151
|
Zhang Q, Horst R, Geralt M, Ma X, Hong WX, Finn MG, Stevens RC, Wüthrich K. Microscale NMR screening of new detergents for membrane protein structural biology. J Am Chem Soc 2008; 130:7357-63. [PMID: 18479092 DOI: 10.1021/ja077863d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rate limiting step in biophysical characterization of membrane proteins is often the availability of suitable amounts of protein material. It was therefore of interest to demonstrate that microcoil nuclear magnetic resonance (NMR) technology can be used to screen microscale quantities of membrane proteins for proper folding in samples destined for structural studies. Micoscale NMR was then used to screen a series of newly designed zwitterionic phosphocholine detergents for their ability to reconstitute membrane proteins, using the previously well characterized beta-barrel E. coli outer membrane protein OmpX as a test case. Fold screening was thus achieved with microgram amounts of uniformly (2)H, (15)N-labeld OmpX and affordable amounts of the detergents, and prescreening with SDS-gel electrophoresis ensured efficient selection of the targets for NMR studies. A systematic approach to optimize the phosphocholine motif for membrane protein refolding led to the identification of two new detergents, 138-Fos and 179-Fos, that yield 2D [ (15)N, (1)H]-TROSY correlation NMR spectra of natively folded reconstituted OmpX.
Collapse
Affiliation(s)
- Qinghai Zhang
- Department of Molecular Biology, Department of Chemistry, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Libich DS, Harauz G. Solution NMR and CD spectroscopy of an intrinsically disordered, peripheral membrane protein: evaluation of aqueous and membrane-mimetic solvent conditions for studying the conformational adaptability of the 18.5 kDa isoform of myelin basic protein (MBP). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:1015-29. [PMID: 18449534 DOI: 10.1007/s00249-008-0334-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 04/09/2008] [Accepted: 04/11/2008] [Indexed: 02/05/2023]
Abstract
The stability and secondary structure propensity of recombinant murine 18.5 kDa myelin basic protein (rmMBP, 176 residues) was assessed using circular dichroic and nuclear magnetic resonance spectroscopy (1H-15N HSQC experiments) to determine the optimal sample conditions for further NMR studies (i.e., resonance assignments and protein-protein interactions). Six solvent conditions were selected based on their ability to stabilise the protein, and their tractability to currently standard solution NMR methodology. Selected solvent conditions were further characterised as functions of concentration, temperature, and pH. The results of these trials indicated that 30% TFE-d2 in H2O (v/v), pH 6.5 at 300 K, and 100 mM KCl, pH 6.5 at 277 K were the best conditions to use for future solution NMR studies of MBP. Micelles of DPC were found to be inappropriate for backbone resonance assignments of rmMBP in this instance.
Collapse
Affiliation(s)
- David S Libich
- Department of Molecular and Cellular Biology, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, N1G 2W1, Guelph, ON, Canada
| | | |
Collapse
|
153
|
Smith AE, Kim SH, Liu F, Jia W, Vinogradov E, Gyles CL, Bishop RE. PagP activation in the outer membrane triggers R3 core oligosaccharide truncation in the cytoplasm of Escherichia coli O157:H7. J Biol Chem 2008; 283:4332-43. [PMID: 18070877 PMCID: PMC5007128 DOI: 10.1074/jbc.m708163200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli outer membrane phospholipid:lipid A palmitoyltransferase PagP is normally a latent enzyme, but it can be directly activated in outer membranes by lipid redistribution associated with a breach in the permeability barrier. We now demonstrate that a lipid A myristate deficiency in an E. coli O157:H7 msbB mutant constitutively activates PagP in outer membranes. The lipid A myristate deficiency is associated with hydrophobic antibiotic sensitivity and, unexpectedly, with serum sensitivity, which resulted from O-antigen polysaccharide absence due to a cytoplasmically determined truncation at the first outer core glucose unit of the R3 core oligosaccharide. Mutational inactivation of pagP in the myristate-deficient lipid A background aggravated the hydrophobic antibiotic sensitivity as a result of losing a partially compensatory increase in lipid A palmitoylation while simultaneously restoring serum resistance and O-antigen attachment to intact lipopolysaccharide. Complementation with either wild-type pagP or catalytically inactive pagPSer77Ala alleles restored the R3 core truncation. However, the intact lipopolysaccharide was preserved after complementation with an internal deletion pagPDelta5-14 allele, which mostly eliminates a periplasmic amphipathic alpha-helical domain but fully supports cell surface lipid A palmitoylation. Our findings indicate that activation of PagP not only triggers lipid A palmitoylation in the outer membrane but also separately truncates the R3 core oligosaccharide in the cytoplasm. We discuss the implication that PagP might function as an apical sensory transducer, which can be activated by a breach in the outer membrane permeability barrier.
Collapse
Affiliation(s)
- Abigail E Smith
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | | | |
Collapse
|
154
|
Gibbons HS, Reynolds CM, Guan Z, Raetz CRH. An inner membrane dioxygenase that generates the 2-hydroxymyristate moiety of Salmonella lipid A. Biochemistry 2008; 47:2814-25. [PMID: 18254598 DOI: 10.1021/bi702457c] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The lipid A residues of certain Gram-negative bacteria, including most strains of Salmonella and Pseudomonas, are esterified with one or two secondary S-2-hydroxyacyl chains. The S-2 hydroxylation process is O 2-dependent in vivo, but the relevant enzymatic pathways have not been fully characterized because in vitro assays have not been developed. We previously reported that expression of the Salmonella lpxO gene confers upon Escherichia coli K-12 the ability to synthesize 2-hydroxymyristate modified lipid A ( J. Biol. Chem. (2000) 275, 32940-32949). We now demonstrate that inactivation of lpxO, which encodes a putative Fe (2+)/O 2/alpha-ketoglutarate-dependent dioxygenase, abolishes S-2-hydroxymyristate formation in S. typhimurium. Membranes of E. coli strains expressing lpxO are able to hydroxylate Kdo 2-[4'- (32)P]-lipid A in vitro in the presence of Fe (2+), O 2, alpha-ketoglutarate, ascorbate, and Triton X-100. The Fe (2+) chelator 2,2'-bipyridyl inhibits the reaction. The product generated in vitro is a monohydroxylated Kdo 2-lipid A derivative. The [4'- (32)P]-lipid A released by mild acid hydrolysis from the in vitro product migrates with authentic S-2-hydroxlyated lipid A isolated from (32)P-labeled S. typhimurium cells. Electrospray ionization mass spectrometry and gas chromatography/mass spectrometry of the in vitro product are consistent with the 2-hydroxylation of the 3'-secondary myristoyl chain of Kdo 2-lipid A. LpxO contains two predicted trans-membrane helices (one at each end of the protein), and its active site likely faces the cytoplasm. LpxO is an unusual example of an integral membrane protein that is a member of the Fe (2+)/O 2/alpha-ketoglutarate-dependent dioxygenase family.
Collapse
Affiliation(s)
- Henry S Gibbons
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
155
|
Wehbi H, Gasmi-Seabrook G, Choi MY, Deber CM. Positional dependence of non-native polar mutations on folding of CFTR helical hairpins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:79-87. [DOI: 10.1016/j.bbamem.2007.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/27/2007] [Accepted: 08/29/2007] [Indexed: 12/19/2022]
|
156
|
Musial-Siwek M, Kendall DA, Yeagle PL. Solution NMR of signal peptidase, a membrane protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:937-44. [PMID: 18177734 DOI: 10.1016/j.bbamem.2007.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/09/2007] [Accepted: 11/26/2007] [Indexed: 11/16/2022]
Abstract
Useful solution nuclear magnetic resonance (NMR) data can be obtained from full-length, enzymatically active type I signal peptidase (SPase I), an integral membrane protein, in detergent micelles. Signal peptidase has two transmembrane segments, a short cytoplasmic loop, and a 27-kD C-terminal catalytic domain. It is a critical component of protein transport systems, recognizing and cleaving amino-terminal signal peptides from preproteins during the final stage of their export. Its structure and interactions with the substrate are of considerable interest, but no three-dimensional structure of the whole protein has been reported. The structural analysis of intact membrane proteins has been challenging and only recently has significant progress been achieved using NMR to determine membrane protein structure. Here we employ NMR spectroscopy to study the structure of the full-length SPase I in dodecylphosphocholine detergent micelles. HSQC-TROSY spectra showed resonances corresponding to approximately 3/4 of the 324 residues in the protein. Some sequential assignments were obtained from the 3D HNCACB, 3D HNCA, and 3D HN(CO) TROSY spectra of uniformly 2H, 13C, 15N-labeled full-length SPase I. The assigned residues suggest that the observed spectrum is dominated by resonances arising from extramembraneous portions of the protein and that the transmembrane domain is largely absent from the spectra. Our work elucidates some of the challenges of solution NMR of large membrane proteins in detergent micelles as well as the future promise of these kinds of studies.
Collapse
Affiliation(s)
- Monika Musial-Siwek
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
157
|
Page RC, Li C, Hu J, Gao FP, Cross TA. Lipid bilayers: an essential environment for the understanding of membrane proteins. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2007; 45 Suppl 1:S2-S11. [PMID: 18095258 DOI: 10.1002/mrc.2077] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 07/20/2007] [Accepted: 08/06/2007] [Indexed: 05/25/2023]
Abstract
Membrane protein structure and function is critically dependent on the surrounding environment. Consequently, utilizing a membrane mimetic that adequately models the native membrane environment is essential. A range of membrane mimetics are available but none generates a better model of native aqueous, interfacial, and hydrocarbon core environments than synthetic lipid bilayers. Transmembrane α-helices are very stable in lipid bilayers because of the low water content and low dielectric environment within the bilayer hydrocarbon core that strengthens intrahelical hydrogen bonds and hinders structural rearrangements within the transmembrane helices. Recent evidence from solid-state NMR spectroscopy illustrates that transmembrane α-helices, both in peptides and full-length proteins, appear to be highly uniform based on the observation of resonance patterns in PISEMA spectra. Here, we quantitate for the first time through simulations what we mean by highly uniform structures. Indeed, helices in transmembrane peptides appear to have backbone torsion angles that are uniform within ± 4°. While individual helices can be structurally stable due to intrahelical hydrogen bonds, interhelical interactions within helical bundles can be weak and nonspecific, resulting in multiple packing arrangements. Some helical bundles have the capacity through their amino acid composition for hydrogen bonding and electrostatic interactions to stabilize the interhelical conformations and solid-state NMR data is shown here for both of these situations. Solid-state NMR spectroscopy is unique among the techniques capable of determining three-dimensional structures of proteins in that it provides the ability to characterize structurally the membrane proteins at very high resolution in liquid crystalline lipid bilayers.
Collapse
Affiliation(s)
- Richard C Page
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | | | | | | | | |
Collapse
|
158
|
Affiliation(s)
- Kevin R Mackenzie
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
159
|
Nyblom M, Oberg F, Lindkvist-Petersson K, Hallgren K, Findlay H, Wikström J, Karlsson A, Hansson O, Booth PJ, Bill RM, Neutze R, Hedfalk K. Exceptional overproduction of a functional human membrane protein. Protein Expr Purif 2007; 56:110-20. [PMID: 17869538 DOI: 10.1016/j.pep.2007.07.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 07/02/2007] [Accepted: 07/09/2007] [Indexed: 11/19/2022]
Abstract
Eukaryotic--especially human--membrane protein overproduction remains a major challenge in biochemistry. Heterologously overproduced and purified proteins provide a starting point for further biochemical, biophysical and structural studies, and the lack of sufficient quantities of functional membrane proteins is frequently a bottleneck hindering this. Here, we report exceptionally high production levels of a correctly folded and crystallisable recombinant human integral membrane protein in its active form; human aquaporin 1 (hAQP1) has been heterologously produced in the membranes of the methylotrophic yeast Pichia pastoris. After solubilisation and a two step purification procedure, at least 90 mg hAQP1 per liter of culture is obtained. Water channel activity of this purified hAQP1 was verified by reconstitution into proteoliposomes and performing stopped-flow vesicle shrinkage measurements. Mass spectrometry confirmed the identity of hAQP1 in crude membrane preparations, and also from purified protein reconstituted into proteoliposomes. Furthermore, crystallisation screens yielded diffraction quality crystals of untagged recombinant hAQP1. This study illustrates the power of the yeast P. pastoris as a host to produce exceptionally high yields of a functionally active, human integral membrane protein for subsequent functional and structural characterization.
Collapse
Affiliation(s)
- Maria Nyblom
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-405 30 Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Carpenter T, Khalid S, Sansom MSP. A multidomain outer membrane protein from Pasteurella multocida: Modelling and simulation studies of PmOmpA. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2831-40. [PMID: 17888868 DOI: 10.1016/j.bbamem.2007.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/06/2007] [Accepted: 07/26/2007] [Indexed: 10/22/2022]
Abstract
PmOmpA is a two-domain outer membrane protein from Pasteurella multocida. The N-terminal domain of PmOmpA is a homologue of the transmembrane beta-barrel domain of OmpA from Escherichia coli, whilst the C-terminal domain of PmOmpA is a homologue of the extra-membrane Neisseria meningitidis RmpM C-terminal domain. This enables a model of a complete two domain PmOmpA to be constructed and its conformational dynamics explored via MD simulations of the protein embedded within two different phospholipid bilayers (DMPC and DMPE). The conformational stability of the transmembrane beta-barrel is similar to that of a homology model of OprF from Pseudomonas aeruginosa in bilayer simulations. There is a degree of water penetration into the interior of the beta-barrel, suggestive of a possible transmembrane pore. Although the PmOmpA model is stable over 20 ns simulations, retaining its secondary structure and fold integrity throughout, substantial flexibility is observed in a short linker region between the N- and the C-terminal domains. At low ionic strength, the C-terminal domain moves to interact electrostatically with the lipid bilayer headgroups. This study demonstrates that computational approaches may be applied to more complex, multi-domain outer membrane proteins, rather than just to transmembrane beta-barrels, opening the possibility of in silico proteomics approaches to such proteins.
Collapse
|
161
|
Huysmans GH, Radford SE, Brockwell DJ, Baldwin SA. The N-terminal helix is a post-assembly clamp in the bacterial outer membrane protein PagP. J Mol Biol 2007; 373:529-40. [PMID: 17868697 PMCID: PMC2887491 DOI: 10.1016/j.jmb.2007.07.072] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 07/23/2007] [Accepted: 07/29/2007] [Indexed: 12/04/2022]
Abstract
The Escherichia coli outer membrane beta-barrel enzyme PagP and its homologues are unique in that the eight-stranded barrel is tilted by about 25 degrees with respect to the membrane normal and is preceded by a 19-residue amphipathic alpha-helix. To investigate the role of this helix in the folding and stability of PagP, mutants were generated in which the helix was deleted (Delta(1-19)), or in which residues predicted to be involved in helix-barrel interactions were altered (W17A or R59L). The ability of the variants to insert into detergent micelles or liposomes was studied in vitro using circular dichroism, fluorescence, Fourier transform infrared spectroscopy, electrophoretic mobility and gain of enzyme activity. The data show that PagP, initially unfolded in 5% (w/v) perfluoro-octanoic acid or 6 M guanidinium chloride, inserts spontaneously and folds quantitatively to an active conformation into detergent micelles of cyclofos-7 or into large vesicles of diC(12:0)-phosphatidylcholine (diC(12:0)PC), respectively, the latter in the presence of 7 M urea. Successful refolding of all variants into both micelles and liposomes ruled out an essential role for the helix or helix-barrel interactions in folding and membrane insertion. Measurements of thermal stability indicated that the variants R59L, W17A/R59L and Delta(1-19) were destabilised substantially compared with wild-type PagP. However, in contrast to the other variants, destabilisation of the W17A variant relative to wild-type PagP was much greater in liposomes than in micelles. Analysis of the kinetics of folding and unfolding of all variants in diC(12:0)PC liposomes suggested that this destabilisation arises predominantly from an increased dissociation of the refolded variant proteins from the lipid-inserted state. The data support the view that the helix of PagP is not required for folding and assembly, but instead acts as a clamp, stabilising membrane-inserted PagP after folding and docking with the membrane are complete.
Collapse
Affiliation(s)
- Gerard H.M. Huysmans
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - David J. Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Stephen A. Baldwin
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
162
|
Liang B, Tamm LK. Structure of outer membrane protein G by solution NMR spectroscopy. Proc Natl Acad Sci U S A 2007; 104:16140-5. [PMID: 17911261 PMCID: PMC2042175 DOI: 10.1073/pnas.0705466104] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial outer membrane protein G (OmpG), a monomeric pH-gated porin, was overexpressed in Escherichia coli and refolded in beta-octyl glucoside micelles. After transfer into dodecylphosphocholine micelles, the solution structure of OmpG was determined by solution NMR spectroscopy at pH 6.3. Complete backbone assignments were obtained for 234 of 280 residues based on CA, CB, and CO connection pathways determined from a series of TROSY-based 3D experiments at 800 MHz. The global fold of the 14-stranded beta-barrel was determined based on 133 long-range NOEs observed between neighboring strands and local chemical shift and NOE information. The structure of the barrel is very similar to previous crystal structures, but the loops of the solution structure are quite flexible.
Collapse
Affiliation(s)
- Binyong Liang
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1300 Jefferson Park Avenue, P.O. Box 800736, Charlottesville, VA 22908
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1300 Jefferson Park Avenue, P.O. Box 800736, Charlottesville, VA 22908
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
163
|
Lee S, Howell SB, Opella SJ. NMR and mutagenesis of human copper transporter 1 (hCtr1) show that Cys-189 is required for correct folding and dimerization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:3127-34. [PMID: 17959139 DOI: 10.1016/j.bbamem.2007.08.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/30/2007] [Accepted: 08/31/2007] [Indexed: 11/25/2022]
Abstract
The human high-affinity copper transporter (hCtr1) is a membrane protein that is predicted to have three transmembrane helices and two methionine-rich metal binding motifs. As an oligomeric polytopic membrane protein, hCtr1 is a challenging system for experimental structure determination. The results of an initial application of solution-state NMR methods to a truncated construct containing residues 45-190 in micelles and site-directed mutagenesis of the two cysteine residues demonstrate that Cys-189 but not Cys-161 is essential for both dimer formation and proper folding of the protein.
Collapse
Affiliation(s)
- Sangwon Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
164
|
Poget SF, Girvin ME. Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:3098-106. [PMID: 17961504 DOI: 10.1016/j.bbamem.2007.09.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/07/2007] [Accepted: 09/10/2007] [Indexed: 10/22/2022]
Abstract
Considerable progress has been made recently on solution NMR studies of multi-transmembrane helix membrane protein systems of increasing size. Careful correlation of structure with function has validated the physiological relevance of these studies in detergent micelles. However, larger micelle and bicelle systems are sometimes required to stabilize the active forms of dynamic membrane proteins, such as the bacterial small multidrug resistance transporters. Even in these systems with aggregate molecular weights well over 100 kDa, solution NMR structural studies are feasible-but challenging.
Collapse
Affiliation(s)
- Sébastien F Poget
- Biochemistry Department, Albert Einstein College of Medicine, 1300 Morris Park Ave. Bronx, NY 10461, USA
| | | |
Collapse
|
165
|
NMR structural studies of the antibiotic lipopeptide daptomycin in DHPC micelles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:3116-26. [PMID: 17945184 DOI: 10.1016/j.bbamem.2007.08.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 08/30/2007] [Accepted: 08/31/2007] [Indexed: 11/23/2022]
Abstract
Daptomycin is a cyclic anionic lipopeptide that exerts its rapid bactericidal effect by perturbing the bacterial cell membrane, a mode of action different from most other currently commercially available antibiotics (except e.g. polymyxin and gramicidin). Recent work has shown that daptomycin requires calcium in the form of Ca2+ to form a micellar structure in solution and to bind to bacterial model membranes. This evidence sheds light on the initial steps in the mechanism of action of this novel antibiotic. To understand how daptomycin goes on to perturb bacterial membranes, its three-dimensional structure has been determined in the presence of 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) micelles. NMR spectra of daptomycin in DHPC were obtained under two conditions, namely in the presence of Ca2+ as used by Jung et al. [D. Jung, A. Rozek, M. Okon, R.E.W. Hancock, Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin, Chem. Biol. 11 (2004) 949-57] to solve the calcium-conjugated structure of daptomycin in solution and in a phosphate buffer as used by Rotondi and Gierasch [K.S. Rotondi, L.M. Gierasch, A well-defined amphipathic conformation for the calcium-free cyclic lipopeptide antibiotic, daptomycin, in aqueous solution, Biopolymers 80 (2005) 374-85] to solve the structure of apo-daptomycin. The structures were calculated using molecular dynamics time-averaged refinement. The different sample conditions used to obtain the NMR spectra are discussed in light of fluorescence data, lipid flip-flop and calcein release assays in PC liposomes, in the presence and absence of Ca2+ [D. Jung, A. Rozek, M. Okon, R.E.W. Hancock, Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin, Chem. Biol. 11 (2004) 949-57]. The implications of these results for the membrane perturbation mechanism of daptomycin are discussed.
Collapse
|
166
|
Mahalakshmi R, Franzin CM, Choi J, Marassi FM. NMR structural studies of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:3216-24. [PMID: 17916325 DOI: 10.1016/j.bbamem.2007.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 10/22/2022]
Abstract
The beta-barrels found in the outer membranes of prokaryotic and eukaryotic organisms constitute an important functional class of proteins. Here we present solid-state NMR spectra of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. We show that OmpX is folded in both glass-supported oriented lipid bilayers and in lipid bicelles that can be magnetically oriented with the membrane plane parallel or perpendicular to the direction of the magnetic field. The presence of resolved peaks in these spectra demonstrates that OmpX undergoes rotational diffusion around an axis perpendicular to the membrane surface. A tightly hydrogen-bonded domain of OmpX resists exchange with D2O for days and is assigned to the transmembrane beta-barrel, while peaks at isotropic resonance frequencies that disappear rapidly in D2O are assigned to the extracellular and periplasmic loops. The two-dimensional 1H/15N separated local field spectra of OmpX have several resolved peaks, and agree well with the spectra calculated from the crystal structure of OmpX rotated with the barrel axis nearly parallel (5 degrees tilt) to the direction of the magnetic field. The data indicate that it will be possible to obtain site-specific resonance assignments and to determine the structure, tilt, and rotation of OmpX in membranes using the solid-state NMR methods that are currently being applied to alpha-helical membrane proteins.
Collapse
|
167
|
Affiliation(s)
- David D Boehr
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
168
|
Cierpicki T, Liang B, Tamm LK, Bushweller JH. Increasing the accuracy of solution NMR structures of membrane proteins by application of residual dipolar couplings. High-resolution structure of outer membrane protein A. J Am Chem Soc 2007; 128:6947-51. [PMID: 16719475 PMCID: PMC2527590 DOI: 10.1021/ja0608343] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure determination of membrane proteins is one of the most challenging applications of solution NMR spectroscopy. The paucity of distance information available from the highly deuterated proteins employed requires new approaches in structure determination. Here we demonstrate that significant improvement in the structure accuracy of the membrane protein OmpA can be achieved by refinement with residual dipolar couplings (RDCs). The application of charged polyacrylamide gels allowed us to obtain two alignments and accurately measure numerous heteronuclear dipolar couplings. Furthermore, we have demonstrated that using a large set of RDCs in the refinement can yield a structure with 1 A rms deviation to the backbone of the high-resolution crystal structure. Our simulations with various data sets indicate that dipolar couplings will be critical for obtaining accurate structures of membrane proteins.
Collapse
Affiliation(s)
- Tomasz Cierpicki
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908,
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908,
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908,
| | - John H. Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908,
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22906
- CORRESPONDING AUTHOR FOOTNOTE: Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908; Phone: (434) 243-6409; FAX: (434) 982-1616; e-mail:
| |
Collapse
|
169
|
Cox K, Bond PJ, Grottesi A, Baaden M, Sansom MSP. Outer membrane proteins: comparing X-ray and NMR structures by MD simulations in lipid bilayers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:131-41. [PMID: 17551722 DOI: 10.1007/s00249-007-0185-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 05/07/2007] [Accepted: 05/08/2007] [Indexed: 11/26/2022]
Abstract
The structures of three bacterial outer membrane proteins (OmpA, OmpX and PagP) have been determined by both X-ray diffraction and NMR. We have used multiple (7 x 15 ns) MD simulations to compare the conformational dynamics resulting from the X-ray versus the NMR structures, each protein being simulated in a lipid (DMPC) bilayer. Conformational drift was assessed via calculation of the root mean square deviation as a function of time. On this basis the 'quality' of the starting structure seems mainly to influence the simulation stability of the transmembrane beta-barrel domain. Root mean square fluctuations were used to compare simulation mobility as a function of residue number. The resultant residue mobility profiles were qualitatively similar for the corresponding X-ray and NMR structure-based simulations. However, all three proteins were generally more mobile in the NMR-based than in the X-ray simulations. Principal components analysis was used to identify the dominant motions within each simulation. The first two eigenvectors (which account for >50% of the protein motion) reveal that such motions are concentrated in the extracellular loops and, in the case of PagP, in the N-terminal alpha-helix. Residue profiles of the magnitude of motions corresponding to the first two eigenvectors are similar for the corresponding X-ray and NMR simulations, but the directions of these motions correlate poorly reflecting incomplete sampling on a approximately 10 ns timescale.
Collapse
Affiliation(s)
- Katherine Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | | | | | | |
Collapse
|
170
|
Franzin CM, Gong XM, Thai K, Yu J, Marassi FM. NMR of membrane proteins in micelles and bilayers: the FXYD family proteins. Methods 2007; 41:398-408. [PMID: 17367712 PMCID: PMC2920895 DOI: 10.1016/j.ymeth.2006.08.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 08/10/2006] [Accepted: 08/15/2006] [Indexed: 11/25/2022] Open
Abstract
Determining the atomic resolution structures of membrane proteins is of particular interest in contemporary structural biology. Helical membrane proteins constitute one-third of the expressed proteins encoded in a genome, many drugs have membrane-bound proteins as their receptors, and mutations in membrane proteins result in human diseases. Although integral membrane proteins provide daunting technical challenges for all methods of protein structure determination, nuclear magnetic resonance (NMR) spectroscopy can be an extremely versatile and powerful method for determining their structures and characterizing their dynamics, in lipid environments that closely mimic the cell membranes. Once milligram amounts of isotopically labeled protein are expressed and purified, micelle samples can be prepared for solution NMR analysis, and lipid bilayer samples can be prepared for solid-state NMR analysis. The two approaches are complementary and can provide detailed structural and dynamic information. This paper describes the steps for membrane protein structure determination using solution and solid-state NMR. The methods for protein expression and purification, sample preparation and NMR experiments are described and illustrated with examples from the FXYD proteins, a family of regulatory subunits of the Na,K-ATPase.
Collapse
|
171
|
Khalid S, Bond PJ, Carpenter T, Sansom MSP. OmpA: gating and dynamics via molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1871-80. [PMID: 17601489 DOI: 10.1016/j.bbamem.2007.05.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 05/23/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
Outer membrane proteins (OMPs) of Gram-negative bacteria have a variety of functions including passive transport, active transport, catalysis, pathogenesis and signal transduction. Whilst the structures of approximately 25 OMPs are currently known, there is relatively little known about their dynamics in different environments. The outer membrane protein, OmpA from Escherichia coli has been studied extensively in different environments both experimentally and computationally, and thus provides an ideal test case for the study of the dynamics and environmental interactions of outer membrane proteins. We review molecular dynamics simulations of OmpA and its homologues in a variety of different environments and discuss possible mechanisms of pore gating. The transmembrane domain of E. coli OmpA shows subtle differences in dynamics and interactions between a detergent micelle and a lipid bilayer environment. Simulations of the crystallographic unit cell reveal a micelle-like network of detergent molecules interacting with the protein monomers. Simulation and modelling studies emphasise the role of an electrostatic-switch mechanism in the pore-gating mechanism. Simulation studies have been extended to comparative models of OmpA homologues from Pseudomonas aeruginosa (OprF) and Pasteurella multocida (PmOmpA), the latter model including the periplasmic C-terminal domain.
Collapse
Affiliation(s)
- Syma Khalid
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | | | | |
Collapse
|
172
|
Patargias G, Bond PJ, Deol SS, Sansom MSP. Molecular dynamics simulations of GlpF in a micelle vs in a bilayer: conformational dynamics of a membrane protein as a function of environment. J Phys Chem B 2007; 109:575-82. [PMID: 16851049 DOI: 10.1021/jp046727h] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Octyl glucoside (OG) is a detergent widely employed in structural and functional studies of membrane proteins. To better understand the nature of protein-OG interactions, molecular dynamics simulations (duration 10 ns) have been used to explore an alpha-helical membrane protein, GlpF, in OG micelles and in DMPC bilayers. Greater conformational drift of the extramembraneous protein loops, from the initial X-ray structure, is seen for the GlpF-OG simulations than for the GlpF-DMPC simulation. The mobility of the transmembrane alpha-helices is approximately 1.3x higher in the GlpF-OG than the GlpF-DMPC simulations. The detergent is seen to form an irregular torus around the protein. The presence of the protein leads to a small perturbation in the behavior of the alkyl chains in the OG micelle, namely an approximately 15% increase in the trans-gauche(-)-gauche(+) transition time. Aromatic side chains (Trp, Tyr) and basic side chains (Arg, Lys) play an important role in both protein-detergent (OG) and protein-lipid (DMPC) interactions.
Collapse
Affiliation(s)
- George Patargias
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | | | | |
Collapse
|
173
|
Khan MA, Neale C, Michaux C, Pomés R, Privé GG, Woody RW, Bishop RE. Gauging a hydrocarbon ruler by an intrinsic exciton probe. Biochemistry 2007; 46:4565-79. [PMID: 17375935 PMCID: PMC5007129 DOI: 10.1021/bi602526k] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structural basis of lipid acyl-chain selection by membrane-intrinsic enzymes is poorly understood because most integral membrane enzymes of lipid metabolism have proven refractory to structure determination; however, robust enzymes from the outer membranes of gram-negative bacteria are now providing a first glimpse at the underlying mechanisms. The methylene unit resolution of the phospholipid:lipid A palmitoyltransferase PagP is determined by the hydrocarbon ruler, a 16-carbon saturated acyl-chain-binding pocket buried within the transmembrane beta-barrel structure. Substitution of Gly88 lining the floor of the hydrocarbon ruler with Ala or Met makes the enzyme select specifically 15- or 12-carbon saturated acyl chains, respectively, indicating that hydrocarbon ruler depth determines acyl-chain selection. However, the Gly88Cys PagP resolution does not diminish linearly because it selects both 14- and 15-carbon saturated acyl chains. We discovered that an exciton, emanating from a buried Tyr26-Trp66 phenol-indole interaction, is extinguished by a local structural perturbation arising from the proximal Gly88Cys PagP sulfhydryl group. Site-specific S-methylation of the single Cys afforded Gly88Cys-S-methyl PagP, which reasserted both the exciton and methylene unit resolution by specifically selecting 13-carbon saturated acyl chains for transfer to lipid A. Unlike the other Gly88 substitutions, the Cys sulfhydryl group recedes from the hydrocarbon ruler floor and locally perturbs the subjacent Tyr26 and Trp66 aromatic rings. The resulting hydrocarbon ruler expansion thus occurs at the exciton's expense and accommodates an extra methylene unit in the selected acyl chain. The hydrocarbon ruler-exciton juxtaposition endows PagP with a molecular gauge for probing the structural basis of lipid acyl-chain selection in a membrane-intrinsic environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Russell E. Bishop
- To whom correspondence should be addressed: Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8N 3Z5. Telephone: (905) 525-9140, ext. 28810. Fax: (905) 522-9033.
| |
Collapse
|
174
|
Kustos I, Kocsis B, Kilár F. Bacterial outer membrane protein analysis by electrophoresis and microchip technology. Expert Rev Proteomics 2007; 4:91-106. [PMID: 17288518 DOI: 10.1586/14789450.4.1.91] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Outer membrane proteins are indispensable components of bacterial cells and participate in several relevant functions of the microorganisms. Changes in the outer membrane protein composition might alter antibiotic sensitivity and pathogenicity. Furthermore, the effects of various factors on outer membrane protein expression, such as antibiotic treatment, mutation, changes in the environment, lipopolysaccharide modification and biofilm formation, have been analyzed. Traditionally, the outer membrane protein profile determination was performed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Converting this technique to capillary electrophoresis format resulted in faster separation, lower sample consumption and automation. Coupling capillary electrophoresis with mass spectrometry enabled the fast identification of bacterial proteins, while immediate quantitative analysis permitted the determination of up- and downregulation of certain outer membrane proteins. Adapting capillary electrophoresis to microchip format ensured a further ten- to 100-fold decrease in separation time. Application of different separation techniques combined with various sensitive detector systems has ensured further opportunities in the field of high-throughput bacterial protein analysis. This review provides an overview using selected examples of outer membrane proteins and the development and application of the electrophoretic and microchip technologies for the analysis of these proteins.
Collapse
Affiliation(s)
- Ildikó Kustos
- University of Pécs, Department of Medical Microbiology & Immunology, Faculty of Medicine, Pécs, Hungary.
| | | | | |
Collapse
|
175
|
Shanmugavadivu B, Apell HJ, Meins T, Zeth K, Kleinschmidt JH. Correct folding of the beta-barrel of the human membrane protein VDAC requires a lipid bilayer. J Mol Biol 2007; 368:66-78. [PMID: 17336328 DOI: 10.1016/j.jmb.2007.01.066] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Revised: 01/19/2007] [Accepted: 01/26/2007] [Indexed: 11/26/2022]
Abstract
Spontaneous membrane insertion and folding of beta-barrel membrane proteins from an unfolded state into lipid bilayers has been shown previously only for few outer membrane proteins of Gram-negative bacteria. Here we investigated membrane insertion and folding of a human membrane protein, the isoform 1 of the voltage-dependent anion-selective channel (hVDAC1) of mitochondrial outer membranes. Two classes of transmembrane proteins with either alpha-helical or beta-barrel membrane domains are known from the solved high-resolution structures. VDAC forms a transmembrane beta-barrel with an additional N-terminal alpha-helix. We demonstrate that similar to bacterial OmpA, urea-unfolded hVDAC1 spontaneously inserts and folds into lipid bilayers upon denaturant dilution in the absence of folding assistants or energy sources like ATP. Recordings of the voltage-dependence of the single channel conductance confirmed folding of hVDAC1 to its active form. hVDAC1 developed first beta-sheet secondary structure in aqueous solution, while the alpha-helical structure was formed in the presence of lipid or detergent. In stark contrast to bacterial beta-barrel membrane proteins, hVDAC1 formed different structures in detergent micelles and phospholipid bilayers, with higher content of beta-sheet and lower content of alpha-helix when inserted and folded into lipid bilayers. Experiments with mixtures of lipid and detergent indicated that the content of beta-sheet secondary structure in hVDAC1 decreased at increased detergent content. Unlike bacterial beta-barrel membrane proteins, hVDAC1 was not stable even in mild detergents such as LDAO or dodecylmaltoside. Spontaneous folding of outer membrane proteins into lipid bilayers indicates that in cells, the main purpose of membrane-inserted or associated assembly factors may be to select and target beta-barrel membrane proteins towards the outer membrane instead of actively assembling them under consumption of energy as described for the translocons of cytoplasmic membranes.
Collapse
|
176
|
Abstract
Solution NMR spectroscopy represents a powerful tool for examining the structure and function of biological macromolecules. The advent of multidimensional (2D-4D) NMR, together with the widespread use of uniform isotopic labeling of proteins and RNA with the NMR-active isotopes, 15N and 13C, opened the door to detailed analyses of macromolecular structure, dynamics, and interactions of smaller macromolecules (< approximately 25 kDa). Over the past 10 years, advances in NMR and isotope labeling methods have expanded the range of NMR-tractable targets by at least an order of magnitude. Here we briefly describe the methodological advances that allow NMR spectroscopy of large macromolecules and their complexes and provide a perspective on the wide range of applications of NMR to biochemical problems.
Collapse
Affiliation(s)
- Mark P Foster
- Department of Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
177
|
Abstract
The lipid A moiety of lipopolysaccharide forms the outer monolayer of the outer membrane of most gram-negative bacteria. Escherichia coli lipid A is synthesized on the cytoplasmic surface of the inner membrane by a conserved pathway of nine constitutive enzymes. Following attachment of the core oligosaccharide, nascent core-lipid A is flipped to the outer surface of the inner membrane by the ABC transporter MsbA, where the O-antigen polymer is attached. Diverse covalent modifications of the lipid A moiety may occur during its transit from the outer surface of the inner membrane to the outer membrane. Lipid A modification enzymes are reporters for lipopolysaccharide trafficking within the bacterial envelope. Modification systems are variable and often regulated by environmental conditions. Although not required for growth, the modification enzymes modulate virulence of some gram-negative pathogens. Heterologous expression of lipid A modification enzymes may enable the development of new vaccines.
Collapse
Affiliation(s)
- Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
178
|
Tai K, Baaden M, Murdock S, Wu B, Ng MH, Johnston S, Boardman R, Fangohr H, Cox K, Essex JW, Sansom MSP. Three hydrolases and a transferase: comparative analysis of active-site dynamics via the BioSimGrid database. J Mol Graph Model 2006; 25:896-902. [PMID: 17011806 DOI: 10.1016/j.jmgm.2006.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 08/25/2006] [Accepted: 08/29/2006] [Indexed: 11/25/2022]
Abstract
Comparative molecular dynamics (MD) simulations enable us to explore the conformational dynamics of the active sites of distantly related enzymes. We have used the BioSimGrid (http://www.biosimgrid.org) database to facilitate such a comparison. Simulations of four enzymes were analyzed. These included three hydrolases and a transferase, namely acetylcholinesterase, outer-membrane phospholipase A, outer-membrane protease T, and PagP (an outer-membrane enzyme which transfers a palmitate chain from a phospholipid to lipid A). A set of 17 simulations were analyzed corresponding to a total of approximately 0.1 micros simulation time. A simple metric for active-site integrity was used to demonstrate the existence of clusters of dynamic conformational behaviour of the active sites. Small (i.e. within a cluster) fluctuations appear to be related to the function of an enzymatically active site. Larger fluctuations (i.e. between clusters) correlate with transitions between catalytically active and inactive states. Overall, these results demonstrate the potential of a comparative MD approach to analysis of enzyme function. This approach could be extended to a wider range of enzymes using current high throughput MD simulation and database methods.
Collapse
Affiliation(s)
- Kaihsu Tai
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Campanacci V, Bishop RE, Blangy S, Tegoni M, Cambillau C. The membrane bound bacterial lipocalin Blc is a functional dimer with binding preference for lysophospholipids. FEBS Lett 2006; 580:4877-83. [PMID: 16920109 PMCID: PMC5007124 DOI: 10.1016/j.febslet.2006.07.086] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 07/26/2006] [Accepted: 07/28/2006] [Indexed: 11/16/2022]
Abstract
Lipocalins, a widespread multifunctional family of small proteins (15-25kDa) have been first described in eukaryotes and more recently in Gram-negative bacteria. Bacterial lipocalins belonging to class I are outer membrane lipoproteins, among which Blc from E. coli is the better studied. Blc is expressed under conditions of starvation and high osmolarity, conditions known to exert stress on the cell envelope. The structure of Blc that we have previously solved (V. Campanacci, D. Nurizzo, S. Spinelli, C. Valencia, M. Tegoni, C. Cambillau, FEBS Lett. 562 (2004) 183-188.) suggested its possible role in binding fatty acids or phospholipids. Both physiological and structural data on Blc, therefore, point to a role in storage or transport of lipids necessary for membrane maintenance. In order to further document this hypothesis for Blc function, we have performed binding studies using fluorescence quenching experiments. Our results indicate that dimeric Blc binds fatty acids and phospholipids in a micromolar K(d) range. The crystal structure of Blc with vaccenic acid, an unsaturated C18 fatty acid, reveals that the binding site spans across the Blc dimer, opposite to its membrane anchored face. An exposed unfilled pocket seemingly suited to bind a polar group attached to the fatty acid prompted us to investigate lyso-phospholipids, which were found to bind in a nanomolar K(d) range. We discuss these findings in terms of a potential role for Blc in the metabolism of lysophospholipids generated in the bacterial outer membrane.
Collapse
Affiliation(s)
- Valérie Campanacci
- Architecture et Fonction des Macromolecules Biologiques, UMR 6098, CNRS-Université s Aix-Marseille I & II, Campus de Luminy, Case 932, 163 Avenue de Luminy 13288 Marseille Cedex 09, France
| | - Russell E. Bishop
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre 4H19, 1200 Main Street West, Hamilton, Ont., Canada L8N 3Z5
| | - Stéphanie Blangy
- Architecture et Fonction des Macromolecules Biologiques, UMR 6098, CNRS-Université s Aix-Marseille I & II, Campus de Luminy, Case 932, 163 Avenue de Luminy 13288 Marseille Cedex 09, France
| | - Mariella Tegoni
- Architecture et Fonction des Macromolecules Biologiques, UMR 6098, CNRS-Université s Aix-Marseille I & II, Campus de Luminy, Case 932, 163 Avenue de Luminy 13288 Marseille Cedex 09, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolecules Biologiques, UMR 6098, CNRS-Université s Aix-Marseille I & II, Campus de Luminy, Case 932, 163 Avenue de Luminy 13288 Marseille Cedex 09, France
- Corresponding author. Fax: +33 491 266 720. (C. Cambillau)
| |
Collapse
|
180
|
Sanders CR, Sönnichsen F. Solution NMR of membrane proteins: practice and challenges. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2006; 44 Spec No:S24-40. [PMID: 16826539 DOI: 10.1002/mrc.1816] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This review focuses upon the application of solution NMR methods to multispan integral membrane proteins, particularly with respect to determination of global folds by this approach. Practical methods are described along with the special difficulties that confront the application of solution NMR to proteins that dwell in the netherworld of the lipid bilayer.
Collapse
Affiliation(s)
- Charles R Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232-8725, USA.
| | | |
Collapse
|
181
|
Koglin A, Klammt C, Trbovic N, Schwarz D, Schneider B, Schäfer B, Löhr F, Bernhard F, Dötsch V. Combination of cell-free expression and NMR spectroscopy as a new approach for structural investigation of membrane proteins. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2006; 44 Spec No:S17-23. [PMID: 16826540 DOI: 10.1002/mrc.1833] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Despite major technical advance in methods used for structural investigations of proteins structure determination of membrane proteins still poses a significant challenge. Recently, the application of cell-free expression systems to membrane proteins has demonstrated that this technique can be used to produce quantities sufficient for structural investigations for many different membrane proteins. In particular for NMR spectroscopy, cell-free expression provides major advantages since it allows for amino acid type selective and even amino acid position specific labeling. In this mini-review we discuss the combination of cell-free membrane protein expression and liquid state NMR spectroscopy.
Collapse
Affiliation(s)
- Alexander Koglin
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, Marie-Curie Str. 9, 60439 Frankfurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Ahn HC, Jurani N, Macura S, Markley JL. Three-dimensional structure of the water-insoluble protein crambin in dodecylphosphocholine micelles and its minimal solvent-exposed surface. J Am Chem Soc 2006; 128:4398-404. [PMID: 16569017 PMCID: PMC2533276 DOI: 10.1021/ja057773d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We chose crambin, a hydrophobic and water-insoluble protein originally isolated from the seeds of the plant Crambe abyssinica, as a model for NMR investigations of membrane-associated proteins. We produced isotopically labeled crambin(P22,L25) (variant of crambin containing Pro22 and Leu25) as a cleavable fusion with staphylococcal nuclease and refolded the protein by an approach that has proved successful for the production of proteins with multiple disulfide bonds. We used NMR spectroscopy to determine the three-dimensional structure of the protein in two membrane-mimetic environments: in a mixed aqueous-organic solvent (75%/25%, acetone/water) and in DPC micelles. With the sample in the mixed solvent, it was possible to determine (>NH...OC<) hydrogen bonds directly by the detection of (h3)J(NC)' couplings. H-bonds determined in this manner were utilized in the refinement of the NMR-derived protein structures. With the protein in DPC (dodecylphosphocholine) micelles, we used manganous ion as an aqueous paramagnetic probe to determine the surface of crambin that is shielded by the detergent. With the exception of the aqueous solvent exposed loop containing residues 20 and 21, the protein surface was protected by DPC. This suggests that the protein may be similarly embedded in physiological membranes. The strategy described here for the expression and structure determination of crambin should be applicable to structural and functional studies of membrane active toxins and small membrane proteins.
Collapse
Affiliation(s)
- Hee-Chul Ahn
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA,
| | - Nenad Jurani
- Departments of Biochemistry and Molecular Biology, Mayo College of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota, 55905 USA
| | - Slobodan Macura
- Departments of Biochemistry and Molecular Biology, Mayo College of Medicine, Mayo Clinic and Foundation, Rochester, Minnesota, 55905 USA
| | - John L. Markley
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA,
- Corresponding author: John L. Markley, Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI 53706, USA, Phone: 1-608-263-9349, Fax: 1-608-262-3759,
| |
Collapse
|
183
|
Liang B, Bushweller JH, Tamm LK. Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy. J Am Chem Soc 2006; 128:4389-97. [PMID: 16569016 PMCID: PMC3199951 DOI: 10.1021/ja0574825] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A major challenge for the structure determination of integral membrane proteins by solution NMR spectroscopy is the limited number of NOE restraints in these systems stemming from extensive deuteration. Paramagnetic relaxation enhancement (PRE) by means of nitroxide spin-labels can provide valuable long-range distance information but, in practice, has limits in its application to membrane proteins because spin-labels are often incompletely reduced in highly apolar environments. Using the integral membrane protein OmpA as a model system, we introduce a method of parallel spin-labeling with paramagnetic and diamagnetic labels and show that distances in the range 15-24 Angstroms can be readily determined. The protein was labeled at 11 water-exposed and lipid-covered sites, and 320 PRE distance restraints were measured. The addition of these restraints resulted in significant improvement of the calculated backbone structure of OmpA. Structures of reasonable quality can even be calculated with PRE distance restraints only, i.e., in the absence of NOE distance restraints.
Collapse
Affiliation(s)
| | | | - Lukas K. Tamm
- Correspondence: Lukas K. Tamm, Dept. Molecular Physiology and Biological Physics, University of Virginia Health System, P.O.Box 800736, Charlottesville, VA 22908-0736, Tel: 434-982-3578, Fax: 434-982-1616,
| |
Collapse
|
184
|
Columbus L, Lipfert J, Klock H, Millett I, Doniach S, Lesley SA. Expression, purification, and characterization of Thermotoga maritima membrane proteins for structure determination. Protein Sci 2006; 15:961-75. [PMID: 16597824 PMCID: PMC2242514 DOI: 10.1110/ps.051874706] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Structural studies of integral membrane proteins typically rely upon detergent micelles as faithful mimics of the native lipid bilayer. Therefore, membrane protein structure determination would be greatly facilitated by biophysical techniques that are capable of evaluating and assessing the fold and oligomeric state of these proteins solubilized in detergent micelles. In this study, an approach to the characterization of detergent-solubilized integral membrane proteins is presented. Eight Thermotoga maritima membrane proteins were screened for solubility in 11 detergents, and the resulting soluble protein-detergent complexes were characterized with small angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD) spectroscopy, and chemical cross-linking to evaluate the homogeneity, oligomeric state, radius of gyration, and overall fold. A new application of SAXS is presented, which does not require density matching, and NMR methods, typically used to evaluate soluble proteins, are successfully applied to detergent-solubilized membrane proteins. Although detergents with longer alkyl chains solubilized the most proteins, further characterization indicates that some of these protein-detergent complexes are not well suited for NMR structure determination due to conformational exchange and protein oligomerization. These results emphasize the need to screen several different detergents and to characterize the protein-detergent complex in order to pursue structural studies. Finally, the physical characterization of the protein-detergent complexes indicates optimal solution conditions for further structural studies for three of the eight overexpressed membrane proteins.
Collapse
Affiliation(s)
- Linda Columbus
- The Joint Center for Structural Genomics and The Scripps Research Institute, Department of Molecular Biology, La Jolla, California 92037, USA.
| | | | | | | | | | | |
Collapse
|
185
|
Kleinschmidt JH. Folding kinetics of the outer membrane proteins OmpA and FomA into phospholipid bilayers. Chem Phys Lipids 2006; 141:30-47. [PMID: 16581049 DOI: 10.1016/j.chemphyslip.2006.02.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 02/20/2006] [Indexed: 11/27/2022]
Abstract
The folding mechanism of outer membrane proteins (OMPs) of Gram-negative bacteria into lipid bilayers has been studied using OmpA of E. coli and FomA of F. nucleatum as examples. Both, OmpA and FomA are soluble in unfolded form in urea and insert and fold into phospholipid bilayers upon strong dilution of the denaturant urea. OmpA is a structural protein and forms a small ion channel, composed of an 8-stranded transmembrane beta-barrel domain. FomA is a voltage-dependent porin, predicted to form a 14 stranded beta-barrel. Both OMPs fold into a range of model membranes of very different phospholipid compositions. Three membrane-bound folding intermediates of OmpA were discovered in folding studies with dioleoylphosphatidylcholine bilayers that demonstrated a highly synchronized mechanism of secondary and tertiary structure formation of beta-barrel membrane proteins. A study on FomA folding into lipid bilayers indicated the presence of parallel folding pathways for OMPs with larger transmembrane beta-barrels.
Collapse
|
186
|
Chill JH, Louis JM, Miller C, Bax A. NMR study of the tetrameric KcsA potassium channel in detergent micelles. Protein Sci 2006; 15:684-98. [PMID: 16522799 PMCID: PMC2242490 DOI: 10.1110/ps.051954706] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nuclear magnetic resonance (NMR) studies of large membrane-associated proteins are limited by the difficulties in preparation of stable protein-detergent mixed micelles and by line broadening, which is typical of these macroassemblies. We have used the 68-kDa homotetrameric KcsA, a thermostable N-terminal deletion mutant of a bacterial potassium channel from Streptomyces lividans, as a model system for applying NMR methods to membrane proteins. Optimization of measurement conditions enabled us to perform the backbone assignment of KcsA in SDS micelles and establish its secondary structure, which was found to closely agree with the KcsA crystal structure. The C-terminal cytoplasmic domain, absent in the original structure, contains a 14-residue helix that could participate in tetramerization by forming an intersubunit four-helix bundle. A quantitative estimate of cross- relaxation between detergent and KcsA backbone amide protons, together with relaxation and light scattering data, suggests SDS-KcsA mixed micelles form an oblate spheroid with approximately 180 SDS molecules per channel. K(+) ions bind to the micelle-solubilized channel with a K(D) of 3 +/- 0.5 mM, resulting in chemical shift changes in the selectivity filter. Related pH-induced changes in chemical shift along the "outer" transmembrane helix and the cytoplasmic membrane interface hint at a possible structural explanation for the observed pH-gating of the potassium channel.
Collapse
Affiliation(s)
- Jordan H Chill
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
187
|
MM/PBSA analysis of molecular dynamics simulations of bovine beta-lactoglobulin: free energy gradients in conformational transitions? Proteins 2006; 59:91-103. [PMID: 15690343 DOI: 10.1002/prot.20384] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The pH-driven opening and closure of beta-lactoglobulin EF loop, acting as a lid and closing the internal cavity of the protein, has been studied by molecular dynamics (MD) simulations and free energy calculations based on molecular mechanics/Poisson-Boltzmann (PB) solvent-accessible surface area (MM/PBSA) methodology. The forms above and below the transition pH differ presumably only in the protonation state of residue Glu89. MM/PBSA calculations are able to reproduce qualitatively the thermodynamics of the transition. The analysis of MD simulations using a combination of MM/PBSA methodology and the colony energy approach is able to highlight the driving forces implied in the transition. The analysis suggests that global rearrangements take place before the equilibrium local conformation is reached. This conclusion may bear general relevance to conformational transitions in all lipocalins and proteins in general.
Collapse
|
188
|
Hong H, Patel DR, Tamm LK, van den Berg B. The Outer Membrane Protein OmpW Forms an Eight-stranded β-Barrel with a Hydrophobic Channel. J Biol Chem 2006; 281:7568-77. [PMID: 16414958 DOI: 10.1074/jbc.m512365200] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Escherichia coli OmpW belongs to a family of small outer membrane proteins that are widespread in Gram-negative bacteria. Their functions are unknown, but recent data suggest that they may be involved in the protection of bacteria against various forms of environmental stress. To gain insight into the function of these proteins A we have determined the crystal structure of E. coli OmpW to 2.7-A resolution. The structure shows that OmpW forms an 8-stranded beta-barrel with a long and narrow hydrophobic channel that contains a bound n-dodecyl-N,N-dimethylamine-N-oxide detergent molecule. Single channel conductance experiments show that OmpW functions as an ion channel in planar lipid bilayers. The channel activity can be blocked by the addition of n-dodecyl-N,N-dimethylamine-N-oxide. Taken together, the data suggest that members of the OmpW family could be involved in the transport of small hydrophobic molecules across the bacterial outer membrane.
Collapse
Affiliation(s)
- Heedeok Hong
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
189
|
Bishop RE. The lipid A palmitoyltransferase PagP: molecular mechanisms and role in bacterial pathogenesis. Mol Microbiol 2005; 57:900-12. [PMID: 16091033 DOI: 10.1111/j.1365-2958.2005.04711.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Palmitoylated lipid A can both protect pathogenic bacteria from host immune defences and attenuate the activation of those same defences through the TLR4 signal transduction pathway. A palmitate chain from a phospholipid is incorporated into lipid A by an outer membrane enzyme PagP, which is an 8-stranded antiparallel beta-barrel preceded by an amino-terminal amphipathic alpha-helix. The PagP barrel axis is tilted by 25 degrees with respect to the membrane normal. An interior hydrophobic pocket in the outer leaflet-exposed half of the molecule functions as a hydrocarbon ruler that allows the enzyme to distinguish palmitate from other acyl chains found in phospholipids. Internalization of a phospholipid palmitoyl group within the barrel appears to occur by lateral diffusion from the outer leaflet through non-hydrogen-bonded regions between beta-strands. The MsbA-dependent trafficking of lipids from the inner membrane to the outer membrane outer leaflet is necessary for lipid A palmitoylation in vivo. The mechanisms by which bacteria regulate pagP gene expression strikingly reflect the corresponding pathogenic lifestyle of the bacterium. Variations on PagP structure and function can be illustrated with the known homologues from Gram-negative bacteria, which include pathogens of humans and other mammals in addition to pathogens of insects and plants. The PagP enzyme is potentially a target for the development of anti-infective agents, a probe of outer membrane lipid asymmetry, and a tool for the synthesis of lipid A-based vaccine adjuvants and endotoxin antagonists.
Collapse
Affiliation(s)
- Russell E Bishop
- Departments of Laboratory Medicine and Pathobiology, and Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
190
|
Zoonens M, Catoire LJ, Giusti F, Popot JL. NMR study of a membrane protein in detergent-free aqueous solution. Proc Natl Acad Sci U S A 2005; 102:8893-8. [PMID: 15956183 PMCID: PMC1157056 DOI: 10.1073/pnas.0503750102] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
One of the major obstacles to membrane protein (MP) structural studies is the destabilizing effect of detergents. Amphipols (APols) are short amphipathic polymers that can substitute for detergents to keep MPs water-soluble under mild conditions. In the present work, we have explored the feasibility of studying the structure of APol-complexed MPs by NMR. As a test MP, we chose the 171-residue transmembrane domain of outer MP A from Escherichia coli (tOmpA), whose x-ray and NMR structures in detergent are known. 2H,15N-labeled tOmpA was produced as inclusion bodies, refolded in detergent solution, trapped with APol A8-35, and the detergent removed by adsorption onto polystyrene beads. The resolution of transverse relaxation-optimized spectroscopy-heteronuclear single-quantum correlation spectra of tOmpA/A8-35 complexes was found to be close to that of the best spectra obtained in detergent solutions. The dispersion of chemical shifts indicated that the protein had regained its native fold and retained it during the exchange of surfactants. MP-APol interactions were mapped by substituting hydrogenated for deuterated A8-35. The resulting dipolar broadening of amide proton linewidths was found to be limited to the beta-barrel region of tOmpA, indicating that A8-35 binds specifically to the hydrophobic transmembrane surface of the protein. The potential of this approach to MP studies by solution NMR is discussed.
Collapse
Affiliation(s)
- Manuela Zoonens
- Unité Mixte de Recherche 7099, Centre National de la Recherche Scientifique (CNRS)/Université Paris-7, Institut de Biologie Physico-Chimique (CNRS FRC 550), 11 Rue Pierre et Marie Curie, F-75005 Paris, France
| | | | | | | |
Collapse
|
191
|
Tian C, Karra MD, Ellis CD, Jacob J, Oxenoid K, Sönnichsen F, Sanders CR. Membrane protein preparation for TROSY NMR screening. Methods Enzymol 2005; 394:321-34. [PMID: 15808226 DOI: 10.1016/s0076-6879(05)94012-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The first steps toward undertaking an NMR structural study of a new protein is very often to purify the protein and then to acquire an HSQC or TROSY NMR spectrum, the quality of which is used to assess the feasibility of an NMR-based structural determination. Relatively few integral membrane proteins (IMPs) have been subjected even to this very preliminary stage of NMR analysis. Here, NMR feasibility testing methods are outlined that are tailored for hexahistidine-tagged IMPs that have been expressed in Escherichia coli. Generally applicable protocols are presented for expression testing, purification, and NMR sample preparation. A 2D TROSY pulse sequence that has been optimized for use with IMPs is also presented.
Collapse
Affiliation(s)
- Changlin Tian
- Department of Computer Science, University of South Carolina, Columbia 29208, USA
| | | | | | | | | | | | | |
Collapse
|
192
|
Hwang PM, Kay LE. Solution structure and dynamics of integral membrane proteins by NMR: a case study involving the enzyme PagP. Methods Enzymol 2005; 394:335-50. [PMID: 15808227 DOI: 10.1016/s0076-6879(05)94013-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Solution NMR spectroscopy is rapidly becoming an important technique for the study of membrane protein structure and dynamics. NMR experiments on large perdeuterated proteins typically exploit the favorable relaxation properties of backbone amide (15)N-(1)H groups to obtain sequence-specific chemical shift assignments, structural restraints, and a wide range of dynamics information. These methods have proven successful in the study of the outer membrane enzyme, PagP, not only for obtaining the global fold of the protein but also for characterizing in detail the conformational fluctuations that are critical to its activity. NMR methods can also be extended to take advantage of slowly relaxing methyl groups, providing additional probes of structure and dynamics at side chain positions. The current work on PagP demonstrates how solution NMR can provide a unique atomic resolution description of the dynamic processes that are key to the function of many membrane protein systems.
Collapse
Affiliation(s)
- Peter M Hwang
- Department of Medical Genetics, University of Toronto, Ontario, Canada
| | | |
Collapse
|
193
|
Bleile DW, Scott WRP, Straus SK. Can PISEMA experiments be used to extract structural parameters for mobile beta-barrels? JOURNAL OF BIOMOLECULAR NMR 2005; 32:101-11. [PMID: 16034662 DOI: 10.1007/s10858-005-5094-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The effect of mobility on 15N chemical shift/15N-(1)H dipolar coupling (PISEMA) solid state NMR experiments applied to macroscopically oriented beta-barrels is assessed using molecular dynamics simulation data of the NalP autotransporter domain embedded in a DMPC bilayer. In agreement with previous findings for alpha-helices, the fast librational motion of the peptide planes is found to have a considerable effect on the calculated PISEMA spectra. In addition, the dependence of the chemical shift anisotropy (CSA) and dipolar coupling parameters on the calculated spectra is evaluated specifically for the beta-barrel case. It is found that the precise choice of the value of the CSA parameters sigma11, sigma22 and sigma33 has only a minor effect, whereas the choice of the CSA parameter theta shifts the position of the peaks by up to 20 ppm and changes the overall shape of the spectrum significantly. As was found for alpha-helices, the choice of the NH bond distance has a large effect on the dipolar coupling constant used for the calculations. Overall, it is found that the alternating beta-strands in the barrel occupy distinct regions of the PISEMA spectra, forming patterns which may prove useful in peak assignment.
Collapse
Affiliation(s)
- Dustin W Bleile
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C., V6T 1Z1, Canada
| | | | | |
Collapse
|
194
|
Gibbons HS, Kalb SR, Cotter RJ, Raetz CRH. Role of Mg2+ and pH in the modification of Salmonella lipid A after endocytosis by macrophage tumour cells. Mol Microbiol 2005; 55:425-40. [PMID: 15659161 DOI: 10.1111/j.1365-2958.2004.04409.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipid A of Salmonella typhimurium is covalently modified with additional acyl and/or polar substituents in response to activation of the PhoP/PhoQ and/or PmrA/PmrB signalling systems, which are induced by growth at low Mg2+ concentrations and mild acid pH respectively. Although these conditions are thought to exist within macrophage phagolysosomes, no direct evidence for lipid A modification after endocytosis has been presented. To address this issue, we grew S. typhimurium inside RAW264.7 cells in the presence of 32Pi, and then isolated the labelled lipid A fraction, which was found to be extensively derivatized with phosphoethanolamine, aminoarabinose, 2-hydroxymyristate and/or palmitate moieties. S. typhimurium grown in tissue culture medium synthesized lipid A molecules lacking all these substituents with the exception of the 2-hydroxymyristate chain, which was still present. Using defined minimal media to simulate the intracellular pH and Mg2+ concentrations of endosomes, we found that lipid A of S. typhimurium grown in an acidic, low-Mg2+ medium closely resembled lipid A isolated from bacteria internalized by RAW264.7 cells. A subset of S. typhimurium lipid A modifications were induced by low Mg2+ alone. Escherichia coli K-12 W3110 modified its lipid A molecules in response to growth under acidic but not low-Mg2+ conditions. Growth in a high-Mg2+, mildly alkaline medium resulted in suppression of most lipid A modifications with the exception of the 2-hydroxymyristate in S. typhimurium. Although lpxO transcription was stimulated by growth on low Mg2+, the biosynthesis of lipid A species containing 2-hydroxymyristate was independent of PhoP/PhoQ and PmrA/PmrB in S. typhimurium. Our labelling methods should be applicable to studies of lipid A modifications induced by endocytosis of diverse bacteria.
Collapse
Affiliation(s)
- Henry S Gibbons
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
195
|
Kay LE. NMR studies of protein structure and dynamics. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 173:193-207. [PMID: 15780912 DOI: 10.1016/j.jmr.2004.11.021] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Indexed: 05/24/2023]
Abstract
Recent advances in solution NMR spectroscopy have significantly extended the spectrum of problems that can now be addressed with this technology. In particular, studies of proteins with molecular weights on the order of 100 kDa are now possible at a level of detail that was previously reserved for much smaller systems. An example of the sort of information that is now accessible is provided in a study of malate synthase G, a 723 residue enzyme that has been a focal point of research efforts in my laboratory. Details of the labeling schemes that have been employed and optimal experiments for extraction of structural and dynamics information on this protein are described. NMR studies of protein dynamics, in principle, give insight into the relation between motion and function. A description of deuterium-based spin relaxation methods for the investigation of side chain dynamics is provided. Examples where millisecond (ms) time scale dynamics play an important role and where relaxation dispersion NMR spectroscopy has been particularly informative, including applications involving the membrane enzyme PagP and mutants of the Fyn SH3 domain that fold on a ms time scale, are presented.
Collapse
Affiliation(s)
- Lewis E Kay
- Contribution from the Protein Engineering Network Centers of Excellence and the Department of Medical Genetics, The University of Toronto, Toronto, Ont., Canada M5S 1A8.
| |
Collapse
|
196
|
Lario PI, Pfuetzner RA, Frey EA, Creagh L, Haynes C, Maurelli AT, Strynadka NCJ. Structure and biochemical analysis of a secretin pilot protein. EMBO J 2005; 24:1111-21. [PMID: 15775974 PMCID: PMC556411 DOI: 10.1038/sj.emboj.7600610] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 02/10/2005] [Indexed: 01/07/2023] Open
Abstract
The ability to translocate virulence proteins into host cells through a type III secretion apparatus (TTSS) is a hallmark of several Gram-negative pathogens including Shigella, Salmonella, Yersinia, Pseudomonas, and enteropathogenic Escherichia coli. In common with other types of bacterial secretion apparatus, the assembly of the TTSS complex requires the preceding formation of its integral outer membrane secretin ring component. We have determined at 1.5 A the structure of MxiM28-142, the Shigella pilot protein that is essential for the assembly and membrane association of the Shigella secretin, MxiD. This represents the first atomic structure of a secretin pilot protein from the several bacterial secretion systems containing an orthologous secretin component. A deep hydrophobic cavity is observed in the novel 'cracked barrel' structure of MxiM, providing a specific binding domain for the acyl chains of bacterial lipids, a proposal that is supported by our various lipid/MxiM complex structures. Isothermal titration analysis shows that the C-terminal domain of the secretin, MxiD525-570, hinders lipid binding to MxiM.
Collapse
Affiliation(s)
- Paula I Lario
- Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Richard A Pfuetzner
- Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth A Frey
- Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Louise Creagh
- Biotechnology Laboratory, University of British Columbia, Vancouver, BC, Canada
| | - Charles Haynes
- Biotechnology Laboratory, University of British Columbia, Vancouver, BC, Canada
| | - Anthony T Maurelli
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Natalie C J Strynadka
- Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry & Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3. Tel.: +1 604 822 0789; Fax: +1 604 822 5227; E-mail:
| |
Collapse
|
197
|
Roosild TP, Greenwald J, Vega M, Castronovo S, Riek R, Choe S. NMR structure of Mistic, a membrane-integrating protein for membrane protein expression. Science 2005; 307:1317-21. [PMID: 15731457 DOI: 10.1126/science.1106392] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although structure determination of soluble proteins has become routine, our understanding of membrane proteins has been limited by experimental bottlenecks in obtaining both sufficient yields of protein and ordered crystals. Mistic is an unusual Bacillus subtilis integral membrane protein that folds autonomously into the membrane, bypassing the cellular translocon machinery. Using paramagnetic probes, we determined by nuclear magnetic resonance (NMR) spectroscopy that the protein forms a helical bundle with a surprisingly polar lipid-facing surface. Additional experiments suggest that Mistic can be used for high-level production of other membrane proteins in their native conformations, including many eukaryotic proteins that have previously been intractable to bacterial expression.
Collapse
Affiliation(s)
- Tarmo P Roosild
- Structural Biology Laboratory, Salk Institute, San Diego, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
198
|
Tefsen B, Geurtsen J, Beckers F, Tommassen J, de Cock H. Lipopolysaccharide Transport to the Bacterial Outer Membrane in Spheroplasts. J Biol Chem 2005; 280:4504-9. [PMID: 15576375 DOI: 10.1074/jbc.m409259200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of lipopolysaccharide (LPS) transport in Gram-negative bacteria from the inner membrane to the outer membrane is largely unknown. Here, we investigated the possibility that LPS transport proceeds via a soluble intermediate associated with a periplasmic chaperone analogous to the Lol-dependent transport mechanism of lipoproteins. Whereas newly synthesized lipoproteins could be released from spheroplasts of Escherichia coli upon addition of a periplasmic extract containing LolA, de novo synthesized LPS was not released. We demonstrate that LPS synthesized de novo in spheroplasts co-fractionated with the outer membranes and that this co-fractionation was dependent on the presence in the spheroplasts of a functional MsbA protein, the protein responsible for the flip-flop of LPS across the inner membrane. The outer membrane localization of the LPS was confirmed by its modification by the outer membrane enzyme CrcA (PagP). We conclude that a substantial amount of LPS was translocated to the outer membrane in spheroplasts, suggesting that transport proceeds via contact sites between the two membranes. In contrast to LPS, de novo synthesized phospholipids were not transported to the outer membrane in spheroplasts. Apparently, LPS and phospholipids have different requirements for their transport to the outer membrane.
Collapse
Affiliation(s)
- Boris Tefsen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
199
|
Tugarinov V, Choy WY, Orekhov VY, Kay LE. Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proc Natl Acad Sci U S A 2005; 102:622-7. [PMID: 15637152 PMCID: PMC545550 DOI: 10.1073/pnas.0407792102] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 11/30/2004] [Indexed: 11/18/2022] Open
Abstract
The size of proteins that can be studied by solution NMR spectroscopy has increased significantly because of recent developments in methodology. Important experiments include those that make use of approaches that increase the lifetimes of NMR signals or that define the orientation of internuclear bond vectors with respect to a common molecular frame. The advances in NMR techniques are strongly coupled to isotope labeling methods that increase sensitivity and reduce the complexity of NMR spectra. We show that these developments can be exploited in structural studies of high-molecular-weight, single-polypeptide proteins, and we present the solution global fold of the monomeric 723-residue (82-kDa) enzyme malate synthase G from Escherichia coli, which has been extensively characterized by NMR in the past several years.
Collapse
Affiliation(s)
- Vitali Tugarinov
- Protein Engineering Network Centres of Excellence and Department of Medical Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8
| | | | | | | |
Collapse
|
200
|
Tam C, Missiakas D. Changes in lipopolysaccharide structure induce the σE-dependent response of Escherichia coli. Mol Microbiol 2005; 55:1403-12. [PMID: 15720549 DOI: 10.1111/j.1365-2958.2005.04497.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The envelope of Escherichia coli is composed of an asymmetric lipid bilayer containing lipopolysaccharide, phospholipid and outer membrane proteins (OMPs). Physical and chemical stresses impact on the integrity of the outer membrane envelope and trigger the sigma(E)-dependent response, whereby E. coli activates the expression of genes that increase its capacity for folding OMPs and synthesizing lipopolysaccharide (LPS). While it has already been appreciated that misfolded OMPs induce the sigma(E) response, a role for LPS in activating this pathway was hitherto unknown. Here we show that ammonium metavandate (NH4VO3) induces multiple changes in E. coli LPS structure and activates the sigma(E)-dependent response without altering OMP. One such NH4VO3-mediated LPS decoration, the CrcA/PagP-catalysed addition of palmitate to lipid A, appeared to be alone sufficient to activate transcription at sigma(E)-dependent promoters. Furthermore, reduced acylation of LPS, caused by htrB or msbB mutations, also resulted in a constitutive expression of the sigma(E) regulon above wild-type levels. Production of these aberrant outer membrane lipids did not noticeably affect the composition or the amount of OMPs. A model is proposed whereby structural intermediates of the LPS biosynthetic pathway or modified LPS molecules may function as signals that activate the sigma(E) response.
Collapse
Affiliation(s)
- Christina Tam
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | |
Collapse
|