151
|
Xu Q, Chen H, Sun W, Zhu D, Zhang Y, Chen JL, Chen Y. Genome-wide analysis of the synonymous codon usage pattern of Streptococcus suis. Microb Pathog 2021; 150:104732. [PMID: 33429052 DOI: 10.1016/j.micpath.2021.104732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 01/21/2023]
Abstract
Streptococcus suis (S. suis) is a gram-positive coccus that causes disease in humans and animals. The codon usage pattern of bacteria reveals a range of evolutionary changes that assist them to enhance tolerance to environments. To better understand the genetic features during the evolution of S. suis, we performed codon usage analysis. Nine pathogenic strains of different serotypes and different geographical distribution were analyzed to better understand the differences in their evolutionary process. Nucleotide compositions and relative synonymous codon usage (RSCU) analysis revealed that A/T-ending codons are dominant in S. suis. Neutrality analysis, correspondence analysis and ENC-plot results revealed that natural selection is the predominant element prompting codon usage. Cluster analysis based on RSCU was roughly consistent with the dendrogram rooted genomic BLAST analysis. Comparison of synonymous codon usage pattern between S. suis and susceptible hosts (H. sapiens and S. scrofa) revealed that the codon usage of S. suis is separated from the synonymous codon usage of susceptible hosts. The CAI values implied that S. suis includes a series of predicted highly expressed coding sequences contained in metabolism and transcriptional regulation, revealing the necessity of this pathogen to deal with various environmental conditions. The study of codon usage in S. suis may provide evidence involving the molecular evolution of bacteria and a better understanding of evolutionary relationships between S. suis and its corresponding hosts.
Collapse
Affiliation(s)
- Quanming Xu
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Chen
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen Sun
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dewen Zhu
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongyi Zhang
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ji-Long Chen
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ye Chen
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
152
|
Deb B, Uddin A, Chakraborty S. Composition, codon usage pattern, protein properties, and influencing factors in the genomes of members of the family Anelloviridae. Arch Virol 2021; 166:461-474. [PMID: 33392821 PMCID: PMC7779081 DOI: 10.1007/s00705-020-04890-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/02/2020] [Indexed: 01/31/2023]
Abstract
The present study was carried out on 62 genome sequences of members of the family Anelloviridae, as there have been no reports of genome analysis of these DNA viruses using a bioinformatics approach. The genes were found to be rich in AC content with low codon usage bias (CUB). Relative synonymous codon usage (RSCU) values identified the preferred codons for each amino acid in the family. The codon AGA was overrepresented, while the codons TCG, TTG, CGG, CGT, ACG, GCG and GAT were underrepresented in all of the genomes. A significant correlation was found between the effective number of codons (ENC) and base constraints, indicating that compositional properties might have influenced the CUB. A highly significant correlation was observed between the overall base content and the base content at the third codon position, indicating that mutations might have affected the CUB. A highly significant positive correlation was observed between GC12 and GC3 (r = 0.904, p < 0.01), which indicated that directional mutation pressure influenced all three codon positions. A neutrality plot revealed that the contribution of mutation and natural selection in determining the CUB was 58.6% and 41.4%, respectively.
Collapse
Affiliation(s)
- Bornali Deb
- Department of Biotechnology, Assam University, Silchar, Assam 788150 India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, Assam 788150 India
| | | |
Collapse
|
153
|
Nyayanit DA, Yadav PD, Kharde R, Cherian S. Natural Selection Plays an Important Role in Shaping the Codon Usage of Structural Genes of the Viruses Belonging to the Coronaviridae Family. Viruses 2020; 13:v13010003. [PMID: 33375017 PMCID: PMC7821998 DOI: 10.3390/v13010003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Viruses belonging to the Coronaviridae family have a single-stranded positive-sense RNA with a poly-A tail. The genome has a length of ~29.9 kbps, which encodes for genes that are essential for cell survival and replication. Different evolutionary constraints constantly influence the codon usage bias (CUB) of different genes. A virus optimizes its codon usage to fit the host environment on which it savors. This study is a comprehensive analysis of the CUB for the different genes encoded by viruses of the Coronaviridae family. Different methods including relative synonymous codon usage (RSCU), an Effective number of codons (ENc), parity plot 2, and Neutrality plot, were adopted to analyze the factors responsible for the genetic evolution of the Coronaviridae family. Base composition and RSCU analyses demonstrated the presence of A-ended and U-ended codons being preferred in the 3rd codon position and are suggestive of mutational selection. The lesser ENc value for the spike ‘S’ gene suggests a higher bias in the codon usage of this gene compared to the other structural genes. Parity plot 2 and neutrality plot analyses demonstrate the role and the extent of mutational and natural selection towards the codon usage pattern. It was observed that the structural genes of the Coronaviridae family analyzed in this study were at the least under 84% influence of natural selection, implying a major role of natural selection in shaping the codon usage.
Collapse
Affiliation(s)
- Dimpal A. Nyayanit
- Maximum Containment Facility, ICMR-National Institute of Virology, Sus Road, Pashan, Pune 411021, India; (D.A.N.); (P.D.Y.); (R.K.)
| | - Pragya D. Yadav
- Maximum Containment Facility, ICMR-National Institute of Virology, Sus Road, Pashan, Pune 411021, India; (D.A.N.); (P.D.Y.); (R.K.)
| | - Rutuja Kharde
- Maximum Containment Facility, ICMR-National Institute of Virology, Sus Road, Pashan, Pune 411021, India; (D.A.N.); (P.D.Y.); (R.K.)
| | - Sarah Cherian
- Bioinformatics Group, ICMR-National Institute of Virology, Pune 411001, India
- Correspondence: or ; Tel.: +91-20-260061213
| |
Collapse
|
154
|
Shen Z, Gan Z, Zhang F, Yi X, Zhang J, Wan X. Analysis of codon usage patterns in citrus based on coding sequence data. BMC Genomics 2020; 21:234. [PMID: 33327935 PMCID: PMC7739459 DOI: 10.1186/s12864-020-6641-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Codon usage is an important determinant of gene expression levels that can help us understand codon biology, evolution and mRNA translation of species. The majority of previous codon usage studies have focused on single species analysis, although few studies have focused on the species within the same genus. In this study, we proposed a multispecies codon usage analysis workflow to reveal the genetic features and correlation in citrus. RESULTS Our codon usage analysis workflow was based on the GC content, GC plot, and relative synonymous codon usage value of each codon in 8 citrus species. This approach allows for the comparison of codon usage bias of different citrus species. Next, we performed cluster analysis and obtained an overview of the relationship in citrus. However, traditional methods cannot conduct quantitative analysis of the correlation. To further estimate the correlation among the citrus species, we used the frequency profile to construct feature vectors of each species. The Pearson correlation coefficient was used to quantitatively analyze the distance among the citrus species. This result was consistent with the cluster analysis. CONCLUSIONS Our findings showed that the citrus species are conserved at the genetic level and demonstrated the existing genetic evolutionary relationship in citrus. This work provides new insights into codon biology and the evolution of citrus and other plant species.
Collapse
Affiliation(s)
- Zenan Shen
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Zhimeng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fa Zhang
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Xinyao Yi
- Department of Computer Science and Engineering, University of South Carolina, Colombia, 29201, USA
| | - Jinzhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohua Wan
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100000, China.
| |
Collapse
|
155
|
Deb B, Uddin A, Chakraborty S. Genome-wide analysis of codon usage pattern in herpesviruses and its relation to evolution. Virus Res 2020; 292:198248. [PMID: 33253719 DOI: 10.1016/j.virusres.2020.198248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
The preferential use of a specific codon, out of a group of synonymous codons encoding the same amino acid, in a gene transcript results from the bias in codon choice. Various evolutionary forces namely mutation pressure and natural selection influence the pattern of codon usage i.e. distinct for each gene/genome. We investigated the pattern of codon usage of eight human herpesvirus genomes and compared them with two other herpesvirus genomes namely murine herpesvirus 68 and bovine herpesvirus type 1.1 to elucidate its compositional features, pattern of codon usage across the genomes and report the differences of codon usage pattern of human herpesviruses from that of other two other viruses. We also identified the similarity of the codon usage of human herpesviruses with its host (human). The genes were found to be CG rich in HHV2, HHV3, HHV4, HHV6, HHV7 and BH genomes while TA rich in HHV1, HHV5, HHV8 and MH genomes. The codon usage bias (CUB) of genes was low. A highly significant correlation was found among compositional contents depicting the role of mutational pressure along with natural selection in framing CUB. Several more frequently used codons as well as less frequently used codons were identified to be similar between each human virus and its host (human), while murine herpesvirus 68 and bovine herpesvirus type 1.1 genomes did not possess similar adaptation strategy as human herpesviruses to human (host), thus we could conclude that viral CUB might have been shaped as per their host's nature for better surveillance. Neutrality plot revealed mutational pressure mostly influenced the CUB of HHV1, HHV8 and MH viruses, while natural selection had a major impact in the CUB of HHV2, HHV3, HHV4, HHV5, HHV6, HHV7 and BH genomes.
Collapse
Affiliation(s)
- Bornali Deb
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, 788150, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
156
|
Luo W, Roy A, Guo F, Irwin DM, Shen X, Pan J, Shen Y. Host Adaptation and Evolutionary Analysis of Zaire ebolavirus: Insights From Codon Usage Based Investigations. Front Microbiol 2020; 11:570131. [PMID: 33224111 PMCID: PMC7674656 DOI: 10.3389/fmicb.2020.570131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Ebola virus (EBOV) has caused several outbreaks as the consequence of spillover events from zoonotic sources and has resulted in huge death tolls. In spite of considerable progress, a thorough know-how regarding EBOV adaptation in various host species and detailed information about the potential reservoirs of EBOV still remains obscure. The present study was executed to examine the patterns of codon usage and its associated influence in the adaptation of EBOV to potential hosts that dwell in Africa, the origin of the viral outbreaks. Correspondence analysis (CA) revealed that the codon usage signature in EBOV is a complex interplay of factors including compositional bias and natural selection, with the latter having a more pronounced impact. Low codon usage bias in EBOV indicates a flexibility of the viruses in adapting to diverse range of hosts with different codon usage architectures. EBOV adaptation in potential hosts, as estimated by codon adaptation index (CAI) and relative codon deoptimization index (RCDI), revealed that the viruses were relatively better adapted to African primates than other mammals examined, which might account for the high fatality rate of primates owing to EBOV infection. Bats have been speculated as natural reservoirs of EBOV. In the present analysis it was interesting to note that EBOV displayed lower degrees of adaptation, as estimated by CAI and RCDI, with bats in comparison to the primate hosts. Lower degrees of adaptation might contribute to long-term co-existence and circulation of the viral pathogens in bat populations. Codon usage patterns of EBOV isolates associated with different outbreaks varied significantly, with discrete patterns between the West and Central African isolates. Additional evolutionary analyses indicated that the West African Epidemic began with an initial spillover infection and there was more than one population of EBOV circulating in the natural reservoir in the Democratic Republic of the Congo. The present study yields valuable information regarding the possible circulation of EBOV in various African mammals.
Collapse
Affiliation(s)
- Wen Luo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ayan Roy
- Department of Biotechnology, Lovely Professional University, Phagwara, India
| | - Fucheng Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Xuejuan Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Junbin Pan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongyi Shen
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
157
|
He Z, Dong Z, Gan H. Comprehensive codon usage analysis of rice black-streaked dwarf virus based on P8 and P10 protein coding sequences. INFECTION GENETICS AND EVOLUTION 2020; 86:104601. [PMID: 33122052 DOI: 10.1016/j.meegid.2020.104601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/05/2020] [Accepted: 10/18/2020] [Indexed: 12/21/2022]
Abstract
Rice black-streaked dwarf virus (RBSDV) belongs to the genus Fijivirus of the family Reoviridae and is an important pathogen that damages rice, maize and wheat worldwide. Previously, several reports have described the genetic variation and population structure of RBSDV. However, the details of the evolutionary changes, synonymous codon usage patterns and host adaptation of the virus are largely unclear. Here, we performed a detailed analysis of the codon usage and host adaptability of RBSDV based on 130 full-length P8 and 234 full-length P10 sequences. Infrequent recombination and frequent segment reassortment influence the genomic evolution of RBSDV. Our phylogenetic analysis found three and four lineages based on the P8 and P10 non-recombinant sequences respectively. We found relatively stable and conserved genomic composition with lower codon usage choice in the RBSDV P8 and P10 protein coding sequences. Both ENC-plot and neutrality-plot analyses showed that natural selection is the key factor that shapes the codon usage pattern of RBSDV. Codon adaptation index (CAI), relative codon deoptimization index (RCDI) and similarity index (SiD) analyses indicated strong correlation between RBSDV and rice rather than maize, wheat or Laodelphax striatellus. Our study provides deep insight into the evaluation of the codon usage pattern and adaptive evolution of RBSDV based on P8 and P10 sequences and should be taken into consideration for the prevention and control of this virus.
Collapse
Affiliation(s)
- Zhen He
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou, 225009, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Wenhui East Road No.48, Yangzhou, 225009, Jiangsu Province, PR China.
| | - Zhuozhuo Dong
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou, 225009, Jiangsu Province, PR China
| | - Haifeng Gan
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No.48, Yangzhou, 225009, Jiangsu Province, PR China
| |
Collapse
|
158
|
Abstract
BACKGROUND Thyroid carcinoma is one of the most common cancers in the world. Although the genetics of thyroid carcinoma was intensively studied, new mechanisms could be involved in its development as the codon bias. In this paper, we studied the codon bias of thyroid-cancer genes, considering not only the sequences but also the synonymous mutations. METHODS Different measures and statistical analyses were employed to characterize the thyroid-cancer genes. We considered classical measures as RSCU and ENC, the compositional and protein characteristics, but also the codon bias landscape via the %MinMax algorithm. RESULTS The compositional analyses highlighted two groups of thyroid cancer genes according to the GC% and GC3% content. The ENC did not show a clear codon bias in the genes. Differently, the RSCU analyses showed interesting codons that could play an important role in the development of thyroid cancer as the codon Ser-tcG. Furthermore, interesting synonymous mutations were detected that could affect the codon bias. The codon bias landscape detected genes enriched in rare codons as AKAP9 and KTN1. A cluster analysis based on %MinMax classified the thyroid cancer genes in four different groups according to the distribution of rare/frequent codons in the sequence. CONCLUSIONS This is the first study that analyzed the codon bias in thyroid cancer genes based also on synonymous mutations. This study provided different hints that should be further investigated by wet-lab validation and that it could open new scenarios in the understanding the molecular mechanisms involved in thyroid cancer development based on codon bias.
Collapse
Affiliation(s)
- Daniele Pepe
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, Katholieke Universiteit (KU) Leuven, Leuven, Belgium -
| | - Kim DE Keersmaecker
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| |
Collapse
|
159
|
Cheng S, Wu H, Chen Z. Evolution of Transmissible Gastroenteritis Virus (TGEV): A Codon Usage Perspective. Int J Mol Sci 2020; 21:E7898. [PMID: 33114322 PMCID: PMC7660598 DOI: 10.3390/ijms21217898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a coronavirus associated with diarrhea and high mortality in piglets. To gain insight into the evolution and adaptation of TGEV, a comprehensive analysis of phylogeny and codon usage bias was performed. The phylogenetic analyses of maximum likelihood and Bayesian inference displayed two distinct genotypes: genotypes I and II, and genotype I was classified into subtypes Ia and Ib. The compositional properties revealed that the coding sequence contained a higher number of A/U nucleotides than G/C nucleotides, and that the synonymous codon third position was A/U-enriched. The principal component analysis based on the values of relative synonymous codon usage (RSCU) showed the genotype-specific codon usage patterns. The effective number of codons (ENC) indicated moderate codon usage bias in the TGEV genome. Dinucleotide analysis showed that CpA and UpG were over-represented and CpG was under-represented in the coding sequence of the TGEV genome. The analyses of Parity Rule 2 plot, ENC-plot, and neutrality plot displayed that natural selection was the dominant evolutionary driving force in shaping codon usage preference in genotypes Ia and II. In addition, natural selection played a major role, while mutation pressure had a minor role in driving the codon usage bias in genotype Ib. The codon adaptation index (CAI), relative codon deoptimization index (RCDI), and similarity index (SiD) analyses suggested that genotype I might be more adaptive to pigs than genotype II. Current findings contribute to understanding the evolution and adaptation of TGEV.
Collapse
Affiliation(s)
- Saipeng Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Huiguang Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
160
|
Insights into Genomic Epidemiology, Evolution, and Transmission Dynamics of Genotype VII of Class II Newcastle Disease Virus in China. Pathogens 2020; 9:pathogens9100837. [PMID: 33066232 PMCID: PMC7602024 DOI: 10.3390/pathogens9100837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 01/10/2023] Open
Abstract
Newcastle disease virus (NDV) is distributed worldwide and has caused significant losses to the poultry industry. Almost all virulent NDV strains belong to class II, among which genotype VII is the predominant genotype in China. However, the molecular evolution and phylodynamics of class II genotype VII NDV strains in China remained largely unknown. In this study, we identified 13 virulent NDV including 11 genotype VII strains and 2 genotype IX strains, from clinical samples during 1997 to 2019. Combined NDV sequences submitted to GenBank, we investigate evolution, and transmission dynamics of class II NDVs in China, especially genotype VII strains. Our results revealed that East and South China have the most genotypic diversity of class II NDV, and East China might be the origin of genotype VII NDVs in China. In addition, genotype VII NDVs in China are presumably transmitted by chickens, as the virus was most prevalent in chickens. Furthermore, codon usage analysis revealed that the F genes of genotype VII NDVs have stronger adaptation in chickens, and six amino acids in this gene are found under positive selection via selection model analysis. Collectively, our results revealed the genetic diversity and evolutionary dynamics of genotype VII NDVs in China, providing important insights into the epidemiology of these viruses in China.
Collapse
|
161
|
A Crosstalk on Codon Usage in Genes Associated with Leukemia. Biochem Genet 2020; 59:235-255. [PMID: 32989646 DOI: 10.1007/s10528-020-10000-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
Leukemia is the outcome of aggregation of damaged white blood cells. Several genes were reported to be associated with the pathogenesis of leukemia. These genes were computationally analyzed to decipher their codon usage bias (CUB) and to identify the prime factors influencing the codon usage profile as no work was reported yet. The mean values of synonymous codon usage order (SCUO) parameter indicated low CUB of the genes. Significant positive association of SCUO with overall GC and positional GCs might signal the presence of mutational pressure. However, neutrality plot suggested the dominant role of natural selection across the genes. Along with natural selection, the role of mutation pressure was also prominent and that might be responsible for lower CUB (SCUO = 0.19) of genes. Low translational speed might permit accuracy in the process. A strong inverse relationship of translational rate was observed with CUB of genes and folding energy.
Collapse
|
162
|
Sun J, Zhao W, Wang R, Zhang W, Li G, Lu M, Shao Y, Yang Y, Wang N, Gao Q, Su S. Analysis of the Codon Usage Pattern of HA and NA Genes of H7N9 Influenza A Virus. Int J Mol Sci 2020; 21:ijms21197129. [PMID: 32992529 PMCID: PMC7583936 DOI: 10.3390/ijms21197129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022] Open
Abstract
Novel H7N9 influenza virus transmitted from birds to human and, since March 2013, it has caused five epidemic waves in China. Although the evolution of H7N9 viruses has been investigated, the evolutionary changes associated with codon usage are still unclear. Herein, the codon usage pattern of two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA), was studied to understand the evolutionary changes in relation to host, epidemic wave, and pathogenicity. Both genes displayed a low codon usage bias, with HA higher than NA. The codon usage was driven by mutation pressure and natural selection, although the main contributing factor was natural selection. Additionally, the codon adaptation index (CAI) and deoptimization (RCDI) illustrated the strong adaptability of H7N9 to Gallus gallus. Similarity index (SiD) analysis showed that Homo sapiens posed a stronger selection pressure than Gallus gallus. Thus, we assume that this may be related to the gradual adaptability of the virus to human. In addition, the host strong selection pressure was validated based on CpG dinucleotide content. In conclusion, this study analyzed the usage of codons of two genes of H7N9 and expanded our understanding of H7N9 host specificity. This aids into the development of control measures against H7N9 influenza virus.
Collapse
|
163
|
Barbhuiya PA, Uddin A, Chakraborty S. Codon usage pattern and evolutionary forces of mitochondrial ND genes among orders of class Amphibia. J Cell Physiol 2020; 236:2850-2868. [PMID: 32960450 DOI: 10.1002/jcp.30050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022]
Abstract
In this study, we used a bioinformatics approach to analyze the nucleotide composition and pattern of synonymous codon usage in mitochondrial ND genes in three amphibian groups, that is, orders Anura, Caudata, and Gymnophiona to identify the commonality and the differences of codon usage as no research work was reported yet. The high value of the effective number of codons revealed that the codon usage bias (CUB) was low in mitochondrial ND genes among the orders. Nucleotide composition analysis suggested that for each gene, the compositional features differed among Anura, Caudata, and Gymnophiona and the GC content was lower than AT content. Furthermore, a highly significant difference (p < .05) for GC content was found in each gene among the orders. The heat map showed contrasting patterns of codon usage among different ND genes. The regression of GC12 on GC3 suggested a narrow range of GC3 distribution and some points were located in the diagonal, indicating both mutation pressure and natural selection might influence the CUB. Moreover, the slope of the regression line was less than 0.5 in all ND genes among orders, indicating natural selection might have played the dominant role whereas mutation pressure had played a minor role in shaping CUB of ND genes across orders.
Collapse
Affiliation(s)
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Hailakandi, Assam, India
| | | |
Collapse
|
164
|
Trivedi R, Nagarajaram HA. Substitution scoring matrices for proteins - An overview. Protein Sci 2020; 29:2150-2163. [PMID: 32954566 DOI: 10.1002/pro.3954] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/17/2023]
Abstract
Sequence analysis is the primary and simplest approach to discover structural, functional and evolutionary details of related proteins. All the alignment based approaches of sequence analysis make use of amino acid substitution matrices, and the accuracy of the results largely depends on the type of scoring matrices used to perform alignment tasks. An amino acid substitution matrix is a 20 × 20 matrix in which the individual elements encapsulate the rates at which each of the 20 amino acid residues in proteins are substituted by other amino acid residues over time. In contrast to most globular/ordered proteins whose amino acids composition is considered as standard, there are several classes of proteins (e.g., transmembrane proteins) in which certain types of amino acid (e.g., hydrophobic residues) are enriched. These compositional differences among various classes of proteins are manifested in their underlying residue substitution frequencies. Therefore, each of the compositionally distinct class of proteins or protein segments should be studied using specific scoring matrices that reflect their distinct residue substitution pattern. In this review, we describe the development and application of various substitution scoring matrices peculiar to proteins with standard and biased compositions. Along with most commonly used standard matrices (PAM, BLOSUM, MD and VTML) that act as default parameters in various homologs search and alignment tools, different substitution scoring matrices specific to compositionally distinct class of proteins are discussed in detail.
Collapse
Affiliation(s)
- Rakesh Trivedi
- Laboratory of Computational Biology, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, Telangana, India.,Graduate School, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Hampapathalu Adimurthy Nagarajaram
- Laboratory of Computational Biology, Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.,Centre for Modelling, Simulation and Design, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
165
|
Codon usage bias in the H gene of canine distemper virus. Microb Pathog 2020; 149:104511. [PMID: 32961282 DOI: 10.1016/j.micpath.2020.104511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/30/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Canine distemper virus (CDV), a non-segmented single negative-stranded RNA (ssRNA), is the etiological agent of canine distemper. Canine distemper is a highly contagious and lethal viral disease in domestic dogs and wild carnivores. Study of the evolution of CDV presents an essential key to improve the vaccine efficacy. In this study, a total of 328 full-length CDV hemagglutinin (H) gene sequences were subjected to phylogenetic, amino acid mutations, and codon usage analysis. In accordance with previous study, CDV genotypes consisted of fifteen lineages. The unique amino acid substitution sites in each CDV lineages have been identified for the first time, including America-1 (Q330H), America-2 (I585S), Asia-1 (A359V), Asia-2 (H61R), Asia-3 (P108Q), Asia-4 (K213T), India-1/Asia-5(S497P), Arctic (S20L), Africa-1(N489S), Colombian (V41I), EWL (I44V), Europe (D560E), Europe-1/South America-1(K161Q), South America-2 (R580Q), and East African (S214A). Codon usage analysis indicated that H gene exhibited low codon usage bias and further neutrality plot analysis demonstrated that natural selection played a dominated role in driving CPV evolution. The effective number of codons (ENC) plots show that all the different sequences are below the standard curve, indicating that mutational pressure is not the only factor affecting CUB but other forces, including natural selection. The neutrality analysis showed that the slope of the regression line was 0.1501, indicating natural selection dominates directional mutation pressure in driving the codon usage pattern. In addition, nucleotide composition, relative synonymous codon usage value, dinucleotide content, and geographical distribution have been proven to influence the codon usage bias of the CDV H gene. The novel findings enhanced the understanding of CDV evolution.
Collapse
|
166
|
Wu H, Bao Z, Mou C, Chen Z, Zhao J. Comprehensive Analysis of Codon Usage on Porcine Astrovirus. Viruses 2020; 12:v12090991. [PMID: 32899965 PMCID: PMC7552017 DOI: 10.3390/v12090991] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/26/2020] [Accepted: 09/03/2020] [Indexed: 02/04/2023] Open
Abstract
Porcine astrovirus (PAstV), associated with mild diarrhea and neurological disease, is transmitted in pig farms worldwide. The purpose of this study is to elucidate the main factors affecting codon usage to PAstVs. Phylogenetic analysis showed that the subtype PAstV-5 sat at the bottom of phylogenetic tree, followed by PAstV-3, PAstV-1, PAstV-2, and PAstV-4, indicating that the five existing subtypes (PAstV1-PAstV5) may be formed by multiple differentiations of PAstV ancestors. A codon usage bias was found in the PAstVs-2,3,4,5 from the analyses of effective number of codons (ENC) and relative synonymous codon usage (RSCU). Nucleotides A/U are more frequently used than nucleotides C/G in the genome CDSs of the PAstVs-3,4,5. Codon usage patterns of PAstV-5 are dominated by mutation pressure and natural selection, while natural selection is the main evolutionary force that affects the codon usage pattern of PAstVs-2,3,4. The analyses of codon adaptation index (CAI), relative codon deoptimization index (RCDI), and similarity index (SiD) showed the codon usage similarities between the PAstV and animals might contribute to the broad host range and the cross-species transmission of astrovirus. Our results provide insight into understanding the PAstV evolution and codon usage patterns.
Collapse
Affiliation(s)
- Huiguang Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.W.); (Z.B.); (C.M.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhengyu Bao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.W.); (Z.B.); (C.M.)
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.W.); (Z.B.); (C.M.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (H.W.); (Z.B.); (C.M.)
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.C.); (J.Z.)
| | - Jingwen Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.C.); (J.Z.)
| |
Collapse
|
167
|
Uddin A. Compositional Features and Codon Usage Pattern of Genes Associated with Anxiety in Human. Mol Neurobiol 2020; 57:4911-4920. [PMID: 32813237 DOI: 10.1007/s12035-020-02068-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Abstract
Codon usage bias (CUB) is the unequal usage of synonymous codon; some codons are more preferred than others. CUB analysis has applications in understanding the molecular organization of genome, genetics, gene expression, and molecular evolution. Bioinformatic approach was used to analyze the protein-coding sequences of genes involved in the anxiety to understand the patterns of codon usage as no work was reported yet. The improved effective number of codons (Nc) values ranged from 43.55 to 55.06, with a mean of 44.57, suggested that the overall CUB was low for genes associated with anxiety. The overall GC and AT content was 54.76 and 45.24, respectively. Relative synonymous codon usage (RSCU) analysis revealed that most frequently used codon ended mostly with C or G. The over-represented codons in genes associated with anxiety were CTG, ATC, GTG, AGC, ACC, and GCC, while under-represented codons were TTA, CTT, CTA, ATA, GTT, GTA, TCG, CCG, GCG, CAA, and CGT. Correlation analysis was performed between overall nucleotide composition and its 3rd codon positions, and observed highly significant (p < 0.01) correlation between them suggested that both mutation pressure and natural selection might affect the pattern of CUB. The highly significant correlation (0.598**, p < 0.01) was also observed between GC12 with GC3 suggested that directional mutation pressure might acted on all codon positions for genes associated with anxiety.
Collapse
Affiliation(s)
- Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, Assam, 788150, India.
| |
Collapse
|
168
|
Barbhuiya RI, Uddin A, Chakraborty S. Codon usage pattern and its influencing factors for mitochondrial CO genes among different classes of Arthropoda. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 31:313-326. [PMID: 32755341 DOI: 10.1080/24701394.2020.1800661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Analysis of codon usage bias (CUB) is very much important in perceiving the knowledge of molecular biology, the discovery of a new gene, designing of transgenes and evolution of gene. In this study, we analyzed compositional features and codon usage of MT-CO (COI, COII and COIII) genes among the classes of Arthropoda to explore the pattern of CUB as no research work was reported yet. Nucleotide composition analysis in CO genes suggested that the genes were AT-rich in all the four classes of Arthropoda. CUB was low in all the classes of Arthropoda for MT-CO genes as revealed from a high effective number of codons (ENC). We also found that the evolutionary forces namely mutation pressure and natural selection were the key influencing factors in CUB among MT-CO genes as revealed by correlation analysis between overall nucleotide composition and nucleotide composition at the 3rd codon position. Correspondence analysis suggested that the pattern of CUB was different among the classes of Arthropoda. Further, it was revealed from the neutrality plot that natural selection had a dominant role while mutation pressure exhibited a minor role in structuring the pattern of codon usage in all the classes of Arthropoda across COI, COII and COIII genes.
Collapse
Affiliation(s)
| | - Arif Uddin
- Department of Zoology, M. H. C. M. Science College, Hailakandi, India
| | | |
Collapse
|
169
|
Codon Usage Optimization in the Prokaryotic Tree of Life: How Synonymous Codons Are Differentially Selected in Sequence Domains with Different Expression Levels and Degrees of Conservation. mBio 2020; 11:mBio.00766-20. [PMID: 32694138 PMCID: PMC7374057 DOI: 10.1128/mbio.00766-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The prokaryotic genomes—the current heritage of the most ancient life forms on earth—are comprised of diverse gene sets, all characterized by varied origins, ancestries, and spatial-temporal expression patterns. Such genetic diversity has for a long time raised the question of how cells shape their coding strategies to optimize protein demands (i.e., product abundance) and accuracy (i.e., translation fidelity) through the use of the same genetic code in genomes with GC contents that range from less than 20 to more than 80%. Here, we present evidence on how codon usage is adjusted in the prokaryotic tree of life and on how specific biases have operated to improve translation. Through the use of proteome data, we characterized conserved and variable sequence domains in genes of either high or low expression level and quantitated the relative weight of efficiency and accuracy—as well as their interaction—in shaping codon usage in prokaryotes. Prokaryote genomes exhibit a wide range of GC contents and codon usages, both resulting from an interaction between mutational bias and natural selection. In order to investigate the basis underlying specific codon changes, we performed a comprehensive analysis of 29 different prokaryote families. The analysis of core gene sets with increasing ancestries in each family lineage revealed that the codon usages became progressively more adapted to the tRNA pools. While, as previously reported, highly expressed genes presented the most optimized codon usage, the singletons contained the less selectively favored codons. The results showed that usually codons with the highest translational adaptation were preferentially enriched. In agreement with previous reports, a C bias in 2- to 3-fold pyrimidine-ending codons, and a U bias in 4-fold codons occurred in all families, irrespective of the global genomic GC content. Furthermore, the U biases suggested that U3-mRNA–U34-tRNA interactions were responsible for a prominent codon optimization in both the most ancestral core and the highly expressed genes. A comparative analysis of sequences that encode conserved (cr) or variable (vr) translated products, with each one being under high (HEP) and low (LEP) expression levels, demonstrated that the efficiency was more relevant (by a factor of 2) than accuracy to modeling codon usage. Finally, analysis of the third position of codons (GC3) revealed that in genomes with global GC contents higher than 35 to 40%, selection favored a GC3 increase, whereas in genomes with very low GC contents, a decrease in GC3 occurred. A comprehensive final model is presented in which all patterns of codon usage variations are condensed in four distinct behavioral groups.
Collapse
|
170
|
Heaps SE, Nye TMW, Boys RJ, Williams TA, Cherlin S, Embley TM. Generalizing rate heterogeneity across sites in statistical phylogenetics. STAT MODEL 2020. [DOI: 10.1177/1471082x19829937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phylogenetics uses alignments of molecular sequence data to learn about evolutionary trees relating species. Along branches, sequence evolution is modelled using a continuous-time Markov process characterized by an instantaneous rate matrix. Early models assumed the same rate matrix governed substitutions at all sites of the alignment, ignoring variation in evolutionary pressures. Substantial improvements in phylogenetic inference and model fit were achieved by augmenting these models with multiplicative random effects that describe the result of variation in selective constraints and allow sites to evolve at different rates which linearly scale a baseline rate matrix. Motivated by this pioneering work, we consider an extension using a quadratic, rather than linear, transformation. The resulting models allow for variation in the selective coefficients of different types of point mutation at a site in addition to variation in selective constraints. We derive properties of the extended models. For certain non-stationary processes, the extension gives a model that allows variation in sequence composition, both across sites and taxa. We adopt a Bayesian approach, describe an MCMC algorithm for posterior inference and provide software. Our quadratic models are applied to alignments spanning the tree of life and compared with site-homogeneous and linear models.
Collapse
Affiliation(s)
- Sarah E Heaps
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - Tom MW Nye
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - Richard J Boys
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Svetlana Cherlin
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
171
|
Khrustalev VV. Random Coils of Proteins Situated Between a Beta Strand and an Alpha Helix Demonstrate Decreased Solvent Accessibility. Protein J 2020; 39:308-317. [DOI: 10.1007/s10930-020-09905-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
172
|
Mazumder GA, Uddin A, Chakraborty S. Analysis of codon usage pattern of mitochondrial ND genes in Platyhelminthes. Mol Biochem Parasitol 2020; 238:111294. [PMID: 32592756 DOI: 10.1016/j.molbiopara.2020.111294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 01/24/2023]
Abstract
Codon usage bias (CUB) is the nonrandom usage of synonymous codons in which some codons are more preferred to others.CUB can be determined by mutation pressure and selection. Various approaches have been used to understand the pattern of CUB in the mitochondrial ND (MT-ND or ND) genes involved in complex I of respiratory chain in five different classes of Platyhelminthes as no work was reported yet. The present study revealed that the CUB varies across MT-ND genes and the coding sequences showed the richness of A and T. Correspondence analysis implied the effect of mutational pressure and also the pattern of codon usage was different in different classes of platyhelminthes for MT-ND genes. Highly significant correlation was observed between overall nucleotide composition and its 3rd codon position in most of the homogeneous nucleotides such as A% and A3%, T% and T3%, G% and G3%, C% and C3%, GC% and GC3% and also some significant correlations observed among heterogeneous nucleotides in all the five classes for MT-ND genes suggested the role of mutational pressure as well as natural selection in affecting the CUB. Neutrality plot suggested that the contributions of natural selection and mutational pressure varied across different classes of platyhelminthes and also differed in different MT-ND genes.
Collapse
Affiliation(s)
| | - Arif Uddin
- Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, 788150 Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011 Assam, India.
| |
Collapse
|
173
|
Mycobacterium lepromatosis genome exhibits unusually high CpG dinucleotide content and selection is key force in shaping codon usage. INFECTION GENETICS AND EVOLUTION 2020; 84:104399. [PMID: 32512206 DOI: 10.1016/j.meegid.2020.104399] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 01/06/2023]
Abstract
Mycobacterium lepromatosis was identified as a causative agent for leprosy in the year 2008 in the United States and later more cases were identified in Canada, Singapore, Brazil, and Myanmar. It is known to cause diffuse lepromatosis leprosy among humans. Since it is invasive, the mortality rates are higher in comparison to the M. leprae. At genomic level, there exists 90.9% similarity between M. lepromatosis and M. leprae. Codon usage analysis based on analyses of 228 coding sequences (CDSs) of M. lepromatosis, revealed that the genome is GC rich. Among the total 16 dinucleotides, CpG dinucleotide possesses the highest dinucleotide frequency in M. lepromatosis, that is strikingly an unobvious observation since higher CpG is associated with higher proinflammatory cytokine production and NF-κB activation that eventually leads to high pathogenicity. To evade immune response, CpG content is generally less in pathogens. The unusually high CpG content can be explained by the fact that the nucleotide composition of M. lepromatosis is CG rich. Various forces interplay to shape codon usage pattern of any organism including selection; mutation, nucleotide composition as well as GC biased gene conversion. To understand the interplay between various forces; neutrality, parity, Nc-GC3 (Effective number of codons-GC content at 3rd position of the codon), aromaticity (AROMO) and the general average hydropathicity score (GRAVY) analyses have been carried out. The analyses revealed that selection force is the major contributory force. Along with the selection; mutation, nucleotide composition as well as GC biased gene conversion also play role in shaping codon usage bias in M. lepromatosis. This is the first report on the codon usage in M. lepromatosis.
Collapse
|
174
|
Chakraborty S, Barbhuiya PA, Paul S, Uddin A, Choudhury Y, Ahn Y, Cho YS. Codon usage trend in genes associated with obesity. Biotechnol Lett 2020; 42:1865-1875. [PMID: 32488444 DOI: 10.1007/s10529-020-02931-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/29/2020] [Indexed: 11/29/2022]
Abstract
Obesity is not only a social menace but also an economic burden as it reduces productivity and increases health care cost. We used bioinformatic tools to analyze the CUB of obesity associated genes and compared with housekeeping genes (control) to explore the similarities and differences between two data sets as no work was reported yet. The mean effective number of codons (ENC) in genes associated with obesity and housekeeping gene was 50.45 and 52.03 respectively, indicating low CUB. The relative synonymous codon usage (RSCU) suggested that codons namely CTG and GTG were over-represented in both obesity and housekeeping genes while under-represented codons were TCG, TTA, CTA, CCG, CAA, CGT, ATA, ACG, GTA and GCG in obesity genes and TCG, TTA, CCG, ATA, ACG, GTA, and GCG in housekeeping genes. t test analysis suggested that 11 codons namely TTA (Leu), TTG (Leu), CCG (Pro), CAC (His), CAA (Gln), CAG (Gln), CGT (Arg), AGA (Arg), ATA (Ile), ATT (Ile) and GCG (Ala) were significantly differed (p < 0.05 or p < 0.01) between obesity and housekeeping genes. Highly significant correlation was observed between GC12 and GC3 in obesity and housekeeping genes i.e. r = 0.580** and r = 0.498** (p < 0.01) respectively indicating the effect of directional mutation pressure present in all codon positions.
Collapse
Affiliation(s)
- Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, Assam, 788011, India.
| | - Parvin A Barbhuiya
- Department of Biotechnology, Assam University, Silchar, Assam, 788011, India
| | - Sunanda Paul
- Department of Biotechnology, Assam University, Silchar, Assam, 788011, India
| | - Arif Uddin
- Department of Biotechnology, Assam University, Silchar, Assam, 788011, India
| | - Yashmin Choudhury
- Department of Biotechnology, Assam University, Silchar, Assam, 788011, India
| | - Yeongseon Ahn
- Department of Biomedical Science, Hallym University, Hallymdachak-gil, Chuncheon, 24252, Gangwon-do, Korea
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Hallymdachak-gil, Chuncheon, 24252, Gangwon-do, Korea.
| |
Collapse
|
175
|
Barbhuiya PA, Uddin A, Chakraborty S. Analysis of compositional properties and codon usage bias of mitochondrial CYB gene in anura, urodela and gymnophiona. Gene 2020; 751:144762. [PMID: 32407767 DOI: 10.1016/j.gene.2020.144762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023]
Abstract
We delineated the pattern of synonymous codon usage bias (CUB) and its determinants in mitochondrial CYB gene of respiratory chain across different amphibian groups namely orders anura, urodela and gymnophiona. We observed that CUB was low in CYB gene of amphibia. The gymnophionans had comparatively high bias followed by urodeles and anurans. The codons namely TCA, CCA, CAA, CGA, TGA, AAA and ACA were over-represented in all three orders. The codons such as GCC and TCC were over-represented in anura whereas in urodela, the over-represented codons were TTA, CTA, ATA, GTA, GAA, GGA and GCA. In gymnophiona, GCC, TTA, CTA, ATA, GTA, GAA and GGA codons were over-represented. The regression analysis between effective number of codons (ENC) and nucleobase at the 3rd position revealed that nucleobase A and C influenced CUB positively in order anura, while in urodela and gymnophiona, nucleobase A and T influenced the CUB positively. Mutation pressure and natural selection mutually illustrate the CUB of CYB gene (complex III gene) of amphibia as elucidated by correlation analysis between 3rd nucleotide in a codon and overall nucleotide content of the gene. However, neutrality plot showed that natural selection was the dominant evolutionary factor of CUB.
Collapse
Affiliation(s)
- Parvin A Barbhuiya
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakand 788150, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
176
|
He Z, Dong Z, Gan H. Genetic changes and host adaptability in sugarcane mosaic virus based on complete genome sequences. Mol Phylogenet Evol 2020; 149:106848. [PMID: 32380283 DOI: 10.1016/j.ympev.2020.106848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Sugarcane mosaic virus (SCMV), a member of the genus Potyvirus in the family Potyviridae, is an important pathogen that causes mosaic diseases in maize, sugarcane, canna and other graminaceous species worldwide. Previously, several reports have showed the genetic variation and population structure of SCMV. However, the evolutionary dynamics, synonymous codon usage pattern and adaptive evolution of the virus is unclear. In this study, we performed comprehensive analyses of phylodynamics, composition bias and codon usage of SCMV using 108 complete genomic sequences. Our phylogenetic analysis found six host- and geographically confined phylogenetic lineages within the SCMV non-recombinant isolates. We found a relatively stable and conserved genomic composition with a lower codon usage choice in the SCMV protein coding sequences. Mutation pressure and natural selection have shaped the codon usage patterns of the SCMV protein coding sequences with natural selection being the dominant factor. The codon adaptation index (CAI), relative codon deoptimization index (RCDI) and similarity index (SiD) analyses revealed a stronger correlation between SCMV and maize than between SCMV and sugarcane or canna. Our study is the first to evaluate the codon usage pattern of SCMV based on complete sequences and may provide a better understanding of the origin of SCMV and its evolutionary patterns for future research.
Collapse
Affiliation(s)
- Zhen He
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China.
| | - Zhuozhuo Dong
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| | - Haifeng Gan
- School of Horticulture and Plant Protection, Yangzhou University, Wenhui East Road No. 48, Yangzhou 225009, Jiangsu Province, PR China
| |
Collapse
|
177
|
Hussain S, Shinu P, Islam MM, Chohan MS, Rasool ST. Analysis of Codon Usage and Nucleotide Bias in Middle East Respiratory Syndrome Coronavirus Genes. Evol Bioinform Online 2020; 16:1176934320918861. [PMID: 32425493 PMCID: PMC7218340 DOI: 10.1177/1176934320918861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
The Middle East Respiratory Syndrome (MERS) is an emerging disease caused by a recently identified human coronavirus (CoV). Over 2494 laboratory-confirmed cases and 858 MERS-related deaths have been reported from 27 countries. MERS-CoV has been associated with a high case fatality rate, especially in patients with pre-existing conditions. Despite the fatal nature of MERS-CoV infection, a comprehensive study to explore its evolution and adaptation in different hosts is lacking. We performed codon usage analyses on 4751 MERS-CoV genes and determined underlying forces that affect the codon usage bias in the MERS-CoV genome. The current analyses revealed a low but highly conserved, gene-specific codon usage bias in the MERS-CoV genome. The codon usage bias is mainly shaped by natural selection, while mutational pressure emerged as a minor factor affecting codon usage in some genes. Other contributory factors included CpG dinucleotide bias, physical and chemical properties of encoded proteins and gene length. Results reported in this study provide considerable insights into the molecular evaluation of MERS-CoV and could serve as a theoretical basis for optimizing MERS-CoV gene expression to study the functional relevance of various MERS-CoV proteins. Alternatively, an attenuated vaccine strain containing hundreds of silent mutations could be engineered. Codon de-optimization will not affect the amino acid sequence or antigenicity of a vaccine strain, but the sheer number of mutations would make viral reversion to a virulent phenotype extremely unlikely.
Collapse
Affiliation(s)
- Snawar Hussain
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Pottathil Shinu
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Mohammed Monirul Islam
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Muhammad Shahzad Chohan
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Sahibzada Tasleem Rasool
- Department of Biomedical Science, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| |
Collapse
|
178
|
Whittle CA, Kulkarni A, Extavour CG. Evidence of multifaceted functions of codon usage in translation within the model beetle Tribolium castaneum. DNA Res 2020; 26:473-484. [PMID: 31922535 PMCID: PMC6993815 DOI: 10.1093/dnares/dsz025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/07/2020] [Indexed: 01/06/2023] Open
Abstract
Synonymous codon use is non-random. Codons most used in highly transcribed genes, often called optimal codons, typically have high gene counts of matching tRNA genes (tRNA abundance) and promote accurate and/or efficient translation. Non-optimal codons, those least used in highly expressed genes, may also affect translation. In multicellular organisms, codon optimality may vary among tissues. At present, however, tissue specificity of codon use remains poorly understood. Here, we studied codon usage of genes highly transcribed in germ line (testis and ovary) and somatic tissues (gonadectomized males and females) of the beetle Tribolium castaneum. The results demonstrate that: (i) the majority of optimal codons were organism-wide, the same in all tissues, and had numerous matching tRNA gene copies (Opt-codon↑tRNAs), consistent with translational selection; (ii) some optimal codons varied among tissues, suggesting tissue-specific tRNA populations; (iii) wobble tRNA were required for translation of certain optimal codons (Opt-codonwobble), possibly allowing precise translation and/or protein folding; and (iv) remarkably, some non-optimal codons had abundant tRNA genes (Nonopt-codon↑tRNAs), and genes using those codons were tightly linked to ribosomal and stress-response functions. Thus, Nonopt-codon↑tRNAs codons may regulate translation of specific genes. Together, the evidence suggests that codon use and tRNA genes regulate multiple translational processes in T. castaneum.
Collapse
Affiliation(s)
| | | | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
179
|
Uddin A, Mazumder TH, Barbhuiya PA, Chakraborty S. Similarities and dissimilarities of codon usage in mitochondrial ATP genes among fishes, aves, and mammals. IUBMB Life 2020; 72:899-914. [DOI: 10.1002/iub.2231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/05/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Arif Uddin
- Department of ZoologyMoinul Hoque Choudhury Memorial Science College Hailakandi Assam India
| | | | | | | |
Collapse
|
180
|
Chakraborty S, Paul S, Nath D, Choudhury Y, Ahn Y, Cho YS, Uddin A. Synonymous codon usage and context analysis of genes associated with pancreatic cancer. Mutat Res 2020; 821:111719. [PMID: 32919141 DOI: 10.1016/j.mrfmmm.2020.111719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 01/22/2023]
Abstract
Pancreatic cancer is a fatal disorder which originates in pancreas. Its mortality rate is increasing with time. Some studies also reported that pancreatic cancer would be ranked 2nd by the year 2030. Codon usage bias (CUB) arises when synonymous codons for each amino acid are not used randomly in the coding sequences of genes. We used bioinformatic methods to analyze the compositional properties, codon context and codon usage trend of the genes associated with pancreatic cancer as no work was reported yet. From the base composition analysis, the pancreatic cancer genes were found to be GC-rich and at the 3rd codon position the G/C ending codons were more preferred to A/T ending ones. The CUB was low in genes associated with pancreatic cancer. Correspondence analysis proposed that other than base constraints, CUB might also be affected by some other factors such as natural selection. Moreover, results of correlation analysis indicated that CUB and various GC contents i.e. GC, GC1, GC2, GC3 played important role in the release of free energy by transcripts of the genes associated with pancreatic cancer. The low compAI values of coding sequences suggested a low translation rate of the genes.
Collapse
Affiliation(s)
- Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| | - Sunanda Paul
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Durbba Nath
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Yashmin Choudhury
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Yeongseon Ahn
- Department of Biomedical Science, Hallym University, Hallymdachak-gil, Chuncheon, Gangwon-do 24252, South Korea
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Hallymdachak-gil, Chuncheon, Gangwon-do 24252, South Korea
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi 788150, Assam, India
| |
Collapse
|
181
|
Dilucca M, Forcelloni S, Georgakilas AG, Giansanti A, Pavlopoulou A. Codon Usage and Phenotypic Divergences of SARS-CoV-2 Genes. Viruses 2020; 12:E498. [PMID: 32366025 PMCID: PMC7290700 DOI: 10.3390/v12050498] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/18/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first occurred in Wuhan (China) in December of 2019, causes a severe acute respiratory illness with a high mortality rate, and has spread around the world. To gain an understanding of the evolution of the newly emerging SARS-CoV-2, we herein analyzed the codon usage pattern of SARS-CoV-2. For this purpose, we compared the codon usage of SARS-CoV-2 with that of other viruses belonging to the subfamily of Orthocoronavirinae. We found that SARS-CoV-2 has a high AU content that strongly influences its codon usage, which appears to be better adapted to the human host. We also studied the evolutionary pressures that influence the codon usage of five conserved coronavirus genes encoding the viral replicase, spike, envelope, membrane and nucleocapsid proteins. We found different patterns of both mutational bias and natural selection that affect the codon usage of these genes. Moreover, we show here that the two integral membrane proteins (matrix and envelope) tend to evolve slowly by accumulating nucleotide mutations on their corresponding genes. Conversely, genes encoding nucleocapsid (N), viral replicase and spike proteins (S), although they are regarded as are important targets for the development of vaccines and antiviral drugs, tend to evolve faster in comparison to the two genes mentioned above. Overall, our results suggest that the higher divergence observed for the latter three genes could represent a significant barrier in the development of antiviral therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Maddalena Dilucca
- Physics Department, Sapienza University of Rome, 00185 Rome, Italy; (S.F.); (A.G.)
- Liceo Scientifico Statale Augusto Righi, 00187 Rome, Italy
| | - Sergio Forcelloni
- Physics Department, Sapienza University of Rome, 00185 Rome, Italy; (S.F.); (A.G.)
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campous, 15780 Athens, Greece;
| | - Andrea Giansanti
- Physics Department, Sapienza University of Rome, 00185 Rome, Italy; (S.F.); (A.G.)
- INFN Roma1 Unit, 00185 Rome, Italy
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova, Izmir, Turkey;
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Izmir, Turkey
| |
Collapse
|
182
|
Begum Y, Mondal SK. Comprehensive study of the genes involved in chlorophyll synthesis and degradation pathways in some monocot and dicot plant species. J Biomol Struct Dyn 2020; 39:2387-2414. [PMID: 32292132 DOI: 10.1080/07391102.2020.1748717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chlorophyll (Chl) biosynthesis is one of the most important cellular processes essential for plant photosynthesis. Chl degradation pathway is also important catabolic process occurs during leaf senescence, fruit ripening and under biotic or abiotic stress conditions. Here we have systematically investigated the molecular evolution, gene structure, compositional analysis along with ENc plot, correspondence analysis and codon usage bias of the proteins and encoded genes involved in Chl metabolism from monocots and dicots. The gene and species specific phylogenetic trees using amino acid sequences showed clear clustering formation of the selected species based on monocots and dicots but not supported by 18S rRNA. Nucleotide composition of the encoding genes showed that average GC%, GC1%, GC2% and GC3% were higher in monocots. RSCU analysis depicts that genes from monocots for both pathways and genes for synthesis pathway from dicots only biased to G/C-ending synonymous codons but in degradation pathway most optimal codons (except UUG) in dicots biased to A/U-ending synonymous codons. We found strong evidence of episodic diversifying selection at several amino acid sites in all genes investigated. Conserved domain and gene structures were observed for the genes with varying lengths of introns and exons, involved in Chl metabolism along with some intronless genes within synthesis pathway. ENc and correspondence analyses suggested the mutational or selection constraint on the genes to shape the codon usage. These comprehensive studies may be helpful in further research in molecular phylogenetics and genomics and to better understand the evolutionary dynamics of Chl metabolic pathway.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yasmin Begum
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India.,Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-II), University of Calcutta, Kolkata, West Bengal, India
| | - Sunil Kanti Mondal
- Department of Biotechnology, The University of Burdwan, Burdwan, West Bengal, India
| |
Collapse
|
183
|
Liu Q, Song W, Zhou Y, Dong X, Xin Y. Phenotypic divergence of thermotolerance: Molecular basis and cold adaptive evolution related to intrinsic DNA flexibility of glacier‐inhabitingCryobacteriumstrains. Environ Microbiol 2020; 22:1409-1420. [DOI: 10.1111/1462-2920.14957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Qing Liu
- China General Microbiological Culture Collection Center (CGMCC)Institute of Microbiology, Chinese Academy of Sciences Beijing 100101 China
| | - Wei‐Zhi Song
- Centre for Marine Bio‐InnovationUniversity of New South Wales Sydney New South Wales Australia
| | - Yu‐Guang Zhou
- China General Microbiological Culture Collection Center (CGMCC)Institute of Microbiology, Chinese Academy of Sciences Beijing 100101 China
| | - Xiu‐Zhu Dong
- State Key Laboratory of Microbial ResourcesInstitute of Microbiology, Chinese Academy of Sciences Beijing 100101 China
| | - Yu‐Hua Xin
- China General Microbiological Culture Collection Center (CGMCC)Institute of Microbiology, Chinese Academy of Sciences Beijing 100101 China
| |
Collapse
|
184
|
Rajkumari J, Chakraborty S, Pandey P. Distinctive features gleaned from the comparative genomes analysis of clinical and non-clinical isolates of Klebsiella pneumoniae. Bioinformation 2020; 16:256-268. [PMID: 32308268 PMCID: PMC7147497 DOI: 10.6026/97320630016256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 11/23/2022] Open
Abstract
It is of interest to describe the distinctive features gleaned from the comparative genome analysis of clinical and non-clinical isolates of Klebsiella pneumoniae. The core genome of K. pneumoinae consisted of 3568 genes. Comparative genome analysis shows that mdtABCD, toxin-antitoxin systems are unique to clinical isolates and catB, benA, and transporter genes for citrate utilization are exclusive to non-clinical isolates. We further noted aromatic compound degrading genes in non-clinical isolates unlike in the later isolates. We grouped 88 core genes into 3 groups linked to infections, drug-resistance or xenobiotic metabolism using codon usage variation analysis. It is inferred using the neutrality plot analysis of GC12 with GC3 that codon usage variation is dominant over mutation pressure. Thus, we document data to distinguish clinical and non-clinical isolates of K. pneumoniae using comparative genomes analysis for understanding of genome diversity during speciation.
Collapse
Affiliation(s)
- Jina Rajkumari
- Department of Microbiology, Assam University, Silchar 788011, Assam, India
| | | | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
185
|
Deb B, Uddin A, Chakraborty S. Codon usage pattern and its influencing factors in different genomes of hepadnaviruses. Arch Virol 2020; 165:557-570. [PMID: 32036428 PMCID: PMC7086886 DOI: 10.1007/s00705-020-04533-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022]
Abstract
Codon usage bias (CUB) arises from the preference for a codon over codons for the same amino acid. The major factors contributing to CUB are evolutionary forces, compositional properties, gene expression, and protein properties. The present analysis was performed to investigate the compositional properties and the extent of CUB across the genomes of members of the family Hepadnaviridae, as previously no work using bioinformatic tools has been reported. The viral genes were found to be AT rich with low CUB. Analysis of relative synonymous codon usage (RSCU) was used to identify overrepresented and underrepresented codons for each amino acid. Correlation analysis of overall nucleotide composition and its composition at the third codon position suggested that mutation pressure might influence the CUB. A highly significant correlation was observed between GC12 and GC3 (r = 0.910, p < 0.01), indicating that directional mutation affected all three codon positions across the genome. Translational selection (P2) and mutational responsive index (MRI) values of genes suggested that mutation plays a more important role than translational selection in members of the family Hepadnaviridae.
Collapse
Affiliation(s)
- Bornali Deb
- Department of Biotechnology, Assam University, Silchar, 788150, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, 788150, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788150, Assam, India.
| |
Collapse
|
186
|
Majeed A, Kaur H, Bhardwaj P. Selection constraints determine preference for A/U-ending codons in Taxus contorta. Genome 2020; 63:215-224. [PMID: 31986060 DOI: 10.1139/gen-2019-0165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Unequal utilization of synonymous codons is a well-known phenomenon among living organisms. This phenomenon plays a major role in the enhancement of the accuracy and efficiency of translation. Gymnosperms are rarely paid attention in this aspect. Understanding the degree of and determining the forces influencing codon usage bias (CUB) in Taxus contorta, an endangered Himalayan gymnosperm, will prove useful in interpreting the evolutionary characteristics of this species. Using RNAseq data, 93 790 assembled transcripts were clustered into 32 701 unigenes. Around 13 061 full-length sequences were utilized for the analysis of CUB. Compositional properties showed that GC-content ranged from 28.76% to 65.22%, with an average value of 44.28%, suggesting an AT-rich genome. The mean effective number of codons (ENC) value revealed that CUB is not strong in T. contorta. The preferred codons tended to be A/U ending, whereas the avoided codons tended to be G/C ending. A P2 index of 0.54 and a Mutation Responsive Index (MRI) value of -0.02 in addition to the results revealed by the neutrality, ENC, and parity plots showed that natural selection is a predominating factor governing CUB. Mutational pressure, gene length, hydropathiciy, aromaticity, and nucleotide composition influence CUB weakly.
Collapse
Affiliation(s)
- Aasim Majeed
- Molecular Genetics Laboratory, Department of Botany, Central University of Punjab, City Campus, Mansa Road, Bathinda-151001, India.,Molecular Genetics Laboratory, Department of Botany, Central University of Punjab, City Campus, Mansa Road, Bathinda-151001, India
| | - Harpreet Kaur
- Molecular Genetics Laboratory, Department of Botany, Central University of Punjab, City Campus, Mansa Road, Bathinda-151001, India.,Molecular Genetics Laboratory, Department of Botany, Central University of Punjab, City Campus, Mansa Road, Bathinda-151001, India
| | - Pankaj Bhardwaj
- Molecular Genetics Laboratory, Department of Botany, Central University of Punjab, City Campus, Mansa Road, Bathinda-151001, India.,Molecular Genetics Laboratory, Department of Botany, Central University of Punjab, City Campus, Mansa Road, Bathinda-151001, India
| |
Collapse
|
187
|
|
188
|
Kumar V, Tyagi K, Chakraborty R, Prasad P, Kundu S, Tyagi I, Chandra K. The Complete Mitochondrial Genome of endemic giant tarantula, Lyrognathus crotalus (Araneae: Theraphosidae) and comparative analysis. Sci Rep 2020; 10:74. [PMID: 31919395 PMCID: PMC6952441 DOI: 10.1038/s41598-019-57065-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/02/2019] [Indexed: 11/09/2022] Open
Abstract
The complete mitochondrial genome of Lyrognathus crotalus is sequenced, annotated and compared with other spider mitogenomes. It is 13,865 bp long and featured by 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rRNAs), 13 protein-coding genes (PCGs), and a control region (CR). Most of the PCGs used ATN start codon except cox3, and nad4 with TTG. Comparative studies indicated the use of TTG, TTA, TTT, GTG, CTG, CTA as start codons by few PCGs. Most of the tRNAs were truncated and do not fold into the typical cloverleaf structure. Further, the motif (CATATA) was detected in CR of nine species including L. crotalus. The gene arrangement of L. crotalus compared with ancestral arthropod showed the transposition of five tRNAs and one tandem duplication random loss (TDRL) event. Five plesiomophic gene blocks (A-E) were identified, of which, four (A, B, D, E) retained in all taxa except family Salticidae. However, block C was retained in Mygalomorphae and two families of Araneomorphae (Hypochilidae and Pholcidae). Out of 146 derived gene boundaries in all taxa, 15 synapomorphic gene boundaries were identified. TreeREx analysis also revealed the transposition of trnI, which makes three derived boundaries and congruent with the result of the gene boundary mapping. Maximum likelihood and Bayesian inference showed similar topologies and congruent with morphology, and previously reported multi-gene phylogeny. However, the Gene-Order based phylogeny showed sister relationship of L. crotalus with two Araneomorphae family members (Hypochilidae and Pholcidae) and other Mygalomorphae species.
Collapse
Affiliation(s)
- Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India.
| | - Rajasree Chakraborty
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Priya Prasad
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Shantanu Kundu
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Kailash Chandra
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| |
Collapse
|
189
|
Luo W, Tian L, Gan Y, Chen E, Shen X, Pan J, Irwin DM, Chen RA, Shen Y. The fit of codon usage of human-isolated avian influenza A viruses to human. INFECTION GENETICS AND EVOLUTION 2020; 81:104181. [PMID: 31918040 DOI: 10.1016/j.meegid.2020.104181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/14/2019] [Accepted: 01/05/2020] [Indexed: 01/06/2023]
Abstract
Avian influenza A viruses (AIVs) classify into 18 hemagglutinin (HA) and 11 neuraminidase (NA) subtypes. Even though H1N1 and H3N2 subtypes usually circulate among humans leading to infection, occasionally, H5, H6, H7, H9, and H10 that circulate in poultry also infect humans, and especially H5N1 and H7N9. Efficient virus replication is a critical factor that influences infection. Codon usage of a virus must coevolve with its host for efficient viral replication, therefore, we conduct a comprehensive analysis of codon usage bias in human-isolated AIVs to test their adaptation to host expression system. The relative synonymous codon usage (RSCU) pattern, and the codon adaptation index (CAI) are calculated for this purpose. We find that all human-isolated AIVs tend to eliminate GC and CpG compositions, which may prevent activation of the host innate immune system. Although codon usage differs between AIV subtypes, our data support the conclusion that natural selection has played a major role and mutation pressure a minor role in shaping codon usage bias in all AIVs. Our efforts discover that codon usage of genes encoding surface proteins of H5N1, and the polymerase genes of H7N9 has better fit to the human expression system. This may associate with their better replication and infection in human.
Collapse
Affiliation(s)
- Wen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lin Tian
- Guangdong Provincial Hospital of Chinese Medicine, Zhuhai 519015, China
| | - Yingde Gan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Enlong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xuejuan Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Junbin Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto M5S 1A8, Canada
| | - Rui-Ai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Institute of Biotechnology, Zhaoqing 526238, China.
| | - Yongyi Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Institute of Biotechnology, Zhaoqing 526238, China.
| |
Collapse
|
190
|
Wang Z, Xu B, Li B, Zhou Q, Wang G, Jiang X, Wang C, Xu Z. Comparative analysis of codon usage patterns in chloroplast genomes of six Euphorbiaceae species. PeerJ 2020; 8:e8251. [PMID: 31934501 PMCID: PMC6951282 DOI: 10.7717/peerj.8251] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Euphorbiaceae plants are important as suppliers of biodiesel. In the current study, the codon usage patterns and sources of variance in chloroplast genome sequences of six different Euphorbiaceae plant species have been systematically analyzed. Our results revealed that the chloroplast genomes of six Euphorbiaceae plant species were biased towards A/T bases and A/T-ending codons, followed by detection of 17 identical high-frequency codons including GCT, TGT, GAT, GAA, TTT, GGA, CAT, AAA, TTA, AAT, CCT, CAA, AGA, TCT, ACT, TAT and TAA. It was found that mutation pressure was a minor factor affecting the variation of codon usage, however, natural selection played a significant role. Comparative analysis of codon usage frequencies of six Euphorbiaceae plant species with four model organisms reflected that Arabidopsis thaliana, Populus trichocarpa, and Saccharomyces cerevisiae should be considered as suitable exogenous expression receptor systems for chloroplast genes of six Euphorbiaceae plant species. Furthermore, it is optimal to choose Saccharomyces cerevisiae as the exogenous expression receptor. The outcome of the present study might provide important reference information for further understanding the codon usage patterns of chloroplast genomes in other plant species.
Collapse
Affiliation(s)
- Zhanjun Wang
- College of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| | - Beibei Xu
- College of Life Sciences, Hefei Normal University, Hefei, Anhui, China.,Cyrus Tang Hematology Center, Soochow University, Soochow, Jiangsu, China
| | - Bao Li
- College of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| | - Qingqing Zhou
- College of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| | - Guiyi Wang
- College of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| | - Xingzhou Jiang
- College of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| | - Chenchen Wang
- College of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| | - Zhongdong Xu
- College of Life Sciences, Hefei Normal University, Hefei, Anhui, China
| |
Collapse
|
191
|
Sheikh A, Al-Taher A, Al-Nazawi M, Al-Mubarak AI, Kandeel M. Analysis of preferred codon usage in the coronavirus N genes and their implications for genome evolution and vaccine design. J Virol Methods 2020; 277:113806. [PMID: 31911390 PMCID: PMC7119019 DOI: 10.1016/j.jviromet.2019.113806] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 11/24/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023]
Abstract
The nucleotide variations among the N genes of 13 different coronaviruses (CoVs) were interpreted. Overall, 18 amino acids observed with varying preferred codons. The effective number of codon values ranged from 40.43 to 53.85, revealing a slight codon bias. A highly significant correlation between GC3s and ENc values was observed in porcine epidemic diarrhea CoV, followed by Middle East respiratory syndrome CoV.
The nucleocapsid (N) protein of a coronavirus plays a crucial role in virus assembly and in its RNA transcription. It is important to characterize a virus at the nucleotide level to discover the virus’s genomic sequence variations and similarities relative to other viruses that could have an impact on the functions of its genes and proteins. This entails a comprehensive and comparative analysis of the viral genomes of interest for preferred nucleotides, codon bias, nucleotide changes at the 3rd position (NT3s), synonymous codon usage and relative synonymous codon usage. In this study, the variations in the N proteins among 13 different coronaviruses (CoVs) were analysed at the nucleotide and amino acid levels in an attempt to reveal how these viruses adapt to their hosts relative to their preferred codon usage in the N genes. The results revealed that, overall, eighteen amino acids had different preferred codons and eight of these were over-biased. The N genes had a higher AT% over GC% and the values of their effective number of codons ranged from 40.43 to 53.85, indicating a slight codon bias. Neutrality plots and correlation analyses showed a very high level of GC3s/GC correlation in porcine epidemic diarrhea CoV (pedCoV), followed by Middle East respiratory syndrome-CoV (MERS CoV), porcine delta CoV (dCoV), bat CoV (bCoV) and feline CoV (fCoV) with r values 0.81, 0.68, -0.47, 0.98 and 0.58, respectively. These data implied a high rate of evolution of the CoV genomes and a strong influence of mutation on evolutionary selection in the CoV N genes. This type of genetic analysis would be useful for evaluating a virus’s host adaptation, evolution and is thus of value to vaccine design strategies.
Collapse
Affiliation(s)
- Abdullah Sheikh
- The Camel Research Center, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Abdulla Al-Taher
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Mohammed Al-Nazawi
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Abdullah I Al-Mubarak
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa 31982, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
192
|
De Mandal S, Mazumder TH, Panda AK, Kumar NS, Jin F. Analysis of synonymous codon usage patterns of HPRT1 gene across twelve mammalian species. Genomics 2020; 112:304-311. [DOI: 10.1016/j.ygeno.2019.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023]
|
193
|
Liu H, Lu Y, Lan B, Xu J. Codon usage by chloroplast gene is bias in Hemiptelea davidii. J Genet 2020; 99:8. [PMID: 32089527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The base composition of the chloroplast genes is of great interest because they play a highly significant role in the evolutionary development of the plants. Evaluation of the 48 chloroplast protein-coding genes of Hemiptelea davidii showed that the average GC content was about 37.32%, while at the third codon base position alone the average GC content was only 27.80%. The 48 genes were classified into five groups based on the gene function and each group displayed specific codon characteristics. Based on the relative synonymous codon usage analysis, a total of 30 high-frequency codons and 11 optimal codons were identified, most of them ended with A or T. Neutrality plot, ENC-plot and PR2-plot analyses showed that the codon usage bias of the chloroplast genes of H. davidii was greatly influenced by natural selection pressures. Meanwhile, the frequency of codon usage of chloroplast genes among different plant species displayed similarities, with some synonymous codons were preferred to be used in H. davidii. In this study, the codon usage pattern of the chloroplast protein coding genes of H. davidii provides us with a better understanding of the expression of chloroplast genes, and may advice the future molecular breeding programmes.
Collapse
Affiliation(s)
- Huabo Liu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | | | | | | |
Collapse
|
194
|
Pal A, Saha BK, Saha J. Comparative in silico analysis of ftsZ gene from different bacteria reveals the preference for core set of codons in coding sequence structuring and secondary structural elements determination. PLoS One 2019; 14:e0219231. [PMID: 31841523 PMCID: PMC6913975 DOI: 10.1371/journal.pone.0219231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/28/2019] [Indexed: 11/19/2022] Open
Abstract
The deluge of sequence information in the recent times provide us with an excellent opportunity to compare organisms on a large genomic scale. In this study we have tried to decipher the variation in the gene organization and structuring of a vital bacterial gene called ftsZ which codes for an integral component of the bacterial cell division, the FtsZ protein. FtsZ is homologous to tubulin protein and has been found to be ubiquitous in eubacteria. FtsZ is showing increasing promise as a target for antibacterial drug discovery. Our study of ftsZ protein from 143 different bacterial species spanning a wider range of morphological and physiological type demonstrates that the ftsZ gene of about ninety three percent of the organisms show relatively biased codon usage profile and significant GC deviation from their genomic GC content. Comparative codon usage analysis of ftsZ and a core housekeeping gene rpoB demonstrated that codon usage pattern of ftsZ CDS is shaped by natural selection to a large extent and mimics that of a housekeeping gene. We have also detected a tendency among the different organisms to utilize a core set of codons in structuring the ftsZ coding sequence. We observed that the compositional frequency of the amino acid serine in the FtsZ protein appears to be a indicator of the bacterial lifestyle. Our meticulous analysis of the ftsZ gene linked with the corresponding FtsZ protein show that there is a bias towards the use of specific synonymous codons particularly in the helix and strand regions of the multi-domain FtsZ protein. Overall our findings suggest that in an indispensable and vital protein such as FtsZ, there is an inherent tendency to maintain form for optimized performance in spite of the extrinsic variability in coding features.
Collapse
Affiliation(s)
- Ayon Pal
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, India
| | - Barnan Kumar Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, India
| | - Jayanti Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, India
| |
Collapse
|
195
|
Evolutionary Forces and Codon Bias in Different Flavors of Intrinsic Disorder in the Human Proteome. J Mol Evol 2019; 88:164-178. [DOI: 10.1007/s00239-019-09921-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
|
196
|
Shi SL, Xia RX. Codon Usage in the Iflaviridae Family Is Not Diverse Though the Family Members Are Isolated from Diverse Host Taxa. Viruses 2019; 11:E1087. [PMID: 31766648 PMCID: PMC6950266 DOI: 10.3390/v11121087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
All iflavirus members belong to the unique genus, Iflavirus, of the family, Iflaviridae. The host taxa and sequence identities of these viruses are diverse. A codon usage bias, maintained by a balance between selection, mutation, and genetic drift, exists in a wide variety of organisms. We characterized the codon usage patterns of 44 iflavirus genomes that were isolated from the classes, Insecta, Arachnida, Mammalia, and Malacostraca. Iflaviruses lack a strong codon usage bias when they are evaluated using an effective number of codons. The odds ratios of the majority of dinucleotides are within the normal range. However, the dinucleotides at the 1st-2nd codon positions are more biased than those at the 2nd-3rd codon positions. Plots of effective numbers of codons, relative neutrality analysis, and PR2 bias analysis all indicate that selection pressure dominates mutations in shaping codon usage patterns in the family, Iflaviridae. When these viruses were grouped into their host taxa, we found that the indices, including the nucleotide composition, effective number of codons, relative synonymous codon usage, and the influencing factors behind the codon usage patterns, all show that there are non-significant differences between the six host-taxa-groups. Our results disagree with our assumption that diverse viruses should possess diverse codon usage patterns, suggesting that the nucleotide composition and codon usage in the family, Iflaviridae, are not host taxa-specific signatures.
Collapse
Affiliation(s)
| | - Run-Xi Xia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China;
| |
Collapse
|
197
|
Cho M, Kim H, Son HS. Codon usage patterns of LT-Ag genes in polyomaviruses from different host species. Virol J 2019; 16:137. [PMID: 31727090 PMCID: PMC6854729 DOI: 10.1186/s12985-019-1245-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022] Open
Abstract
Background Polyomaviruses (PyVs) have a wide range of hosts, from humans to fish, and their effects on hosts vary. The differences in the infection characteristics of PyV with respect to the host are assumed to be influenced by the biochemical function of the LT-Ag protein, which is related to the cytopathic effect and tumorigenesis mechanism via interaction with the host protein. Methods We carried out a comparative analysis of codon usage patterns of large T-antigens (LT-Ags) of PyVs isolated from various host species and their functional domains and sequence motifs. Parity rule 2 (PR2) and neutrality analysis were applied to evaluate the effects of mutation and selection pressure on codon usage bias. To investigate evolutionary relationships among PyVs, we carried out a phylogenetic analysis, and a correspondence analysis of relative synonymous codon usage (RSCU) values was performed. Results Nucleotide composition analysis using LT-Ag gene sequences showed that the GC and GC3 values of avian PyVs were higher than those of mammalian PyVs. The effective number of codon (ENC) analysis showed host-specific ENC distribution characteristics in both the LT-Ag gene and the coding sequences of its domain regions. In the avian and fish PyVs, the codon diversity was significant, whereas the mammalian PyVs tended to exhibit conservative and host-specific evolution of codon usage bias. The results of our PR2 and neutrality analysis revealed mutation bias or highly variable GC contents by showing a narrow GC12 distribution and wide GC3 distribution in all sequences. Furthermore, the calculated RSCU values revealed differences in the codon usage preference of the LT-AG gene according to the host group. A similar tendency was observed in the two functional domains used in the analysis. Conclusions Our study showed that specific domains or sequence motifs of various PyV LT-Ags have evolved so that each virus protein interacts with host cell targets. They have also adapted to thrive in specific host species and cell types. Functional domains of LT-Ag, which are known to interact with host proteins involved in cell proliferation and gene expression regulation, may provide important information, as they are significantly related to the host specificity of PyVs.
Collapse
Affiliation(s)
- Myeongji Cho
- Laboratory of Computational Biology & Bioinformatics, Institute of Public Health and Environment, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hayeon Kim
- Department of Biomedical Laboratory Science, Kyungdong University, 815 Gyeonhwon-ro, Munmak, Wonju, Gangwondo, 24695, South Korea
| | - Hyeon S Son
- Laboratory of Computational Biology & Bioinformatics, Institute of Public Health and Environment, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea. .,SNU Bioinformatics Institute, Interdisciplinary Graduate Program in Bioinformatics, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
198
|
Comprehensive analysis of genetic and evolutionary features of the hepatitis E virus. BMC Genomics 2019; 20:790. [PMID: 31664890 PMCID: PMC6820953 DOI: 10.1186/s12864-019-6100-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The hepatitis E virus (HEV) is the causative pathogen of hepatitis E, a global public health concern. HEV comprises 8 genotypes with a wide host range and geographic distribution. This study aims to determine the genetic factors influencing the molecular adaptive changes of HEV open reading frames (ORFs) and estimate the HEV origin and evolutionary history. RESULTS Sequences of HEV strains isolated between 1982 and 2017 were retrieved and multiple analyses were performed to determine overall codon usage patterns, effects of natural selection and/or mutation pressure and host influence on the evolution of HEV ORFs. Besides, Bayesian Coalescent Markov Chain Monte Carlo (MCMC) Analysis was performed to estimate the spatial-temporal evolution of HEV. The results indicated an A/C nucleotide bias and ORF-dependent codon usage bias affected mainly by natural selection. The adaptation of HEV ORFs to their hosts was also ORF-dependent, with ORF1 and ORF2 sharing an almost similar adaptation profile to the different hosts. The discriminant analysis based on the adaptation index suggested that ORF1 and ORF3 could play a pivotal role in viral host tropism. CONCLUSION In this study, we estimate that the common ancestor of the modern HEV strains emerged ~ 6000 years ago, in the period following the domestication of pigs. Then, natural selection played the major role in the evolution of the codon usage of HEV ORFs. The significant adaptation of ORF1 of genotype 1 to humans, makes ORF1 an evolutionary indicator of HEV host speciation, and could explain the epidemic character of genotype 1 strains in humans.
Collapse
|
199
|
Mazumder TH, Uddin A, Chakraborty S. Insights into the nucleotide composition and codon usage pattern of human tumor suppressor genes. Mol Carcinog 2019; 59:15-23. [PMID: 31583785 DOI: 10.1002/mc.23124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/05/2019] [Accepted: 09/21/2019] [Indexed: 01/21/2023]
Abstract
Tumor suppressor genes encode different proteins that inhibit the uncontrolled proliferation of cell growth and tumor development. To acquire clues for predicting gene expression level, it is essential to understand the codon usage bias (CUB) of genes to characterize genome which possesses its own compositional characteristics and unique coding sequences. We used bioinformatic tools to analyze the codon usage patterns of 637 human tumor suppressor genes as no work was reported earlier. The mean effective number of codons of these genes was 48, indicating low CUB. Our results exhibited a significant positive correlation among different nucleotide compositions and the codons ending with C base was most frequently used along with the most over-represented codon CTG and GTG codifying leucine and valine amino acid, respectively, in human tumor suppressor genes. The neutrality plot showed a significant positive correlation (Pearson, r = 0. 646; P < .01) suggesting that mutation on GC bias might affect the CUB. However, the linear regression coefficient of GC12 on GC3 in human tumor suppressor genes suggested that natural selection played a major role while mutation pressure played a minor role in the codon usage patterns of tumor suppressor genes in human. Our study would throw light into the factors that affect CUB and the codon usage patterns in the human tumor suppressor genes.
Collapse
Affiliation(s)
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Hailakandi, Assam, India
| | | |
Collapse
|
200
|
Compositional features and codon usage pattern of TP63 gene. Comput Biol Chem 2019; 83:107119. [PMID: 31493739 DOI: 10.1016/j.compbiolchem.2019.107119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 11/23/2022]
Abstract
The tumor protein p63encoded by the gene TP63 acts as a homologue of p53 protein. TP63 gene is the transformation factor with two initiation sites for transcriptional process and is related with stress, signal transduction and cell cycle control. The biasness in the preference of a few codons more frequently over other synonymous codons is the codon usage bias (CUB). Natural selection and mutational pressure are the two prime evolutionary forces acting on CUB. Here, the bioinformatic based analysis was performed to investigate the base distribution and CUB of TP63transcript variants (isoforms) as no work was performed earlier. Analysis of compositional features revealed variation in base content across TP63 gene isoforms and the GC content was more than 50%, indicating GC richness of its isoforms. The mean effective number of codons (ENC), a measure of CUB, was 51.83, i.e. overall CUB of TP63 gene was low. Among 13 isoforms of TP63 gene, nature selected against the CTA codon in 8 isoforms and favored five over-represented (RSCU > 1.6) codons namely CTG, CAG, ATC, AAC and GCC during evolution. Correlation between overall nucleotide composition and its 3rd codon position revealed that both mutational pressure and natural selection moulded its CUB. Further, the correlation between ENC and aromaticity depicted that variation of CUB was related to the degree of aromaticity of p63 protein.
Collapse
|