151
|
Ghana R, Walss C, Walmsley JA. Sodium and potassium ion-promoted formation of supramolecular aggregates of 2'-deoxyguanylyl-(3'-5')-2'-deoxyguanosine. J Biomol Struct Dyn 1996; 14:101-10. [PMID: 8877566 DOI: 10.1080/07391102.1996.10508933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Guanine mono-, oligo-, and polynucleotides, including the guanine-rich telomeric sequences found at the ends of chromosomes, have been shown to form self-associated species which contain cyclic tetramers of hydrogen-bonded guanines (G-tetrads). In this study the effect of the tetramethylammonium (TMA+), Na+, and K+ ions on the self-aggregation of 2'-deoxyguanylyl-(3'-5')-2'-deoxyguanosine, d(GpG), in aqueous solution has been studied by 1H NMR and FTIR spectroscopy. Although just a dinucleotide, it was found that d(GpG) self-associates to form extremely large assemblies in the presence of Na+ or K+ ions, especially the latter. The observed cation order for self-aggregation is TMA+ << Na+ < K+, with TMA+ having only a weak effect. Assuming a two-state model, the Tm for Na[d(GpG)] is 22 degrees C and for K[d(GpG)] is 42 degrees C, as determined by 1H NMR. Below the melting temperatures a large loss in intensity of the NMR signals was observed for these two salts, indicating that very large aggregates are forming in aqueous solution at pD 8. The intensity loss has been estimated to be 85% at 2 degrees C for Na[d(GpG)] and 88% at 24 degrees C for K[d(GpG)]; there is no observable signal for K[d(GpG)] at 2 degrees C. Incremental addition of KCI to 8 mM Na[d(GpG)] shows that at a mole ratio of d(GpG):KCI of 1:1 at 25 degrees C the total intensity loss is 98%. The presence of additional salt, especially a K salt, increases the formation of the supramolecular aggregates. 1H NMR of 9 mM Na[d(GpG)] in 90% H2O/10% D2O at 7 degrees C suggest that there are at least tow different species present, one of which has a G-tetrad structure, or that there are two different environments for the N1H in the G-tetrads. NOESY spectra of Na[d(GpG)] suggest that the glycosidic confomation is anti for both bases and that the dinucleotide units are stacking in a parallel fashion. Variable temperature FTIR spectroscopy in the 1750-1500 cm-1 region corroborates the cation-effect order found by NMR and shows that base-stacking and base-base hydrogen bonding are occurring in the aggregated species.
Collapse
Affiliation(s)
- R Ghana
- Division of Earth & Physical Sciences, University of Texas at San Antonin 78249, USA
| | | | | |
Collapse
|
152
|
Paillart JC, Skripkin E, Ehresmann B, Ehresmann C, Marquet R. A loop-loop "kissing" complex is the essential part of the dimer linkage of genomic HIV-1 RNA. Proc Natl Acad Sci U S A 1996; 93:5572-7. [PMID: 8643617 PMCID: PMC39288 DOI: 10.1073/pnas.93.11.5572] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
RNA-RNA interactions govern a number of biological processes. Several RNAs, including natural sense and antisense RNAs, interact by means of a two-step mechanism: recognition is mediated by a loop-loop complex, which is then stabilized by formation of an extended intermolecular duplex. It was proposed that the same mechanism holds for dimerization of the genomic RNA of human immunodeficiency virus type 1 (HIV-1), an event thought to control crucial steps of HIV-1 replication. However, whereas interaction between the partially self-complementary loop of the dimerization initiation site (DIS) of each monomer is well established, formation of the extended duplex remained speculative. Here we first show that in vitro dimerization of HIV-1 RNA is a specific process, not resulting from simple annealing of denatured molecules. Next we used mutants of the DIS to test the formation of the extended duplex. Four pairs of transcomplementary mutants were designed in such a way that all pairs can form the loop-loop "kissing" complex, but only two of them can potentially form the extended duplex. All pairs of mutants form heterodimers whose thermal stability, dissociation constant, and dynamics were analyzed. Taken together, our results indicate that, in contrast with the interactions between natural sense and antisense RNAs, no extended duplex is formed during dimerization of HIV-1 RNA. We also showed that 55-mer sense RNAs containing the DIS are able to interfere with the preformed HIV-1 RNA dimer.
Collapse
Affiliation(s)
- J C Paillart
- Unité Propre de Recherche n 9002 du Centre National de la Recherche Scientifique, Institut de Biologie Moleculaire et Cellulaire, Strasbourg, France
| | | | | | | | | |
Collapse
|
153
|
McBride MS, Panganiban AT. The human immunodeficiency virus type 1 encapsidation site is a multipartite RNA element composed of functional hairpin structures. J Virol 1996; 70:2963-73. [PMID: 8627772 PMCID: PMC190155 DOI: 10.1128/jvi.70.5.2963-2973.1996] [Citation(s) in RCA: 239] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We analyzed the leader region of human immunodeficiency virus type 1 (HIV-1) RNA to decipher the nature of the cis-acting E/psi element required for encapsidation of viral RNA into virus particles. Our data indicate that, for RNA encapsidation, there are at least two functional subregions in the leader region. One subregion is located at a position immediately proximal to the major splice donor, and the second is located between the splice donor and the beginning of the gag gene. This suggests that at least two discrete cis-acting elements are recognition signals for encapsidation. To determine whether specific putative RNA secondary structures serve as the signal(s) for encapsidation, we constructed primary base substitution mutations that would be expected to destabilize these potential structures and second-site compensatory mutations that would restore secondary structure. Analysis of these mutants allowed the identification of two discrete hairpins that facilitate RNA encapsidation in vivo. Thus, the HIV-1 E/psi region is a multipartite element composed of specific and functional RNA secondary structures. Compensation of the primary mutations by the second-site mutations could not be attained in trans. This indicates that interstrand base pairing between these two stem regions within the hairpins does not appear to be the basis for HIV-1 RNA dimer formation. Comparison of the hypothetical RNA secondary structures from 10 replication-competent HIV-1 strains suggests that a subset of the hydrogen-bonded base pairs within the stems of the hairpins is likely to be required for function in cis.
Collapse
Affiliation(s)
- M S McBride
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison 53706, USA
| | | |
Collapse
|
154
|
Bishop JS, Guy-Caffey JK, Ojwang JO, Smith SR, Hogan ME, Cossum PA, Rando RF, Chaudhary N. Intramolecular G-quartet motifs confer nuclease resistance to a potent anti-HIV oligonucleotide. J Biol Chem 1996; 271:5698-703. [PMID: 8621435 DOI: 10.1074/jbc.271.10.5698] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have identified a potentially therapeutic anti-human immunodeficiency virus (HIV)-1 oligonucleotide composed entirely of deoxyguanosines and thymidines (T30177, also known as AR177: 5'-g.tggtgggtgggtggg.t-3', where asterisk indicates phosphorothioate linkage). In acute assay systems using human T-cells, T30177 and its total phosphodiester homologue T30175 inhibited HIV-1-induced syncytium production by 50% at 0.15 and 0.3 microM, respectively. Under physiological conditions, the sequence and composition of the 17-mer favors the formation of a compact, intramolecularly folded structure dominated by two stacked guanine quartet motifs that are connected by three loops of TGs. The molecule is stabilized by the coordination of a potassium ion between the two stacked quartets. We now show that these guanine quartet-containing oligonucleotides are highly resistant to serum nucleases, with t1/2 of 5 h and >4 days for T30175 and T30177, respectively. Both oligonucleotides were internalized efficiently by cells, with intracellular concentrations reaching 5-10-fold above the extracellular levels after 24 h of incubation. In contrast, single-base mutated variants or random sequence control oligonucleotides that could not form the compactly folded structure had markedly reduced half-lives (t1/2 from approximately 3 to 7 min), low cellular uptake, and no sequence-specific anti-HIV-1 activity. These data suggest that the tertiary structure of an oligonucleotide is a key determinant of its nuclease resistance, cellular uptake kinetics, and biological efficacy.
Collapse
Affiliation(s)
- J S Bishop
- Aronex Pharmaceuticals, Inc., The Woodlands, Texas 77381, USA
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Simard C, Gaudreau E, Savoie R. A vibrational spectroscopic study of the metastable form of associated polyinosinic acid. Biopolymers 1996; 38:329-38. [PMID: 8906969 DOI: 10.1002/(sici)1097-0282(199603)38:3%3c329::aid-bip6%3e3.0.co;2-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have studied by Raman and ir spectroscopy the metastable complex formed by the self-association of polyinosinic acid in aqueous solution. The complex is easily prepared by quickly cooling to ca. 0 degrees C a warm solution of the polyribonucleotide to which a small amount of rubidium salt has been added. Upon heating, this metastable form melts cooperatively near 13 degrees C, well below the dissociation temperature of a stable four-stranded complex, which occurs at 47 degrees C in the same conditions. The presence of several components in the stretching-mode region of the carbonyl groups in the vibrational spectra of the metastable complex suggests that it also has a parallel four-stranded structure. The difference in structure between the two forms is believed to be caused by the presence of fewer metal ions in the central channel of the metastable complex, in agreement with conclusions reached in previous investigations. The Raman spectra further show that the ribose units in the metastable form have a C3'-endo conformation, in contrast with the stable form, for which we have previously suggested a mixed C2'-endo/C3'-endo conformation.
Collapse
Affiliation(s)
- C Simard
- Departement de chimie, Universite Laval Quebec, Canada
| | | | | |
Collapse
|
156
|
Gottarelli G, Mezzina E, Spada GP, Carsughi F, Nicola GD, Mariani P, Sabatucci A, Bonazzi S. The Self-Recognition and Self-Assembly of Folic Acid Salts in Isotropic Water Solution. Helv Chim Acta 1996. [DOI: 10.1002/hlca.19960790123] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
157
|
Affiliation(s)
- R Berkowitz
- Gladstone Institute for Virus Research, University of California, San Francisco 94110-9100, USA
| | | | | |
Collapse
|
158
|
Paillart JC, Marquet R, Skripkin E, Ehresmann C, Ehresmann B. Dimerization of retroviral genomic RNAs: structural and functional implications. Biochimie 1996; 78:639-53. [PMID: 8955907 DOI: 10.1016/s0300-9084(96)80010-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Retroviruses are a family of widespread small animal viruses at the origin of a diversity of diseases. They share common structural and functional properties such as reverse transcription of their RNA genome and integration of the proviral DNA into the host genome, and have the particularity of packaging a diploid genome. The genome of all retroviruses is composed of two homologous RNA molecules that are non-covalently linked near their 5' end in a region called the dimer linkage structure (DLS). There is now considerable evidence that a specific site (or sites) in the 5' leader region of all retroviruses, located either upstream or/and downstream of the major splice donor site, is involved in the dimer linkage. For MoMuLV and especially HIV-1, it was shown that dimerization is initiated at a stem-loop structure named the dimerization initiation site (DIS). The DIS of HIV-1 and related regions in other retroviruses corresponds to a highly conserved structure with a self-complementary loop sequence, that is involved in a typical loop-loop 'kissing' complex which can be further stabilized by long distance interactions or by conformational rearrangements. RNA interactions involved in the viral RNA dimer were postulated to regulate several key steps in retroviral cycle, such as: i) translation and encapsidation: the arrest of gag translation imposed by the highly structured DLS-encapsidation signal would leave the RNA genome available for the encapsidation machinery; and ii) recombination during reverse transcription: the presence of two RNA molecules in particles would be necessary for variability and viability of virus progeny and the ordered structure imposed by the DLS would be required for efficient reverse transcription.
Collapse
Affiliation(s)
- J C Paillart
- UPR 9002 CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | |
Collapse
|
159
|
Berkhout B. Structure and function of the human immunodeficiency virus leader RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 54:1-34. [PMID: 8768071 DOI: 10.1016/s0079-6603(08)60359-1] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- B Berkhout
- Department of Virology, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
160
|
Keniry MA, Strahan GD, Owen EA, Shafer RH. Solution structure of the Na+ form of the dimeric guanine quadruplex [d(G3T4G3)]2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:631-43. [PMID: 7588810 DOI: 10.1111/j.1432-1033.1995.631_2.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The solution structure of the DNA quadruplex formed by the association of two strands of the DNA oligonucleotide, d(G3T4G3), in NaCl solution has been determined by 1H two-dimensional NMR techniques, full relaxation matrix calculations and restrained molecular dynamics. The refined structure incorporates the sequences 5'-G1sG2AG3AT4AT5AT6AT7AG8sG9AG10A-3' and 5'-G11sG12AG13AT14AT15AT16AT17AG18sG19sG20A-3' (where S and A denote syn and anti, respectively) in a three-quartet, diagonal-looped structure that we [Strahan, G. D., Shafer, R. H. & Keniry, M. A. (1994) Nucleic Acids Res. 22, 5447-5455] and others [Smith, F. W., Lau, F. W. & Feigon, J. (1994) Proc. Natl. Acad. Sci. USA 91, 10546-10550] have described. The loop structure is compact and incorporates many of the features found in duplex hairpin loops including base stacking, intraloop hydrogen bonding and extensive van der Waals' interactions. The first and third loop thymines stack over the outermost G-quartet and are also associated by hydrogen bonding. The second and the fourth loop thymines fold inwards in order to enhance van der Waals' interactions. The unexpected sequential syn-syn deoxyguanosines in the quadruplex stem appear to be a direct consequence of the way DNA oligonucleotides fold and the subsequent search for the most stable loop structure. The implications of loop sequence and length on the structure of quadruplexes are discussed.
Collapse
Affiliation(s)
- M A Keniry
- Research School of Chemistry, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
161
|
Kandimalla ER, Manning A, Lathan C, Byrn RA, Agrawal S. Design, biochemical, biophysical and biological properties of cooperative antisense oligonucleotides. Nucleic Acids Res 1995; 23:3578-84. [PMID: 7567472 PMCID: PMC307240 DOI: 10.1093/nar/23.17.3578] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Short oligonucleotides that can bind to adjacent sites on target mRNA sequences are designed and evaluated for their binding affinity and biological activity. Sequence-specific binding of short tandem oligonucleotides is compared with a full-length single oligonucleotide (21mer) that binds to the same target sequence. Two short oligonucleotides that bind without a base separation between their binding sites on the target bind cooperatively, while oligonucleotides that have a one or two base separation between the binding oligonucleotides do not. The binding affinity of the tandem oligonucleotides is improved by extending the ends of the two oligonucleotides with complementary sequences. These extended sequences form a duplex stem when both oligonucleotides bind to the target, resulting in a stable ternary complex. RNase H studies reveal that the cooperative oligonucleotides bind to the target RNA with sequence specificity. A short oligonucleotide (9mer) with one or two mismatches does not bind at the intended site, while longer oligonucleotides (21mers) with one or two mismatches still bind to the same site, as does a perfectly matched 21mer, and evoke RNase H activity. HIV-1 inhibition studies reveal an increase in activity of the cooperative oligonucleotide combinations as the length of the dimerization domain increases.
Collapse
|
162
|
Tzfati Y, Abeliovich H, Avrahami D, Shlomai J. Universal minicircle sequence binding protein, a CCHC-type zinc finger protein that binds the universal minicircle sequence of trypanosomatids. Purification and characterization. J Biol Chem 1995; 270:21339-45. [PMID: 7545668 DOI: 10.1074/jbc.270.36.21339] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Replication of kinetoplast DNA minicircles of trypanosomatids initiates at a conserved 12-nucleotide sequence, termed the universal minicircle sequence (UMS, 5'-GGGGTTGGTGTA-3'). A single-stranded nucleic acid binding protein that binds specifically to this origin-associated sequence was purified to apparent homogeneity from Crithidia fasciculata cell extracts. This UMS-binding protein (UMSBP) is a dimer of 27.4 kDa with a 13.7-kDa protomer. UMSBP binds single-stranded DNA as well as single-stranded RNA but not double-stranded or four-stranded DNA structures. Stoichiometry analysis indicates the binding of UMSBP as a protein dimer to the UMS site. The five CCHC-type zinc finger motifs of UMSBP, predicted from its cDNA sequence, are similar to the CCHC motifs found in retroviral Gag polyproteins. The remarkable conservation of this motif in a family of proteins found in eukaryotic organisms from yeast and protozoa to mammals is discussed.
Collapse
Affiliation(s)
- Y Tzfati
- Department of Parasitology, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
163
|
Affiliation(s)
- D Herschlag
- Department of Biochemistry, Stanford University, California 94305-5307, USA
| |
Collapse
|
164
|
Mohanty D, Bansal M. Chain folding and A:T pairing in human telomeric DNA: a model-building and molecular dynamics study. Biophys J 1995; 69:1046-67. [PMID: 8519959 PMCID: PMC1236333 DOI: 10.1016/s0006-3495(95)79979-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The various types of chain folding and possible intraloop as well as interloop base pairing in human telomeric DNA containing d(TTAG3) repeats have been investigated by model-building, molecular mechanics, and molecular dynamics techniques. Model-building and molecular mechanics studies indicate that it is possible to build a variety of energetically favorable folded-back structures with the two TTA loops on same side and the 5' end thymines in the two loops forming TATA tetrads involving a number of different intraloop as well as interloop A:T pairing schemes. In these folded-back structures, although both intraloop and interloop Watson-Crick pairing is feasible, no structure is possible with interloop Hoogsteen pairing. MD studies of representative structures indicate that the guanine-tetraplex stem is very rigid and, while the loop regions are relatively much more flexible, most of the hydrogen bonds remain intact throughout the 350-ps in vacuo simulation. The various possible TTA loop structures, although they are energetically similar, have characteristic inter proton distances, which could give rise to unique cross-peaks in two-dimensional nuclear Overhauser effect spectroscopy (NOESY) experiments. These folded-back structures with A:T pairings in the loop region help in rationalizing the data from chemical probing and other biochemical studies on human telomeric DNA.
Collapse
Affiliation(s)
- D Mohanty
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
165
|
Frantz JD, Gilbert W. A novel yeast gene product, G4p1, with a specific affinity for quadruplex nucleic acids. J Biol Chem 1995; 270:20692-7. [PMID: 7657649 DOI: 10.1074/jbc.270.35.20692] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
G4 nucleic acids are four-stranded helical structures that are formed in vitro by nucleic acids that contain guanine tracts. These structures anneal readily under physiological conditions and are unusually stable once formed. G4 nucleic acids are thought to participate in telomere function, retroviral genome dimerization, chromosome alignment during homologue pairing, and mitotic recombination, although the in vivo demonstration of these structures in any of these situations has not yet been achieved. Here we purify and characterize an activity from yeast, G4p1, which has a high and specific affinity for G4 nucleic acids. G4p1 prefers substrates containing multiple G4 domains, has an equal affinity for parallel and antiparallel G4 structures, and binds equivalently to RNA and DNA in G4 form. The Keq for G4p1 binding to a G4 DNA oligomer is 5.0 x 10(8) M-1, under near physiological conditions. G4p1 was purified and shown to derive from a 42-kDa protein (p42). We have cloned and sequenced the gene encoding p42 and show it to encode a novel protein with a region significantly homologous to bacterial methionyl-tRNA synthetase dimerization domains. We have reconstituted the G4p1 binding activity with recombinant p42 and present evidence that G4p1 is a homodimer of p42.
Collapse
Affiliation(s)
- J D Frantz
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
166
|
Girard PM, Bonnet-Mathonière B, Muriaux D, Paoletti J. A short autocomplementary sequence in the 5' leader region is responsible for dimerization of MoMuLV genomic RNA. Biochemistry 1995; 34:9785-94. [PMID: 7626648 DOI: 10.1021/bi00030a016] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous work has shown that a region of Moloney murine leukemia virus (MoMuLV) RNA located between nucleotides 280 and 330 in the PSI region (nt 215-565) is implicated in the dimerization process. We show with a deletion from nucleotides 290-299 in PSI RNA transcripts and through an antisense oligonucleotide complementary to nucleotides 275-291 that the 283-298 region is involved in RNA dimer formation in vitro. In an attempt to further characterize the mechanism of dimer formation, a series of short RNA transcripts was synthesized which overlapps the PSI region of MoMuLV RNA. The dimerization of these RNAs is temperature dependent. The predicted secondary structure of the 278-303 region, as a function of temperature, reveals that this sequence is able to adopt two conformations: (1) the U288 AGCUA293 sequence in a loop; (2) part of the same nucleotides implicated in a stem. These results, together with thermodynamic analysis, strongly suggest that (1) the loop conformation of the UAGCUA sequence modulates the relative amount of RNA dimer and (2) a 16 bp long Watson-Crick base pairing is involved in RNA dimer formation. We propose that loop-loop recognition via the U288 AGCUA293 sequence leads to a stable structure induced by a stem-loop opening. Furthermore, our results do not support purine quartet formation as necessary for the dimerization of the 5' leader MoMuLV RNA.
Collapse
Affiliation(s)
- P M Girard
- Unité de Biochimie, URA 147 CNRS, Institut Gustave Roussy, Villejuif, France
| | | | | | | |
Collapse
|
167
|
Mansky LM, Krueger AE, Temin HM. The bovine leukemia virus encapsidation signal is discontinuous and extends into the 5' end of the gag gene. J Virol 1995; 69:3282-9. [PMID: 7745675 PMCID: PMC189039 DOI: 10.1128/jvi.69.6.3282-3289.1995] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In order to define bovine leukemia virus (BLV) sequences required for efficient vector replication, a series of mutations were made in a BLV vector. Testing the replication efficiency of the vectors with a helper virus and helper plasmids allowed for separation of the mutant vectors into three groups. The replication efficiency of the first group was reduced by a factor of 7; these mutants contained deletions in the 5' end of the gag gene. The second group of mutants had replication reduced by a factor of 50 and had deletions including the 5' untranslated leader region. The third group of mutants replicated at levels comparable to those of the parental vector and contained deletions of the 3' end of the gag gene, the pol gene, and the env gene. Analysis of cytoplasmic and virion RNA levels indicated that vector RNA expression was not affected but that the vector RNA encapsidation was less efficient for group 1 and group 2 mutants. Additional mutations revealed two regions important for RNA encapsidation. The first region is a 132-nucleotide-base sequence within the gag gene (nucleotides 1015 to 1147 of the proviral DNA) and facilitates efficient RNA encapsidation in the presence of the second region. The second region includes a 147-nucleotide-base sequence downstream of the primer binding site (nucleotide 551) and near the gag gene start codon (nucleotide 698; gag begins at nucleotide 628) and is essential for RNA encapsidation. We conclude that the encapsidation signal is discontinuous; a primary signal, essential for RNA encapsidation, is largely in the untranslated leader region between the primer binding site and near the gag start codon. A secondary signal, which facilitates efficient RNA encapsidation, is in a 132-nucleotide-base region within the 5' end of the gag gene.
Collapse
Affiliation(s)
- L M Mansky
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison 53706, USA
| | | | | |
Collapse
|
168
|
Frantz JD, Gilbert W. A yeast gene product, G4p2, with a specific affinity for quadruplex nucleic acids. J Biol Chem 1995; 270:9413-9. [PMID: 7721866 DOI: 10.1074/jbc.270.16.9413] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
G4 nucleic acids are quadruplex structures involving guanine-rich sequences that form in vitro under moderate conditions. Experimental evidence exists supporting biological functions for these elements; however, direct demonstration of G4 nucleic acids in vivo has not yet been achieved. Here we purify and characterize a yeast protein, G4p2, which has a specific affinity for G4 nucleic acids. G4p2 binds equivalently to RNA and DNA in G4 form. The Keq for G4p2 binding to a G4 DNA oligomer is 2.2 x 10(8) M-1 under near physiological conditions. We have cloned and sequenced the gene encoding G4p2 and have shown it to be identical to MPT4 and STO1. MPT4 was isolated in a screen for multicopy suppressors of staurosporine sensitivity in POP2 cells. Pop2 is a complex regulatory factor that participates, in part, in the repression of certain genes in the absence of glucose (Sakai, A., Chibazakura, T., Shimizu, Y., and Hishinuma, F. (1992) Nucleic Acids Res. 20, 6227-6233). STO1 was isolated as a multicopy suppressor of TOM1, an uncharacterized mutation that leads to temperature-sensitive cell cycle arrest at the G2/M boundary. Suppression of these mutations by G4p2 indicate this G4 nucleic acid binding protein may function in signal transduction pathways regulated by protein kinases, which control carbon source utilization, and in cell cycle progression.
Collapse
Affiliation(s)
- J D Frantz
- Department of Molecular and Cellular Biology, Harvard University Biological Laboratories, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
169
|
Muriaux D, Girard PM, Bonnet-Mathonière B, Paoletti J. Dimerization of HIV-1Lai RNA at low ionic strength. An autocomplementary sequence in the 5' leader region is evidenced by an antisense oligonucleotide. J Biol Chem 1995; 270:8209-16. [PMID: 7713927 DOI: 10.1074/jbc.270.14.8209] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Genomic human immunodeficiency virus type 1 (HIV-1) RNA consists of two identical RNA molecules joined noncovalently near their 5' ends in a region called the dimer linkage structure (DLS). Previous work has shown that the putative DLS is localized in a 113-nucleotide domain encompassing the 5' end of the gag gene. This region contains conserved purine tracks that are thought to mediate dimerization through purine quartets. However, recently, an HIV-1Mal RNA dimerization model was proposed as the HIV-1Mal RNA dimerization initiation site, involving another region upstream from the splice donor site and possibly confined within a stem-loop. In the present study, we have investigated the dimerization of HIV-1Lai RNA, using in vitro dimerization assays under conditions of low ionic strength, predictive RNA secondary structures determined by computer folding, and antisense DNA oligonucleotides in order to discriminate between these two models. Our results suggest that purine quartets are not involved in the dimer structure of HIV-1Lai RNA and have led to the identification of a region upstream from the splice donor site. This region, comprising an autocomplementary sequence in a possible stem-loop structure, is responsible for the formation of dimeric HIV-1Lai RNA.
Collapse
Affiliation(s)
- D Muriaux
- Unité de Biochimie-Enzymologie, URA 147 CNRS, Institut Gustave Roussy, Villejuif, France
| | | | | | | |
Collapse
|
170
|
Clever J, Sassetti C, Parslow TG. RNA secondary structure and binding sites for gag gene products in the 5' packaging signal of human immunodeficiency virus type 1. J Virol 1995; 69:2101-9. [PMID: 7884856 PMCID: PMC188876 DOI: 10.1128/jvi.69.4.2101-2109.1995] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The selective encapsidation of retroviral RNA requires sequences in the Gag protein, as well as a cis-acting RNA packaging signal (psi site) near the 5' end of the genomic transcript. Gag protein of human immunodeficiency virus type 1 (HIV-1) has recently been found to bind specifically to the HIV-1 psi element in vitro. Here we report studies aimed at mapping features within the genetically defined psi locus that are required for binding of HIV-1 Gag or of its processed nucleocapsid derivative. The full-length HIV-1 Gag (p55) and nucleocapsid (p15) sequences were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli. In a gel shift assay containing excess competitor tRNA, affinity-purified GST-p15 and GST-p55 proteins bound to a 206-nucleotide psi RNA element spanning the major splice donor and gag start codons but did not bind to antisense psi transcripts. Quantitative filter-binding assays revealed that both GST-p55 and GST-p15 bound to this RNA sequence with identical affinities (apparent Kd congruent to 5 x 10(-8) M), indicating that all major determinants of psi binding affinity reside within the nucleocapsid portion of Gag. Chemical and RNase accessibility mapping, coupled with computerized sequence analysis, suggested a model for psi RNA structure comprising four independent stem-loops. Filter-binding studies revealed that RNAs corresponding to three of these hypothetical stem-loops can each function as a independent Gag binding site and that each is bound with approximately fourfold-lower apparent affinity than the full-length psi locus. Interaction of Gag with these regions is likely to play a major role in directing HIV-1 RNA encapsidation in vivo.
Collapse
Affiliation(s)
- J Clever
- Department of Pathology, University of California, San Francisco 94143-0506
| | | | | |
Collapse
|
171
|
Feng YX, Fu W, Winter AJ, Levin JG, Rein A. Multiple regions of Harvey sarcoma virus RNA can dimerize in vitro. J Virol 1995; 69:2486-90. [PMID: 7884897 PMCID: PMC188924 DOI: 10.1128/jvi.69.4.2486-2490.1995] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Retroviruses contain a dimeric RNA consisting of two identical molecules of plus-strand genomic RNA. The structure of the linkage between the two monomers is not known, but they are believed to be joined near their 5' ends. Darlix and coworkers have reported that transcripts of retroviral RNA sequences can dimerize spontaneously in vitro (see, for example, E. Bieth, C. Gabus, and J. L. Darlix, Nucleic Acids Res. 18:119-127, 1990). As one approach to identification of sequences which might participate in the linkage, we have mapped sequences derived from the 5' 378 bases of Harvey sarcoma virus (HaSV) RNA which can dimerize in vitro. We found that at least three distinct regions, consisting of nucleotides 37 to 229, 205 to 272, and 271 to 378, can form these dimers. Two of these regions contain nucleotides 205 to 226; computer analysis suggests that this region can form a stem-loop with an inverted repeat in the loop. We propose that this hypothetical structure is involved in dimer formation by these two transcripts. We also compared the thermal stabilities of each of these dimers with that of HaSV viral RNA. Dimers of nucleotides 37 to 229 and 205 to 272 both exhibited melting temperatures near that of viral RNA, while dimers of nucleotides 271 to 378 are quite unstable. We also found that dimers of nucleotides 37 to 378 formed at 37 degrees C are less thermostable than dimers of the same RNA formed at 55 degrees C. It seems possible that bases from all of these regions participate in the dimer linkage present in viral RNA.
Collapse
Affiliation(s)
- Y X Feng
- Laboratory of Molecular Virology and Carcinogenesis, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Maryland 21702-1201
| | | | | | | | | |
Collapse
|
172
|
Fujihashi T, Sakata T, Kaji A, Kaji H. Antiviral action of oligodeoxyguanylic acids against human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 1995; 11:461-71. [PMID: 7543270 DOI: 10.1089/aid.1995.11.461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Deoxyguanylic acids, but not other deoxynucleotides, as short as 3- to 4-mer, were effective in preventing HIV-1-induced cytopathicity. In addition, they prevented giant cell formation of infected Sup-T1 cells, and p24 production in HIV-1 infected H9 cells. Phosphorylation at either the 5'- or 3'-end enhanced these activities. Furthermore, 5'-phosphorylated phosphorothioate tetradeoxyguanylic acid was effective in reducing HIV production in chronically infected cells (H9/IIIB). The search for the target steps of this compound revealed that it inhibits at least 3 steps in the life cycle of HIV: interaction with CD4 (measured by inhibitory effect on the syncytia formation between Sup-T1 and H9/IIIB cells), reverse transcriptase, and step(s) after integration. These results suggest that phosphorylated phosphorothioate tetradeoxyguanylic acid may be a novel candidate for a therapeutic agent of AIDS.
Collapse
Affiliation(s)
- T Fujihashi
- Department of Pharmacology, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
173
|
Kandimalla ER, Agrawal S. Single strand targeted triplex-formation. Destabilization of guanine quadruplex structures by foldback triplex-forming oligonucleotides. Nucleic Acids Res 1995; 23:1068-74. [PMID: 7537368 PMCID: PMC306806 DOI: 10.1093/nar/23.6.1068] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Oligonucleotides that can hybridize to single-stranded complementary polypurine nucleic acid targets by Watson-Crick base pairing as well as by Hoogsteen base pairing, referred to here as foldback triplex-forming oligonucleotides (FTFOs), have been designed. These oligonucleotides hybridize with target nucleic acid sequences with greater affinity than antisense oligonucleotides, which hybridize to the target sequence only by Watson-Crick hydrogen bonding [Kandimalla, E. R. and Agrawal, S. Gene(1994) 149, 115-121 and references cited therein]. FTFOs have been studied for their ability to destabilize quadruplexes formation by RNA or DNA target sequences. The influence of various DNA/RNA compositions of FTFOs on their ability to destabilize RNA and DNA quadruplexes has been examined. The ability of the FTFOs to destabilize quadruplex structures is related to the structurally and thermodynamically stable foldback triplex formed between the FTFO and its target sequence. Antisense oligonucleotides (DNA or RNA) that can form only a Watson-Crick double helix with the target sequence are unable to destabilize quadruplex structures of RNA and DNA target sequences and are therefore limited in their repertoire of target sequences. The quadruplex destabilization ability of FTFOs is dependent on the nature of the cation present in solution. The RNA quadruplex destabilization ability of FTFOs is -20% higher in the presence of sodium ion than potassium ion. The use of FTFOs, which can destabilize quadruplex structure, opens up new areas for development of oligonucleotide-based therapeutics, specifically, targeting guanine-rich sequences that exist at the ends of pro- and eukaryotic chromosomes and dimerization regions of retroviral RNA.
Collapse
|
174
|
|
175
|
Christiansen J, Kofod M, Nielsen FC. A guanosine quadruplex and two stable hairpins flank a major cleavage site in insulin-like growth factor II mRNA. Nucleic Acids Res 1994; 22:5709-16. [PMID: 7838726 PMCID: PMC310137 DOI: 10.1093/nar/22.25.5709] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Insulin-like growth factor II (IGF-II) mRNAs are cleaved by an endonucleolytic event in a conserved part of their 3' untranslated region that is predicted to exhibit a complex higher-order RNA structure. In the present study, we have examined the putative secondary structures of in vitro transcripts from the conserved part of human and rat mRNAs by enzymatic and chemical probing. The results show that the cleavage site is situated between two highly structured domains. The upstream domain consists of two large hairpins, whereas the downstream domain is guanosine-rich. The guanosine-rich domain adopts a compact unimolecular conformation in Na+ or K+ but not in Li+, and it completely arrests reverse transcription in K+ but only partially in Na+, indicating the presence of an intramolecular guanosine quadruplex. The flanking higher-order structures may ensure that the cleavage site is not sequestered in stable RNA structures, thus allowing interactions with RNA or proteins at posttranscriptional stages of IGF-II expression.
Collapse
Affiliation(s)
- J Christiansen
- Department of Biological Chemistry, University of Copenhagen, Denmark
| | | | | |
Collapse
|
176
|
Abstract
BACKGROUND Telomeres in eukaryotic organisms are protein-DNA complexes which are essential for the protection and replication of chromosomal termini. The telomeric DNA of Tetrahymena consists of T2G4 repeats, and models have been previously proposed for the intramolecular folded structure of the d(T2G4)4 sequence based on chemical footprinting and cross-linking data. A high-resolution solution structure of this sequence would allow comparison with the structures of related G-tetraplexes. RESULTS The solution structure of the Na(+)-stabilized d(T2G4)4 sequence has been determined using a combined NMR-molecular dynamics approach. The sequence folds intramolecularly into a right-handed G-tetraplex containing three stacked G-tetrads connected by linker segments consisting of a G-T-T-G lateral loop, a central T-T-G lateral loop and a T-T segment that spans the groove through a double chain reversal. The latter T-T connectivity aligns adjacent G-G-G segments in parallel and introduces a new G-tetraplex folding topology with unprecedented combinations of strand directionalities and groove widths, as well as guanine syn/anti distributions along individual strands and around individual G-tetrads. CONCLUSIONS The four repeat Tetrahymena and human G-tetraplexes, which differ by a single guanine for adenine substitution, exhibit strikingly different folding topologies. The observed structural polymorphism establishes that G-tetraplexes can adopt topologies which project distinctly different groove dimensions, G-tetrad base edges and linker segments for recognition by, and interactions with, other nucleic acids and proteins.
Collapse
Affiliation(s)
- Y Wang
- Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | | |
Collapse
|
177
|
Strahan GD, Shafer RH, Keniry MA. Structural properties of the [d(G3T4G3)]2 quadruplex: evidence for sequential syn-syn deoxyguanosines. Nucleic Acids Res 1994; 22:5447-55. [PMID: 7816637 PMCID: PMC332095 DOI: 10.1093/nar/22.24.5447] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two-dimensional 1H NMR studies on the dimeric hairpin quadruplex formed by d(G3T4G3) in the presence of either NaCl or KCl are presented. In the presence of either salt, the quadruplex structure is characterized by half the guanine nucleosides in the syn conformation about the glycosidic bond, the other half in the anti conformation, as reported for other similar sequences. However, 1H NOESY and 1H-31P heteronuclear correlation experiments demonstrate that the deoxyguanosines do not strictly alternate between syn and anti along individual strands. Thus we find the following sequences with regard to glycosidic bond conformation: 5'-G1SG2SG3AT4AT5A-T6AT7AG8SG9AG10A-3' and 5'-G11SG12AG13AT14AT1 5AT16AT17AG18SG19SG20A-3', where S and A denote syn and anti, respectively. This represents the first experimental evidence for a nucleic acid structure containing two sequential nucleosides in the syn conformation. The stacking interactions of the resulting quadruplex quartets and their component bases have been evaluated using unrestrained molecular dynamics calculations and energy component analysis. These calculations suggest that the sequential syn-syn/anti-anti and syn-anti quartet stacks are almost equal in energy, whereas the anti-syn stack, which is not present in our structure, is energetically less favorable by about 4 kcal/mol. Possible reasons for this energy difference and its implications for the stability of quadruplex structures are discussed.
Collapse
Affiliation(s)
- G D Strahan
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco 94143
| | | | | |
Collapse
|
178
|
Barr RG, Pinnavaia TJ. Structure sensitivity of amino proton exchange in 2'- and 5' - guanosine monophosphate dianions. J Biomol Struct Dyn 1994; 12:681-94. [PMID: 7727066 DOI: 10.1080/07391102.1994.10508767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Proton NMR line broadening methods were used to determine the rates of amino proton exchange for disordered 2'- and 5' - GMP dianions in aqueous solutions containing tetramethylammonium (TMA+) cations. Replacing TMA+ with Na+ does not substantially alter the exchange rates, provided that H-bonded, Na(+)-directed tetramer structures are absent. Activation enthalpies (kcal/mol) and entropies (eu) for 2'-GMP are: delta H not equal to = 18.5 +/- 1.3, delta S not equal to = 9.6 +/- 4.2 for TMA+ salt at pH 8.10, and delta H not equal to = 14.7 +/- 2.6, delta S not equal to = -3.7 +/- 8.0 for the Na+ salt at pH 8.11. Extrapolated values of pseudo first-order rate constants at 25 degrees C are in the range of k = 1-10 sec-1. At suitable concentrations and temperatures, the Na+ salts of both 2'- and 5' - GMP formed stacked and unstacked tetramer units. Relative to the exchange kinetics observed for the disordered nucleotide, the exchange process in the tetramer units was catalyzed in half the amino protons and inhibited in the other half. The catalytic process (k > 10(3) sec-1) has been attributed to amino protons not involved in interbase H-bonding, where as the inhibited process (k < 10(-1) sec-1) was assigned to those protons which do form such bonds. The structure-catalyzed process in both the stacked and unstacked tetramers was manifested by a loss of NMR amino proton intensity due to weighted time-averaging with the resonance for bulk water. A bridging water molecule between an amino proton and a phosphate on an adjacent nucleotide in the tetramer unit may provide a mechanistic pathway for the structure-catalyzed process.
Collapse
Affiliation(s)
- R G Barr
- Department of Radiology, St. Elizabeth Hospital Medical Center, Youngstown, Ohio 44501-1790, USA
| | | |
Collapse
|
179
|
Laughrea M, Jetté L. A 19-nucleotide sequence upstream of the 5' major splice donor is part of the dimerization domain of human immunodeficiency virus 1 genomic RNA. Biochemistry 1994; 33:13464-74. [PMID: 7947755 DOI: 10.1021/bi00249a035] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The genome of all retroviruses, including human immunodeficiency virus type 1 (HIV-1), consists of two identical RNAs noncovalently linked near their 5' end. Dimerization of genomic RNA is thought to modulate several steps in the retroviral life cycle, such as recombination, translation, and encapsidation. We report the results of experiments designed to identify the 5' and 3' boundaries of the dimerization domain of the HIV-1 genome: (1) An HIV-1 RNA starting at nucleotide 252 or at other downstream positions (four tested) does not dimerize despite the inclusion of the whole of a previously proposed dimerization domain (nucleotides 295-401); (2) an RNA starting between nucleotides 242 and 249 (five positions tested) dimerizes to a variable extent depending on the starting position; (3) an RNA starting at nucleotide 233 or at other upstream positions (five tested) is fully or > 80% dimeric; (4) an RNA starting at nucleotide 1 but lacking the 233-251 or the 242-251 region is, respectively, fully monomeric or about 50% monomeric; (5) the 343-401 region contains two strings of G's (GGGGG367 and GGG384) that had been postulated to promote genome dimerization through the formation of guanine quartets. We have deleted the 379-401, 358-401, and 343-401 regions from otherwise dimeric RNAs without changing their ability to dimerize. We reach three conclusions: (1) a dimerization signal exists upstream of the major 5' splice donor (nucleotide 290); (2) the previously proposed downstream dimerization domain is insufficient to promote dimerization and has a 3' half that is not necessary to obtain fully dimeric RNAs; (3) the 5' boundary of the HIV-1 dimerization domain is located somewhere between nucleotides 233 and 242, and the 3' boundary is located no farther than at nucleotide 342, making it possible that the 5' and 3' boundaries of the HIV-1 dimerization domain are both located within the leader sequence. We speculate that the 248-270 or 233-285 region forms a hairpin that is the core dimerization domain of HIV-1 RNA.
Collapse
Affiliation(s)
- M Laughrea
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | | |
Collapse
|
180
|
Paillart JC, Marquet R, Skripkin E, Ehresmann B, Ehresmann C. Mutational analysis of the bipartite dimer linkage structure of human immunodeficiency virus type 1 genomic RNA. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47011-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
181
|
Smith FW, Lau FW, Feigon J. d(G3T4G3) forms an asymmetric diagonally looped dimeric quadruplex with guanosine 5'-syn-syn-anti and 5'-syn-anti-anti N-glycosidic conformations. Proc Natl Acad Sci U S A 1994; 91:10546-50. [PMID: 7937991 PMCID: PMC45058 DOI: 10.1073/pnas.91.22.10546] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The structure formed by the DNA oligonucleotide d(G3T4G3) has been studied by one- and two-dimensional 1H NMR spectroscopy. In NaCl solution, d(G3T4G3), like d(G4T4G4) (Oxy-1.5), forms a dimeric quadruplex with the thymines in loops across the diagonal of the end quartets. Unlike Oxy-1.5, the dimer is not symmetric, and both monomer strands are observed in NMR spectra. Three quartets are formed from the GGG tracts. Glycosidic conformations of the guanines are 5'-syn-syn-anti-(loop)-syn-anti-anti in one strand and 5'-syn-anti-anti-(loop)-syn-syn-anti in the other strand. Thus, the stacking of the quartets (tail-to-tail, head-to-tail) is unlike all previously described fold-back (tail-to-tail, head-to-head) and parallel-stranded (head-to-tail, head-to-tail) quadruplexes.
Collapse
Affiliation(s)
- F W Smith
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024
| | | | | |
Collapse
|
182
|
Evertsz EM, Rippe K, Jovin TM. Parallel-stranded duplex DNA containing blocks of trans purine-purine and purine-pyrimidine base pairs. Nucleic Acids Res 1994; 22:3293-303. [PMID: 8078763 PMCID: PMC523721 DOI: 10.1093/nar/22.16.3293] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A 30 base pair parallel-stranded (ps) duplex ps-L1.L2 composed of two adjoined purine-purine and purine-pyrimidine sequence blocks has been characterized thermodynamically and spectroscopically. The 5'-terminal 15 residues in both strands ('left-half') consisted of the alternating d(GA)7G sequence that forms a ps homoduplex secondary structure stabilized by d(G.G) and d(A.A) base pairs. The 3'-terminal 15 positions of the sequence ('right-half') were combinations of A and T with complementary reverse Watson-Crick d(A.T) base pairing between the two strands. The characteristics of the full length duplex were compared to those of the constituent left and right halves in order to determine the compatibility of the two ps helical forms. The thermal denaturation curves and hyperchromicity profiles of all three duplexes determined by UV absorption spectroscopy were characteristic of ps-DNA, in accordance with previous studies. The thermodynamic properties of the 30 bp duplex corresponded within experimental error to the linear combination of the two 15-mers. Thus, the Tm and delta HvH of ps-L1.L2 in 10 mM MgCl2, derived from analyses according to a statistical mechanical formulation for the helix-coil transition, were 43 degrees C and 569 kJ mol-1, compared to 21 degrees C, 315 kJ mol-1 (ps-F5.F6) and 22 degrees C, 236 kJ mol-1 (ps-GA15). The UV absorption and CD spectra of ps-L1.L2 and the individual 15-mer ps motifs were also compared quantitatively. The sums of the two constituent native spectra (left+right halves) accurately matched that of the 30 bp duplex, with only small deviations in the 195-215 nm (CD) and 220-240 nm (absorption) regions. Based on analysis by native gel electrophoresis, the sequences studied formed duplex structures exclusively; there were no indications of higher order species. Chemical modification with diethyl pyrocarbonate showed no hyperreactivity of the junctional bases, indicating a smooth transition between the two parallel-stranded conformations. We conclude that under given salt conditions, oligonucleotides with normal primary chemical structures can readily form a parallel-stranded double helix based on blocks of very disparate non-canonical purine-purine and purine-pyrimidine base pairs and without perceptible destabilization at the junction. There are biological implications of these findings in relation to genetic structure and expression.
Collapse
Affiliation(s)
- E M Evertsz
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | | | | |
Collapse
|
183
|
Fu W, Gorelick RJ, Rein A. Characterization of human immunodeficiency virus type 1 dimeric RNA from wild-type and protease-defective virions. J Virol 1994; 68:5013-8. [PMID: 8035501 PMCID: PMC236443 DOI: 10.1128/jvi.68.8.5013-5018.1994] [Citation(s) in RCA: 202] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have characterized the dimeric genomic RNA in particles of both wild-type and protease (PR)-deficient human immunodeficiency virus type 1 (HIV-1). We found that the dimeric RNA isolated from PR- mutant virions has a lower mobility in nondenaturing gel electrophoresis than that from wild-type virions. It also dissociates into monomers at a lower temperature than the wild-type dimer. Thus, the dimer in PR- particles is in a conformation different from that in wild-type particles. These results are quite similar to recent findings on Moloney murine leukemia virus and suggest that a postassembly, PR-dependent maturation event is a common feature in genomic RNAs of retroviruses. We also measured the thermal stability of the wild-type and PR- dimeric RNAs under different ionic conditions. Both forms of the dimer were stabilized by increasing Na+ concentrations. However, the melting temperatures of the two forms were not significantly affected by the identity of the monovalent cation present in the incubation buffer. This observation is in contrast with recent reports on dimers formed in vitro from short segments of HIV-1 sequence: the latter dimers are specifically stabilized by K+ ions. K+ stabilization of dimers formed in vitro has been taken as evidence for the presence of guanine quartet structures. The results suggest that guanine quartets are not involved in the structure linking full-length, authentic genomic RNA of HIV-1 into a dimeric structure.
Collapse
Affiliation(s)
- W Fu
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Maryland 21702-1201
| | | | | |
Collapse
|
184
|
Laughlan G, Murchie AI, Norman DG, Moore MH, Moody PC, Lilley DM, Luisi B. The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science 1994; 265:520-4. [PMID: 8036494 DOI: 10.1126/science.8036494] [Citation(s) in RCA: 382] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Repeat tracts of guanine bases found in DNA and RNA can form tetraplex structures in the presence of a variety of monovalent cations. Evidence suggests that guanine tetraplexes assume important functions within chromosomal telomeres, immunoglobulin switch regions, and the human immunodeficiency virus genome. The structure of a parallel-stranded tetraplex formed by the hexanucleotide d(TG4T) and stabilized by sodium cations was determined by x-ray crystallography to 1.2 angstroms resolution. Sharply resolved sodium cations were found between and within planes of hydrogen-bonded guanine quartets, and an ordered groove hydration was observed. Distinct intra- and intermolecular stacking arrangements were adopted by the guanine quartets. Thymine bases were exclusively involved in making extensive lattice contacts.
Collapse
Affiliation(s)
- G Laughlan
- Medical Research Council Virology Unit, University of Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
185
|
Knight JB, Si ZH, Stoltzfus CM. A base-paired structure in the avian sarcoma virus 5' leader is required for efficient encapsidation of RNA. J Virol 1994; 68:4493-502. [PMID: 8207823 PMCID: PMC236375 DOI: 10.1128/jvi.68.7.4493-4502.1994] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Selective encapsidation of avian sarcoma-leukosis virus genomic RNA within virions requires recognition of a cis-acting signal (termed psi) located in the 5' leader of the RNA between the primer binding site and the splice donor site. Computer analyses indicate the potential for numerous secondary structure interactions within this region, including alternative conformations with similar free energy levels. We have constructed mutations designed to disrupt and restore potential secondary structure interactions within psi to investigate the role of these structures in RNA packaging. To test for the ability of psi mutants to package a heterologous reporter gene into virions, chimeric constructs bearing avian sarcoma virus 5' sequences fused to lacZ were transiently cotransfected with a nonpackageable helper construct into chicken embryo fibroblasts. lacZ virions produced from cotransfected cells were used to infect new cultures of chicken embryo fibroblasts, and then an in situ assay for individual cells expressing lacZ was done. Results obtained with this assay were confirmed in direct analyses of isolated virion RNA by RNase protection assays. Two mutations, predicted to disrupt a potential stem structure forming between elements located at nucleotides 160 to 167 and 227 to 234, severely inhibited packaging when either element was mutated. A construct in which these mutations were combined to restore potential base pairing between the two elements displayed a partially restored packaging phenotype. These results strongly suggest that the structure, referred to as the O3 stem, is required for efficient encapsidation of avian sarcoma virus RNA. Site-directed mutagenesis of additional sequence elements located in the O3 loop reduced packaging as measured by the indirect assay, suggesting that these sequences may also be components of the encapsidation signal. The possible implications of the O3 stem structure with regard to translation of avian sarcoma-leukosis virus short upstream open reading frames are discussed.
Collapse
Affiliation(s)
- J B Knight
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
186
|
Coetzee T, Herschlag D, Belfort M. Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones. Genes Dev 1994; 8:1575-88. [PMID: 7958841 DOI: 10.1101/gad.8.13.1575] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To address the effect of host proteins on the self-splicing properties of the group I introns of bacteriophage T4, we have purified an activity from Escherichia coli extracts that facilitates both trans- and cis-splicing of the T4 introns in vitro. The activity is attributable to a number of proteins, several of which are ribosomal proteins. Although these proteins have variable abilities to stimulate splicing, ribosomal protein S12 is the most effective. The activity mitigates the negative effects on splicing of the large internal open reading frames (ORFs) common to the T4 introns. In contrast to proteins shown previously to facilitate group I splicing, S12 does not bind strongly or specifically to the intron. Rather, S12 binds RNA with broad specificity and can also facilitate the action of a hammerhead ribozyme. Addition of S12 to unreactive trans-splicing precursors promoted splicing, suggesting that S12 can resolve misfolded RNAs. Furthermore, incubation with S12 followed by its proteolytic removal prior to the initiation of the splicing reaction still resulted in splicing enhancement. These results suggest that this protein facilitates splicing by acting as an RNA chaperone, promoting the assembly of the catalytically active tertiary structure of ribozymes.
Collapse
Affiliation(s)
- T Coetzee
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, Albany 12201-0509
| | | | | |
Collapse
|
187
|
Parolin C, Dorfman T, Palú G, Göttlinger H, Sodroski J. Analysis in human immunodeficiency virus type 1 vectors of cis-acting sequences that affect gene transfer into human lymphocytes. J Virol 1994; 68:3888-95. [PMID: 7910642 PMCID: PMC236894 DOI: 10.1128/jvi.68.6.3888-3895.1994] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) can be used to generate recombinant viral vectors for delivery of heterologous genes to human CD4-positive lymphocytes. To define the cis-acting sequences required for efficient gene transfer, a number of HIV-1 vectors containing a previously identified packaging signal, long terminal repeats, and additional gag, pol, and env viral sequences were designed. By providing the viral proteins in trans, recombinant viruses were generated and analyzed for their abilities to transfer genes into human T lymphocytes. Inclusion of up to 653 nucleotides derived from the 5' end of the gag gene in the vector improved the efficiency of gene transfer, but inclusion of additional gag or pol sequences did not further improve this efficiency. The increased efficiency of gene transfer associated with the inclusion of 5' gag sequences in the vector arose, at least in part, from an increase in the packaging of vector RNA. The presence of the Rev-responsive element (RRE) increased the efficiency of transfer of vectors containing significant lengths of gag sequence, as expected from the Rev requirement for nucleus-to-cytoplasm transport of unspliced vector RNA containing intact packaging signals. However, the presence of a RRE did not affect the transfer efficiency of smaller vectors lacking significant lengths of gag sequences, arguing against a specific role for the RRE in packaging or vector transfer. These results contribute to an understanding of the minimal cis-acting sequences that operate in the context of HIV-1 vectors for delivering genes into human lymphocytes.
Collapse
Affiliation(s)
- C Parolin
- Division of Human Retrovirology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
188
|
Skripkin E, Paillart JC, Marquet R, Ehresmann B, Ehresmann C. Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. Proc Natl Acad Sci U S A 1994; 91:4945-9. [PMID: 8197162 PMCID: PMC43906 DOI: 10.1073/pnas.91.11.4945] [Citation(s) in RCA: 328] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The diploid genome of all retroviruses is made of two homologous copies of RNA intimately associated near their 5' end, in a region called the dimer linkage structure. Dimerization of genomic RNA is thought to be important for crucial functions of the retroviral life cycle (reverse transcription, translation, encapsidation). Previous in vitro studies mapped the dimer linkage structure of human immunodeficiency virus type 1 (HIV-1) in a region downstream of the splice donor site, containing conserved purine tracts that were postulated to mediate dimerization, through purine quartets. However, we recently showed that dimerization of HIV-1 RNA also involves sequences upstream of the splice donor site. Here, we used chemical modification interference to identify nucleotides that are required in unmodified form for dimerization of a RNA fragment containing nucleotides 1-707 of HIV-1 RNA. These nucleotides map exclusively in a restricted area upstream of the splice donor site and downstream of the primer binding site. They are centered around a palindromic sequence (GUGCAC279) located in a hairpin loop. Our results support a model in which dimer formation is initiated by the annealing of the palindromic sequences, possibly by a loop-loop interaction between the two monomers. Further experiments show that the deletion of the stem-loop or base substitutions in the loop abolish dimerization, despite the presence of the previously postulated dimer linkage structure. On the other hand, deletions of the purine tracts downstream of the splice donor site do not prevent dimerization. Therefore, we conclude that the palindromic region represents the dimerization initiation site of genomic RNA.
Collapse
Affiliation(s)
- E Skripkin
- Unité Propre de Recherche 9002 du Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | |
Collapse
|
189
|
Schultze P, Smith FW, Feigon J. Refined solution structure of the dimeric quadruplex formed from the Oxytricha telomeric oligonucleotide d(GGGGTTTTGGGG). Structure 1994; 2:221-33. [PMID: 8069635 DOI: 10.1016/s0969-2126(00)00023-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Telomeres, the structures at the ends of linear eukaryotic chromosomes, are essential for chromosome replication and stability. The telomeres of the unicellular ciliate Oxytricha contain a 3' single strand overhang composed of two repeats of the telomere repeat sequence d(TTTTGGGG). It has been proposed that oligonucleotides containing this repeat can form DNA quadruplexes via hydrogen bonding of the guanines into quartets. Such structures may be relevant to the biological function of the telomere, and in G-rich sequences elsewhere in the genome. RESULTS We have previously determined from solution NMR data that the Oxy-1.5 Oxytricha repeat oligonucleotide d(GGGGTTTTGGGG) dimerizes to form an intermolecular quadruplex composed of four guanine quartets and with the thymines in loops across the diagonal at opposite ends of the quadruplex. We report here the refined solution structure of Oxy-1.5. This structure is compared with the previously published crystal structure of the same oligonucleotide. CONCLUSIONS Oxy-1.5 forms a well-defined, symmetrical structure with ordered thymine loops. Both the solution and crystal structures of Oxy-1.5 are quadruplexes with alternating syn and anti glycosyl conformation of guanines along each strand of the helix and have thymine loops at opposite ends. However, the topology of the two structures is fundamentally different, leading to significant structural differences. A topological pathway for the formation and interconversion of the two structures is proposed.
Collapse
Affiliation(s)
- P Schultze
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024
| | | | | |
Collapse
|
190
|
Torrent C, Gabus C, Darlix JL. A small and efficient dimerization/packaging signal of rat VL30 RNA and its use in murine leukemia virus-VL30-derived vectors for gene transfer. J Virol 1994; 68:661-7. [PMID: 8289369 PMCID: PMC236500 DOI: 10.1128/jvi.68.2.661-667.1994] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Retroviral genomes consist of two identical RNA molecules associated at their 5' ends by the dimer linkage structure located in the packaging element (Psi or E) necessary for RNA dimerization in vitro and packaging in vivo. In murine leukemia virus (MLV)-derived vectors designed for gene transfer, the Psi + sequence of 600 nucleotides directs the packaging of recombinant RNAs into MLV virions produced by helper cells. By using in vitro RNA dimerization as a screening system, a sequence of rat VL30 RNA located next to the 5' end of the Harvey mouse sarcoma virus genome and as small as 67 nucleotides was found to form stable dimeric RNA. In addition, a purine-rich sequence located at the 5' end of this VL30 RNA seems to be critical for RNA dimerization. When this VL30 element was extended by 107 nucleotides at its 3' end and inserted into an MLV-derived vector lacking MLV Psi +, it directed the efficient encapsidation of recombinant RNAs into MLV virions. Because this VL30 packaging signal is smaller and more efficient in packaging recombinant RNAs than the MLV Psi + and does not contain gag or glyco-gag coding sequences, its use in MLV-derived vectors should render even more unlikely recombinations which could generate replication-competent viruses. Therefore, utilization of the rat VL30 packaging sequence should improve the biological safety of MLV vectors for human gene transfer.
Collapse
Affiliation(s)
- C Torrent
- LaboRetro Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure de Lyon, France
| | | | | |
Collapse
|
191
|
The art of intercalation. Nature 1994. [DOI: 10.1038/367488a0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
192
|
Ahmed S, Kintanar A, Henderson E. Human telomeric C-strand tetraplexes. NATURE STRUCTURAL BIOLOGY 1994; 1:83-8. [PMID: 7656022 DOI: 10.1038/nsb0294-83] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Telomeric C-strand sequences form non-Watson-Crick base-paired structures in supercoiled plasmids and in oligonucleotides at low pH. Here we examine oligonucleotides composed of 2 or 4 repeats of the human telomeric C-strand sequence d(CCCTAA)n. At low pH, the 2-repeat molecule forms a dimer which exhibits H1'-H1' nuclear Overhauser effects (NOEs) between stacked CC+ base pairs. These NOEs are characteristic of the i-motif, which is a tetraplex composed of two intercalated CC+ duplexes. The 4-repeat molecule forms an intramolecular monomeric structure at low pH, suggesting that four contiguous cytosine tracts fold into a CC+ intercalated tetraplex. These unusual structures may be relevant to the formation of guanine tetraplexes by complementary G-rich sequences. They may also provide a general mechanism for self-recognition by nucleic acids.
Collapse
Affiliation(s)
- S Ahmed
- Department of Zoology and Genetics, Iowa State University, Ames 50011, USA
| | | | | |
Collapse
|
193
|
Marquet R, Paillart JC, Skripkin E, Ehresmann C, Ehresmann B. Dimerization of human immunodeficiency virus type 1 RNA involves sequences located upstream of the splice donor site. Nucleic Acids Res 1994; 22:145-51. [PMID: 8121797 PMCID: PMC307764 DOI: 10.1093/nar/22.2.145] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The retroviral genome consists of two homologous RNA molecules associated close to their 5' ends. We studied the spontaneous dimerization of four HIV-1 RNA fragments (RNAs 1-707, 1-615, 311-612, and 311-415) containing the previously defined dimerization domain, and a RNA fragment (RNA 1-311) corresponding to the upstream sequences. Significant dimerization of all RNAs is observed on agarose gels when magnesium is included in the electrophoresis buffer. In contrast to dimerization of RNAs 311-612 and 311-415, dimerization of RNAs 1-707, 1-615 and 1-311 strongly depends on the size of the monovalent cation present in the incubation buffer. Also, dimerization of RNAs 1-707, 1-615, and 1-311 is 10 times faster than that of RNAs 311-612 and 311-415. The dimers formed by the latter RNAs are substantially more stable than that of RNA 1-615, while RNA 1-311 dimer is 5-7 degrees C less stable than RNA 1-615 dimer. These results indicate that dimerization of HIV-1 genomic RNA involves elements located upstream of the splice donor site (position 305), i.e. outside of the previously defined dimerization domain.
Collapse
Affiliation(s)
- R Marquet
- Unité Propre de Recherche 9002, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | |
Collapse
|
194
|
Rothnie HM, Chapdelaine Y, Hohn T. Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies. Adv Virus Res 1994; 44:1-67. [PMID: 7817872 DOI: 10.1016/s0065-3527(08)60327-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- H M Rothnie
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|
195
|
Wang YX, Lu M, Draper DE. Specific ammonium ion requirement for functional ribosomal RNA tertiary structure. Biochemistry 1993; 32:12279-82. [PMID: 8241113 DOI: 10.1021/bi00097a002] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In compactly folded RNAs, coordination or hydrogen bonding of cations in specific sites is a potentially important aspect of the tertiary structure. NH4+ specifically stabilizes the tertiary structure of a conserved, 58-nt fragment of the large subunit ribosomal RNA, as judged in two ways: a melting transition associated with tertiary interactions is sharpened and stabilized more effectively by NH4+ than by any alkali metal cation, and the affinity of the RNA fragment for ribosomal protein L11 or the antibiotic thiostrepton is approximately 10-fold stronger when measured in NH4+ than in Na+. The dependence of the melting temperature on NH4+ concentration shows that a single bound ion is responsible for these effects. The requirement of different ribosome functions for NH4+ suggests that other such sites exist in ribosomal RNAs.
Collapse
Affiliation(s)
- Y X Wang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | |
Collapse
|
196
|
Weiss S, Häusl G, Famulok M, König B. The multimerization state of retroviral RNA is modulated by ammonium ions and affects HIV-1 full-length cDNA synthesis in vitro. Nucleic Acids Res 1993; 21:4879-85. [PMID: 8177734 PMCID: PMC311400 DOI: 10.1093/nar/21.21.4879] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Genomic human immunodeficiency virus type 1 (HIV-1) RNA fragments containing the dimer linkage structure (DLS) can be dimerized and multimerized in the presence of NH4+ and in the absence of any other cation and any viral or cellular protein. This effect strongly supports the notion that dimerization and multimerization of genomic RNA occurs via purine-quartet formation in quadruple helical RNA structures. The efficiency of RNA dimerization and multimerization in the presence of ammonium ions is about 400 fold increased as compared to alkali metal ions such as potassium. Dimerized retroviral RNA representing a pseudodiploid genome could account for genetic recombination within the virion and during reverse transcription. Application of a novel South-Northern-Blotting procedure with biotinylated RNA and digoxigenin-labelled cDNA in vitro reveals that efficient human- and bovine tRNA(Lys3) primed full-length cDNA-synthesis only takes place with a predominantly monomerized RNA template. Dimerization and multimerization of the RNA significantly reduces full-length cDNA-synthesis. This suggests that monomerization of the dimerized RNA, effected by deionization in vitro, is essential for efficient retroviral reverse transcription in vivo.
Collapse
Affiliation(s)
- S Weiss
- Institut für Biochemie, Universität München, Germany
| | | | | | | |
Collapse
|
197
|
Mougel M, Tounekti N, Darlix JL, Paoletti J, Ehresmann B, Ehresmann C. Conformational analysis of the 5' leader and the gag initiation site of Mo-MuLV RNA and allosteric transitions induced by dimerization. Nucleic Acids Res 1993; 21:4677-84. [PMID: 8233816 PMCID: PMC331490 DOI: 10.1093/nar/21.20.4677] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Dimerization of genomic RNA is a key step in the retroviral life cycle and has been postulated to be involved in the regulation of translation, encapsidation and reverse transcription. Here, we have derived a secondary structure model of nucleotides upstream from psi and of the gag initiation region of Mo-MuLV RNA in monomeric and dimeric forms, using chemical probing, sequence comparison and computer prediction. The 5' domain is extensively base-paired and interactions take place between U5 and 5' leader sequences. The U5-PBS subdomain can fold in two mutually exclusive conformations: a very stable and extended helical structure (E form) in which 17 of the 18 nucleotides of the PBS are paired, or an irregular three-branch structure (B form) in which 10 nucleotides of the PBS are paired. The dimeric RNA adopts the B conformation. The monomeric RNA can switch from the E to the B conformation by a thermal treatment. If the E to B transition is associated to dimerization, it may facilitate annealing of the primer tRNAPro to the PBS by lowering the free energy required for melting the PBS. Furthermore, dimerization induces allosteric rearrangements around the SD site and the gag initiation region.
Collapse
Affiliation(s)
- M Mougel
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
198
|
|
199
|
Affiliation(s)
- J R Williamson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139
| |
Collapse
|