151
|
Identification of cellular proteins that interact with the adeno-associated virus rep protein. J Virol 2008; 83:454-69. [PMID: 18971280 DOI: 10.1128/jvi.01939-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adeno-associated virus (AAV) codes for four related nonstructural Rep proteins. AAV both replicates and assembles in the nucleus and requires coinfection with a helper virus, either adenovirus (Ad) or herpesvirus, for a productive infection. Like other more complex DNA viruses, it is believed that AAV interacts or modifies host cell proteins to carry out its infection cycle. To date, relatively little is known about the host proteins that interact with the viral Rep proteins, which are known to be directly involved in DNA replication, control of viral and cellular transcription, splicing, and protein translation. In this study, we used affinity-tagged Rep protein to purify cellular protein complexes that were associated with Rep in cells that had been infected with Ad and AAV. In all, we identified 188 cellular proteins from 16 functional categories, including 14 transcription factors, 6 translation factors, 15 potential splicing proteins, 5 proteins involved in protein degradation, and 13 proteins involved in DNA replication or repair. This dramatically increases the number of potential interactions over the current number of approximately 26. Twelve of the novel proteins found were further tested by coimmunoprecipitation or colocalization using confocal immunomicroscopy. Of these, 10 were confirmed as proteins that formed complexes with Rep, including proteins of the MCM complex (DNA replication), RCN1 (membrane transport), SMC2 (chromatin dynamics), EDD1 (ubiquitin ligase), IRS4 (signal transduction), and FUS (splicing). Computer analysis suggested that 45 and 28 of the 188 proteins could be placed in a pathway of interacting proteins involved in DNA replication and protein synthesis, respectively. Of the proteins involved in DNA replication, all of the previously identified proteins involved in AAV DNA replication were found, except Ad DBP. The only Ad protein found to interact with Rep was the E1b55K protein. In addition, we confirmed that Rep interacts with Ku70/80 helicase. In vitro DNA synthesis assays demonstrated that although Ku helicase activity could substitute for MCM to promote strand displacement synthesis, its presence was not essential. Our study suggests that the interaction of AAV with cellular proteins is much more complex than previously suspected and provides a resource for further studies of the AAV life cycle.
Collapse
|
152
|
Konishi M, Kawamoto K, Izumikawa M, Kuriyama H, Yamashita T. Gene transfer into guinea pig cochlea using adeno-associated virus vectors. J Gene Med 2008; 10:610-8. [PMID: 18338819 DOI: 10.1002/jgm.1189] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Several genes are candidates for treating inner ear diseases. For clinical applications, minimally invasive approaches to the inner ear are desirable along with minimal side-effects. METHODS Adeno-associated virus (AAV) was used as a vector into the guinea pig inner ear. Six AAV-cytomegalovirus hybrids (AAV-2/1, -2/2, -2/5, -2/7, -2/8 and -2/9) were infused into perilymph of the cochlea basal turn, an approach that could be used in cochlear implant surgery. At 7 days after injection, distribution of gene expression, hearing and morphology were evaluated. Adenoviral vector was also used to compare distributions of gene expression. Moreover, distribution of cell surface receptors of AAV in the cochlea was examined using immunohistochemistry. RESULTS Using the perilymphatic approach, adenovirus could be transferred to mesothelial cells lining the perilymph, but not sensory cells. Conversely, all AAV serotypes displayed tissue tropism to inner hair cells, with AAV-2/2 showing particularly efficient transfer to sensory cells. This tissue tropism of AAV could not be explained by the distribution of AAV receptors. Hearing and morphology were largely unaffected. CONCLUSIONS Our results indicate that AAV vector can be safely applied to the inner ear and AAV-2/2 offers a good tool for transferring transgenes into sensory cells of the inner ear efficiently without toxicity.
Collapse
Affiliation(s)
- Masaya Konishi
- Departments of Otolaryngology and Head-Neck Surgery, Kansai Medical University, Moriguchi, Osaka, Japan.
| | | | | | | | | |
Collapse
|
153
|
Abstract
Vectors based on recombinant adeno-associated viruses (AAVs) are being extensively explored for gene therapy owing to some of their distinguishing characteristicss such as lack of pathogenicity, wide range of infectivity and ability to provide long-term transgene expression. For many of the same reasons, recombinant AAV (rAAV) vectors have also been used as vaccine carriers to elicit immune responses against their transgene products. Extensive studies of rAAV vectors in animal models and in the clinic have revealed some safety concerns relating to their construction and production, adverse events following delivery, potential integration of the vector’s genome into host cell genomes, and the impairment of rAAV-induced CD8+ T-cell responses, which could have dire consequences for rAAV-treated individuals. Further studies to advance our knowledge of the biology of AAV and rAAV vectors are deemed necessary to allow for their more successful application in the clinic.
Collapse
Affiliation(s)
- Shih-Wen Lin
- School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA and, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Hildegund CJ Ertl
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
154
|
Polyak S, Mah C, Porvasnik S, Herlihy JD, Campbell-Thompson M, Byrne BJ, Valentine JF. Gene delivery to intestinal epithelial cells in vitro and in vivo with recombinant adeno-associated virus types 1, 2 and 5. Dig Dis Sci 2008; 53:1261-70. [PMID: 17934813 PMCID: PMC3896329 DOI: 10.1007/s10620-007-9991-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 08/15/2007] [Indexed: 12/23/2022]
Abstract
Intestinal disorders such as inflammatory bowel disease (IBD) result in chronic illness requiring lifelong therapy. Our aim was to evaluate the efficacy of recombinant adeno-associated virus (AAV) vector-mediated gene delivery to intestinal epithelial cells in vitro and in vivo. Human colon epithelial cell lines and colon biopsies were transduced using AAV pseudotypes 2/1, 2/2, and 2/5 encoding green fluorescence protein (GFP). Mice were administered the same vectors through oral, enema, intraperitoneal (IP) injection and superior mesenteric artery (SMA) injection routes. Tropism and efficiency were determined by microscopy, flow cytometry, immunohistochemistry and PCR. Caco2 cells were more permissive to AAV transduction. Human colon epithelial cells in organ culture were more effectively transduced by AAV2/2. SMA injection provided the most effective means of vector gene transfer to small intestine and colonic epithelial cells in vivo. Transgene detection 80 days post AAV treatment suggests transduction of crypt progenitor cells. This study shows the feasibility of AAV-mediated intestinal gene delivery, applicable for the investigation of IBD pathogenesis and novel therapeutic options, but also revealed the need for further studies to identify more efficient pseudotypes.
Collapse
Affiliation(s)
- Steven Polyak
- Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
155
|
Zaiss AK, Muruve DA. Immunity to adeno-associated virus vectors in animals and humans: a continued challenge. Gene Ther 2008; 15:808-16. [DOI: 10.1038/gt.2008.54] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
156
|
|
157
|
Complete in vitro reconstitution of adeno-associated virus DNA replication requires the minichromosome maintenance complex proteins. J Virol 2007; 82:1458-64. [PMID: 18057257 DOI: 10.1128/jvi.01968-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Adeno-associated virus (AAV) replicates its DNA exclusively by a leading-strand DNA replication mechanism and requires coinfection with a helper virus, such as adenovirus, to achieve a productive infection. In previous work, we described an in vitro AAV replication assay that required the AAV terminal repeats (the origins for DNA replication), the AAV Rep protein (the origin binding protein), and an adenovirus-infected crude extract. Fractionation of these crude extracts identified replication factor C (RFC), proliferating cell nuclear antigen (PCNA), and polymerase delta as cellular enzymes that were essential for AAV DNA replication in vitro. Here we identify the remaining factor that is necessary as the minichromosome maintenance (MCM) complex, a cellular helicase complex that is believed to be the replicative helicase for eukaryotic chromosomes. Thus, polymerase delta, RFC, PCNA, and the MCM complex, along with the virally encoded Rep protein, constitute the minimal protein complexes required to reconstitute efficient AAV DNA replication in vitro. Interfering RNAs targeted to MCM and polymerase delta inhibited AAV DNA replication in vivo, suggesting that one or more components of the MCM complex and polymerase delta play an essential role in AAV DNA replication in vivo as well as in vitro. Our reconstituted in vitro DNA replication system is consistent with the current genetic information about AAV DNA replication. The use of highly conserved cellular replication enzymes may explain why AAV is capable of productive infection in a wide variety of species with several different families of helper viruses.
Collapse
|
158
|
The state of the art of adeno-associated virus-based vectors in gene therapy. Virol J 2007; 4:99. [PMID: 17939872 PMCID: PMC2104528 DOI: 10.1186/1743-422x-4-99] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 10/16/2007] [Indexed: 11/17/2022] Open
Abstract
The adeno-associated virus (AAV) has rapidly gained popularity in gene therapy since the establishment of the first AAV2 infectious clone, in 1982, due to some of their distinguishing characteristics such as lack of pathogenicity, wide range of infectivity, and ability to establish long-term transgene expression. Notably over the past decade, this virus has attracted considerable interest as a gene therapy vector, and about 85% of the currently available 2,041 PubMed references on adeno-associated viruses have been published during this time. The exponential progress of AAV-based vectors has been made possible by the advances in the knowledge of the virology and biology of this virus, which allows great improvement in AAV vectors construction and a better comprehension of their operation. Moreover, with the recent discovery of novel AAV serotypes, there is virtually one preferred serotype for nearly every organ or tissue to target. Thus, AAV-based vectors have been successfully overcoming the main gene therapy challenges such as transgene maintenance, safety and host immune response, and meeting the desirable vector system features of high level of safety combined with clinical efficacy and versatility in terms of potential applications. Consequently, AAV is increasingly becoming the vector of choice for a wide range of gene therapy approaches. This report will highlight the state of the art of AAV-based vectors studies and the advances on the use of AAV vectors for several gene therapy approaches.
Collapse
|
159
|
Abstract
We have utilized deletion mutants of adeno-associated virus (AAV) to investigate which elements of the AAV genome are required in cis for high yields of the wild-type virus in a plasmid transfection assay and in addition whether these elements affect primarily AAV DNA replication or encapsidation. All tested deletions from within the Rep region demonstrated a modest, approximately threefold, decrease in viral production. Deletions within the cap region resulted in markedly less virus. Previous observations suggested that in cells in which recombinant AAV (rAAV) was produced, as in our assay with the helper plasmid pDG, there is a substantial excess of empty capsids. Co-transfections of high- and low-yielding constructs demonstrated that under conditions where Cap is abundant, the constructs with cap deletions did not package efficiently. These observation suggest that the lower yields of rAAV cannot be entirely due to lack of capsids but that elements within the cap region of the wild-type genome are important for efficient encapsidation. The production of virus by the mutants we tested was, however, not consistent with the disruption of a cis-acting packaging signal. Apparently, when Cap is provided "in trans," encapsidation is inefficient. A second observation is that there were equivalent amounts of replicated but unencapsidated viral DNA in cells transfected with each of our constructs. We propose that, in accord with the previously proposed link between DNA replication and encapsidation, the total amount of AAV DNA replication can be limited by the efficiency of encapsidation.
Collapse
Affiliation(s)
- Peter Ward
- Division of Hematology/Oncology, Department of Geneand Cell Medicine, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA.
| | | | | |
Collapse
|
160
|
Wang Y, Huang F, Cai R, Qian C, Liu X. Targeting strategies for adeno-associated viral vector. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0260-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
161
|
Kuck D, Kern A, Kleinschmidt JA. Development of AAV serotype-specific ELISAs using novel monoclonal antibodies. J Virol Methods 2007; 140:17-24. [PMID: 17126418 DOI: 10.1016/j.jviromet.2006.10.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/28/2006] [Accepted: 10/19/2006] [Indexed: 01/30/2023]
Abstract
Adeno-associated viruses (AAV) have been developed and evaluated as recombinant vectors for gene therapy. More recently, due to the advantages they offer for gene transfer, several AAV serotypes have gained increasing interest. However, monoclonal antibodies for the characterization and quantitation of vectors derived from different serotypes are at present not available. Serotype-specific monoclonal antibodies (mAbs) against the capsids of the serotypes 1/6, 4 and 5 are described. These antibodies, designated as ADK1a and b, ADK4 or ADK5a and b, reacted specifically with the indicated serotype capsids in cell lysates. ADK 1a and b cross-reacted with its highly related AAV6 serotype, but not with the other serotypes tested. The new antibodies recognized exclusively assembled capsids and neither free nor denatured capsid proteins as shown by fractionation experiments. In immunofluorescence experiments, the mAbs stained only distinct intranuclear foci in cells expressing the capsid protein. The development of capture ELISAs for quantitation of AAV1 and 6, AAV4 or AAV5 capsids illustrates that these novel monoclonal antibodies provide valuable tools for characterization of vector stocks.
Collapse
Affiliation(s)
- Dirk Kuck
- German Cancer Research Center, Program Infection and Cancer, Heidelberg, Germany
| | | | | |
Collapse
|
162
|
Chahal PS, Aucoin MG, Kamen A. Primary recovery and chromatographic purification of adeno-associated virus type 2 produced by baculovirus/insect cell system. J Virol Methods 2007; 139:61-70. [PMID: 17055590 DOI: 10.1016/j.jviromet.2006.09.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 09/14/2006] [Accepted: 09/19/2006] [Indexed: 10/24/2022]
Abstract
Adeno-associated virus (AAV) is making its place in gene therapy applications; however, the industry is still facing obstacles in producing a large quantity of highly purified material for clinical studies. Insect cell technology can be used to produce AAV to meet the current demand. During the purification process it was observed that there was a reduced recovery of AAV produced in insect cells, Spodoptera frugiperda (Sf9). It was assumed that the formation of AAV agglomerates and the interaction of AAV with other cellular components were major contributors to this loss. After studying different systems of extraction a sequence of treatment for primary recovery of AAV from cell paste was developed. This sequence was necessary to reduce the AAV losses and to increase the recovery. The purification method avoided the use of ultracentrifugation and adopted chromatographic methods for the purification of AAV. Primary recovery, ion exchange chromatography and hydrophobic interaction chromatography gave an overall yield of 75% from the extracted AAV. The purification process was based on chromatographic methods; therefore, it can be scaled up. Although this method was developed for AAV type 2, it is believed that this method could be modified easily to purify other AAV serotypes.
Collapse
Affiliation(s)
- Parminder S Chahal
- Animal Cell Technology Group, Bioprocess Sector, Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P2R2.
| | | | | |
Collapse
|
163
|
Ren C, White AF, Ponnazhagan S. Notch1 augments intracellular trafficking of adeno-associated virus type 2. J Virol 2006; 81:2069-73. [PMID: 17151095 PMCID: PMC1797595 DOI: 10.1128/jvi.01811-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here the significance of the Notch1 receptor in intracellular trafficking of recombinant adeno-associated virus type 2 (rAAV2). RNA profiling of human prostate cancer cell lines with various degrees of AAV transduction indicated a correlation of the amount of Notch1 with rAAV transgene expression. A definitive role of Notch1 in enhancing AAV transduction was confirmed by developing clonal derivatives of DU145 cells overexpressing either full-length or intracellular Notch1. To discern stages of AAV2 transduction influenced by Notch1, competitive binding with soluble heparin and Notch1 antibody, intracellular trafficking using Cy3-labeled rAAV2, and blocking assays for proteasome and dynamin pathways were performed. Results indicated that in the absence or low-level expression of Notch1, only binding of virus was found on the cell surface and internalization was impaired. However, increased Notch1 expression in these cells allowed efficient perinuclear accumulation of labeled capsids. Nuclear transport of the vector was evident by transgene expression and real-time PCR analyses. Dynamin levels were not found to be different among these cell lines, but blocking dynamin function abrogated AAV2 transduction in DU145 clones overexpressing full-length Notch1 but not in clones overexpressing intracellular Notch1. These studies provide evidence for the role of activated Notch1 in intracellular trafficking of AAV2, which may have implications in the optimal use of AAV2 in human gene therapy.
Collapse
Affiliation(s)
- Changchun Ren
- Department of Pathology, LHRB 513, 701, 19th Street South, University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA
| | | | | |
Collapse
|
164
|
Xin KQ, Mizukami H, Urabe M, Toda Y, Shinoda K, Yoshida A, Oomura K, Kojima Y, Ichino M, Klinman D, Ozawa K, Okuda K. Induction of robust immune responses against human immunodeficiency virus is supported by the inherent tropism of adeno-associated virus type 5 for dendritic cells. J Virol 2006; 80:11899-910. [PMID: 17005662 PMCID: PMC1676308 DOI: 10.1128/jvi.00890-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ability of adeno-associated virus serotype 1 to 8 (AAV1 to AAV8) vectors expressing the human immunodeficiency virus type 1 (HIV-1) Env gp160 (AAV-HIV) to induce an immune response was evaluated in BALB/c mice. The AAV5 vector showed a higher tropism for both mouse and human dendritic cells (DCs) than did the AAV2 vector, whereas other AAV serotype vectors transduced DCs only poorly. AAV1, AAV5, AAV7, and AAV8 were more highly expressed in muscle cells than AAV2. An immunogenicity study of AAV serotypes indicates that AAV1, AAV5, AAV7, and AAV8 vectors expressing the Env gp160 gene induced higher HIV-specific humoral and cell-mediated immune responses than the AAV2 vector did, with the AAV5 vector producing the best responses. Furthermore, mice injected with DCs that had been transduced ex vivo with an AAV5 vector expressing the gp160 gene elicited higher HIV-specific cell-mediated immune responses than did DCs transduced with AAV1 and AAV2 vectors. We also found that AAV vectors produced by HEK293 cells and insect cells elicit similar levels of antigen-specific immune responses. These results demonstrate that the immunogenicity of AAV vectors depends on their tropism for both antigen-presenting cells (such as DCs) and non-antigen-presenting cells (such as muscular cells) and that AAV5 is a better vector than other AAV serotypes. These results may aid in the development of AAV-based vaccine and gene therapy.
Collapse
Affiliation(s)
- Ke-Qin Xin
- Department of Molecular Biodefense Research, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Chadeuf G, Ciron C, Moullier P, Salvetti A. Evidence for encapsidation of prokaryotic sequences during recombinant adeno-associated virus production and their in vivo persistence after vector delivery. Mol Ther 2006; 12:744-53. [PMID: 16023415 DOI: 10.1016/j.ymthe.2005.06.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 05/12/2005] [Accepted: 06/03/2005] [Indexed: 10/25/2022] Open
Abstract
Recombinant adeno-associated virus vectors (rAAV) have been successfully used for long-term gene expression in animal models and in patients. However, while the therapeutic potential of rAAV appears promising, safety issues, including contaminants found in vector stocks, must be further evaluated. We previously reported that a cis-acting replication element present within the AAV-2 p5 promoter was responsible for the encapsidation of rep-cap sequences observed during rAAV production. In that study, we also noticed that plasmid-derived prokaryotic sequences (such as the ampicillin resistance gene) could be found packaged into AAV capsids. In this report, first we confirmed and extended the latter observation by analyzing rAAV stocks produced using different procedures. Second, we demonstrated that these plasmid-derived sequences were transferred and persisted in vivo after rAAV injection into different tissues. Third, our data showed that at least some of these packaged plasmid molecules were linked to the AAV ITRs and were present in vivo in a form that could be rescued through bacterial transformation. This study highlights the need for more stringent characterization of rAAV stocks and provides useful information on the development of rAAV production methods that are able to circumvent or limit the generation of such undesirable particles.
Collapse
|
166
|
Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 2006; 14:316-27. [PMID: 16824801 DOI: 10.1016/j.ymthe.2006.05.009] [Citation(s) in RCA: 613] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 05/17/2006] [Accepted: 05/17/2006] [Indexed: 01/11/2023] Open
Abstract
Recombinant adeno-associated viral (AAV) vectors have rapidly advanced to the forefront of gene therapy in the past decade. The exponential progress of AAV-based vectors has been made possible by the isolation of several naturally occurring AAV serotypes and over 100 AAV variants from different animal species. These isolates are ideally suited to development into human gene therapy vectors due to their diverse tissue tropisms and potential to evade preexisting neutralizing antibodies against the common human AAV serotype 2. Despite their prolific application in several animal models of disease, the mechanisms underlying selective tropisms of AAV serotypes remain largely unknown. Efforts to understand cell surface receptor usage and intracellular trafficking pathways exploited by AAV continue to provide significant insight into the biology of AAV vectors. Such unique traits are thought to arise from differences in surface topology of the capsids of AAV serotypes and variants. In addition to the aforementioned naturally evolved AAV isolates, several strategies to engineer hybrid AAV serotype vectors have been formulated in recent years. The generation of mosaic or chimeric vectors through the transcapsidation or marker-rescue/domain-swapping approach, respectively, is notable in this regard. More recently, combinatorial strategies for engineering AAV vectors using error-prone PCR, DNA shuffling, and other molecular cloning techniques have been established. The latter library-based approaches can serve as powerful tools in the generation of low-immunogenic and cell/tissue type-specific AAV vectors for gene delivery. This review is focused on recent developments in the isolation of novel AAV serotypes and isolates, their production and purification, diverse tissue tropisms, mechanisms of cellular entry/trafficking, and capsid structure. Strategies for engineering hybrid AAV vectors derived from AAV serotypes and potential implications of the rapidly expanding AAV vector toolkit are discussed.
Collapse
Affiliation(s)
- Zhijian Wu
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
167
|
Schmidt M, Grot E, Cervenka P, Wainer S, Buck C, Chiorini JA. Identification and characterization of novel adeno-associated virus isolates in ATCC virus stocks. J Virol 2006; 80:5082-5. [PMID: 16641301 PMCID: PMC1472088 DOI: 10.1128/jvi.80.10.5082-5085.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated viruses (AAVs) depend on a helper virus for efficient replication. To identify novel AAV isolates, we screened a diverse set of virus isolates for the presence of AAV DNA. AAVs found in 10 simian adenovirus isolates showed greater than 96% homology to AAV1 and AAV6 but had distinct biological properties. Two representatives of this group, AAV(VR-195) and AAV(VR-355), were studied in more detail. While the novel AAVs had high sequence homologies and required sialic acid for cell binding and transduction, differences were observed in lectin competition, resulting in distinct tropisms in human cancer cell lines.
Collapse
Affiliation(s)
- Michael Schmidt
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
168
|
Kitajima K, Marchadier DHL, Burstein H, Rader DJ. Persistent liver expression of murine apoA-l using vectors based on adeno-associated viral vectors serotypes 5 and 1. Atherosclerosis 2006; 186:65-73. [PMID: 16099465 DOI: 10.1016/j.atherosclerosis.2005.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 07/01/2005] [Accepted: 07/11/2005] [Indexed: 11/26/2022]
Abstract
Plasma levels of high-density lipoprotein-cholesterol (HDL-C) and apolipoprotein A-l (apoA-l) are inversely related to risk for coronary heart disease. Overexpression of apoA-l inhibits atherosclerosis in animal models. A method of stably expressing apoA-l using somatic gene transfer would be of interest. Pseudotyped adeno-associated virus (AAV) vectors comprised of inverted terminal repeats from AAV serotype 2 have been used for liver-directed gene transfers. We hypothesized that liver-directed gene transfer of apoA-l using vectors based on AAV serotypes 1 and 5 would result in higher-level, prolonged expression of apoA-l and increased HDL-C. To test this hypothesis we injected apoA-l-/- mice via the tail vein with either AAV2, AAV1 or AAV5 vectors encoding the murine apoA-l cDNA driven by the liver-specific thyroxine binding globulin promoter. Plasma levels of murine apoA-l and HDL-C were highest in mice injected with the AAV1-based vector and lowest in mice injected with the AAV2-based vector. Expression of apoA-l was stable up to 1 year after vector injection. These results indicate that AAV5 and AAV1 are more effective vectors for achieving higher levels of stable transgene expression of apoA-l after liver-directed gene transfer than AAV2. Furthermore, AAV1-based vectors generate higher apoA-l levels than AAV5-based vectors. It is possible that the levels of expression achieved using these vectors will be therapeutic in preventing atherosclerosis.
Collapse
Affiliation(s)
- Ken Kitajima
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Medical Center, 654 BRBII/III Labs, 421 Curie Blvd, Philadelphia, PA 19104-6160, USA
| | | | | | | |
Collapse
|
169
|
Warrington KH, Herzog RW. Treatment of human disease by adeno-associated viral gene transfer. Hum Genet 2006; 119:571-603. [PMID: 16612615 DOI: 10.1007/s00439-006-0165-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 02/28/2006] [Indexed: 11/24/2022]
Abstract
During the past decade, in vivo administration of viral gene transfer vectors for treatment of numerous human diseases has been brought from bench to bedside in the form of clinical trials, mostly aimed at establishing the safety of the protocol. In preclinical studies in animal models of human disease, adeno-associated viral (AAV) vectors have emerged as a favored gene transfer system for this approach. These vectors are derived from a replication-deficient, non-pathogenic parvovirus with a single-stranded DNA genome. Efficient gene transfer to numerous target cells and tissues has been described. AAV is particularly efficient in transduction of non-dividing cells, and the vector genome persists predominantly in episomal forms. Substantial correction, and in some instances complete cure, of genetic disease has been obtained in animal models of hemophilia, lysosomal storage disorders, retinal diseases, disorders of the central nervous system, and other diseases. Therapeutic expression often lasted for months to years. Treatments of genetic disorders, cancer, and other acquired diseases are summarized in this review. Vector development, results in animals, early clinical experience, as well as potential hurdles and challenges are discussed.
Collapse
Affiliation(s)
- Kenneth H Warrington
- Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL 32615-9586, USA
| | | |
Collapse
|
170
|
Merten OW, Gény-Fiamma C, Douar AM. Current issues in adeno-associated viral vector production. Gene Ther 2006; 12 Suppl 1:S51-61. [PMID: 16231056 DOI: 10.1038/sj.gt.3302615] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Adeno-associated virus (AAV) is currently one of the most promising systems for human gene therapy. Numerous preclinical studies have documented the excellent safety profile of these vectors along with their impressive performances in their favored target, consisting of highly differentiated postmitotic tissues such as muscle, central nervous system and liver. Clinical trials have been conducted confirming these data, but also emphasizing the requirement of further high-tech developments of the production and purification procedures that would allow both scaling-up and improvement of vector batch quality, necessary to human application. The scope of this review will be the state of the art in the various production methods of recombinant AAV (rAAV), delimiting their respective perimeter of application and also their main advantages and drawbacks, and thereby shedding light on the main challenges to take in the near future to bring AAV vectors more widely into the clinics.
Collapse
Affiliation(s)
- O-W Merten
- Genethon, 1 bis, rue de l'Internationale, Evry, France
| | | | | |
Collapse
|
171
|
Sukhumsirichart W, Attasart P, Boonsaeng V, Panyim S. Complete nucleotide sequence and genomic organization of hepatopancreatic parvovirus (HPV) of Penaeus monodon. Virology 2005; 346:266-77. [PMID: 16356523 DOI: 10.1016/j.virol.2005.06.052] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 04/28/2005] [Accepted: 06/17/2005] [Indexed: 12/30/2022]
Abstract
We have determined the genome of hepatopancreatic parvovirus (HPV), a minus, single-stranded DNA virus isolated from infected Penaeus monodon in Thailand. Its genome consisted of 6321 nucleotides, representing three large open reading frames (ORFs) and two non-coding termini. The left (ORF1), mid (ORF2), and right (ORF3) ORFs on the complementary (plus) strand may code for 428, 579, and 818 amino acids, equivalent to 50, 68, and 92 kDa, respectively. The 5' and 3' ends of viral genome contained hairpin-like structure length of approximately 222 and 215 bp, respectively. No inverted terminal repeat (ITR) was detected. The ORF2 contained conserved replication initiator motif, NTP-binding and helicase domain similar to NS-1 of other parvoviruses. Therefore, it most likely encoded the major nonstructural protein (NS-1). The ORF1 encoded putative nonstructural protein-2 (NS-2) with unknown function. The ORF3 of the HPV genome encoded a capsid protein (VP) of approximately 92 kDa. This may be later cleaved after arginine residue to produce a 57-kDa structural protein. A phylogenetic tree based on conserved amino acid sequences (119 aa) revealed that it is closely related to Brevidensoviruses, which are shrimp parvovirus (IHHNV) and mosquito densoviruses (AaeDNV and AalDNV). However, the overall genomic organization and genome size of HPV were different from these parvoviruses, for instance, the non-overlapping of NS1 and NS2, the larger VP gene, and the bigger genome size. This suggested that this HPV virus is a new type in Parvoviridae family. We therefore propose to rename this virus P. monodon densovirus (PmDNV).
Collapse
Affiliation(s)
- Wasana Sukhumsirichart
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110, Thailand.
| | | | | | | |
Collapse
|
172
|
Lux K, Goerlitz N, Schlemminger S, Perabo L, Goldnau D, Endell J, Leike K, Kofler DM, Finke S, Hallek M, Büning H. Green fluorescent protein-tagged adeno-associated virus particles allow the study of cytosolic and nuclear trafficking. J Virol 2005; 79:11776-87. [PMID: 16140755 PMCID: PMC1212592 DOI: 10.1128/jvi.79.18.11776-11787.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To allow the direct visualization of viral trafficking, we genetically incorporated enhanced green fluorescent protein (GFP) into the adeno-associated virus (AAV) capsid by replacement of wild-type VP2 by GFP-VP2 fusion proteins. High-titer virus progeny was obtained and used to elucidate the process of nuclear entry. In the absence of adenovirus 5 (Ad5), nuclear translocation of AAV capsids was a slow and inefficient process: at 2 h and 4 h postinfection (p.i.), GFP-VP2-AAV particles were found in the perinuclear area and in nuclear invaginations but not within the nucleus. In Ad5-coinfected cells, isolated GFP-VP2-AAV particles were already detectable in the nucleus at 2 h p.i., suggesting that Ad5 enhanced the nuclear translocation of AAV capsids. The number of cells displaying viral capsids within the nucleus increased slightly over time, independently of helper virus levels, but the majority of the AAV capsids remained in the perinuclear area under all conditions analyzed. In contrast, independently of helper virus and with 10 times less virions per cell already observed at 2 h p.i., viral genomes were visible within the nucleus. Under these conditions and even with prolonged incubation times (up to 11 h p.i.), no intact viral capsids were detectable within the nucleus. In summary, the results show that GFP-tagged AAV particles can be used to study the cellular trafficking and nuclear entry of AAV. Moreover, our findings argue against an efficient nuclear entry mechanism of intact AAV capsids and favor the occurrence of viral uncoating before or during nuclear entry.
Collapse
|
173
|
Abstract
Adeno-associated virus (AAV) has attracted considerable interest as a gene therapy vector over the past decade. In all, 85% of the current 2052 PubMed references on AAV (as of December 2004) have been published in the last 10 years. As researchers have moved forward with using this vector system for gene delivery, an increased appreciation for the complexities of AAV biology has emerged. The biology of recombinant AAV (rAAV) transduction has demonstrated considerable diversity in different cell types and target tissues. This review will summarize the current understanding of events that control rAAV transduction following receptor binding and leading to nuclear uptake. These stages are broadly classified as intracellular trafficking and have been found to be a major rate-limiting step in rAAV transduction for many cell types. Advances in understanding this area of rAAV biology will help to improve the efficacy of this vector system for the treatment of inherited and acquired diseases.
Collapse
Affiliation(s)
- W Ding
- Department of Anatomy and Cell Biology, University of Iowa School of Medicine, Iowa City, 52242, USA
| | | | | | | |
Collapse
|
174
|
Flotte TR, Berns KI. Adeno-associated virus: a ubiquitous commensal of mammals. Hum Gene Ther 2005; 16:401-7. [PMID: 15871671 DOI: 10.1089/hum.2005.16.401] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Terence R Flotte
- Department of Pediatrics, and Genetics Institute, University of Florida, Gainesville, FL 32610, USA.
| | | |
Collapse
|
175
|
Abstract
In recent years, significant efforts have been made on studying and engineering adeno-associated virus (AAV) capsid, in order to increase efficiency in targeting specific cell types that are non-permissive to wild type (wt) viruses and to improve efficacy in infecting only the cell type of interest. With our previous knowledge of the viral properties of the naturally occurring serotypes and the elucidation of their capsid structures, we can now generate capsid mutants, or hybrid serotypes, by various methods and strategies. In this review, we summarize the studies performed on AAV retargeting, and categorize the available hybrid serotypes to date, based on the type of modification: 1) transcapsidation, 2) adsorption of bi-specific antibody to capsid surface, 3) mosaic capsid, and 4) chimeric capsid. Not only these hybrid serotypes could achieve high efficiency of gene delivery to a specific targeted cell type, which can be better-tailored for a particular clinical application, but also serve as a tool for studying AAV biology such as receptor binding, trafficking and genome delivery into the nucleus.
Collapse
Affiliation(s)
- Vivian W. Choi
- Department of Pharmacology and
- Gene Therapy Center, University of North Carolina at Chapel Hill. Chapel Hill. NC 27599, USA
| | - Douglas M. McCarty
- Columbus Children’s Research Institute, Center for Gene Therapy, Columbus Children’s Hospital, and Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio 43205, USA
| | - R. Jude Samulski
- Department of Pharmacology and
- Gene Therapy Center, University of North Carolina at Chapel Hill. Chapel Hill. NC 27599, USA
- *Address correspondence to this author at the 7119 Thurston Bowles CB#7352, University of North Carolina at Chapel Hill, NC 27599, USA; Tel: 1-919-962-3285, Fax 1-919-966-0907; E-mail:
| |
Collapse
|
176
|
Gonçalves MAFV. Adeno-associated virus: from defective virus to effective vector. Virol J 2005; 2:43. [PMID: 15877812 PMCID: PMC1131931 DOI: 10.1186/1743-422x-2-43] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 05/06/2005] [Indexed: 11/10/2022] Open
Abstract
The initial discovery of adeno-associated virus (AAV) mixed with adenovirus particles was not a fortuitous one but rather an expression of AAV biology. Indeed, as it came to be known, in addition to the unavoidable host cell, AAV typically needs a so-called helper virus such as adenovirus to replicate. Since the AAV life cycle revolves around another unrelated virus it was dubbed a satellite virus. However, the structural simplicity plus the defective and non-pathogenic character of this satellite virus caused recombinant forms to acquire centre-stage prominence in the current constellation of vectors for human gene therapy. In the present review, issues related to the development of recombinant AAV (rAAV) vectors, from the general principle to production methods, tropism modifications and other emerging technologies are discussed. In addition, the accumulating knowledge regarding the mechanisms of rAAV genome transduction and persistence is reviewed. The topics on rAAV vectorology are supplemented with information on the parental virus biology with an emphasis on aspects that directly impact on vector design and performance such as genome replication, genetic structure, and host cell entry.
Collapse
Affiliation(s)
- Manuel A F V Gonçalves
- Gene Therapy Section, Department of Molecular Cell Biology, Leiden University Medical Center, the Netherlands.
| |
Collapse
|
177
|
Hacker UT, Wingenfeld L, Kofler DM, Schuhmann NK, Lutz S, Herold T, King SBS, Gerner FM, Perabo L, Rabinowitz J, McCarty DM, Samulski RJ, Hallek M, Büning H. Adeno-associated virus serotypes 1 to 5 mediated tumor cell directed gene transfer and improvement of transduction efficiency. J Gene Med 2005; 7:1429-38. [PMID: 15945124 DOI: 10.1002/jgm.782] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Gene therapy is an attractive new approach for the treatment of cancer. Therefore, the development of efficient vector systems is of crucial importance in this field. Different adeno-associated virus (AAV) serotypes have been characterized so far, which show considerable differences in tissue tropism. Consequently, we aimed to characterize the most efficient serotype for this application. METHODS To exclude all influences other than those provided by the capsid, all serotypes contained the same transgene cassette flanked by the AAV2 inverted terminal repeats. We systematically compared these vectors for efficiency in human cancer cell directed gene transfer. In order to identify limiting steps, the influence of second-strand synthesis and proteasomal degradation of AAV in a poorly transducible cell line were examined. RESULTS AAV2 was the most efficient serotype in all solid tumor cells and primary melanoma cells with transduction rates up to 98 +/- 0.3%. Transduction above 70% could be reached with serotypes 1 (in cervical and prostate carcinoma) and 3 (in cervical, breast, prostate and colon carcinoma) using 1000 genomic particles per cell. In the colon carcinoma cell line HT-29 proteasomal degradation limited AAV1-AAV4-mediated gene transfer. Moreover, inefficient second-strand synthesis prevents AAV2-mediated transgene expression in this cell line. CONCLUSIONS Recent advances in AAV-vector technology suggest that AAV-based vectors can be used for cancer gene therapy. Our comparative analysis revealed that, although AAV2 is the most promising candidate for such an application, serotypes 1 and 3 are valid alternatives. Furthermore, the use of self-complementary AAV vectors and proteasome inhibitors significantly improves cancer cell transduction.
Collapse
Affiliation(s)
- Ulrich T Hacker
- Klinik für Innere Medizin I, Klinikum der Universität zu Köln, Joseph-Stelzmann-Strasse 9, 50925 Köln, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Francis JD, Snyder RO. Production of research and clinical‐grade recombinant adeno‐associated virus vectors. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0075-7535(05)31002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
179
|
Carter BJ. Adeno-associated virus and the development of adeno-associated virus vectors: a historical perspective. Mol Ther 2004; 10:981-9. [PMID: 15564130 DOI: 10.1016/j.ymthe.2004.09.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 08/18/2004] [Accepted: 09/14/2004] [Indexed: 11/18/2022] Open
|
180
|
Hildinger M, Auricchio A. Advances in AAV-mediated gene transfer for the treatment of inherited disorders. Eur J Hum Genet 2004; 12:263-71. [PMID: 14722585 DOI: 10.1038/sj.ejhg.5201153] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The holy grail of gene therapy is the cure of genetic diseases. To achieve this goal, a vector system is desirable that offers a high level of safety combined with clinical efficacy and versatility in terms of potential applications. Gene therapy vectors based on recombinant adeno-associated viruses (AAVs) meet all of these criteria: They are nonpathogenic, devoid of viral coding sequences, and mediate long-term gene expression in the absence of an immune or inflammatory response. Moreover, with the recent discovery of novel AAV serotypes, there is now one preferred serotype for nearly every organ or tissue to target. Thus, AAV gene therapy vectors are increasingly becoming the vectors of choice for the treatment of inherited disorders.
Collapse
|
181
|
Abstract
Parvoviruses comprise a group of single-stranded DNA viruses with greater potential for gene therapy applications. Unique characteristics of paroviruses, such as non-pathogenicity, antioncogenicity and methods of efficient recombinant vector production, have drawn more attention towards utilising parvovirus-based vectors in cancer gene therapy. Although > 30 different parvoviruses have been identified so far, recombinant vectors derived from adeno-associated virus (AAV), minute virus of mice (MVM), LuIII and parvovirus H1 have been successfully tested in many preclinical models of human diseases, including cancer. The present article will focus on the potential of non-replicating and autonomously replicating parvoviral vectors in cancer gene therapy, including strategies that target tumour cells directly or indirectly.
Collapse
Affiliation(s)
- Selvarangan Ponnazhagan
- Department of Pathology, LHRB 513, 701 19th Street South, University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA.
| |
Collapse
|
182
|
Schmidt M, Katano H, Bossis I, Chiorini JA. Cloning and characterization of a bovine adeno-associated virus. J Virol 2004; 78:6509-16. [PMID: 15163744 PMCID: PMC416525 DOI: 10.1128/jvi.78.12.6509-6516.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To better understand the relationship between primate adeno-associated viruses (AAVs) and those of other mammals, we have cloned and sequenced the genome of an AAV found as a contaminant in two isolates of bovine adenovirus that was reported to be serologically distinct from primate AAVs. The bovine AAV (BAAV) genome has 4,693 bp, and its organization is similar to that of other AAV isolates. The left-hand open reading frame (ORF) and both inverted terminal repeats (ITRs) have the highest homology with the rep ORF and ITRs of AAV serotype 5 (AAV-5) (89 and 96%, respectively). However, the right-hand ORF was only 55% identical to the AAV-5 capsid ORF; it had the highest homology with the capsid ORF of AAV-4 (76%). By comparing the BAAV cap sequence with a model of an AAV-4 capsid, we mapped the regions of BAAV VP1 that are divergent from AAV-4. These regions are located on the outside of the capsid and are partially located in exposed loops. BAAV was not neutralized by antisera raised against recombinant AAV-2, AAV-4, or AAV-5, and it demonstrated a unique cell tropism profile in four human cancer cell lines, suggesting that BAAV might have transduction activity distinct from that of other isolates. A murine model of salivary gland gene transfer was used to evaluate the in vivo performance of recombinant BAAV. Recombinant BAAV-mediated gene transfer was 11 times more efficient than that with AAV-2. Overall, these data suggest that vectors based on BAAV could be useful for gene transfer applications.
Collapse
Affiliation(s)
- Michael Schmidt
- Gene Therapy and Therapeutics Branch, NIH 10/1N113, 10 Center Drive, MSC1190, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
183
|
Peden CS, Burger C, Muzyczka N, Mandel RJ. Circulating anti-wild-type adeno-associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated, but not rAAV5-mediated, gene transfer in the brain. J Virol 2004; 78:6344-59. [PMID: 15163728 PMCID: PMC416536 DOI: 10.1128/jvi.78.12.6344-6359.2004] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epidemiological studies report that 80% of the population maintains antibodies (Ab) to wild-type (wt) adeno-associated virus type 2 (AAV2), with 30% expressing neutralizing Ab (NAb). The blood-brain barrier (BBB) provides limited immune privilege to brain parenchyma, and the immune response to recombinant AAV (rAAV) administration in the brain of a naive animal is minimal. However, central nervous system transduction in preimmunized animals remains unstudied. Vector administration may disrupt the BBB sufficiently to promote an immune response in a previously immunized animal. We tested the hypothesis that intracerebral rAAV administration and readministration would not be affected by the presence of circulating Ab to wt AAV2. Rats peripherally immunized with live wt AAV2 and naive controls were tested with single intrastriatal injections of rAAV2 encoding human glial cell line-derived neurotrophic factor (GDNF) or green fluorescent protein (GFP). Striatal readministration of rAAV2-GDNF was also tested in preimmunized and naive rats. Finally, serotype specificity of the immunization against wt AAV2 was examined by single injections of rAAV5-GFP. Preimmunization resulted in high levels of circulating NAb and prevented transduction by rAAV2 as assessed by striatal GDNF levels. rAAV2-GFP striatal transduction was also prevented by immunization, while rAAV5-GFP-mediated transduction, as assessed by stereological cell counting, was unaffected. Additionally, inflammatory markers were present in those animals that received repeated administrations of rAAV2, including markers of a cell-mediated immune response and cytotoxic damage. A live virus immunization protocol generated the circulating anti-wt-AAV Ab seen in this experiment, while human titers are commonly acquired via natural infection. Regardless, the data show that the presence of high levels of NAb against wt AAV can reduce rAAV-mediated transduction in the brain and should be accounted for in future experiments utilizing this vector.
Collapse
Affiliation(s)
- Carmen S Peden
- University of Florida College of Medicine, P.O. Box 100244, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
184
|
Walters RW, Agbandje-McKenna M, Bowman VD, Moninger TO, Olson NH, Seiler M, Chiorini JA, Baker TS, Zabner J. Structure of adeno-associated virus serotype 5. J Virol 2004; 78:3361-71. [PMID: 15016858 PMCID: PMC371067 DOI: 10.1128/jvi.78.7.3361-3371.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Adeno-associated virus serotype 5 (AAV5) requires sialic acid on host cells to bind and infect. Other parvoviruses, including Aleutian mink disease parvovirus (ADV), canine parvovirus (CPV), minute virus of mice, and bovine parvovirus, also bind sialic acid. Hence, structural homology may explain this functional homology. The amino acids required for CPV sialic acid binding map to a site at the icosahedral twofold axes of the capsid. In contrast to AAV5, AAV2 does not bind sialic acid, but rather binds heparan sulfate proteoglycans at its threefold axes of symmetry. To explore the structure-function relationships among parvoviruses with respect to cell receptor attachment, we determined the structure of AAV5 by cryo-electron microscopy (cryo-EM) and image reconstruction at a resolution of 16 A. Surface features common to some parvoviruses, namely depressions encircling the fivefold axes and protrusions at or surrounding the threefold axes, are preserved in the AAV5 capsid. However, even though there were some similarities, a comparison of the AAV5 structure with those of ADV and CPV failed to reveal a feature which could account for the sialic acid binding phenotype common to all three viruses. In contrast, the overall surface topologies of AAV5 and AAV2 are similar. A pseudo-atomic model generated for AAV5 based on the crystal structure of AAV2 and constrained by the AAV5 cryo-EM envelope revealed differences only in surface loop regions. Surprisingly, the surface topologies of AAV5 and AAV2 are remarkably similar to that of ADV despite only exhibiting approximately 20% identity in amino acid sequences. Thus, capsid surface features are shared among parvoviruses and may not be unique to their replication phenotypes, i.e., whether they require a helper or are autonomous. Furthermore, specific surface features alone do not explain the variability in carbohydrate requirements for host cell receptor interactions among parvoviruses.
Collapse
Affiliation(s)
- Robert W Walters
- Department of Internal Medicine, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Zhi N, Zádori Z, Brown KE, Tijssen P. Construction and sequencing of an infectious clone of the human parvovirus B19. Virology 2004; 318:142-52. [PMID: 14972543 DOI: 10.1016/j.virol.2003.09.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 09/08/2003] [Accepted: 09/12/2003] [Indexed: 10/26/2022]
Abstract
Human parvovirus B19 has a nonenveloped, icosahedral capsid packaging a linear single-stranded DNA genome of 5.6 kb with long inverted terminal repeats (ITR) at both the 5' and 3' end. Previous attempts to construct a full-length B19 clone were unsuccessful due to deletions in the ITR sequences. We cloned the complete parvovirus B19 genome with intact ITRs from an aplastic crisis patient. Sequence analysis of the complete viral genome indicated that both 5' and 3' ITRs have two sequence configurations and several base changes within the ITRs compared to previous published sequences. After transfection of the plasmid into permissive cells, spliced and non-spliced viral transcripts and viral capsid proteins could be detected. Southern blot analysis of the DNA purified from the plasmid-transfected cells confirmed parvovirus B19 DNA replication. Production of infectious virus by the B19 plasmid was shown by inoculation of cell lysate derived from transfected cells into fresh cells. Together, these results indicate the first successful production of an infectious clone for parvovirus B19 virus.
Collapse
Affiliation(s)
- Ning Zhi
- Hematology Branch, National Heart Lung and Blood Institute, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
186
|
Fraefel C, Bittermann AG, Büeler H, Heid I, Bächi T, Ackermann M. Spatial and temporal organization of adeno-associated virus DNA replication in live cells. J Virol 2004; 78:389-98. [PMID: 14671120 PMCID: PMC303420 DOI: 10.1128/jvi.78.1.389-398.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 09/16/2003] [Indexed: 11/20/2022] Open
Abstract
Upon cell entry, the genomes of herpes simplex virus type 1 (HSV-1) and adenovirus (Ad) associate with distinct nuclear structures termed ND10 or promyelocytic leukemia (PML) nuclear bodies (NBs). PML NB morphology is altered or disrupted by specific viral proteins as replication proceeds. We examined whether adeno-associated virus (AAV) replication compartments also associate with PML NBs, and whether modification or disruption of these by HSV-1 or Ad, both of which are helper viruses for AAV, is necessary at all. Furthermore, to add a fourth dimension to our present view of AAV replication, we established an assay that allows visualization of AAV replication in live cells. A recombinant AAV containing 40 lac repressor binding sites between the AAV inverted terminal repeats was constructed. AAV Rep protein and helper virus-mediated replication of this recombinant AAV genome was visualized by binding of enhanced yellow fluorescent protein-lac repressor fusion protein to double-stranded AAV replication intermediates. We demonstrate in live cells that AAV DNA replication occurs in compartments which colocalize with AAV Rep. Early after infection, the replication compartments were small and varied in numbers from 2 to more than 40 per cell nucleus. Within 4 to 8 h, individual small replication compartments expanded and fused to larger structures which filled out much of the cell nucleus. We also show that AAV replication compartments can associate with modified PML NBs in Ad-infected cells. In wild-type HSV-1-infected cells, AAV replication compartments and PML NBs did not coexist, presumably because PML was completely disrupted by the HSV-1 ICP0 protein. However, alteration or disruption of PML appears not to be a prerequisite for AAV replication, as the formation of replication compartments was normal when the ICP0 mutants HSV-1 dl1403 and HSV-1 FXE, which do not affect PML NBs, were used as the helper viruses; under these conditions, AAV replication compartments did not associate with PML NBs.
Collapse
Affiliation(s)
- Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
187
|
Ward P, Elias P, Linden RM. Rescue of the adeno-associated virus genome from a plasmid vector: evidence for rescue by replication. J Virol 2003; 77:11480-90. [PMID: 14557633 PMCID: PMC229372 DOI: 10.1128/jvi.77.21.11480-11490.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In cultured cells, adeno-associated virus (AAV) replication requires coinfection with a helper virus, either adenovirus or herpesvirus. In the absence of helper virus coinfection AAV can integrate its genome site specifically into the AAVS1 region of chromosome 19. Upon subsequent infection with a helper virus, the AAV genome is released from chromosome 19 by a process termed rescue, and productive replication ensues. The AAV genome cloned into a plasmid vector can also serve to initiate productive AAV replication. When such constructs are transfected into cells and those cells are simultaneously or subsequently infected with a helper virus, the AAV genome is released from the plasmid. This process is thought to serve as a model for rescue from the human genomic site. In this report we present a model for rescue of AAV genomes by replication. A hallmark of this model is the production of a partially single-stranded and partially double-stranded molecule. We show that the AAV2 Rep 68 protein, together with the UL30/UL42 herpes simplex virus type 1 DNA polymerase and the UL29 single-strand DNA binding protein ICP8, is sufficient to efficiently and precisely rescue AAV from a plasmid in a way that is dependent on the AAV inverted terminal repeat sequence.
Collapse
Affiliation(s)
- Peter Ward
- Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, New York 10129, USA.
| | | | | |
Collapse
|
188
|
Affiliation(s)
- E Lehtonen
- Free University of Brussels, Laboratory of Experimental Neurosurgery, Interdisciplinary Research Institute (IRIBHM), B-1070 Brussels, Belgium
| | | |
Collapse
|
189
|
Lee K, Kim YG, Jo EC. Shuttle PCR-based cloning of the infectious adeno-associated virus type 5 genome. J Virol Methods 2003; 111:75-84. [PMID: 12880922 DOI: 10.1016/s0166-0934(03)00135-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adeno-associated virus type 5 (AAV5), which is distinct from the other serotypes of AAV, has attracted considerable interest as a premier gene delivery vector. As do the other serotypes, AAV5 contains its 4.7 kb-sized, single-stranded genome flanked with inverted terminal repeats (ITRs) in a hairpin conformation, which serves frequently as pause and arrest sites for DNA polymerases during PCR. To amplify the full-length of the AAV5 genome in single step, we established a shuttled, long and accurate PCR (LA-PCR) procedure in the present study. Furthermore, helper oligonucleotides, which hybridize with the palindromic sequence elements in ITR, were designed and employed in PCR to prevent the formation of hairpin structures by highly GC-rich ITRs. Consequently, a 4.7 kb-sized PCR product was amplified successfully, and cloned into a pBluescript II KS(+) plasmid. Six plasmids, harboring the full-length AAV5 genome, rescued wild type AAV5 viruses on transfection to HeLa and HEK 293 cells, which were co-infected with helper adenoviruses. Western and Southern blot analyses supported further the fact that the pAAV5 plasmids harbored the full-length AAV5 genome. The PCR method described in this study is applicable for the cloning of genomes containing variable palindromic structures, in addition to AAV genomes of other serotypes.
Collapse
Affiliation(s)
- Kyuhyun Lee
- MOGAM Biotechnology Research Institute, 341 Pojung-Ri Koosung-Eup, Yongin, Kyonggi-Do 449-913, South Korea
| | | | | |
Collapse
|
190
|
Büning H, Ried MU, Perabo L, Gerner FM, Huttner NA, Enssle J, Hallek M. Receptor targeting of adeno-associated virus vectors. Gene Ther 2003; 10:1142-51. [PMID: 12833123 DOI: 10.1038/sj.gt.3301976] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Adeno-associated virus (AAV) is a promising vector for human somatic gene therapy. However, its broad host range is a disadvantage for in vivo gene therapy, because it does not allow the selective tissue- or organ-restricted transduction required to enhance the safety and efficiency of the gene transfer. Therefore, increasing efforts are being made to target AAV-2-based vectors to specific receptors. The studies summarized in this review show that it is possible to target AAV-2 to a specific cell. So far, the most promising approach is the genetic modification of the viral capsid. However, the currently available AAV-2 targeting vectors need to be improved with regard to the elimination of the wild-type AAV-2 tropism and the improvement of infectious titers. The creation of highly efficient AAV-2 targeting vectors will also require a better understanding of the transmembrane and intracellular processing of this virus.
Collapse
Affiliation(s)
- H Büning
- Genzentrum Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Münich, Germany
| | | | | | | | | | | | | |
Collapse
|
191
|
Bossis I, Chiorini JA. Cloning of an avian adeno-associated virus (AAAV) and generation of recombinant AAAV particles. J Virol 2003; 77:6799-810. [PMID: 12768000 PMCID: PMC156192 DOI: 10.1128/jvi.77.12.6799-6810.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have proposed that adeno-associated viruses (AAVs) are not evolutionarily linked to other mammalian autonomous parvoviruses but are more closely linked to the autonomous parvoviruses of birds. To better understand the relationship between primate and avian AAVs (AAAVs), we cloned and sequenced the genome of an AAAV (ATCC VR-865) and generated recombinant AAAV particles. The genome of AAAV is 4,694 nucleotides in length and has organization similar to that of other AAVs. The entire genome of AAAV displays 56 to 65% identity at the nucleotide level with the other known AAVs. The AAAV genome has inverted terminal repeats of 142 nucleotides, with the first 122 forming the characteristic T-shaped palindromic structure. The putative Rep-binding element consists of a tandem (GAGY)(4) repeat, and the putative terminal resolution site (trs), CCGGT/CG, contains a single nucleotide substitution relative to the AAV(2) trs. The Rep open reading frame of AAAV displays 50 to 54% identity at the amino acid level with the other AAVs, with most of the diversity clustered at the carboxyl and amino termini. Comparison of the capsid proteins of AAAV and the primate dependoviruses indicate that divergent regions are localized to surface-exposed loops. Despite these sequence differences, we were able to produce recombinant AAAV particles carrying a lacZ reporter gene by cotransfection in 293T cells and were able to examine transduction efficiency in both chicken primary cells and several cell lines. Our findings indicate that AAAV is the most divergent AAV described to date but maintains all the characteristics unique to the genera of dependovirus.
Collapse
Affiliation(s)
- Ioannis Bossis
- Gene Therapy and Therapeutics Branch, National Institue of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
192
|
Abstract
Although most animal experiments with recombinant adeno-associated virus (AAV) vectors have been based on AAV serotype 2, recent studies showed that AAV vectors based on AAV serotype 1 performed more efficiently in muscle and other tissues. On the other hand, AAV2-based vectors can be readily purified by heparin column. To combine the advantages of both types of vectors, we developed a strategy to generate chimeric vectors by using a mixture of AAV helper plasmids encoding both serotypes in the transfection process. Because the AAV packaging machinery cannot distinguish between closely related AAV1 and AAV2 capsid proteins, each packaged virion contains capsid proteins from both serotypes. As expected, the resulting chimeric vectors could be purified by heparin column. Neutralizing antibody assays showed that the chimeric vectors can be inhibited by either AAV1 or AAV2 antiserum. In vivo, the chimeric vectors direct levels of expression similar to those of AAV1 in muscle or AAV2 in liver; that is, they combine the best transduction characteristics of both parent vectors. In summary, this study provides a straightforward method for combining various properties of different AAV serotypes into one vector. Potential limitations of the chimeric vectors are also discussed.
Collapse
Affiliation(s)
- Bernd Hauck
- Department of Pediatrics, University of Pennsylvania Medical Center and The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
193
|
Wu D, Razzano P, Grande DA. Gene therapy and tissue engineering in repair of the musculoskeletal system. J Cell Biochem 2003; 88:467-81. [PMID: 12532324 DOI: 10.1002/jcb.10332] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Historically, surgeons have sought and used different procedures in order to augment the repair of various skeletal tissues. Now, with the completion of the Human Genome Project, many researchers have turned to gene therapy as a means to aid various ailments. In the orthopedic field, many strides have been made toward using gene therapy and tissue engineering in a clinical setting. In this review, several studies are outlined in different areas that gene therapy has or will influence orthopedic surgery. Gene therapy and tissue engineering can aid in fracture healing and spinal fusions by inducing bone formation, ligamentous repairs by increasing the production of connective tissue fibers, intervertebral disc disease by creating potential replacements, and articular cartilage repairs by providing means to improve cartilage. As we continue to see great contributions, such as the few mentioned here, this field will continue to mature and develop.
Collapse
Affiliation(s)
- Daniel Wu
- Department of Orthopedic Surgery, North Shore University, Long Island Jewish Health System, Manhasset, New York, USA
| | | | | |
Collapse
|
194
|
Amiss TJ, McCarty DM, Skulimowski A, Samulski RJ. Identification and characterization of an adeno-associated virus integration site in CV-1 cells from the African green monkey. J Virol 2003; 77:1904-15. [PMID: 12525625 PMCID: PMC140930 DOI: 10.1128/jvi.77.3.1904-1915.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Accepted: 11/04/2002] [Indexed: 01/09/2023] Open
Abstract
Adeno-associated virus (AAV) is a classification given to a group of nonpathogenic, single-stranded DNA viruses known to reside latently in primates. During latency in humans, AAV type 2 (AAV2) preferentially integrates at a site on chromosome 19q13.3ter by targeting a sequence composed of an AAV Rep binding element (RBE), a spacer, and a nicking site. Here, we report the DNA sequence of an African green monkey AAV integration site isolated from CV-1 cells. Overall, it has 98% homology to the analogous human site, including identical spacer and nicking sequences. However, the simian RBE is expanded, having five perfect directly repeated GAGC tetramers. We carried out a number of in vitro and in vivo assays to determine the effect of this expanded RBE sequence on the Rep-RBE interaction and AAV targeted integration. Using electromobility shift assays it was demonstrated that AAV4 Rep68 bound the expanded RBE with a sixfold-greater affinity than the human RBE. To determine the basis for the affinity increase, DNase I protection and methylation interference (MI) assays were performed. Comparison of footprints on both the human and simian RBEs revealed nearly identical protection; however, MI analysis suggested greater interaction with the guanine nucleotides of the expanded RBE, thus providing a biochemical basis for the increased binding activity. In vivo, integration targeted to the simian RBE was demonstrated by PCR analysis of latently infected Cos-7 cells. Interestingly, the frequency of site-specific integration was twofold greater in Cos-7 cells than in HeLa cells. Overall, these experiments establish that the simian RBE, identified in CV-1 cells, functions analogously to the human RBE and provide further evidence for a developing model that proposes individual roles for the RBE and the spacer and nicking site elements.
Collapse
Affiliation(s)
- Terry J Amiss
- Department of Pharmacology. Gene Therapy Center. Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
195
|
Virus-based vectors for gene expression in mammalian cells: Adeno-associated virus. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0167-7306(03)38006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
196
|
Musatov S, Roberts J, Pfaff D, Kaplitt M. A cis-acting element that directs circular adeno-associated virus replication and packaging. J Virol 2002; 76:12792-802. [PMID: 12438604 PMCID: PMC136660 DOI: 10.1128/jvi.76.24.12792-12802.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel pathway of adeno-associated virus (AAV) replication marked by the assembly of circular monomer duplex intermediates (cAAV) has been recently discovered. In the present report we identify a single AD domain of the inverted terminal repeat as a minimal origin of cAAV replication. A small internal palindrome (BB'), necessary for optimal Rep-inverted terminal repeat interaction, does not contribute to the efficiency of cAAV replication, while the terminal resolution site is an essential cis-acting element. Furthermore, recombinant cAAV vectors that encompass only the AD domain replicate exclusively in a circular form and no detectable linear duplex replicative intermediates are generated, suggesting that both pathways of AAV replication are independent and can be separated. In addition, we show that cAAVs are efficient templates for encapsidation of single-stranded DNA genomes, an observation that assigns a biological role for these novel replication species. Together, these findings shed new light on the current model of AAV replication and packaging.
Collapse
Affiliation(s)
- Sergei Musatov
- Laboratory of Neurobiology and Behavior, The Rockefeller University, Weill Medical College of Cornell University, 525 East 68th Street, New York, NY 10021, USA
| | | | | | | |
Collapse
|
197
|
Xiao W, Warrington KH, Hearing P, Hughes J, Muzyczka N. Adenovirus-facilitated nuclear translocation of adeno-associated virus type 2. J Virol 2002; 76:11505-17. [PMID: 12388712 PMCID: PMC136768 DOI: 10.1128/jvi.76.22.11505-11517.2002] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined cytoplasmic trafficking and nuclear translocation of adeno-associated virus type 2 (AAV) by using Alexa Fluor 488-conjugated wild-type AAV, A20 monoclonal antibody immunocytochemistry, and subcellular fractionation techniques followed by DNA hybridization. Our results indicated that in the absence of adenovirus (Ad), AAV enters the cell rapidly and escapes from early endosomes with a t(1/2) of about 10 min postinfection. Cytoplasmically distributed AAV accumulated around the nucleus and persisted perinuclearly for 16 to 24 h. Viral uncoating occurred before or during nuclear entry beginning about 12 h postinfection, when viral protein and DNA were readily detected in the nucleus. Few, if any, intact AAV capsids were found in the nucleus. In the presence of Ad, however, cytoplasmic AAV quickly translocated into the nucleus as intact particles as early as 40 min after coinfection, and this facilitated nuclear translocation of AAV was not blocked by the nuclear pore complex inhibitor thapsigargan. The rapid nuclear translocation of intact AAV capsids in the presence of Ad suggested that one or more Ad capsid proteins might be altering trafficking. Indeed, coinfection with empty Ad capsids also resulted in the appearance of AAV DNA in nuclei within 40 min. Escape from early endosomes did not seem to be affected by Ad coinfection.
Collapse
Affiliation(s)
- Wu Xiao
- Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
198
|
Abstract
Vectors derived from adeno-associated virus serotype 2 (AAV-2) represent a most promising tool for human gene transfer because these vectors are neither pathogenic nor toxic to the target cell, and allow long-term gene expression in a large variety of tissues. However, they are rather inefficient at infecting a number of clinically relevant cell types, and transduction by these vectors is likely hampered by neutralizing antibodies that are highly prevalent in the human population. Therefore, an increasing number of researchers are currently turning their attention to the five other serotypes of AAV, to try and develop these as novel vectors for human gene transfer, hoping to overcome the problems associated with AAV-2 vectors. Here I describe and discuss the methodology to produce these alternative AAV vectors in tissue culture. In detail, two strategies are compared that rely on transfection of cells in culture with either two or three plasmids, containing the AAV vector genome and encoding AAV and adenoviral helper functions. Either of these protocols can be used to package a recombinant AAV genome into capsids of its own serotype (generation of "real" serotypes) or to "cross-package" this vector DNA into capsids derived from another AAV serotype ("pseudotyping"). As these approaches are still in their early stages, the existing limitations of current technology are discussed, and possible further improvements proposed.
Collapse
Affiliation(s)
- Dirk Grimm
- Department of Pediatrics, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
199
|
Auricchio A, O’Connor E, Weiner D, Gao GP, Hildinger M, Wang L, Calcedo R, Wilson JM. Noninvasive gene transfer to the lung for systemic delivery of therapeutic proteins. J Clin Invest 2002. [DOI: 10.1172/jci0215780] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
200
|
Auricchio A, O'Connor E, Weiner D, Gao GP, Hildinger M, Wang L, Calcedo R, Wilson JM. Noninvasive gene transfer to the lung for systemic delivery of therapeutic proteins. J Clin Invest 2002; 110:499-504. [PMID: 12189244 PMCID: PMC150421 DOI: 10.1172/jci15780] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study evaluates the use of vectors based on adeno-associated viruses (AAVs) to noninvasively deliver genes to airway epithelial cells as a means for achieving systemic administration of therapeutic proteins. We intranasally delivered AAV vectors to mice in which the same AAV2 genome encoding a cellular marker was packaged in capsids from AAV1, 2, or 5 (AAV2/1, AAV2/2, or AAV2/5, respectively). Gene expression levels achieved in both airways and alveoli were higher with AAV2/5 than with AAV2/1 and were undetectable with AAV2/2. The same set of vectors encoding a secreted therapeutic protein, erythropoietin (Epo), under the control of a lung-specific promoter (CC10) was intranasally delivered to mice, resulting in polycythemia with the highest levels of serum Epo obtained with AAV2/5 vectors. After a single intranasal administration of this vector, secretion of Epo was documented for 150 days. Similarly, intranasal administration of an AAV2/5-CC10-factor IX vector resulted in secretion of functional recombinant protein in the bloodstream of hemophiliac, factor IX-deficient mice. In addition, we demonstrate successful readministration of AAV2/5 to the lung 5 months after the first delivery of the same vector. In conclusion, we show that intranasal administration of AAV vectors results in efficient gene transfer to the lung only when the vector contains the AAV5 capsid and that this noninvasive route of administration results in sustained secretion of therapeutic proteins in the bloodstream.
Collapse
Affiliation(s)
- Alberto Auricchio
- Institute for Human Gene Therapy, The Wistar Institute, Department of Medicine, and. Division of Pulmonary Medicine, Department of Pediatrics, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia 19104-4268, USA
| | | | | | | | | | | | | | | |
Collapse
|