist in the brain, understanding the interaction between Aβ40 and Aβ42 during their aggregation is important to delineate the molecular mechanism underlying Alzheimer's disease. Here, we present a rigorous and systematic study of the cross-seeding effects between Aβ40 and Aβ42. We show that Aβ40 fibril seeds can promote Aβ42 aggregation in a concentration-dependent manner, and vice versa. Our results also suggest that seeded aggregation and spontaneous aggregation may be two separate pathways. These findings may partly resolve conflicting observations in the literature regarding the cross-seeding effects between Aβ40 and Aβ42.
Collapse
Affiliation(s)
- Joyce Tran
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Dennis Chang
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Frederick Hsu
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Hongsu Wang
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Zhefeng Guo
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
160
|
Bousiges O, Cretin B, Lavaux T, Philippi N, Jung B, Hezard S, Heitz C, Demuynck C, Gabel A, Martin-Hunyadi C, Blanc F. Diagnostic Value of Cerebrospinal Fluid Biomarkers (Phospho-Tau181, total-Tau, Aβ42, and Aβ40) in Prodromal Stage of Alzheimer's Disease and Dementia with Lewy Bodies. J Alzheimers Dis 2016; 51:1069-83. [PMID: 26923009 DOI: 10.3233/jad-150731] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) symptoms are close to those of Alzheimer's disease (AD), and the differential diagnosis is difficult especially early in the disease. Unfortunately, AD biomarkers in cerebrospinal fluid (CSF), and more particularly Aβ1 - 42, appear to be altered in dementia with Lewy bodies (DLB). However, the level of these biomarkers has never been studied in the prodromal stage of the disease. OBJECTIVE To compare these biomarkers between DLB and AD, with a particular focus on the prodromal stage. METHODS A total of 166 CSF samples were collected at the memory clinic of Strasbourg. They were obtained from prodromal DLB (pro-DLB), DLB dementia, prodromal AD (pro-AD), and AD dementia patients, and elderly controls. Phospho-Tau181, total-Tau, Aβ42, and Aβ40 were measured in the CSF. RESULTS At the prodromal stage, contrary to AD patients, DLB patients' biomarker levels in the CSF were not altered. At the demented stage of DLB, Aβ42 levels were reduced as well as Aβ40 levels. Thus, the Aβ42/Aβ40 ratio remained unchanged between the prodromal and demented stages, contrary to what was observed in AD. Tau and Phospho-Tau181 levels were unaltered in DLB patients. CONCLUSIONS We have shown that at the prodromal stage the DLB patients had no pathological profile. Consequently, CSF AD biomarkers are extremely useful for differentiating AD from DLB patients particularly at this stage when the clinical diagnosis is difficult. Thus, these results open up new perspectives on the interpretation of AD biomarkers in DLB.
Collapse
Affiliation(s)
- Olivier Bousiges
- University Hospital of Strasbourg, Laboratory of Biochemistry and Molecular Biology, Strasbourg, France.,University of Strasbourg and CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR7364, Strasbourg, France
| | - Benjamin Cretin
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
| | - Thomas Lavaux
- University Hospital of Strasbourg, Laboratory of Biochemistry and Molecular Biology, Strasbourg, France
| | - Nathalie Philippi
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France.,University Hospital of Strasbourg, Geriatrics Day Hospital, Geriatrics Service, Strasbourg, France
| | - Barbara Jung
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France.,University Hospital of Strasbourg, Geriatrics Day Hospital, Geriatrics Service, Strasbourg, France
| | - Sylvie Hezard
- University Hospital of Strasbourg, Laboratory of Biochemistry and Molecular Biology, Strasbourg, France
| | - Camille Heitz
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France
| | - Catherine Demuynck
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France.,University Hospital of Strasbourg, Geriatrics Day Hospital, Geriatrics Service, Strasbourg, France
| | - Aurelia Gabel
- University Hospital of Strasbourg, Laboratory of Biochemistry and Molecular Biology, Strasbourg, France
| | - Catherine Martin-Hunyadi
- University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France.,University Hospital of Strasbourg, Geriatrics Day Hospital, Geriatrics Service, Strasbourg, France
| | - Frédéric Blanc
- University Hospital of Strasbourg, Neuropsychology Unit, Neurology Service, Strasbourg, France.,University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto, Strasbourg, France.,University Hospital of Strasbourg, CMRR (Memory Resources and Research Centre), Strasbourg, France.,University Hospital of Strasbourg, Geriatrics Day Hospital, Geriatrics Service, Strasbourg, France
| |
Collapse
|
161
|
Valera E, Monzio Compagnoni G, Masliah E. Review: Novel treatment strategies targeting alpha-synuclein in multiple system atrophy as a model of synucleinopathy. Neuropathol Appl Neurobiol 2016; 42:95-106. [PMID: 26924723 DOI: 10.1111/nan.12312] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 12/30/2022]
Abstract
Neurodegenerative disorders with alpha-synuclein (α-syn) accumulation (synucleinopathies) include Parkinson's disease (PD), PD dementia, dementia with Lewy bodies and multiple system atrophy (MSA). Due to the involvement of toxic α-syn aggregates in the molecular origin of these disorders, developing effective therapies targeting α-syn is a priority as a disease-modifying alternative to current symptomatic treatments. Importantly, the clinical and pathological attributes of MSA make this disorder an excellent candidate as a synucleinopathy model for accelerated drug development. Recent therapeutic strategies targeting α-syn in in vivo and in vitro models of MSA, as well as in clinical trials, have been focused on the pathological mechanisms of α-syn synthesis, aggregation, clearance, and/or cell-to-cell propagation of its neurotoxic conformers. Here we summarize the most relevant approaches in this direction, with emphasis on their potential as general synucleinopathy modifiers, and enumerate research areas for potential improvement in MSA drug discovery.
Collapse
Affiliation(s)
- E Valera
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - G Monzio Compagnoni
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - E Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.,Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
162
|
Buongiorno M, Antonelli F, Compta Y, Fernandez Y, Pavia J, Lomeña F, Ríos J, Ramírez I, García JR, Soler M, Cámara A, Fernández M, Basora M, Salazar F, Sanchez-Etayo G, Valldeoriola F, Barrio JR, Marti MJ. Cross-Sectional and Longitudinal Cognitive Correlates of FDDNP PET and CSF Amyloid-β and Tau in Parkinson’s Disease1. J Alzheimers Dis 2016; 55:1261-1272. [DOI: 10.3233/jad-160698] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mariateresa Buongiorno
- Parkinson’s Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic, Spain Instituto de Investigaciones Biomédicas August Pi i Sunyer IDIBAPS, Barcelona, Catalonia, Spain CIBER
| | - Francesca Antonelli
- Parkinson’s Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic, Spain Instituto de Investigaciones Biomédicas August Pi i Sunyer IDIBAPS, Barcelona, Catalonia, Spain CIBER
| | - Yaroslau Compta
- Parkinson’s Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic, Spain Instituto de Investigaciones Biomédicas August Pi i Sunyer IDIBAPS, Barcelona, Catalonia, Spain CIBER
| | | | - Javier Pavia
- Nuclear Medicine Department, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and. Nanomedicine (CIBER-BBN), Barcelona, Catalonia, Spain
| | - Francisco Lomeña
- Nuclear Medicine Department, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Catalonia, Spain
- Biomedical Research Networking Centre for Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
| | - José Ríos
- Medical Statistics Core Facility, IDIBAPS, (Hospital Clinic), Barcelona, Spain. Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona. Catalonia, Spain
| | | | | | - Marina Soler
- CETIR Nuclear Medicine Esplugues de Llobregat, Catalonia, Spain
| | - Ana Cámara
- Parkinson’s Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic, Spain Instituto de Investigaciones Biomédicas August Pi i Sunyer IDIBAPS, Barcelona, Catalonia, Spain CIBER
| | - Manel Fernández
- Parkinson’s Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic, Spain Instituto de Investigaciones Biomédicas August Pi i Sunyer IDIBAPS, Barcelona, Catalonia, Spain CIBER
| | - Misericòrdia Basora
- Anaesthesiology Service, Hospital Clínic, IDIBAPS, Barcelona, Catalonia, Spain
| | - Fàtima Salazar
- Anaesthesiology Service, Hospital Clínic, IDIBAPS, Barcelona, Catalonia, Spain
| | | | - Francesc Valldeoriola
- Parkinson’s Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic, Spain Instituto de Investigaciones Biomédicas August Pi i Sunyer IDIBAPS, Barcelona, Catalonia, Spain CIBER
| | - Jorge Raúl Barrio
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA
| | - Maria Jose Marti
- Parkinson’s Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic, Spain Instituto de Investigaciones Biomédicas August Pi i Sunyer IDIBAPS, Barcelona, Catalonia, Spain CIBER
| |
Collapse
|
163
|
Naturally Occurring Autoantibodies against Tau Protein Are Reduced in Parkinson's Disease Dementia. PLoS One 2016; 11:e0164953. [PMID: 27802290 PMCID: PMC5089716 DOI: 10.1371/journal.pone.0164953] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/04/2016] [Indexed: 11/23/2022] Open
Abstract
Background and Objective Altered levels of naturally occurring autoantibodies (nAbs) against disease-associated neuronal proteins have been reported for neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's disease (PD). Recent histopathologic studies suggest a contribution of both Lewy body- and AD-related pathology to Parkinson's disease dementia (PDD). Therefore, we explored nAbs against alpha-synuclein (αS), tau and β-amyloid (Aβ) in PDD compared to cognitively normal PD patients. Materials and Methods We established three different ELISAs to quantify the nAbs-tau, nAbs-αS, and nAbs-Aβ levels and avidity towards their specific antigen in serum samples of 18 non-demented (PDND) and 18 demented PD patients (PDD), which were taken from an ongoing multi-center cohort study (DEMPARK/LANDSCAPE). Results PDD patients had significantly decreased nAbs-tau serum levels compared to PDND patients (p = 0.007), whereas the serum titers of nAbs-αS and nAbs-Aβ were unchanged. For all three nAbs, no significant differences in avidity were found between PDD and PDND cohorts. However, within both patient groups, nAbs-tau showed lowest avidity to their antigen, followed by nAbs-αS, and nAbs-Aβ. Though, due to a high interassay coefficient of variability and the exclusion of many samples below the limit of detection, conclusions for nAbs-Aβ are only conditionally possible. Conclusion We detected a significantly decreased nAbs-tau serum level in PDD patients, indicating a potential linkage between nAbs-tau serum titer and cognitive deficits in PD. Thus, further investigation in larger samples is justified to confirm our findings.
Collapse
|
164
|
Atsmon-Raz Y, Miller Y. Molecular Mechanisms of the Bindings between Non-Amyloid β Component Oligomers and Amylin Oligomers. J Phys Chem B 2016; 120:10649-10659. [DOI: 10.1021/acs.jpcb.6b07731] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yoav Atsmon-Raz
- Department of Chemistry and ‡Ilse Katz Institute
for Nanoscale Science
and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yifat Miller
- Department of Chemistry and ‡Ilse Katz Institute
for Nanoscale Science
and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
165
|
Yamashita K, Hiwatashi A, Togao O, Kikuchi K, Yamaguchi H, Suzuki Y, Kamei R, Yamasaki R, Kira JI, Honda H. Cerebral blood flow laterality derived from arterial spin labeling as a biomarker for assessing the disease severity of parkinson's disease. J Magn Reson Imaging 2016; 45:1821-1826. [PMID: 27696565 DOI: 10.1002/jmri.25489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/07/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To evaluate cerebral blood flow (CBF) laterality derived from arterial spin labeling (ASL) in early-stage Parkinson's disease (PD) patients compared with those with advanced stages. MATERIALS AND METHODS Thirty-eight patients with PD (21 patients in early stages, 17 patients in advanced stages) were retrospectively studied. The CBF maps derived from 3T ASL data were co-registered to the corresponding 3DT1WI using SPM 12 software. Caudate nucleus (CN), putamen (PT), globus pallidus (GP), and thalamus (TH) were manually traced on the representative axial slices of 3DT1WI. CBF of the CN, PT, GP, and TH was measured using corresponding pixels on the co-registered CBF maps. A laterality index (LI) was calculated as the ratio of the contralateral CBF to primary affected side CBF. Each LI was compared between early and advanced stages of PD using the Mann-Whitney U-test. The LIs were also compared between each stage of PD. RESULTS In the CN, the LIs were significantly higher in early stages (mean LI ± SD, 95% confidence interval = 1.06 ± 0.14, 1.00-1.13) than in advanced stages (0.94 ± 0.14, 0.87-1.01; P < 0.05). We also observed a tendency toward decreased LIs with disease severity (1.10 ± 0.14, 0.99-1.21 for Hoehn and Yahr stage I; 1.04 ± 0.14, 0.92-1.12 for stage II; 0.96 ± 0.11, 0.89-1.10 for stage III; 0.93 ± 0.17, 0.81-1.05 for stage IV). CONCLUSION The evaluation of CBF laterality pattern in the CN using ASL may be useful for assessing the disease severity of PD patients. LEVEL OF EVIDENCE 3 J. MAGN. RESON. IMAGING 2017;45:1821-1826.
Collapse
Affiliation(s)
- Koji Yamashita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akio Hiwatashi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazufumi Kikuchi
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroo Yamaguchi
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Ryotaro Kamei
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Honda
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
166
|
Athauda D, Foltynie T. Insulin resistance and Parkinson's disease: A new target for disease modification? Prog Neurobiol 2016; 145-146:98-120. [PMID: 27713036 DOI: 10.1016/j.pneurobio.2016.10.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 09/28/2016] [Accepted: 10/02/2016] [Indexed: 12/12/2022]
Abstract
There is growing evidence that patients with Type 2 diabetes have an increased risk of developing Parkinson's disease and share similar dysregulated pathways suggesting common underlying pathological mechanisms. Historically insulin was thought solely to be a peripherally acting hormone responsible for glucose homeostasis and energy metabolism. However accumulating evidence indicates insulin can cross the blood-brain-barrier and influence a multitude of processes in the brain including regulating neuronal survival and growth, dopaminergic transmission, maintenance of synapses and pathways involved in cognition. In conjunction, there is growing evidence that a process analogous to peripheral insulin resistance occurs in the brains of Parkinson's disease patients, even in those without diabetes. This raises the possibility that defective insulin signalling pathways may contribute to the development of the pathological features of Parkinson's disease, and thereby suggests that the insulin signalling pathway may potentially be a novel target for disease modification. Given these growing links between PD and Type 2 diabetes it is perhaps not unsurprising that drugs used the treatment of T2DM are amongst the most promising treatments currently being prioritised for repositioning as possible novel treatments for PD and several clinical trials are under way. In this review, we will examine the underlying cellular links between insulin resistance and the pathogenesis of PD and then we will assess current and future pharmacological strategies being developed to restore neuronal insulin signalling as a potential strategy for slowing neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- D Athauda
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology & The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom.
| | - T Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology & The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom.
| |
Collapse
|
167
|
McMillan CT, Wolk DA. Presence of cerebral amyloid modulates phenotype and pattern of neurodegeneration in early Parkinson's disease. J Neurol Neurosurg Psychiatry 2016; 87:1112-22. [PMID: 27288043 PMCID: PMC5154297 DOI: 10.1136/jnnp-2015-312690] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/11/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To evaluate the frequency of cerebral amyloid in early Parkinson's disease (ePD) and provide a multimodal assessment of the influence of cerebral amyloid on disease phenotype. METHODS We performed a multicentre cohort study of the Parkinson's Progression Markers Initiative (PPMI), including 369 drug-naïve patients with ePD and 174 healthy controls (HC). Cerebrospinal fluid (CSF) amyloid-β levels were transformed using the linear regression procedure. A cut-off of >198 pg/mL was used to define amyloid-negative (PD-) and amyloid-positive (PD+) subgroups. Grey matter (GM) density and hippocampal volume from the MRI was measured using Advanced Normalisation Tools (ANTs). We compared demographic, genetic, CSF, behavioural, functional and imaging modalities across ePD- and ePD+ groups. RESULTS We observed that 16.5% of ePD have CSF evidence of amyloidosis. PD+ was significantly older than PD-, had a higher frequency of APOE e4 alleles and all CSF measures (total-tau, phosphorylated-tau and α-synuclein) were reduced. PD+ had reduced cognitive performance relative to PD- on Symbol-Digit Matching, Verbal Category Fluency and Delayed Recall tests. Imaging analysis in a subset of individuals (PD+ =43; PD- =241) revealed overlapping GM atrophy relative to HC in medial temporal, frontal and brainstem structures. Direct comparisons revealed PD+ GM reductions predominantly located in the frontal cortex while PD- had GM reductions in subcortical structures. These observations remain when controlling for age and APOE e4 allele status. CONCLUSIONS Cerebral amyloid in ePD yields a unique phenotype across all measured modalities that is consistent with a synergistic interaction between α-synuclein and amyloid pathology. Amyloid status should be considered when screening these individuals for trials involving disease-modifying agents.
Collapse
Affiliation(s)
- Corey T McMillan
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
168
|
Villemagne VL, Chételat G. Neuroimaging biomarkers in Alzheimer's disease and other dementias. Ageing Res Rev 2016; 30:4-16. [PMID: 26827785 DOI: 10.1016/j.arr.2016.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/16/2022]
Abstract
In vivo imaging of β-amyloid (Aβ) has transformed the assessment of Aβ pathology and its changes over time, extending our insight into Aβ deposition in the brain by providing highly accurate, reliable, and reproducible quantitative statements of regional or global Aβ burden in the brain. This knowledge is essential for therapeutic trial recruitment and for the evaluation of anti-Aβ treatments. Although cross sectional evaluation of Aβ burden does not strongly correlate with cognitive impairment, it does correlate with cognitive (especially memory) decline and with a higher risk for conversion to AD in the aging population and MCI subjects. This suggests that Aβ deposition is a protracted pathological process starting well before the onset of symptoms. Longitudinal observations, coupled with different disease-specific biomarkers to assess potential downstream effects of Aβ are required to confirm this hypothesis and further elucidate the role of Aβ deposition in the course of Alzheimer's disease.
Collapse
Affiliation(s)
- Victor L Villemagne
- Department of Molecular Imaging & Therapy, Centre for PET, Austin Health, Victoria 3084, Australia; Department of Medicine, University of Melbourne, Austin Health, Victoria 3084, Australia; The Florey Institute of Neuroscience and Mental Health, Victoria 3052, Australia; Institut National de la Santé et de la Recherche Médicale (Inserm), Unité, 1077 Caen, France.
| | - Gaël Chételat
- The Florey Institute of Neuroscience and Mental Health, Victoria 3052, Australia; Institut National de la Santé et de la Recherche Médicale (Inserm), Unité, 1077 Caen, France; Université de Caen Basse-Normandie, Unité Mixte de Recherche (UMR), S1077 Caen, France; Ecole Pratique des Hautes Etudes, UMR-S1077, 14000 Caen, France; Unité 1077, Centre Hospitalier Universitaire de Caen, 14000 Caen, France
| |
Collapse
|
169
|
Koufos E, Chang EH, Rasti ES, Krueger E, Brown AC. Use of a Cholesterol Recognition Amino Acid Consensus Peptide To Inhibit Binding of a Bacterial Toxin to Cholesterol. Biochemistry 2016; 55:4787-97. [PMID: 27504950 DOI: 10.1021/acs.biochem.6b00430] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recognition of and binding to cholesterol on the host cell membrane is an initial step in the mechanism of numerous pathogens, including viruses, bacteria, and bacterial toxins; however, a viable method of inhibiting this interaction has not yet been uncovered. Here, we describe the mechanism by which a cholesterol recognition amino acid consensus peptide interacts with cholesterol and inhibits the activity of a cholesterol-binding bacterial leukotoxin (LtxA). Using a series of biophysical techniques, we have shown that the peptide recognizes the hydroxyl group of cholesterol with nanomolar affinity and does not disrupt membrane packing, suggesting that it sits primarily near the membrane surface. As a result, LtxA is unable to bind to cholesterol or subsequently become internalized in host cells. Additionally, because cholesterol is not being removed from the cell membrane, the peptide-treated target cells remain viable over extended periods of time. We have demonstrated the use of this peptide in the inhibition of toxin activity for an antivirulence approach to the treatment of bacterial disease, and we anticipate that this approach might have broad utility in the inhibition of viral and bacterial pathogenesis.
Collapse
Affiliation(s)
- Evan Koufos
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - En Hyung Chang
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - Elnaz S Rasti
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - Eric Krueger
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
170
|
Alzheimer disease: modeling an Aβ-centered biological network. Mol Psychiatry 2016; 21:861-71. [PMID: 27021818 DOI: 10.1038/mp.2016.38] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 01/15/2023]
Abstract
In genetically complex diseases, the search for missing heritability is focusing on rare variants with large effect. Thanks to next generation sequencing technologies, genome-wide characterization of these variants is now feasible in every individual. However, a lesson from current studies is that collapsing rare variants at the gene level is often insufficient to obtain a statistically significant signal in case-control studies, and that network-based analyses are an attractive complement to classical approaches. In Alzheimer disease (AD), according to the prevalent amyloid cascade hypothesis, the pathology is driven by the amyloid beta (Aβ) peptide. In past years, based on experimental studies, several hundreds of proteins have been shown to interfere with Aβ production, clearance, aggregation or toxicity. Thanks to a manual curation of the literature, we identified 335 genes/proteins involved in this biological network and classified them according to their cellular function. The complete list of genes, or its subcomponents, will be of interest in ongoing AD genetic studies.
Collapse
|
171
|
Interference of α-Synuclein Uptake by Monomeric β-Amyloid1-40 and Potential Core Acting Site of the Interference. Neurotox Res 2016; 30:479-85. [PMID: 27364697 DOI: 10.1007/s12640-016-9644-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022]
Abstract
Increasing evidence suggests an important role of alpha-synuclein (α-Syn) in the pathogenesis of Parkinson's disease (PD). The inter-neuronal spread of α-Syn via exocytosis and endocytosis has been proposed as an explanation for the neuropathological findings of PD in sub-clinical and clinical phases. Therefore, interfering the uptake of α-Syn by neurons may be an important step in slowing or modifying the propagation of the disease. The purposes of our study were to investigate if the uptake of α-Syn fibrils can be specifically interfered with monomeric β-Amyloid1-40 (Aβ40) and to characterise the core acting site of interference. Using a radioisotope-labelled uptake assay, we found an 80 % uptake reduction of α-Syn fibrils in neurons interfered with monomeric Aβ40, but not β-Amyloid1-42 (Aβ42) as compared to controls. This finding was further confirmed by enzyme-linked immunosorbent assay (ELISA) with α-Syn uptake reduced from about 80 % (Aβ42) to about 20 % (Aβ40) relative to controls. To define the region of Aβ40 peptide capable of the interference, we explored shorter peptides with less amino acid residues from both the C-terminus and N-terminus. We found that the interference effect was preserved if amino acid residue was trimmed to position 11 (from N-terminus) and 36 (from C-terminus), but dropped off significantly if residues were trimmed beyond these positions. We therefore deduced that the "core acting site" lies between amino acid residue positions 12-36. These findings suggest α-Syn uptake can be interfered with monomeric Aβ40 and that the core acting site of interference might lie between amino acid residue positions 12-36.
Collapse
|
172
|
Luo J, Wärmländer SKTS, Gräslund A, Abrahams JP. Cross-interactions between the Alzheimer Disease Amyloid-β Peptide and Other Amyloid Proteins: A Further Aspect of the Amyloid Cascade Hypothesis. J Biol Chem 2016; 291:16485-93. [PMID: 27325705 DOI: 10.1074/jbc.r116.714576] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many protein folding diseases are intimately associated with accumulation of amyloid aggregates. The amyloid materials formed by different proteins/peptides share many structural similarities, despite sometimes large amino acid sequence differences. Some amyloid diseases constitute risk factors for others, and the progression of one amyloid disease may affect the progression of another. These connections are arguably related to amyloid aggregates of one protein being able to directly nucleate amyloid formation of another, different protein: the amyloid cross-interaction. Here, we discuss such cross-interactions between the Alzheimer disease amyloid-β (Aβ) peptide and other amyloid proteins in the context of what is known from in vitro and in vivo experiments, and of what might be learned from clinical studies. The aim is to clarify potential molecular associations between different amyloid diseases. We argue that the amyloid cascade hypothesis in Alzheimer disease should be expanded to include cross-interactions between Aβ and other amyloid proteins.
Collapse
Affiliation(s)
- Jinghui Luo
- From the Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom,
| | | | - Astrid Gräslund
- the Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jan Pieter Abrahams
- the Biozentrum, University of Basel, CH-4056 Basel, Switzerland, and the Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| |
Collapse
|
173
|
Kang JH. Cerebrospinal Fluid Amyloid β1-42, Tau, and Alpha-Synuclein Predict the Heterogeneous Progression of Cognitive Dysfunction in Parkinson's Disease. J Mov Disord 2016; 9:89-96. [PMID: 27240810 PMCID: PMC4886208 DOI: 10.14802/jmd.16017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 01/13/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease with heterogeneous pathological and clinical features. Cognitive dysfunction, a frequent non-motor complication, is a risk factor for poor prognosis and shows inter-individual variation in its progression. Of the clinical studies performed to identify biomarkers of PD progression, the Parkinson’s Progression Markers Initiative (PPMI) study is the largest study that enrolled drug-naïve and very early stage PD patients. The baseline characteristics of the PPMI cohort were recently published. The diagnostic utility of cerebrospinal fluid (CSF) biomarkers, including alpha-synuclein (α-syn), total tau, phosphorylated tau at Thr181, and amyloid β1-42, was not satisfactory. However, the baseline data on CSF biomarkers in the PPMI study suggested that the measurement of the CSF biomarkers enables the prediction of future cognitive decline in PD patients, which was consistent with previous studies. To prove the hypothesis that the interaction between Alzheimer’s pathology and α-syn pathology is important to the progression of cognitive dysfunction in PD, longitudinal observational studies must be followed. In this review, the neuropathological nature of heterogeneous cognitive decline in PD is briefly discussed, followed by a summarized interpretation of baseline CSF biomarkers derived from the data in the PPMI study. The combination of clinical, biochemical, genetic and imaging biomarkers of PD constitutes a feasible strategy to predict the heterogeneous progression of PD.
Collapse
Affiliation(s)
- Ju-Hee Kang
- Department of Pharmacology and Medicinal Toxicology Research Center, Hypoxia-related Disease Research Center, Inha University School of Medicine, Incheon, Korea
| |
Collapse
|
174
|
The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson's disease: mechanisms of action. Drug Discov Today 2016; 21:802-18. [DOI: 10.1016/j.drudis.2016.01.013] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/03/2015] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
|
175
|
Sierra M, Gelpi E, Martí MJ, Compta Y. Lewy- and Alzheimer-type pathologies in midbrain and cerebellum across the Lewy body disorders spectrum. Neuropathol Appl Neurobiol 2016; 42:451-62. [DOI: 10.1111/nan.12308] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/08/2016] [Accepted: 01/26/2016] [Indexed: 11/29/2022]
Affiliation(s)
- M. Sierra
- Parkinson's disease and Movement Disorders Unit; Neurology Service; IDIBAPS; CIBERNED; Hospital Clínic; University of Barcelona; Barcelona, Catalonia Spain
- Service of Neurology; Hospital Universitario Marqués de Valdecilla (IFIMAV); University of Cantabria (UC); Santander, Cantabria Spain
| | - E. Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer); Barcelona, Catalonia Spain
| | - M. J. Martí
- Parkinson's disease and Movement Disorders Unit; Neurology Service; IDIBAPS; CIBERNED; Hospital Clínic; University of Barcelona; Barcelona, Catalonia Spain
| | - Y. Compta
- Parkinson's disease and Movement Disorders Unit; Neurology Service; IDIBAPS; CIBERNED; Hospital Clínic; University of Barcelona; Barcelona, Catalonia Spain
| |
Collapse
|
176
|
Valera E, Masliah E. Therapeutic approaches in Parkinson's disease and related disorders. J Neurochem 2016; 139 Suppl 1:346-352. [PMID: 26749150 DOI: 10.1111/jnc.13529] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 01/13/2023]
Abstract
The lack of effective therapies for neurodegenerative disorders is one of the most relevant challenges of this century, considering that, as the global population ages, the incidence of these type of diseases is quickly on the rise. Among these disorders, synucleinopathies, which are characterized by the abnormal accumulation and spreading of the synaptic protein alpha-synuclein in the brain, already constitute the second leading cause of parkinsonism and dementia in the elderly population. Disorders with alpha-synuclein accumulation include Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. Numerous therapeutic alternatives for synucleinopathies are being tested in pre-clinical models and in the clinic; however, only palliative treatments addressing the dopaminergic deficits are approved to date, and no disease-modifying options are available yet. In this article, we provide a brief overview of therapeutic approaches currently being explored for synucleinopathies, and suggest possible explanations to the clinical trials outcomes. Finally, we propose that a deeper understanding of the pathophysiology of synucleinopathies, together with a combination of therapies tailored to each disease stage, may lead to better therapeutic outcomes in synucleinopathy patients. Synucleinopathies, neurodegenerative disorders characterized by the abnormal accumulation of the protein alpha-synuclein, constitute the second leading cause of parkinsonism and dementia in the elderly population, however, no disease-modifying options are available yet. In this review, we summarize the therapeutic approaches currently being explored for synucleinopathies, suggest possible explanations to the clinical outcomes, and propose areas of further therapeutic improvement. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Elvira Valera
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, California, USA. .,Department of Pathology, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
177
|
Han SH, Park JC, Mook-Jung I. Amyloid β-interacting partners in Alzheimer's disease: From accomplices to possible therapeutic targets. Prog Neurobiol 2016; 137:17-38. [DOI: 10.1016/j.pneurobio.2015.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
|
178
|
Atsmon-Raz Y, Miller Y. Non-Amyloid-β Component of Human α-Synuclein Oligomers Induces Formation of New Aβ Oligomers: Insight into the Mechanisms That Link Parkinson's and Alzheimer's Diseases. ACS Chem Neurosci 2016; 7:46-55. [PMID: 26479553 DOI: 10.1021/acschemneuro.5b00204] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the formation of Lewy bodies (LBs), of which their major component is the non-amyloid-β component (NAC) of α-synuclein (AS). Clinical studies have identified a link between PD and Alzheimer's disease (AD), but the question of why PD patients are at risk to develop various types of dementia, such as AD, is still elusive. In vivo studies have shown that Aβ can act as a seed for NAC/AS aggregation, promoting NAC/AS aggregation and thus contributing to the etiology of PD. However, the mechanisms by which NAC/AS oligomers interact with Aβ oligomers are still elusive. This work presents the interactions between NAC oligomers and Aβ oligomers at atomic resolution by applying extensive molecular dynamics simulations for an ensemble of cross-seeded NAC-Aβ(1-42) oligomers. The main conclusions of this study are as follows: first, the cross-seeded NAC-Aβ(1-42) oligomers represent polymorphic states, yet NAC oligomers prefer to interact with Aβ(1-42) oligomers to form double-layer over single-layer conformations due to electrostatic/hydrophobic interactions; second, among the single-layer conformations, the NAC oligomers induce formation of new β-strands in Aβ(1-42) oligomers, thus leading to new Aβ oligomer structures; and third, NAC oligomers stabilize the cross-β structure of Aβ oligomers, i.e., yielding compact Aβ fibril-like structures.
Collapse
Affiliation(s)
- Yoav Atsmon-Raz
- Department of Chemistry, ‡Ilse Katz Institute for Nanoscale
Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Yifat Miller
- Department of Chemistry, ‡Ilse Katz Institute for Nanoscale
Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
179
|
Hippocampal subfield atrophy in relation to cerebrospinal fluid biomarkers and cognition in early Parkinson's disease: a cross-sectional study. NPJ PARKINSONS DISEASE 2016; 2:15030. [PMID: 28725691 PMCID: PMC5516586 DOI: 10.1038/npjparkd.2015.30] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/23/2015] [Accepted: 12/10/2015] [Indexed: 11/14/2022]
Abstract
Cognition is often affected early in Parkinson’s disease (PD). Lewy body and amyloid β (Aβ) pathology and cortical atrophy may be involved. The aim of this study was to examine whether medial temporal lobe structural changes may be linked to cerebrospinal fluid (CSF) biomarker levels and cognition in early PD. PD patients had smaller volumes of total hippocampus, presubiculum, subiculum, CA2–3, CA4-DG, and hippocampal tail compared with normal controls (NCs). In the PD group, lower CSF Aβ38 and 42 were significant predictors for thinner perirhinal cortex. Lower Aβ42 and smaller presubiculum and subiculum predicted poorer verbal learning and delayed verbal recall. Smaller total hippocampus, presubiculum and subiculum predicted poorer visuospatial copying. Lower Aβ38 and 40 and thinner perirhinal cortex predicted poorer delayed visual reproduction. In conclusion, smaller volumes of hippocampal subfields and subhippocampal cortex thickness linked to lower CSF Aβ levels may contribute to cognitive impairment in early PD. Thirty-three early PD patients (13 without, 5 with subjective, and 15 with mild cognitive impairment) and NC had 3 T magnetic resonance imaging (MRI) scans. The MRI scans were post processed for volumes of hippocampal subfields and entorhinal and perirhinal cortical thickness. Lumbar puncture for CSF biomarkers Aβ38, 40, 42, total tau, phosphorylated tau (Innogenetics), and total α-synuclein (Meso Scale Diagnostics) were performed. Multiple regression analyses were used for between-group comparisons of the MRI measurements in the NC and PD groups and for assessment of CSF biomarkers and neuropsychological tests in relation to morphometry in the PD group.
Collapse
|
180
|
Valera E, Spencer B, Masliah E. Immunotherapeutic Approaches Targeting Amyloid-β, α-Synuclein, and Tau for the Treatment of Neurodegenerative Disorders. Neurotherapeutics 2016; 13:179-89. [PMID: 26494242 PMCID: PMC4720672 DOI: 10.1007/s13311-015-0397-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disease-modifying alternatives are sorely needed for the treatment of neurodegenerative disorders, a group of diseases that afflict approximately 50 million Americans annually. Immunotherapy is one of the most developed approaches in this direction. Vaccination against amyloid-β, α-synuclein, or tau has been extensively explored, specially as the discovery that these proteins may propagate cell-to-cell and be accessible to antibodies when embedded into the plasma membrane or in the extracellular space. Likewise, the use of passive immunization approaches with specific antibodies against abnormal conformations of these proteins has also yielded promising results. The clinical development of immunotherapies for Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, dementia with Lewy bodies, and other neurodegenerative disorders is a field in constant evolution. Results to date suggest that immunotherapy is a promising therapeutic approach for neurodegenerative diseases that progress with the accumulation and prion-like propagation of toxic protein aggregates. Here we provide an overview of the most novel and relevant immunotherapeutic advances targeting amyloid-β in Alzheimer’s disease, α-synuclein in Alzheimer’s disease and Parkinson’s disease, and tau in Alzheimer’s disease and frontotemporal dementia.
Collapse
Affiliation(s)
- Elvira Valera
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
| | - Brian Spencer
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
| | - Eliezer Masliah
- grid.266100.30000000121074242Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093 USA
- grid.266100.30000000121074242Department of Pathology, University of California, La Jolla, San Diego, CA 92093 USA
| |
Collapse
|
181
|
Ruffmann C, Calboli FCF, Bravi I, Gveric D, Curry LK, de Smith A, Pavlou S, Buxton JL, Blakemore AIF, Takousis P, Molloy S, Piccini P, Dexter DT, Roncaroli F, Gentleman SM, Middleton LT. Cortical Lewy bodies and Aβ burden are associated with prevalence and timing of dementia in Lewy body diseases. Neuropathol Appl Neurobiol 2015; 42:436-50. [DOI: 10.1111/nan.12294] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/24/2015] [Accepted: 11/03/2015] [Indexed: 01/16/2023]
Affiliation(s)
- C. Ruffmann
- Neuroepidemiology and Ageing Research Unit; School of Public Health; Imperial College; London UK
- Centro Parkinson; Istituti Clinici di Perfezionamento di Milano; Milano Italy
| | - F. C. F. Calboli
- Neuroepidemiology and Ageing Research Unit; School of Public Health; Imperial College; London UK
| | - I. Bravi
- Division of Brain Sciences; Department of Medicine; Imperial College; London UK
| | - D. Gveric
- Division of Brain Sciences; Department of Medicine; Imperial College; London UK
| | - L. K. Curry
- Neuroepidemiology and Ageing Research Unit; School of Public Health; Imperial College; London UK
| | - A. de Smith
- Genomics of Common Disease; School of Public Health; Imperial College; London UK
- Department of Epidemiology and Biostatistics; University of California, San Francisco; San Francisco CA USA
| | - S. Pavlou
- Genomics of Common Disease; School of Public Health; Imperial College; London UK
- Department of Molecular Virology; Cyprus Institute of Neurology and Genetics; Nicosia Cyprus
| | - J. L. Buxton
- Section of Investigative Medicine; Department of Medicine; Imperial College; London UK
| | - A. I. F. Blakemore
- Section of Investigative Medicine; Department of Medicine; Imperial College; London UK
| | - P. Takousis
- Neuroepidemiology and Ageing Research Unit; School of Public Health; Imperial College; London UK
| | - S. Molloy
- Division of Brain Sciences; Department of Medicine; Imperial College; London UK
| | - P. Piccini
- Division of Brain Sciences; Department of Medicine; Imperial College; London UK
| | - D. T. Dexter
- Division of Brain Sciences; Department of Medicine; Imperial College; London UK
| | - F. Roncaroli
- Institute of Brain Behaviour and Mental Health; University of Manchester; Manchester UK
| | - S. M. Gentleman
- Division of Brain Sciences; Department of Medicine; Imperial College; London UK
| | - L. T. Middleton
- Neuroepidemiology and Ageing Research Unit; School of Public Health; Imperial College; London UK
| |
Collapse
|
182
|
Li B. The pathogenesis of soluble PrP fragments containing Aβ binding sites. Virus Res 2015; 211:194-8. [PMID: 26528810 DOI: 10.1016/j.virusres.2015.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 12/28/2022]
Abstract
Prion protein (PrP) has proven to bind amyloid beta (Aβ) oligomers with high affinity, changing our understanding of both prion diseases (PD) and Alzheimer's disease (AD) at the molecular and phenotypic levels, although the latter currently lacks sufficient attentions. Transgenic mice expressing anchorless PrP developed unusual diseases reminiscent of AD with tremendous amyloid plaque formation. In this review, we described two interesting observations at the phenotypic level. First, common pathogenic mutations of the PRNP gene in Gerstmann-Sträussler-Scheinker (GSS) syndrome were clustered at PrP95-105. Meanwhile, all nonsense PRNP mutations that generated soluble PrP 95-105 exhibited phenotypes with abundant amyloid formations. We speculate that PrP-Aβ oligomers binding might be the underlying mechanism of the predominant amyloid phenotypes. Second, soluble PrP-Aβ oligomer complexes might exist in the extracellular space at the beginning of both PD and AD and subserve an initial neuroprotective function. Thus, the diseases would only present after long-term accumulation. This might be the central common pathogenic event of both PD and AD.
Collapse
Affiliation(s)
- Baiya Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
183
|
Morris M, Sanchez PE, Verret L, Beagle AJ, Guo W, Dubal D, Ranasinghe KG, Koyama A, Ho K, Yu GQ, Vossel KA, Mucke L. Network dysfunction in α-synuclein transgenic mice and human Lewy body dementia. Ann Clin Transl Neurol 2015; 2:1012-28. [PMID: 26732627 PMCID: PMC4693622 DOI: 10.1002/acn3.257] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/14/2015] [Accepted: 08/25/2015] [Indexed: 12/20/2022] Open
Abstract
Objective Dementia with Lewy bodies (DLB) is associated with the accumulation of wild‐type human α‐synuclein (SYN) in neurons and with prominent slowing of brain oscillations on electroencephalography (EEG). However, it remains uncertain whether the EEG abnormalities are actually caused by SYN. Methods To determine whether SYN can cause neural network abnormalities, we performed EEG recordings and analyzed the expression of neuronal activity‐dependent gene products in SYN transgenic mice. We also carried out comparative analyses in humans with DLB. Results We demonstrate that neuronal expression of SYN in transgenic mice causes a left shift in spectral power that closely resembles the EEG slowing observed in DLB patients. Surprisingly, SYN mice also had seizures and showed molecular hippocampal alterations indicative of aberrant network excitability, including calbindin depletion in the dentate gyrus. In postmortem brain tissues from DLB patients, we found reduced levels of calbindin mRNA in the dentate gyrus. Furthermore, nearly one quarter of DLB patients showed myoclonus, a clinical sign of aberrant network excitability that was associated with an earlier age of onset of cognitive impairments. In SYN mice, partial suppression of epileptiform activity did not alter their shift in spectral power. Furthermore, epileptiform activity in human amyloid precursor protein transgenic mice was not associated with a left shift in spectral power. Interpretation We conclude that neuronal accumulation of SYN slows brain oscillations and, in parallel, causes aberrant network excitability that can escalate into seizure activity. The potential role of aberrant network excitability in DLB merits further investigation.
Collapse
Affiliation(s)
- Meaghan Morris
- Gladstone Institute of Neurological Disease San Francisco California 94158; Biochemistry, Cellular and Molecular Biology Graduate Program Department of Biological Chemistry The Johns Hopkins University School of Medicine Baltimore Maryland 21205
| | - Pascal E Sanchez
- Gladstone Institute of Neurological Disease San Francisco California 94158
| | - Laure Verret
- Gladstone Institute of Neurological Disease San Francisco California 94158; Department of Neurology University of California, San Francisco San Francisco California 94158
| | - Alexander J Beagle
- Department of Neurology University of California, San Francisco San Francisco California 94158
| | - Weikun Guo
- Gladstone Institute of Neurological Disease San Francisco California 94158
| | - Dena Dubal
- Department of Neurology University of California, San Francisco San Francisco California 94158
| | - Kamalini G Ranasinghe
- Department of Neurology University of California, San Francisco San Francisco California 94158
| | - Akihiko Koyama
- Gladstone Institute of Neurological Disease San Francisco California 94158
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease San Francisco California 94158
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease San Francisco California 94158
| | - Keith A Vossel
- Gladstone Institute of Neurological Disease San Francisco California 94158; Department of Neurology University of California, San Francisco San Francisco California 94158
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease San Francisco California 94158; Department of Neurology University of California, San Francisco San Francisco California 94158
| |
Collapse
|
184
|
Wilkaniec A, Czapski GA, Adamczyk A. Cdk5 at crossroads of protein oligomerization in neurodegenerative diseases: facts and hypotheses. J Neurochem 2015; 136:222-33. [PMID: 26376455 DOI: 10.1111/jnc.13365] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is involved in proper neurodevelopment and brain function and serves as a switch between neuronal survival and death. Overactivation of Cdk5 is associated with many neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. It is believed that in those diseases Cdk5 may be an important link between disease-initiating factors and cell death effectors. A common hallmark of neurodegenerative disorders is incorrect folding of specific proteins, thus leading to their intra- and extracellular accumulation in the nervous system. Abnormal Cdk5 signaling contributes to dysfunction of individual proteins and has a substantial role in either direct or indirect interactions of proteins common to, and critical in, different neurodegenerative diseases. While the roles of Cdk5 in α-synuclein (ASN) - tau or β-amyloid peptide (Aβ) - tau interactions are well documented, its contribution to many other pertinent interactions, such as that of ASN with Aβ, or interactions of the Aβ - ASN - tau triad with prion proteins, did not get beyond plausible hypotheses and remains to be proven. Understanding of the exact position of Cdk5 in the deleterious feed-forward loop critical for development and progression of neurodegenerative diseases may help designing successful therapeutic strategies of several fatal neurodegenerative diseases. Cyclin-dependent kinase 5 (Cdk5) is associated with many neurodegenerative disorders such as Alzheimer's or Parkinson's diseases. It is believed that in those diseases Cdk5 may be an important factor involved in protein misfolding, toxicity and interaction. We suggest that Cdk5 may contribute to the vicious circle of neurotoxic events involved in the pathogenesis of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz A Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
185
|
Yarnall AJ, Lashley T, Ling H, Lees AJ, Coleman SY, O'Sullivan SS, Compta Y, Revesz T, Burn DJ. Apomorphine: A potential modifier of amyloid deposition in Parkinson's disease? Mov Disord 2015; 31:668-75. [PMID: 27156393 DOI: 10.1002/mds.26422] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 07/23/2015] [Accepted: 08/06/2015] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Evidence from clinical and pathological studies suggests a role for both alpha-synuclein and amyloid-beta in the pathophysiology of dementia associated with PD. Recent work demonstrated improvement in memory and reduced amyloid-beta burden in transgenic murine Alzheimer's models given subcutaneous apomorphine. The aim of this work was to determine whether antemortem exposure to apomorphine was associated with lower levels of amyloid-beta in brain tissue in a clinicopathological study of PD. METHODS The case notes of donors with pathologically proven PD who had (n = 36) and had not received apomorphine (n = 35) during life for motor complications were reviewed to determine presence or absence of cognitive impairment. The four groups were well matched for disease duration, age at death, sex, and apolipoprotein E4 genotype. The severity of amyloid-beta mature/diffuse plaque load, tau pathology, and alpha-synuclein pathology were all established. Cerebral amyloid angiopathy was determined based on a four-tier grading system. RESULTS Within the cognitively normal cases, significantly reduced amyloid-beta deposition was present in those with antemortem apomorphine exposure; this finding was not replicated in those with cognitive impairment plus previous apomorphine use. In the apomorphine cognitively normal group only, a significant negative association was observed between maximum apomorphine dose received and amyloid-beta burden. Early and maximum doses of apomorphine plus apolipoprotein genotype and sex were significant predictors of total plaque load in an explanatory model. CONCLUSION This exploratory study suggests that apomorphine may have a modifying effect on amyloid deposition in nondemented PD cases and thus may represent a potential therapy to reduce cognitive impairment in PD. © 2015 Movement Disorder Society.
Collapse
Affiliation(s)
- Alison J Yarnall
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Helen Ling
- Reta Lila Weston Institute of Neurological Studies, University College London, United Kingdom
| | - Andrew J Lees
- The Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom.,Reta Lila Weston Institute of Neurological Studies, University College London, United Kingdom
| | - Shirley Y Coleman
- Industrial Statistics Research Unit, Newcastle University, Newcastle, United Kingdom
| | | | - Yaroslau Compta
- Parkinson Disease and Movement Disorders Unit, Neurology Service, IDIBAPS, CIBERNED, Hospital Clinic, Barcelona, Catalonia, Spain
| | - Tamas Revesz
- The Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - David J Burn
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
186
|
D'Avanzo C, Aronson J, Kim YH, Choi SH, Tanzi RE, Kim DY. Alzheimer's in 3D culture: challenges and perspectives. Bioessays 2015; 37:1139-48. [PMID: 26252541 PMCID: PMC4674791 DOI: 10.1002/bies.201500063] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and there is currently no cure. The "β-amyloid cascade hypothesis" of AD is the basis of current understanding of AD pathogenesis and drug discovery. However, no AD models have fully validated this hypothesis. We recently developed a human stem cell culture model of AD by cultivating genetically modified human neural stem cells in a three-dimensional (3D) cell culture system. These cells were able to recapitulate key events of AD pathology including β-amyloid plaques and neurofibrillary tangles. In this review, we will discuss the progress and current limitations of AD mouse models and human stem cell models as well as explore the breakthroughs of 3D cell culture systems. We will also share our perspective on the potential of dish models of neurodegenerative diseases for studying pathogenic cascades and therapeutic drug discovery.
Collapse
Affiliation(s)
- Carla D'Avanzo
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jenna Aronson
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Young Hye Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Se Hoon Choi
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
187
|
De Ricco R, Valensin D, Dell'Acqua S, Casella L, Hureau C, Faller P. Copper(I/II), α/β-Synuclein and Amyloid-β: Menage à Trois? Chembiochem 2015; 16:2319-28. [PMID: 26338312 DOI: 10.1002/cbic.201500425] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Indexed: 12/12/2022]
Abstract
Copper binding to α-synuclein (aS) and to amyloid-β (Ab) has been connected to Parkinson's and Alzheimer's disease (AD), respectively, because Cu ions can modulate the peptide aggregation, and these Cu ⋅ peptide complexes can catalyse the production of reactive oxygen species (ROS). In a significant proportion of AD brains, aggregation of aS and Ab has been detected, and it was proposed that Ab and aS interact with each other. Thus, we investigated the potential interactions of Ab and aS through their binding of copper(I) and copper(II). Additionally, β-synuclein (bS) was investigated, due to its additional methionine residue, a potential Cu(I) ligand. We found that: 1) the peptides containing the Cu-binding domains Ab1-16, aS1-15 and bS1-15 have similar affinities towards Cu(II) and towards Cu(I), with Ab1-16 being slightly stronger, 2) in the case of Cu(I), the additional Met residue in bS1-15 increased the affinity slightly, 3) the exchange of Cu(I/II) between the two peptides is rapid (≤ ms), 4) a/bS1-15 and Ab1-16 form a heterodimeric complex with Cu(II), 5) Cu(I) probably promotes a transient ternary complex, 6) the different Cu(I/II) coordination of Ab1-16, aS1-15 and bS1-15 impacts the capacity to produce ROS and to oxidise catechol, and 7) when Ab1-16, aS1-15 and Cu are present, the ROS production more closely resembles that by Ab1-16. The work gives insights into the coordination chemistry of these related peptides, and the relevance of coordination differences, the ternary complex and ROS production are discussed.
Collapse
Affiliation(s)
- Riccardo De Ricco
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, B. P. 44099, 31077, Toulouse Cedex 4, France.,Université de Toulouse, UPS, INPT, 205 Route de Narbonne, B. P. 44099, 31077, Toulouse Cedex 4, France.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100, Siena, Italy.
| | - Simone Dell'Acqua
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Luigi Casella
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, B. P. 44099, 31077, Toulouse Cedex 4, France.,Université de Toulouse, UPS, INPT, 205 Route de Narbonne, B. P. 44099, 31077, Toulouse Cedex 4, France
| | - Peter Faller
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, B. P. 44099, 31077, Toulouse Cedex 4, France. .,Université de Toulouse, UPS, INPT, 205 Route de Narbonne, B. P. 44099, 31077, Toulouse Cedex 4, France.
| |
Collapse
|
188
|
Zhang Q, Kim YC, Narayanan NS. Disease-modifying therapeutic directions for Lewy-Body dementias. Front Neurosci 2015; 9:293. [PMID: 26347604 PMCID: PMC4542461 DOI: 10.3389/fnins.2015.00293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/04/2015] [Indexed: 12/26/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is the second leading cause of dementia following Alzheimer's disease (AD) and accounts for up to 25% of all dementia. DLB is distinct from AD in that it involves extensive neuropsychiatric symptoms as well as motor symptoms, leads to enormous societal costs in terms of direct medical care and is associated with high financial and caregiver costs. Although, there are no disease-modifying therapies for DLB, we review several new therapeutic directions in treating DLB. We discuss progress in strategies to decrease the level of alpha-synuclein, to prevent the cell to cell transmission of misfolded alpha-synuclein, and the potential of brain stimulation in DLB.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Neurology, University of Iowa Iowa City, IA, USA ; Physician Scientist Training Program, University of Iowa Iowa City, IA, USA
| | - Young-Cho Kim
- Department of Neurology, University of Iowa Iowa City, IA, USA
| | - Nandakumar S Narayanan
- Department of Neurology, University of Iowa Iowa City, IA, USA ; Aging Mind and Brain Initiative, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
189
|
Schneeberger A, Tierney L, Mandler M. Active immunization therapies for Parkinson's disease and multiple system atrophy. Mov Disord 2015; 31:214-24. [PMID: 26260853 DOI: 10.1002/mds.26377] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/16/2015] [Accepted: 07/20/2015] [Indexed: 01/06/2023] Open
Abstract
Vaccination is increasingly being investigated as a potential treatment for synucleinopathies, a group of neurodegenerative diseases including Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies associated with α-synuclein pathology. All lack a causal therapy. Development of novel, disease-altering treatment strategies is urgently needed. Vaccination has positioned itself as a prime strategy for addressing these diseases because it is broadly applicable, requires infrequent administration, and maintains low production costs for treating a large population or as a preventive measure. Current evidence points to a causal role of misfolded α-synuclein in the development and progression of synucleinopathies. In the past decade, significant progress in active immunization against α-synuclein has been shown both in preclinical animal models and in early clinical development. In this review, we describe the state-of-the-art in active immunization approaches to synucleinopathies, with a focus on advances in Parkinson's disease (PD) and multiple-system atrophy (MSA). We first review preclinical animal models, highlighting their progress in translation to the clinical setting. We then discuss current clinical applications, stressing different approaches taken to address α-synuclein pathology. Finally, we address challenges, trends, and future perspectives of current vaccination programs.
Collapse
|
190
|
Shi YF, Han Y, Su YT, Yang JH, Yu YQ. Silencing of Cholinergic Basal Forebrain Neurons Using Archaerhodopsin Prolongs Slow-Wave Sleep in Mice. PLoS One 2015; 10:e0130130. [PMID: 26151909 PMCID: PMC4495063 DOI: 10.1371/journal.pone.0130130] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
The basal forebrain (BF) plays a crucial role in cortical activation. Our previous study showed that activation of cholinergic BF neurons alone is sufficient to suppress slow-wave sleep (SWS) and promote wakefulness and rapid-eye-movement (REM) sleep. However, the exact role of silencing cholinergic BF neurons in the sleep-wake cycle remains unclear. We inhibitied the cholinergic BF neurons genetically targeted with archaerhodopsin (Arch) with yellow light to clarify the role of cholinergic BF neurons in the sleep-wake cycle. Bilateral inactivation of cholinergic BF neurons genetically targeted with archaerhodopsin prolonged SWS and decreased the probability of awakening from SWS in mice. However, silencing these neurons changed neither the duration of wakefulness or REM sleep, nor the probability of transitions to other sleep-wake episodes from wakefulness or REM sleep. Furthermore, silencing these neurons for 6 h within the inactive or active period increased the duration of SWS at the expense of the duration of wakefulness, as well as increasing the number of prolonged SWS episodes (120-240 s). The lost wakefulness was compensated by a delayed increase of wakefulness, so the total duration of SWS and wakefulness during 24 h was kept stable. Our results indicate that the main effect of these neurons is to terminate SWS, whereas wakefulness or REM sleep may be determined by co-operation of the cholinergic BF neurons with other arousal-sleep control systems.
Collapse
Affiliation(s)
- Yu-Feng Shi
- Department of Neurobiology and Physiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yong Han
- Department of Neurobiology and Physiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun-Ting Su
- Department of Neurobiology and Physiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun-Hua Yang
- Department of Neurobiology and Physiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan-Qin Yu
- Department of Neurobiology and Physiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
191
|
Howlett DR, Whitfield D, Johnson M, Attems J, O'Brien JT, Aarsland D, Lai MK, Lee JH, Chen C, Ballard C, Hortobágyi T, Francis PT. Regional Multiple Pathology Scores Are Associated with Cognitive Decline in Lewy Body Dementias. Brain Pathol 2015; 25:401-8. [PMID: 25103200 PMCID: PMC8029273 DOI: 10.1111/bpa.12182] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/25/2014] [Indexed: 12/15/2022] Open
Abstract
Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) are characterized by the presence of α-synuclein-containing Lewy bodies and Lewy neurites. However, both dementias also show variable degrees of Alzheimer's disease (AD) pathology (senile plaques and neurofibrillary tangles), particularly in areas of the cortex associated with higher cognitive functions. This study investigates the contribution of the individual and combined pathologies in determining the rate of cognitive decline. Cortical α-synuclein, phosphorylated tau (phosphotau) and Aβ plaque pathology in 34 PDD and 55 DLB patients was assessed semi-quantitatively in four regions of the neocortex. The decline in cognition, assessed by Mini Mental State Examination, correlated positively with the cortical α-synuclein load. Patients also had varying degrees of senile Aβ plaque and phosphotau pathology. Regression analyses pointed to a combined pathology (Aβ plaque plus phosphotau plus α-synuclein-positive features), particularly in the prefrontal cortex (BA9) and temporal lobe neocortex with the superior and middle temporal gyrus (BA21, 22), being a major determining factor in the development of dementia. Thus, cognitive decline in Lewy body dementias is not a consequence of α-synuclein-induced neurodegeneration alone but senile plaque and phosphorylated tau pathology also contribute to the overall deficits.
Collapse
Affiliation(s)
- David R. Howlett
- Wolfson Centre for Age‐Related DiseasesKing's College LondonLondonUK
| | - David Whitfield
- Wolfson Centre for Age‐Related DiseasesKing's College LondonLondonUK
| | - Mary Johnson
- Institute for Ageing and HealthNewcastle UniversityNewcastle upon TyneUK
| | - Johannes Attems
- Institute for Ageing and HealthNewcastle UniversityNewcastle upon TyneUK
| | | | - Dag Aarsland
- Department of Neurobiology, Ward Sciences and SocietyKarolinska InstituteStockholmSweden
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
| | - Mitchell K.P. Lai
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Jasinda H. Lee
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Christopher Chen
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Clive Ballard
- Wolfson Centre for Age‐Related DiseasesKing's College LondonLondonUK
| | - Tibor Hortobágyi
- Wolfson Centre for Age‐Related DiseasesKing's College LondonLondonUK
- Department of NeuropathologyInstitute of PathologyUniversity of DebrecenDebrecenHungary
| | - Paul T. Francis
- Wolfson Centre for Age‐Related DiseasesKing's College LondonLondonUK
| |
Collapse
|
192
|
Beta-amyloid deposition in chronic traumatic encephalopathy. Acta Neuropathol 2015; 130:21-34. [PMID: 25943889 DOI: 10.1007/s00401-015-1435-y] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive mild traumatic brain injury. It is defined pathologically by the abnormal accumulation of tau in a unique pattern that is distinct from other tauopathies, including Alzheimer's disease (AD). Although trauma has been suggested to increase amyloid β peptide (Aβ) levels, the extent of Aβ deposition in CTE has not been thoroughly characterized. We studied a heterogeneous cohort of deceased athletes and military veterans with neuropathologically diagnosed CTE (n = 114, mean age at death = 60) to test the hypothesis that Aβ deposition is altered in CTE and associated with more severe pathology and worse clinical outcomes. We found that Aβ deposition, either as diffuse or neuritic plaques, was present in 52 % of CTE subjects. Moreover, Aβ deposition in CTE occurred at an accelerated rate and with altered dynamics in CTE compared to a normal aging population (OR = 3.8, p < 0.001). We also found a clear pathological and clinical dichotomy between those CTE cases with Aβ plaques and those without. Aβ deposition was significantly associated with the presence of the APOE ε4 allele (p = 0.035), older age at symptom onset (p < 0.001), and older age at death (p < 0.001). In addition, when controlling for age, neuritic plaques were significantly associated with increased CTE tauopathy stage (β = 2.43, p = 0.018), co-morbid Lewy body disease (OR = 5.01, p = 0.009), and dementia (OR = 4.45, p = 0.012). A subset of subjects met the diagnostic criteria for both CTE and AD, and in these subjects both Aβ plaques and total levels of Aβ1-40 were increased at the depths of the cortical sulcus compared to the gyral crests. Overall, these findings suggest that Aβ deposition is altered and accelerated in a cohort of CTE subjects compared to normal aging and that Aβ is associated with both pathological and clinical progression of CTE independent of age.
Collapse
|
193
|
Musiek ES, Holtzman DM. Three dimensions of the amyloid hypothesis: time, space and 'wingmen'. Nat Neurosci 2015; 18:800-6. [PMID: 26007213 PMCID: PMC4445458 DOI: 10.1038/nn.4018] [Citation(s) in RCA: 501] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/23/2015] [Indexed: 02/07/2023]
Abstract
The amyloid hypothesis, which has been the predominant framework for research in Alzheimer's disease (AD), has been the source of considerable controversy. The amyloid hypothesis postulates that amyloid-β peptide (Aβ) is the causative agent in AD. It is strongly supported by data from rare autosomal dominant forms of AD. However, the evidence that Aβ causes or contributes to age-associated sporadic AD is more complex and less clear, prompting criticism of the hypothesis. We provide an overview of the major arguments for and against the amyloid hypothesis. We conclude that Aβ likely is the key initiator of a complex pathogenic cascade that causes AD. However, we argue that Aβ acts primarily as a trigger of other downstream processes, particularly tau aggregation, which mediate neurodegeneration. Aβ appears to be necessary, but not sufficient, to cause AD. Its major pathogenic effects may occur very early in the disease process.
Collapse
Affiliation(s)
- Erik S Musiek
- Department of Neurology, Knight Alzheimer's Disease Research Center, and Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - David M Holtzman
- Department of Neurology, Knight Alzheimer's Disease Research Center, and Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
194
|
De Ricco R, Valensin D, Dell’Acqua S, Casella L, Dorlet P, Faller P, Hureau C. Remote His50 Acts as a Coordination Switch in the High-Affinity N-Terminal Centered Copper(II) Site of α-Synuclein. Inorg Chem 2015; 54:4744-51. [DOI: 10.1021/acs.inorgchem.5b00120] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Riccardo De Ricco
- CNRS, LCC (Laboratoire
de Chimie de Coordination), 205 route
de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université
de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Daniela Valensin
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Simone Dell’Acqua
- Department
of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Luigi Casella
- Department
of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Pierre Dorlet
- Institute
for Integrative Biology of the Cell (I2BC), Laboratoire Stress Oxydant
et Détoxication, CNRS UMR9198, Université Paris-Saclay, 91191 Gif sur Yvette Cedex, France
| | - Peter Faller
- CNRS, LCC (Laboratoire
de Chimie de Coordination), 205 route
de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université
de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire
de Chimie de Coordination), 205 route
de Narbonne, BP 44099, F-31077 Toulouse Cedex 4, France
- Université
de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| |
Collapse
|
195
|
Dewji NN, Singer SJ, Masliah E, Rockenstein E, Kim M, Harber M, Horwood T. Peptides of presenilin-1 bind the amyloid precursor protein ectodomain and offer a novel and specific therapeutic approach to reduce ß-amyloid in Alzheimer's disease. PLoS One 2015; 10:e0122451. [PMID: 25923432 PMCID: PMC4414571 DOI: 10.1371/journal.pone.0122451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 02/12/2015] [Indexed: 12/19/2022] Open
Abstract
β-Amyloid (Aβ) accumulation in the brain is widely accepted to be critical to the development of Alzheimer's disease (AD). Current efforts at reducing toxic Aβ40 or 42 have largely focused on modulating γ-secretase activity to produce shorter, less toxic Aβ, while attempting to spare other secretase functions. In this paper we provide data that offer the potential for a new approach for the treatment of AD. The method is based on our previous findings that the production of Aβ from the interaction between the β-amyloid precursor protein (APP) and Presenilin (PS), as part of the γ-secretase complex, in cell culture is largely inhibited if the entire water-soluble NH2-terminal domain of PS is first added to the culture. Here we demonstrate that two small, non-overlapping water-soluble peptides from the PS-1 NH2-terminal domain can substantially and specifically inhibit the production of total Aβ as well as Aβ40 and 42 in vitro and in vivo in the brains of APP transgenic mice. These results suggest that the inhibitory activity of the entire amino terminal domain of PS-1 on Aβ production is largely focused in a few smaller sequences within that domain. Using biolayer interferometry and confocal microscopy we provide evidence that peptides effective in reducing Aβ give a strong, specific and biologically relevant binding with the purified ectodomain of APP 695. Finally, we demonstrate that the reduction of Aβ by the peptides does not affect the catalytic activities of β- or γ-secretase, or the level of APP. P4 and P8 are the first reported protein site-specific small peptides to reduce Aβ production in model systems of AD. These peptides and their derivatives offer new potential drug candidates for the treatment of AD.
Collapse
Affiliation(s)
- Nazneen N. Dewji
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, United States of America
- Cenna Biosciences Incorporated, 505 Coast Boulevard, Suite 302, La Jolla, CA, 92037, United States of America
- * E-mail:
| | - S. Jonathan Singer
- Department of Biology, University of California San Diego, La Jolla, CA, 92093, United States of America
- Cenna Biosciences Incorporated, 505 Coast Boulevard, Suite 302, La Jolla, CA, 92037, United States of America
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, United States of America
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, United States of America
| | - Edward Rockenstein
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, United States of America
| | - Mihyun Kim
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, United States of America
- Cenna Biosciences Incorporated, 505 Coast Boulevard, Suite 302, La Jolla, CA, 92037, United States of America
| | - Martha Harber
- FortéBio, Pall Corporation, 1360 Willow Rd, Suite 201, Menlo Park, CA, 94025, United States of America
| | - Taylor Horwood
- Department of Neuroscience Imaging Core, University of California San Diego, La Jolla, CA, 92093, United States of America
| |
Collapse
|
196
|
Abstract
BACKGROUND Dementia with Lewy body (DLB) is considered to be the second most common form of neurodegenerative disorders after Alzheimer's disease (AD), affecting as many as 100,000 people in the UK and up to 1.3 million in the USA. However, nearly half of patients with DLB remain undiagnosed thus depriving many of them from an early and adequate treatment of their distressing symptoms. Accurate and early diagnosis of DLB is important for both patients and their caregivers, since the neuropsychiatric symptoms require specific management. METHODS In the current study, we review the most recent developments in the field of molecular nuclear imaging to diagnose DLB. RESULTS The review addresses, the neurotransmitter based (dopaminergic, cholinergic, and glutamatergic) nuclear imaging techniques, role of the autonomic dysfunction and its visualization in DLB with myocardial sympathetic imaging and vesicular catecholamine uptake, as well as the use of amyloid polypeptides and glial markers as molecular imaging probes in the clinical diagnosis of DLB. CONCLUSIONS Most of the above nuclear imaging methods are restricted to highly specialized clinical centers, and thus not applicable to a large number of patients requiring dementia (e.g. DLB) diagnosis in routine clinical setting. Validating them against more readily accessible peripheral biomarkers, e.g. CSF and blood biomarkers linked to the DLB process, may facilitate their use in wider clinical settings.
Collapse
|
197
|
Choi BK, Kim JY, Cha MY, Mook-Jung I, Shin YK, Lee NK. β-Amyloid and α-synuclein cooperate to block SNARE-dependent vesicle fusion. Biochemistry 2015; 54:1831-40. [PMID: 25714795 DOI: 10.1021/acs.biochem.5b00087] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are caused by β-amyloid (Aβ) and α-synuclein (αS), respectively. Ample evidence suggests that these two pathogenic proteins are closely linked and have a synergistic effect on eliciting neurodegenerative disorders. However, the pathophysiological consequences of Aβ and αS coexistence are still elusive. Here, we show that large-sized αS oligomers, which are normally difficult to form, are readily generated by Aβ42-seeding and that these oligomers efficiently hamper neuronal SNARE-mediated vesicle fusion. The direct binding of the Aβ-seeded αS oligomers to the N-terminal domain of synaptobrevin-2, a vesicular SNARE protein, is responsible for the inhibition of fusion. In contrast, large-sized Aβ42 oligomers (or aggregates) or the products of αS incubated without Aβ42 have no effect on vesicle fusion. These results are confirmed by examining PC12 cell exocytosis. Our results suggest that Aβ and αS cooperate to escalate the production of toxic oligomers, whose main toxicity is the inhibition of vesicle fusion and consequently prompts synaptic dysfunction.
Collapse
Affiliation(s)
- Bong-Kyu Choi
- School of Interdisciplinary Bioscience and Bioengineering and ‡Department of Physics, Pohang University of Science and Technology , Pohang 790-784, Korea
| | | | | | | | | | | |
Collapse
|
198
|
Lin CH, Wu RM. Biomarkers of cognitive decline in Parkinson's disease. Parkinsonism Relat Disord 2015; 21:431-43. [PMID: 25737398 DOI: 10.1016/j.parkreldis.2015.02.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 10/24/2022]
Abstract
Cognitive impairment is a frequent and devastating non-motor symptom of Parkinson's disease (PD). Impaired cognition has a major impact on either quality of life or mortality in patients with PD. Notably, the rate of cognitive decline and pattern of early cognitive deficits in PD are highly variable between individuals. Given that the underlying mechanisms of cognitive decline or dementia associated with PD remain unclear, there is currently no mechanism-based treatment available. Identification of biological markers, including neuroimaging, biofluids and common genetic variants, that account for the heterogeneity of PD related cognitive decline could provide important insights into the pathological processes that underlie cognitive impairment in PD. These combined biomarker approaches will enable early diagnosis and provide indicators of cognitive progression in PD patients. This review summarizes recent advances in the development of biomarkers for cognitive impairments in PD.
Collapse
Affiliation(s)
- Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
199
|
Fujishiro H, Nakamura S, Sato K, Iseki E. Prodromal dementia with Lewy bodies. Geriatr Gerontol Int 2015; 15:817-26. [PMID: 25690399 DOI: 10.1111/ggi.12466] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2014] [Indexed: 11/26/2022]
Abstract
Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementing disorder after Alzheimer's disease (AD), but there is limited information regarding the prodromal DLB state compared with that of AD. Parkinson's disease (PD) and DLB share common prodromal symptoms with Lewy body disease (LBD), allowing us to use a common strategy for identifying the individuals with an underlying pathophysiology of LBD. Dysautonomia, olfactory dysfunction, rapid eye movement sleep behavior disorder (RBD) and psychiatric symptoms antedate the onset of dementia by years or even decades in patients with DLB. Although RBD is the most potentially accurate prodromal predictor of DLB, disease progression before the onset of dementia could differ between the prodromal DLB state with and without RBD. Experts who specialize in idiopathic RBD and DLB might need communication in order to clarify the clinical relevance of RBD with the disease progression of DLB. The presence of prodromal LBD symptoms or findings of occipital hypoperfusion/hypometabolism helps us to predict the possible pathophysiological process of LBD in non-demented patients. This approach might provide the opportunity for additional neuroimaging, including cardiac (123) I-metaiodobenzylguanidine scintigraphy and dopamine transporter imaging. Although limited radiological findings in patients with prodromal DLB states have been reported, there is now a need for larger clinical multisite studies with pathological verification. The long prodromal phase of DLB provides a critical opportunity for potential intervention with disease-modifying therapy, but only if we are able to clearly identify the diversity in the clinical courses of DLB. In the present article, we reviewed the limited literature regarding the clinical profiles of prodromal DLB.
Collapse
Affiliation(s)
- Hiroshige Fujishiro
- Department of Sleep Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Kiyoshi Sato
- PET/CT Dementia Research Center, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, Koto, Japan
| | - Eizo Iseki
- PET/CT Dementia Research Center, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, Koto, Japan
| |
Collapse
|
200
|
Klein C, Mathis C, Leva G, Patte-Mensah C, Cassel JC, Maitre M, Mensah-Nyagan AG. γ-Hydroxybutyrate (Xyrem) ameliorates clinical symptoms and neuropathology in a mouse model of Alzheimer's disease. Neurobiol Aging 2015; 36:832-44. [DOI: 10.1016/j.neurobiolaging.2014.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
|