151
|
Cao E, Cordero-Morales JF, Liu B, Qin F, Julius D. TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron 2013; 77:667-79. [PMID: 23439120 DOI: 10.1016/j.neuron.2012.12.016] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 01/20/2023]
Abstract
The capsaicin receptor, TRPV1, is regulated by phosphatidylinositol-4,5-bisphosphate (PIP(2)), although the precise nature of this effect (i.e., positive or negative) remains controversial. Here, we reconstitute purified TRPV1 into artificial liposomes, where it is gated robustly by capsaicin, protons, spider toxins, and, notably, heat, demonstrating intrinsic sensitivity of the channel to both chemical and thermal stimuli. TRPV1 is fully functional in the absence of phosphoinositides, arguing against their proposed obligatory role in channel activation. Rather, introduction of various phosphoinositides, including PIP(2), PI4P, and phosphatidylinositol, inhibits TRPV1, supporting a model whereby phosphoinositide turnover contributes to thermal hyperalgesia by disinhibiting the channel. Using an orthogonal chemical strategy, we show that association of the TRPV1 C terminus with the bilayer modulates channel gating, consistent with phylogenetic data implicating this domain as a key regulatory site for tuning stimulus sensitivity. Beyond TRPV1, these findings are relevant to understanding how membrane lipids modulate other "receptor-operated" TRP channels.
Collapse
Affiliation(s)
- Erhu Cao
- Department of Physiology, University of California, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
152
|
Pragmatically on the sense of taste - a short treatise based on culinary art. GASTROENTEROLOGY REVIEW 2013; 8:338-44. [PMID: 24868281 PMCID: PMC4027833 DOI: 10.5114/pg.2013.39915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 11/28/2013] [Accepted: 12/23/2013] [Indexed: 11/17/2022]
Abstract
The sense of taste is essential for proper functioning of the organism. The authors describe, in an accessible way, the complex mechanisms of taste perception. The structure of particular taste receptors, variants of their activation, as well as physical and chemical factors modifying the sensation of taste, are presented. Exquisite culinary examples are given in order to facilitate the reader with the understanding of why, at the level of the cerebral cortex, a virtually infinite number of combinations of taste sensations can be perceived. The discourse is spiced up by reflections of the eminent philosopher of taste, J.A. Brillat-Savarin, who convinces us that food intake should be not only a physiological act, but also a refined pleasure.
Collapse
|
153
|
Abstract
Taste buds are peripheral chemosensory organs situated in the oral cavity. Each taste bud consists of a community of 50-100 cells that interact synaptically during gustatory stimulation. At least three distinct cell types are found in mammalian taste buds - Type I cells, Receptor (Type II) cells, and Presynaptic (Type III) cells. Type I cells appear to be glial-like cells. Receptor cells express G protein-coupled taste receptors for sweet, bitter, or umami compounds. Presynaptic cells transduce acid stimuli (sour taste). Cells that sense salt (NaCl) taste have not yet been confidently identified in terms of these cell types. During gustatory stimulation, taste bud cells secrete synaptic, autocrine, and paracrine transmitters. These transmitters include ATP, acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE), and GABA. Glutamate is an efferent transmitter that stimulates Presynaptic cells to release 5-HT. This chapter discusses these transmitters, which cells release them, the postsynaptic targets for the transmitters, and how cell-cell communication shapes taste bud signaling via these transmitters.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology and Biophysics, and Program in Neuroscience, Miller School of Medicine, University of Miami, 1600 NW 10th Ave., Miami, FL 33136, USA.
| |
Collapse
|
154
|
Voigt A, Hübner S, Lossow K, Hermans-Borgmeyer I, Boehm U, Meyerhof W. Genetic labeling of Tas1r1 and Tas2r131 taste receptor cells in mice. Chem Senses 2012; 37:897-911. [PMID: 23010799 DOI: 10.1093/chemse/bjs082] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Characterization of the peripheral taste system relies on the identification and visualization of the different taste bud cell types. So far, genetic strategies to label taste receptor cells are limited to sweet, sour, and salty detecting cells. To visualize Tas1r1 umami and Tas2r131 bitter sensing cells, we generated animals in which the Tas1r1 and Tas2r131 open reading frames are replaced by expression cassettes containing the fluorescent proteins mCherry or hrGFP, respectively. These animals enabled us to visualize and quantify the entire oral Tas1r1 and Tas2r131 cell populations. Tas1r1-mCherry cells were predominantly detected in fungiform papillae, whereas Tas2r131-hrGFP cells, which are ~4-fold more abundant, were mainly present in foliate and vallate papillae. In the palate, both cell types were similarly distributed. Mice carrying both recombinant alleles demonstrated completely segregated Tas1r1 and Tas2r131 cell populations. Only ~50% of the entire bitter cell population expressed hrGFP, indicating that bitter taste receptor cells express a subset of the bitter receptor repertoire. In extragustatory tissues, mCherry fluorescence was observed in testis and hrGFP fluorescence in testis, thymus, vomeronasal organ, and respiratory epithelium, suggesting that only few extraoral sites express Tas2r131 and Tas1r1 receptors at levels comparable to taste tissue.
Collapse
Affiliation(s)
- Anja Voigt
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | | | | | | | | | | |
Collapse
|
155
|
Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents. Proc Natl Acad Sci U S A 2012; 109:13440-5. [PMID: 22847436 DOI: 10.1073/pnas.1204702109] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Ca(2+)-permeable cation channel transient receptor potential melastatin 2 (TRPM2) plays a key role in pathogen-evoked phagocyte activation, postischemic neuronal apoptosis, and glucose-evoked insulin secretion, by linking these cellular responses to oxidative stress. TRPM2 channels are coactivated by binding of intracellular ADP ribose and Ca(2+) to distinct cytosolically accessible sites on the channels. These ligands likely regulate the activation gate, conserved in the voltage-gated cation channel superfamily, that comprises a helix bundle formed by the intracellular ends of transmembrane helix six of each subunit. For several K(+) and TRPM family channels, activation gate opening requires the presence of phosphatidylinositol-bisphosphate (PIP(2)) in the inner membrane leaflet. Most TRPM family channels inactivate upon prolonged stimulation in inside-out patches; this "rundown" is due to PIP(2) depletion. TRPM2 currents also run down within minutes, but the molecular mechanism of this process is unknown. Here we report that high-affinity PIP(2) binding regulates Ca(2+) sensitivity of TRPM2 activation. Nevertheless, TRPM2 inactivation is not due to PIP(2) depletion; rather, it is state dependent, sensitive to permeating ions, and can be completely prevented by mutations in the extracellular selectivity filter. Introduction of two negative charges plus a single-residue insertion, to mimic the filter sequence of TRPM5, results in TRPM2 channels that maintain unabated maximal activity for over 1 h, and display altered permeation properties but intact ADP ribose/Ca(2+)-dependent gating. Thus, upon prolonged stimulation, the TRPM2 selectivity filter undergoes a conformational change reminiscent of that accompanying C-type inactivation of voltage-gated K(+) channels. The noninactivating TRPM2 variant will be invaluable for gating studies.
Collapse
|
156
|
Romanov RA, Rogachevskaja OA, Bystrova MF, Kolesnikov SS. Electrical excitability of taste cells. Mechanisms and possible physiological significance. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2012. [DOI: 10.1134/s1990747812010126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
157
|
Leptin increases temperature-dependent chorda tympani nerve responses to sucrose in mice. Physiol Behav 2012; 107:533-9. [PMID: 22561945 DOI: 10.1016/j.physbeh.2012.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/17/2012] [Accepted: 04/19/2012] [Indexed: 11/22/2022]
Abstract
Leptin receptors are present in taste buds and previous research indicates that leptin administration modified electrophysiological and behavioral responses to sweet taste. It is now known that sweet taste is temperature dependent. We examined the influence of (1) stimulus temperature on chorda tympani (CT) nerve responses to sucrose, saccharin and NH(4)Cl; and (2) leptin administration on CT nerve responses to sucrose, saccharin and other basic taste stimuli at 35°C that maximized sweet-taste sensitivity in C57BL/6 mice. We found that the CT nerve responded with greater magnitude to sucrose and saccharin as stimulus temperature increased from 23 to 35°C and then declined at higher temperatures. In contrast, the CT nerve responses to NH(4)Cl increased in magnitude as temperature increased from 23 to 44°C. We also showed that leptin selectively increased the CT nerve responses to sucrose at 35°C in both fasted and free-fed mice. The responses of mice treated with the saline vehicle did not change. Our findings are consistent with the notion that leptin binds with its receptors in fungiform taste buds and alters the message conveyed by sugar-responsive neurons to the brain.
Collapse
|
158
|
Abstract
Recent advances highlight that nutrient receptors (such as T1R1/T1R3 heterodimer, Ca sensing receptor and GPR93 for amino acids and protein, GPR40, GPR41, GPR43 and GPR120 for fatty acids, T1R2/T1R3 heterodimer for monosaccharides) are expressed in the apical face of the gut and sense nutrients in the lumen. They transduce signals for the regulation of nutrient transporter expressions in the apical face. Interestingly, they are also localised in enteroendocrine cells (EEC) and mainly exert a direct control on the secretion in the lamina propria of gastro-intestinal peptides such as cholecystokinin, glucagon-like peptide-1 and peptide YY in response to energy nutrient transit and absorption in the gut. This informs central nuclei involved in the control of feeding such as the hypothalamus and nucleus of the solitary tract of the availability of these nutrients and thus triggers adaptive responses to maintain energy homoeostasis. These nutrient receptors then have a prominent position since they manage nutrient absorption and are principally the generator of the first signal of satiation mechanisms mainly transmitted to the brain by vagal afferents. Moreover, tastants are also able to elicit gut peptides secretion via chemosensory receptors expressed in EEC. Targeting these nutrient and tastant receptors in EEC may thus be helpful to promote satiation and so to fight overfeeding and its consequences.
Collapse
|
159
|
Li F, Zhou M. Depletion of bitter taste transduction leads to massive spermatid loss in transgenic mice. Mol Hum Reprod 2012; 18:289-97. [PMID: 22266327 DOI: 10.1093/molehr/gas005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bitter taste perception is an important sensory input warning against the ingestion of toxic and noxious substances. Bitter receptors, a family of ~30 highly divergent G-protein-coupled receptors, are exclusively expressed in taste receptor cells that contain the G-protein α-subunit gustducin, bind to α-gustducin in vitro, and respond to bitter tastes in functional expression assays. We generated a taste receptor type 2 member 5 (T2R5)-Cre/green fluorescent protein reporter transgenic mouse to investigate the tissue distribution of T2R5. Our results showed that Cre gene expression in these mice was faithful to the expression of T2R5 in taste tissue. More surprisingly, immunostaining and X-gal staining revealed T2R5 expression in the testis. Ablation of T2R5 + cells led to a smaller testis and removed the spermatid phase from most of the seminiferous tubules. The entire taste transduction cascade (α-gustducin, Ggamma13, phospholipase Cβ2) was detected in spermatogenesis, whereas transient receptor potential, cation channel subfamily M member 5 (Trpm5), was observed only in the later spermatid phase. In short, our results indicate that the taste transduction cascade may be involved in spermatogenesis.
Collapse
Affiliation(s)
- Feng Li
- Laboratory of Developmental Biology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, People's Republic of China.
| | | |
Collapse
|
160
|
The Ca2+-Activated Monovalent Cation-Selective Channels TRPM4 and TRPM5. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2012. [DOI: 10.1007/978-1-62703-077-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
161
|
|
162
|
Abstract
Phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] are required for the activity of many different ion channels. This chapter will highlight various aspects of this paradigm, by discussing current knowledge on four different ion channel families: inwardly rectifying K(+) (Kir) channels, KCNQ voltage gated K(+) channels, voltage gated Ca(2+) (VGCC) channels and Transient Receptor Potential (TRP) channels. Our main focus is to discuss functional aspects of this regulation, i.e. how changes in the concentration of PtdIns(4,5)P(2) in the plasma membrane upon phospholipase C activation may modulate the activity of ion channels, and what are the major determinants of this regulation. We also discuss how channels act as coincidence detectors sensing phosphoinositide levels and other signalling molecules. We also briefly discuss the available methods to study phosphoinositide regulation of ion channels, and structural aspects of interaction of ion channel proteins with these phospholipids. Finally, in several cases the effect of PtdIns(4,5)P(2) is more complex than a simple dependence of ion channel activity on the lipid, and we will discuss some these complexities.
Collapse
Affiliation(s)
- Nikita Gamper
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, Leeds, UK,
| | | |
Collapse
|
163
|
Rosenhouse‐Dantsker A, Mehta D, Levitan I. Regulation of Ion Channels by Membrane Lipids. Compr Physiol 2012; 2:31-68. [DOI: 10.1002/cphy.c110001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
164
|
Teruyama R, Sakuraba M, Kurotaki H, Armstrong WE. Transient receptor potential channel m4 and m5 in magnocellular cells in rat supraoptic and paraventricular nuclei. J Neuroendocrinol 2011; 23:1204-13. [PMID: 21848647 PMCID: PMC5703211 DOI: 10.1111/j.1365-2826.2011.02211.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neurohypophysial hormones, vasopressin (VP) and oxytocin (OT), are synthesised by magnocellular cells in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) of the hypothalamus. The release of VP into the general circulation from the neurohypophysis increases during hyperosmolality, hypotension and hypovolaemia. VP neurones increase hormone release by increasing their firing rate as a result of adopting a phasic bursting. Depolarising after potentials (DAPs) following a series of action potentials are considered to be involved in the generation of the phasic bursts by summating to plateau potentials. We recently discovered a fast DAP (fDAP) in addition to the slower DAP characterised previously. Almost all VP neurones expressed the fDAP, whereas only 16% of OT neurones had this property, which implicates the involvement of fDAP in the generation of the firing patterns in VP neurones. Our findings obtained from electrophysiological experiments suggested that the ionic current underlying the fDAP is mediated by those of two closely-related Ca(2+) -activated cation channels: the melastatin-related subfamily of transient receptor potential channels, TRPM4 and TRPM5. In the present study, double/triple immunofluorescence microscopy and reverse transcriptase-polymerase chain reaction techniques were employed to evaluate whether TRPM4 and TRPM5 are specifically located in VP neurones. Using specific antibodies against these channels, TRPM5 immunoreactivity was found almost exclusively in VP neurones, but not in OT neurones in both the SON and PVN. The most prominent TRPM5 immunoreactivity was in the dendrites of VP neurones. By contrast, most TRPM4 immunoreactivity occurred in cell bodies of both VP and OT neurones. TRPM4 and TRPM5 mRNA were both found in a cDNA library derived from SON punches. These results indictate the possible involvement of TRPM5 in the generation of the fDAP, and these channels may play an important role in determining the distinct firing properties of VP neurones in the SON.
Collapse
Affiliation(s)
- R Teruyama
- Department of Biological Sciences, Louisiana State University, LA 70803, USA.
| | | | | | | |
Collapse
|
165
|
|
166
|
Shah BP, Liu P, Yu T, Hansen DR, Gilbertson TA. TRPM5 is critical for linoleic acid-induced CCK secretion from the enteroendocrine cell line, STC-1. Am J Physiol Cell Physiol 2011; 302:C210-9. [PMID: 21998136 DOI: 10.1152/ajpcell.00209.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fatty acid-induced stimulation of enteroendocrine cells leads to release of the hormones such as cholecystokinin (CCK) that contribute to satiety. Recently, the fatty acid activated G protein-coupled receptor GPR120 has been shown to mediate long-chain unsaturated free fatty acid-induced CCK release from the enteroendocrine cell line, STC-1, yet the downstream signaling pathway remains unclear. Here we show that linoleic acid (LA) elicits membrane depolarization and an intracellular calcium rise in STC-1 cells and that these responses are significantly reduced when activity of G proteins or phospholipase C is blocked. LA leads to activation of monovalent cation-specific transient receptor potential channel type M5 (TRPM5) in STC-1 cells. LA-induced TRPM5 currents are significantly reduced when expression of TRPM5 or GPR120 is reduced using RNA interference. Furthermore, the LA-induced rise in intracellular calcium and CCK secretion is greatly diminished when expression of TRPM5 channels is reduced using RNA interference, consistent with a role of TRPM5 in LA-induced CCK secretion in STC-1 cells.
Collapse
Affiliation(s)
- Bhavik P Shah
- Department of Biology, Utah State University, Logan, Utah 84322, USA
| | | | | | | | | |
Collapse
|
167
|
Eddy MC, Eschle BK, Peterson D, Lauras N, Margolskee RF, Delay ER. A conditioned aversion study of sucrose and SC45647 taste in TRPM5 knockout mice. Chem Senses 2011; 37:391-401. [PMID: 21987728 DOI: 10.1093/chemse/bjr093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Previously, published studies have reported mixed results regarding the role of the TRPM5 cation channel in signaling sweet taste by taste sensory cells. Some studies have reported a complete loss of sweet taste preference in TRPM5 knockout (KO) mice, whereas others have reported only a partial loss of sweet taste preference. This study reports the results of conditioned aversion studies designed to motivate wild-type (WT) and KO mice to respond to sweet substances. In conditioned taste aversion experiments, WT mice showed nearly complete LiCl-induced response suppression to sucrose and SC45647. In contrast, TRPM5 KO mice showed a much smaller conditioned aversion to either sweet substance, suggesting a compromised, but not absent, ability to detect sweet taste. A subsequent conditioned flavor aversion experiment was conducted to determine if TRPM5 KO mice were impaired in their ability to learn a conditioned aversion. In this experiment, KO and WT mice were conditioned to a mixture of SC45647 and amyl acetate (an odor cue). Although WT mice avoided both components of the stimulus mixture, they avoided SC45647 more than the odor cue. The KO mice also avoided both stimuli, but they avoided the odor component more than SC45647, suggesting that while the KO mice are capable of learning an aversion, to them the odor cue was more salient than the taste cue. Collectively, these findings suggest the TRPM5 KO mice have some residual ability to detect SC45647 and sucrose, and, like bitter, there may be a TRPM5-independent transduction pathway for detecting these substances.
Collapse
Affiliation(s)
- Meghan C Eddy
- Department of Biology, University of Vermont, Marsh Life Science Building, Room 113, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
168
|
Dunmyre JR, Del Negro CA, Rubin JE. Interactions of persistent sodium and calcium-activated nonspecific cationic currents yield dynamically distinct bursting regimes in a model of respiratory neurons. J Comput Neurosci 2011; 31:305-28. [PMID: 21234794 PMCID: PMC3370680 DOI: 10.1007/s10827-010-0311-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/19/2010] [Accepted: 12/21/2010] [Indexed: 11/25/2022]
Abstract
The preBötzinger complex (preBötC) is a heterogeneous neuronal network within the mammalian brainstem that has been experimentally found to generate robust, synchronous bursts that drive the inspiratory phase of the respiratory rhythm. The persistent sodium (NaP) current is observed in every preBötC neuron, and significant modeling effort has characterized its contribution to square-wave bursting in the preBötC. Recent experimental work demonstrated that neurons within the preBötC are endowed with a calcium-activated nonspecific cationic (CAN) current that is activated by a signaling cascade initiated by glutamate. In a preBötC model, the CAN current was shown to promote robust bursts that experience depolarization block (DB bursts). We consider a self-coupled model neuron, which we represent as a single compartment based on our experimental finding of electrotonic compactness, under variation of g (NaP), the conductance of the NaP current, and g (CAN), the conductance of the CAN current. Varying these two conductances yields a spectrum of activity patterns, including quiescence, tonic activity, square-wave bursting, DB bursting, and a novel mixture of square-wave and DB bursts, which match well with activity that we observe in experimental preparations. We elucidate the mechanisms underlying these dynamics, as well as the transitions between these regimes and the occurrence of bistability, by applying the mathematical tools of bifurcation analysis and slow-fast decomposition. Based on the prevalence of NaP and CAN currents, we expect that the generalizable framework for modeling their interactions that we present may be relevant to the rhythmicity of other brain areas beyond the preBötC as well.
Collapse
Affiliation(s)
- Justin R. Dunmyre
- Department of Mathematics and Complex Biological Systems Group, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260, USA
| | | | - Jonathan E. Rubin
- Department of Mathematics and Complex Biological Systems Group, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA 15260, USA
| |
Collapse
|
169
|
Sarria I, Ling J, Zhu MX, Gu JG. TRPM8 acute desensitization is mediated by calmodulin and requires PIP(2): distinction from tachyphylaxis. J Neurophysiol 2011; 106:3056-66. [PMID: 21900509 DOI: 10.1152/jn.00544.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cold-sensing channel transient receptor potential melastatin 8 (TRPM8) features Ca(2+)-dependent downregulation, a cellular process underlying somatosensory accommodation in cold environments. The Ca(2+)-dependent functional downregulation of TRPM8 is manifested with two distinctive phases, acute desensitization and tachyphylaxis. Here we show in rat dorsal root ganglion neurons that TRPM8 acute desensitization critically depends on phosphatidylinositol 4,5-bisphosphate (PIP(2)) availability rather than PIP(2) hydrolysis and is triggered by calmodulin activation. Tachyphylaxis, on the other hand, is mediated by phospholipase hydrolysis of PIP(2) and protein kinase C/phosphatase 1,2A. We further demonstrate that PIP(2) switches TRPM8 channel gating to a high-open probability state with short closed times. Ca(2+)-calmodulin reverses the effect of PIP(2), switching channel gating to a low-open probability state with long closed times. Thus, through gating modulation, Ca(2+)-calmodulin provides a mechanism to rapidly regulate TRPM8 functions in the somatosensory system.
Collapse
Affiliation(s)
- Ignacio Sarria
- Department of Anesthesiology and Graduate Program in Neuroscience, The University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|
170
|
Abstract
Until recently, dietary fat was considered to be tasteless, and its primary sensory attribute was believed to be its texture (Rolls et al., 1999; Verhagen et al., 2003). However, a number of studies have demonstrated the ability of components in fats, specifically free fatty acids, to activate taste cells and elicit behavioral responses consistent with there being a taste of fat. Here we show for the first time that long-chain unsaturated free fatty acid, linoleic acid (LA), depolarizes mouse taste cells and elicits a robust intracellular calcium rise via the activation of transient receptor potential channel type M5 (TRPM5). The LA-induced responses depend on G-protein-phospholipase C pathway, indicative of the involvement of G-protein-coupled receptors (GPCRs) in the transduction of fatty acids. Mice lacking TRPM5 channels exhibit no preference for and show reduced sensitivity to LA. Together, these studies show that TRPM5 channels play an essential role in fatty acid transduction in mouse taste cells and suggest that fatty acids are capable of activating taste cells in a manner consistent with other GPCR-mediated tastes.
Collapse
|
171
|
Li M, Li Q, Yang G, Kolosov VP, Perelman JM, Zhou XD. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism. J Allergy Clin Immunol 2011; 128:626-34.e1-5. [PMID: 21762971 DOI: 10.1016/j.jaci.2011.04.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 03/10/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cold air stimulus is a major environmental factor that exacerbates chronic inflammatory airway diseases, such as chronic obstructive pulmonary disease (COPD) and asthma. At the molecular level, cold is detected by transient receptor potential melastatin 8 (TRPM8). To date, TRPM8 expression has not been characterized in the airway epithelium of patients with COPD. The role of TRPM8 channels in a series of airway responses induced by cold stimuli and the molecular and biochemical pathways of TRPM8 in regulating cold-induced responses are largely unknown. OBJECTIVE We sought to explore the role of TRPM8 in cold air-provoked mucus hypersecretion and the potential signaling pathway involved in this process. METHODS The expression of TRPM8 in the bronchial epithelium was examined by means of immunohistochemistry, RT-PCR, and Western blotting. TRPM8 receptor function and hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) were characterized by means of Ca(2+) imaging and spatiotemporal dynamics of phospholipase C (PLC) δ1-pleckstrin homology-green fluorescent protein, respectively. The expression of MUC5AC mRNA and MUC5AC mucin protein was measured by using real-time PCR and ELISA, respectively. Four serine residues in the myristoylated alanine-rich C kinase substrate (MARCKS)-phosphorylation site domain were mutated to identify the function of MARCKS in TRPM8-mediated airway mucus hypersecretion. RESULTS TRPM8 protein and mRNA expression were significantly increased in patients with COPD compared with expression seen in healthy subjects. Cold produced robust increases in intracellular Ca(2+) levels and promoted translocation of PLCδ1-pleckstrin homology-green fluorescent protein. Cold increased expression of MUC5AC mRNA and intracellular and secreted MUC5AC protein in a nonsustained way. Phosphorylation site domain-mutant MARCKS cDNA hindered MUC5AC secretion induced by cold. CONCLUSIONS These results indicate that the TRPM8 receptor is involved in cold-induced mucus hypersecretion through the Ca(2+)-PLC-PIP2-MARCKS signaling pathway.
Collapse
Affiliation(s)
- MinChao Li
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
172
|
Kukkonen JP. A ménage à trois made in heaven: G-protein-coupled receptors, lipids and TRP channels. Cell Calcium 2011; 50:9-26. [DOI: 10.1016/j.ceca.2011.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 12/15/2022]
|
173
|
Palmer RK, Atwal K, Bakaj I, Carlucci-Derbyshire S, Buber MT, Cerne R, Cortés RY, Devantier HR, Jorgensen V, Pawlyk A, Lee SP, Sprous DG, Zhang Z, Bryant R. Triphenylphosphine oxide is a potent and selective inhibitor of the transient receptor potential melastatin-5 ion channel. Assay Drug Dev Technol 2011; 8:703-13. [PMID: 21158685 DOI: 10.1089/adt.2010.0334] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Transient receptor potential melastatin-5 (TRPM5) is a calcium-gated monovalent cation channel expressed in highly specialized cells of the taste bud and gastrointestinal tract, as well as in pancreatic β-cells. Well established as a critical signaling protein for G protein-coupled receptor-mediated taste pathways, TRPM5 also has recently been implicated as a regulator of incretin and insulin secretion. To date, no inhibitors of practical use have been described that could facilitate investigation of TRPM5 functions in taste or secretion of metabolic hormones. Using recombinant TRPM5-expressing cells in a fluorescence imaging plate reader-based membrane potential assay, we identified triphenylphosphine oxide (TPPO) as a selective and potent inhibitor of TRPM5. TPPO inhibited both human (IC₅₀ = 12 μM) and murine TRPM5 (IC₅₀ = 30 μM) heterologously expressed in HEK293 cells, but had no effect (up to 100 μM) on the membrane potential responses of TRPA1, TRPV1, or TRPM4b. TPPO also inhibited a calcium-gated TRPM5-dependent conductance in taste cells isolated from the tongues of transgenic TRPM5(+/)⁻ mice. In contrast, TPP had no effect on TRPM5 responses, indicating a strict requirement of the oxygen atom for activity. Sixteen additional TPPO derivatives also inhibited TRPM5 but none more potently than TPPO. Structure-activity relationship of tested compounds was used for molecular modeling-based analysis to clarify the positive and negative structural contributions to the potency of TPPO and its derivatives. TPPO is the most potent TRPM5 inhibitor described to date and is the first demonstrated to exhibit selectivity over other channels.
Collapse
|
174
|
Abstract
Until recently, dietary fat was considered to be tasteless, and its primary sensory attribute was believed to be its texture (Rolls et al., 1999; Verhagen et al., 2003). However, a number of studies have demonstrated the ability of components in fats, specifically free fatty acids, to activate taste cells and elicit behavioral responses consistent with there being a taste of fat. Here we show for the first time that long-chain unsaturated free fatty acid, linoleic acid (LA), depolarizes mouse taste cells and elicits a robust intracellular calcium rise via the activation of transient receptor potential channel type M5 (TRPM5). The LA-induced responses depend on G-protein-phospholipase C pathway, indicative of the involvement of G-protein-coupled receptors (GPCRs) in the transduction of fatty acids. Mice lacking TRPM5 channels exhibit no preference for and show reduced sensitivity to LA. Together, these studies show that TRPM5 channels play an essential role in fatty acid transduction in mouse taste cells and suggest that fatty acids are capable of activating taste cells in a manner consistent with other GPCR-mediated tastes.
Collapse
|
175
|
Shirazi-Beechey SP, Moran AW, Bravo D, Al-Rammahi M. NONRUMINANT NUTRITION SYMPOSIUM: Intestinal glucose sensing and regulation of glucose absorption: Implications for swine nutrition1. J Anim Sci 2011; 89:1854-62. [DOI: 10.2527/jas.2010-3695] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
176
|
Merigo F, Benati D, Cristofoletti M, Osculati F, Sbarbati A. Glucose transporters are expressed in taste receptor cells. J Anat 2011. [PMID: 21592100 DOI: 10.1111/j.1469‐7580.2011.01385.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In the intestine, changes of sugar concentration generated in the lumen during digestion induce adaptive responses of glucose transporters in the epithelium. A close matching between the intestinal expression of glucose transporters and the composition and amount of the diet has been provided by several experiments. Functional evidence has demonstrated that the regulation of glucose transporters into enterocytes is induced by the sensing of sugar of the enteroendocrine cells through activation of sweet taste receptors (T1R2 and T1R3) and their associated elements of G-protein-linked signaling pathways (e.g. α-gustducin, phospholipase C β type 2 and transient receptor potential channel M5), which are signaling molecules also involved in the perception of sweet substances in the taste receptor cells (TRCs) of the tongue. Considering this phenotypical similarity between the intestinal cells and TRCs, we evaluated whether the TRCs themselves possess proteins of the glucose transport mechanism. Therefore, we investigated the expression of the typical intestinal glucose transporters (i.e. GLUT2, GLUT5 and SGLT1) in rat circumvallate papillae, using immunohistochemistry, double-labeling immunofluorescence, immunoelectron microscopy and reverse transcriptase-polymerase chain reaction analysis. The results showed that GLUT2, GLUT5 and SGLT1 are expressed in TRCs; their immunoreactivity was also observed in cells that displayed staining for α-gustducin and T1R3 receptor. The immunoelectron microscopic results confirmed that GLUT2, GLUT5 and SGLT1 were predominantly expressed in cells with ultrastructural characteristics of chemoreceptor cells. The presence of glucose transporters in TRCs adds a further link between chemosensory information and cellular responses to sweet stimuli that may have important roles in glucose homeostasis, contributing to a better understanding of the pathways implicated in glucose metabolism.
Collapse
Affiliation(s)
- Flavia Merigo
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Human Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy.
| | | | | | | | | |
Collapse
|
177
|
Merigo F, Benati D, Cristofoletti M, Osculati F, Sbarbati A. Glucose transporters are expressed in taste receptor cells. J Anat 2011; 219:243-52. [PMID: 21592100 DOI: 10.1111/j.1469-7580.2011.01385.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the intestine, changes of sugar concentration generated in the lumen during digestion induce adaptive responses of glucose transporters in the epithelium. A close matching between the intestinal expression of glucose transporters and the composition and amount of the diet has been provided by several experiments. Functional evidence has demonstrated that the regulation of glucose transporters into enterocytes is induced by the sensing of sugar of the enteroendocrine cells through activation of sweet taste receptors (T1R2 and T1R3) and their associated elements of G-protein-linked signaling pathways (e.g. α-gustducin, phospholipase C β type 2 and transient receptor potential channel M5), which are signaling molecules also involved in the perception of sweet substances in the taste receptor cells (TRCs) of the tongue. Considering this phenotypical similarity between the intestinal cells and TRCs, we evaluated whether the TRCs themselves possess proteins of the glucose transport mechanism. Therefore, we investigated the expression of the typical intestinal glucose transporters (i.e. GLUT2, GLUT5 and SGLT1) in rat circumvallate papillae, using immunohistochemistry, double-labeling immunofluorescence, immunoelectron microscopy and reverse transcriptase-polymerase chain reaction analysis. The results showed that GLUT2, GLUT5 and SGLT1 are expressed in TRCs; their immunoreactivity was also observed in cells that displayed staining for α-gustducin and T1R3 receptor. The immunoelectron microscopic results confirmed that GLUT2, GLUT5 and SGLT1 were predominantly expressed in cells with ultrastructural characteristics of chemoreceptor cells. The presence of glucose transporters in TRCs adds a further link between chemosensory information and cellular responses to sweet stimuli that may have important roles in glucose homeostasis, contributing to a better understanding of the pathways implicated in glucose metabolism.
Collapse
Affiliation(s)
- Flavia Merigo
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Human Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy.
| | | | | | | | | |
Collapse
|
178
|
Wang YY, Chang RB, Allgood SD, Silver WL, Liman ER. A TRPA1-dependent mechanism for the pungent sensation of weak acids. ACTA ACUST UNITED AC 2011; 137:493-505. [PMID: 21576376 PMCID: PMC3105510 DOI: 10.1085/jgp.201110615] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acetic acid produces an irritating sensation that can be attributed to activation of nociceptors within the trigeminal ganglion that innervate the nasal or oral cavities. These sensory neurons sense a diverse array of noxious agents in the environment, allowing animals to actively avoid tissue damage. Although receptor mechanisms have been identified for many noxious chemicals, the mechanisms by which animals detect weak acids, such as acetic acid, are less well understood. Weak acids are only partially dissociated at neutral pH and, as such, some can cross the cell membrane, acidifying the cell cytosol. The nociceptor ion channel TRPA1 is activated by CO(2), through gating of the channel by intracellular protons, making it a candidate to more generally mediate sensory responses to weak acids. To test this possibility, we measured responses to weak acids from heterologously expressed TRPA1 channels and trigeminal neurons with patch clamp recording and Ca(2+) microfluorometry. Our results show that heterologously expressed TRPA1 currents can be induced by a series of weak organic acids, including acetic, propionic, formic, and lactic acid, but not by strong acids. Notably, the degree of channel activation was predicted by the degree of intracellular acidification produced by each acid, suggesting that intracellular protons are the proximate stimulus that gates the channel. Responses to weak acids produced a Ca(2+)-independent inactivation that precluded further activation by weak acids or reactive chemicals, whereas preactivation by reactive electrophiles sensitized TRPA1 channels to weak acids. Importantly, responses of trigeminal neurons to weak acids were highly overrepresented in the subpopulation of TRPA1-expressing neurons and were severely reduced in neurons from TRPA1 knockout mice. We conclude that TRPA1 is a general sensor for weak acids that produce intracellular acidification and suggest that it functions within the pain pathway to mediate sensitivity to cellular acidosis.
Collapse
Affiliation(s)
- Yuanyuan Y Wang
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
179
|
Abstract
Epithelial cells lining the inner surface of the intestinal epithelium are in direct contact with a lumenal environment that varies dramatically with diet. It has long been suggested that the intestinal epithelium can sense the nutrient composition of lumenal contents. It is only recently that the nature of intestinal nutrient-sensing molecules and underlying mechanisms have been elucidated. There are a number of nutrient sensors expressed on the luminal membrane of endocrine cells that are activated by various dietary nutrients. We showed that the intestinal glucose sensor, T1R2+T1R3 and the G-protein, gustducin are expressed in endocrine cells. Eliminating sweet transduction in micein vivoby deletion of either gustducin or T1R3 prevented dietary monosaccharide- and artificial sweetener-induced up-regulation of the Na+/glucose cotransporter, SGLT1 observed in wild-type mice. Transgenic mice, lacking gustducin or T1R3 had deficiencies in secretion of glucagon-like peptide 1 (GLP-1) and, glucose-dependent insulinotrophic peptide (GIP). Furthermore, they had an abnormal insulin profile and prolonged elevation of postprandial blood glucose in response to orally ingested carbohydrates. GIP and GLP-1 increase insulin secretion, while glucagon-like peptide 2 (GLP-2) modulates intestinal growth, blood flow and expression of SGLT1. The receptor for GLP-2 resides in enteric neurons and not in any surface epithelial cells, suggesting the involvement of the enteric nervous system in SGLT1 up-regulation. The accessibility of the glucose sensor and the important role that it plays in regulation of intestinal glucose absorption and glucose homeostasis makes it an attractive nutritional and therapeutic target for manipulation.
Collapse
|
180
|
Meyerhof W, Born S, Brockhoff A, Behrens M. Molecular biology of mammalian bitter taste receptors. A review. FLAVOUR FRAG J 2011. [DOI: 10.1002/ffj.2041] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wolfgang Meyerhof
- German Institute of Human Nutrition Potsdam-Rehbruecke; Department of Molecular Genetics; Arthur-Scheunert-Allee 114-116; D-14558; Nuthetal; Germany
| | - Stephan Born
- German Institute of Human Nutrition Potsdam-Rehbruecke; Department of Molecular Genetics; Arthur-Scheunert-Allee 114-116; D-14558; Nuthetal; Germany
| | - Anne Brockhoff
- German Institute of Human Nutrition Potsdam-Rehbruecke; Department of Molecular Genetics; Arthur-Scheunert-Allee 114-116; D-14558; Nuthetal; Germany
| | - Maik Behrens
- German Institute of Human Nutrition Potsdam-Rehbruecke; Department of Molecular Genetics; Arthur-Scheunert-Allee 114-116; D-14558; Nuthetal; Germany
| |
Collapse
|
181
|
Doerner JF, Hatt H, Ramsey IS. Voltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4,5)P2 hydrolysis. ACTA ACUST UNITED AC 2011; 137:271-88. [PMID: 21321070 PMCID: PMC3047606 DOI: 10.1085/jgp.200910388] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
TRPV3 is a thermosensitive channel that is robustly expressed in skin keratinocytes and activated by innocuous thermal heating, membrane depolarization, and chemical agonists such as 2-aminoethyoxy diphenylborinate, carvacrol, and camphor. TRPV3 modulates sensory thermotransduction, hair growth, and susceptibility to dermatitis in rodents, but the molecular mechanisms responsible for controlling TRPV3 channel activity in keratinocytes remain elusive. We show here that receptor-mediated breakdown of the membrane lipid phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) regulates the activity of both native TRPV3 channels in primary human skin keratinocytes and expressed TRPV3 in a HEK-293–derived cell line stably expressing muscarinic M1-type acetylcholine receptors. Stimulation of PI(4,5)P2 hydrolysis or pharmacological inhibition of PI 4 kinase to block PI(4,5)P2 synthesis potentiates TRPV3 currents by causing a negative shift in the voltage dependence of channel opening, increasing the proportion of voltage-independent current and causing thermal activation to occur at cooler temperatures. The activity of single TRPV3 channels in excised patches is potentiated by PI(4,5)P2 depletion and selectively decreased by PI(4,5)P2 compared with related phosphatidylinositol phosphates. Neutralizing mutations of basic residues in the TRP domain abrogate the effect of PI(4,5)P2 on channel function, suggesting that PI(4,5)P2 directly interacts with a specific protein motif to reduce TRPV3 channel open probability. PI(4,5)P2-dependent modulation of TRPV3 activity represents an attractive mechanism for acute regulation of keratinocyte signaling cascades that control cell proliferation and the release of autocrine and paracrine factors.
Collapse
Affiliation(s)
- Julia F Doerner
- Department of Cell Physiology, Ruhr University Bochum, 44801 Bochum, Germany
| | | | | |
Collapse
|
182
|
Guinamard R, Sallé L, Simard C. The non-selective monovalent cationic channels TRPM4 and TRPM5. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:147-71. [PMID: 21290294 DOI: 10.1007/978-94-007-0265-3_8] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transient Receptor Potential (TRP) proteins are non-selective cationic channels with a consistent Ca(2+)-permeability, except for TRPM4 and TRPM5 that are not permeable to this ion. However, Ca(2+) is a major regulator of their activity since both channels are activated by a rise in internal Ca(2+). Thus TRPM4 and TRPM5 are responsible for most of the Ca(2+)-activated non-selective cationic currents (NSC(Ca)) recorded in a large variety of tissues. Their activation induces cell-membrane depolarization that modifies the driving force for ions as well as activity of voltage gated channels and thereby strongly impacts cell physiology. In the last few years, the ubiquitously expressed TRPM4 channel has been implicated in insulin secretion, the immune response, constriction of cerebral arteries, the activity of inspiratory neurons and cardiac dysfunction. Conversely, TRPM5 whose expression is more restricted, has until now been mainly implicated in taste transduction.
Collapse
Affiliation(s)
- Romain Guinamard
- Groupe Cœur et Ischémie, EA 3212, Université de Caen, Sciences D, F-14032, Caen Cedex, France,
| | | | | |
Collapse
|
183
|
|
184
|
TRP channels in the cardiopulmonary vasculature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:781-810. [PMID: 21290327 DOI: 10.1007/978-94-007-0265-3_41] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transient receptor potential (TRP) channels are expressed in almost every human tissue, including the heart and the vasculature. They play unique roles not only in physiological functions but, if over-expressed, also in pathophysiological disease states. Cardiovascular diseases are the leading cause of death in the industrialized countries. Therefore, TRP channels are attractive drug targets for more effective pharmacological treatments of these diseases. This review focuses on three major cell types of the cardiovascular system: cardiomyocytes as well as smooth muscle cells and endothelial cells from the systemic and pulmonary circulation. TRP channels initiate multiple signals in all three cell types (e.g. contraction, migration) and are involved in gene transcription leading to cell proliferation or cell death. Identification of their genes has significantly improved our knowledge of multiple signal transduction pathways in these cells. Some TRP channels are important cellular sensors and are mostly permeable to Ca(2+), while most other TRP channels are receptor activated and allow for the entry of Na(+), Ca(2+) and Mg(2+). Physiological functions of TRPA, TRPC, TRPM, TRPP and TRPV channels in the cardiovascular system, dissected by down-regulating channel activity in isolated tissues or by the analysis of gene-deficient mouse models, are reviewed. The involvement of TRPs as homomeric or heteromeric channels in pathophysiological processes in the cardiovascular system like heart failure, cardiac hypertrophy, hypertension as well as edema formation by increased endothelial permeability will be discussed.
Collapse
|
185
|
de Araujo IE, Ren X, Ferreira JG. Metabolic sensing in brain dopamine systems. Results Probl Cell Differ 2011; 52:69-86. [PMID: 20865373 DOI: 10.1007/978-3-642-14426-4_7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gustatory system allows the brain to monitor the presence of chemicals in the oral cavity and initiate appropriate responses of acceptance or rejection. Among such chemicals are the nutrients that must be rapidly recognized and ingested for immediate oxidation or storage. In the periphery, the gustatory system consists of a highly efficient sensing mechanism, where distinct cell types express receptors that bind specifically to chemicals associated with one particular taste quality. These specialized receptors connect to the brain via dedicated pathways, the stimulation of which triggers stereotypic behavioral responses as well as neurotransmitter release in brain reward dopamine systems. However, evidence also exists in favor of the concept that the critical regulators of long-term nutrient choice are physiological processes taking place after ingestion and independently of gustation. We will appraise the hypothesis that organisms can develop preferences for nutrients independently of oral taste stimulation. Of particular interest are recent findings indicating that disrupting nutrient utilization interferes with activity in brain dopamine pathways. These findings establish the metabolic fate of nutrients as previously unanticipated reward signals that regulate the reinforcing value of foods. In particular, it suggests a role for brain dopamine reward systems as metabolic sensors, allowing for signals generated by the metabolic utilization of nutrients to regulate neurotransmitter release and food reinforcement.
Collapse
Affiliation(s)
- Ivan E de Araujo
- The John B Pierce Laboratory and Department of Psychiatry, Yale University School of Medicine, 290 Congress Avenue, New Haven, CT 06519, USA.
| | | | | |
Collapse
|
186
|
Transient Receptor Potential Cation Channels in Pancreatic β Cells. Rev Physiol Biochem Pharmacol 2011; 161:87-110. [DOI: 10.1007/112_2011_2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
187
|
Zholos A, Johnson C, Burdyga T, Melanaphy D. TRPM channels in the vasculature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:707-29. [PMID: 21290323 DOI: 10.1007/978-94-007-0265-3_37] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent studies show that mammalian melastatin TRPM nonselective cation channels (TRPM1-8), members of the largest and most diverse TRP subfamily, are widely expressed in the endothelium and vascular smooth muscles. When activated, these channels similarly to other TRPs permit the entry of sodium, calcium and magnesium, thus causing membrane depolarisation. Although membrane depolarisation reduces the driving force for calcium entry via TRPMs as well as other pathways for calcium entry, in smooth muscle myocytes expressing voltage-gated Ca(2+) channels the predominant functional effect is an increase in intracellular Ca(2+) concentration and myocyte contraction. This review focuses on several best documented aspects of vascular functions of TRPMs, including the role of TRPM2 in oxidant stress, regulation of endothelial permeability and cell death, the connection between TRPM4 and myogenic response, significance of TRPM7 for magnesium homeostasis, vessel injury and hypertension, and emerging evidence that the cold and menthol receptor TRPM8 is involved in the regulation of vascular tone.
Collapse
Affiliation(s)
- Alexander Zholos
- Centre for Vision and Vascular Science, School of Medicine, Dentistry and Biomedical Sciences, Royal Victoria Hospital, Queen's University of Belfast, Belfast BT12 6BA, UK.
| | | | | | | |
Collapse
|
188
|
Medler KF. Multiple Roles for TRPs in the Taste System: Not Your Typical TRPs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:831-46. [DOI: 10.1007/978-94-007-0265-3_43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
189
|
Reboreda A, Jiménez-Díaz L, Navarro-López JD. TRP channels and neural persistent activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:595-613. [PMID: 21290318 DOI: 10.1007/978-94-007-0265-3_32] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the integrative properties of the nervous system is its capability to, by transient motor commands or brief sensory stimuli, evoke persistent neuronal changes, mainly as a sustained, tonic action potential firing. This neural activity, named persistent activity, is found in a good number of brain regions and is thought to be a neural substrate for short-term storage and accumulation of sensory or motor information [1]. Examples of this persistent neural activity have been reported in prefrontal [2] and entorhinal [3] cortices, as part of the neural mechanisms involved in short-term working memory [4]. Interestingly, the general organization of the motor systems assumes the presence of bursts of short-lasting motor commands encoding movement characteristics such as velocity, duration, and amplitude, followed by a maintained tonic firing encoding the position at which the moving appendage should be maintained [5, 6]. Generation of qualitatively similar sustained discharges have also been found in spinal and supraspinal regions in relation to pain processing [7, 8]. Thus, persistent neural activity seems to be necessary for both behavioral (positions of fixation) and cognitive (working memory) processes. Persistent firing mechanisms have been proposed to involve the participation of a non-specific cationic current (CAN current) mainly mediated by activation of TRPC channels. Because the function and generation of persistent activity is still poorly understood, here we aimed to review and discuss the putative role of TRP-like channels on its generation and/or maintenance.
Collapse
Affiliation(s)
- Antonio Reboreda
- Section of Physiology, Department of Functional Biology and Health Sciences, School of Biology, University of Vigo, Campus Lagoas-Marcosende 36310 Vigo (Pontevedra), Spain.
| | | | | |
Collapse
|
190
|
Tulu Buber M, Cerne R, Cortés RY, Bryant RW, Paul Lee S. Overexpression of Human Transient Receptor Potential M5 Upregulates Endogenous Human Transient Receptor Potential A1 in a Stable HEK Cell Line. Assay Drug Dev Technol 2010; 8:695-702. [DOI: 10.1089/adt.2010.0316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- M. Tulu Buber
- Discovery Research, Redpoint Bio Corporation, Ewing, New Jersey
| | - Rok Cerne
- Discovery Research, Redpoint Bio Corporation, Ewing, New Jersey
| | - Rosa Y. Cortés
- Discovery Research, Redpoint Bio Corporation, Ewing, New Jersey
| | | | | |
Collapse
|
191
|
Wu LJ, Sweet TB, Clapham DE. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 2010; 62:381-404. [PMID: 20716668 DOI: 10.1124/pr.110.002725] [Citation(s) in RCA: 426] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential (TRP) channels are a large family of ion channel proteins, surpassed in number in mammals only by voltage-gated potassium channels. TRP channels are activated and regulated through strikingly diverse mechanisms, making them suitable candidates for cellular sensors. They respond to environmental stimuli such as temperature, pH, osmolarity, pheromones, taste, and plant compounds, and intracellular stimuli such as Ca(2+) and phosphatidylinositol signal transduction pathways. However, it is still largely unknown how TRP channels are activated in vivo. Despite the uncertainties, emerging evidence using TRP channel knockout mice indicates that these channels have broad function in physiology. Here we review the recent progress on the physiology, pharmacology and pathophysiological function of mammalian TRP channels.
Collapse
Affiliation(s)
- Long-Jun Wu
- Howard Hughes Medical Institute, Department of Cardiology, Children's Hospital Boston, 320 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
192
|
Abstract
In humans, high concentrations of CO(2), as found in carbonated beverages, evoke a mixture of sensations that include a stinging or pungent quality. The stinging sensation is thought to originate with the activation of nociceptors, which innervate the respiratory, nasal, and oral epithelia. The molecular basis for this sensation is unknown. Here we show that CO(2) specifically activates a subpopulation of trigeminal neurons that express TRPA1, a mustard oil- and cinnamaldehyde-sensitive channel, and that these responses are dependent on a functional TRPA1 gene. TRPA1 is sufficient to mediate responses to CO(2) as TRPA1 channels expressed in HEK-293 cells, but not TRPV1 channels, were activated by bath-applied CO(2). CO(2) can diffuse into cells and produce intracellular acidification, which could gate TRPA1 channels. Consistent with this mechanism, TRPA1 channels in excised patches were activated in a dose-dependent manner by intracellular protons. We conclude that TRPA1, by sensing intracellular acidification, constitutes an important component of the nociceptive response to CO(2).
Collapse
|
193
|
Rebello MR, Medler KF. Ryanodine receptors selectively contribute to the formation of taste-evoked calcium signals in mouse taste cells. Eur J Neurosci 2010; 32:1825-35. [PMID: 20955474 DOI: 10.1111/j.1460-9568.2010.07463.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The peripheral taste system uses multiple signaling pathways to transduce a stimulus into an output signal that activates afferent neurons. All of these signaling pathways depend on transient increases in intracellular calcium, but current understanding of these calcium signals is not well developed. Using molecular and physiological techniques, this study establishes that ryanodine receptors (RyRs), specifically isoform 1, are expressed in taste cells and that their physiological function differs among cell types employing different signaling pathways. RyR1 contributes to some taste-evoked signals that rely on calcium release from internal stores but can also supplement the calcium signal that is initiated by opening voltage-gated calcium channels. In taste cells expressing both signaling pathways, RyR1 contributes to the depolarization-induced calcium signal but not to the calcium signal that depends on calcium release from stores. These data suggest that RyR1 is an important regulator of calcium signaling and that its physiological role in taste cells is dictated by the nature of the calcium signaling mechanisms expressed.
Collapse
Affiliation(s)
- Michelle R Rebello
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|
194
|
Heteromerization of TRP channel subunits: extending functional diversity. Protein Cell 2010; 1:802-10. [PMID: 21203922 DOI: 10.1007/s13238-010-0108-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 09/01/2010] [Indexed: 01/03/2023] Open
Abstract
Transient receptor potential (TRP) channels are widely found throughout the animal kingdom. By serving as cellular sensors for a wide spectrum of physical and chemical stimuli, they play crucial physiological roles ranging from sensory transduction to cell cycle modulation. TRP channels are tetrameric protein complexes. While most TRP subunits can form functional homomeric channels, heteromerization of TRP channel subunits of either the same subfamily or different subfamilies has been widely observed. Heteromeric TRP channels exhibit many novel properties compared to their homomeric counterparts, indicating that co-assembly of TRP channel subunits has an important contribution to the diversity of TRP channel functions.
Collapse
|
195
|
Abstract
Taste buds are aggregates of 50–100 polarized neuroepithelial cells that detect nutrients and other compounds. Combined analyses of gene expression and cellular function reveal an elegant cellular organization within the taste bud. This review discusses the functional classes of taste cells, their cell biology, and current thinking on how taste information is transmitted to the brain.
Collapse
Affiliation(s)
- Nirupa Chaudhari
- Department of Physiology and Biophysics, and Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | |
Collapse
|
196
|
Abstract
The release of insulin by pancreatic beta cells involves a complex interplay of conductances that generate oscillations and drive secretion. A recent report identifies a new player in this process, the ion channel TRPM5. TRPM5 was originally identified in taste cells, where it forms a Ca(2+)-activated cation channel that is required for sensory responses to bitter and sweet tastes. New research now shows that TRPM5 is expressed within the pancreatic islets of Langerhans, where it regulates the frequency of Ca(2+) oscillations and contributes to insulin release by β-cells.
Collapse
Affiliation(s)
- Emily R Liman
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
197
|
Abstract
Peripheral taste receptor cells depend on distinct calcium signals to generate appropriate cellular responses that relay taste information to the central nervous system. Some taste cells have conventional chemical synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release from stores to formulate an output signal through a hemichannel. Despite the importance of calcium signaling in taste cells, little is known about how these signals are regulated. This review summarizes recent studies that have identified 2 calcium clearance mechanisms expressed in taste cells, including mitochondrial calcium uptake and sodium/calcium exchangers (NCXs). These studies identified a unique constitutive calcium influx that contributes to maintaining appropriate calcium homeostasis in taste cells and the role of the mitochondria and exchangers in this process. The additional role of NCXs in the regulation of evoked calcium responses is also discussed. Clearly, calcium signaling is a dynamic process in taste cells and appears to be more complex than has previously been appreciated.
Collapse
Affiliation(s)
- Kathryn F Medler
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
198
|
Mathar I, Vennekens R, Meissner M, Kees F, Van der Mieren G, Camacho Londoño JE, Uhl S, Voets T, Hummel B, van den Bergh A, Herijgers P, Nilius B, Flockerzi V, Schweda F, Freichel M. Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. J Clin Invest 2010; 120:3267-79. [PMID: 20679729 DOI: 10.1172/jci41348] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 06/23/2010] [Indexed: 11/17/2022] Open
Abstract
Hypertension is an underlying risk factor for cardiovascular disease. Despite this, its pathogenesis remains unknown in most cases. Recently, the transient receptor potential (TRP) channel family was associated with the development of several cardiovascular diseases linked to hypertension. The melastatin TRP channels TRPM4 and TRPM5 have distinct properties within the TRP channel family: they form nonselective cation channels activated by intracellular calcium ions. Here we report the identification of TRPM4 proteins in endothelial cells, heart, kidney, and chromaffin cells from the adrenal gland, suggesting that they have a role in the cardiovascular system. Consistent with this hypothesis, Trpm4 gene deletion in mice altered long-term regulation of blood pressure toward hypertensive levels. No changes in locomotor activity, renin-angiotensin system function, electrolyte and fluid balance, vascular contractility, and cardiac contractility under basal conditions were observed. By contrast, inhibition of ganglionic transmission with either hexamethonium or prazosin abolished the difference in blood pressure between Trpm4-/- and wild-type mice. Strikingly, plasma epinephrine concentration as well as urinary excretion of catecholamine metabolites were substantially elevated in Trpm4-/- mice. In freshly isolated chromaffin cells, lack of TRPM4 was shown to cause markedly more acetylcholine-induced exocytotic release events, while neither cytosolic calcium concentration, size, nor density of vesicles were different. We therefore conclude that TRPM4 proteins limit catecholamine release from chromaffin cells and that this contributes to increased sympathetic tone and hypertension.
Collapse
Affiliation(s)
- Ilka Mathar
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Bobkov YV, Pezier A, Corey EA, Ache BW. Phosphatidylinositol 4,5-bisphosphate-dependent regulation of the output in lobster olfactory receptor neurons. ACTA ACUST UNITED AC 2010; 213:1417-24. [PMID: 20400625 DOI: 10.1242/jeb.037234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transient receptor potential (TRP) channels often play a role in sensory transduction, including chemosensory transduction. TRP channels, a common downstream target of phosphoinositide (PI) signaling, can be modulated by exogenous phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] and/or diacylglycerol (DAG). Lobster olfactory receptor neurons (ORNs) express a TRP-related, non-selective, calcium/magnesium-permeable, sodium/calcium-gated cation (SGC) channel. Here we report that PIs regulate the function of the calcium-activated form of the lobster channel. Sequestering of endogenous PI(4,5)P2, either with an anti-PI(4,5)P2 antibody or by electrostatic screening with polyvalent cations, blocks the channel. Exogenous PI(3,4,5)P3 activates the channel independently of intracellular sodium and/or calcium. Exogenous non-hydrolysable DAG analogs fail to change the gating parameters of the channel, suggesting the channel is insensitive to DAG. Electrophysiological recording from lobster ORNs in situ using a panel of pharmacological tools targeting the key components of both PI and DAG metabolism (phospholipase C, phosphoinositide 4-kinase and DAG kinase) extend these findings to the intact ORN. PI(4,5)P2 depletion suppresses both the odorant-evoked discharge and whole-cell current of the cells, and does so possibly independently of DAG production. Collectively, our results argue that PIs can regulate output in lobster ORNs, at least in part through their action on the lobster SGC channel.
Collapse
Affiliation(s)
- Yuriy V Bobkov
- Whitney Laboratory, Center for Smell and Taste, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
200
|
Logothetis DE, Petrou VI, Adney SK, Mahajan R. Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 2010; 460:321-41. [PMID: 20396900 PMCID: PMC4040125 DOI: 10.1007/s00424-010-0828-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 02/07/2023]
Abstract
The plasma membrane phosphoinositide phosphatidylinositol 4,5-bisphosphate (PIP2) controls the activity of most ion channels tested thus far through direct electrostatic interactions. Mutations in channel proteins that change their apparent affinity to PIP2 can lead to channelopathies. Given the fundamental role that membrane phosphoinositides play in regulating channel activity, it is surprising that only a small number of channelopathies have been linked to phosphoinositides. This review proposes that for channels whose activity is PIP2-dependent and for which mutations can lead to channelopathies, the possibility that the mutations alter channel-PIP2 interactions ought to be tested. Similarly, diseases that are linked to disorders of the phosphoinositide pathway result in altered PIP2 levels. In such cases, it is proposed that the possibility for a concomitant dysregulation of channel activity also ought to be tested. The ever-growing list of ion channels whose activity depends on interactions with PIP2 promises to provide a mechanism by which defects on either the channel protein or the phosphoinositide levels can lead to disease.
Collapse
Affiliation(s)
- Diomedes E Logothetis
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|