151
|
Abstract
MicroRNAs, potent negative modulators of gene expression, are involved in the regulation of fundamental cellular processes, including cell differentiation, metabolic regulation, signal transduction, cell proliferation and apoptosis. Aberrant levels of miRNAs have been documented in all major human cancers, leading to the suggestion that deregulation of miRNA expression might be significant in tumorigenesis. This review presents the current evidence that demonstrates the involvement of miRNA deregulation in the early stages of lung, liver and breast carcinogenesis induced by chemical carcinogens, suggesting their major role as contributors to the pathogenesis of cancer.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA.
| |
Collapse
|
152
|
Cheng TF, Choudhuri S, Muldoon-Jacobs K. Epigenetic targets of some toxicologically relevant metals: a review of the literature. J Appl Toxicol 2012; 32:643-53. [DOI: 10.1002/jat.2717] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 12/13/2022]
Affiliation(s)
- Tsu-Fan Cheng
- US Food and Drug Administration; Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, Division of Food Contact Notification; College Park; MD; USA
| | - Supratim Choudhuri
- US Food and Drug Administration; Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, Division of Biotechnology and GRAS Notice Review; College Park; MD; USA
| | - Kristi Muldoon-Jacobs
- US Food and Drug Administration; Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, Division of Food Contact Notification; College Park; MD; USA
| |
Collapse
|
153
|
Zampella G, Neupane KP, De Gioia L, Pecoraro VL. The importance of stereochemically active lone pairs for influencing Pb(II) and As(III) protein binding. Chemistry 2012; 18:2040-50. [PMID: 22231489 PMCID: PMC3357087 DOI: 10.1002/chem.201102786] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Indexed: 10/14/2022]
Abstract
The toxicity of heavy metals, which is associated with the high affinity of the metals for thiolate rich proteins, constitutes a problem worldwide. However, despite this tremendous toxicity concern, the binding mode of As(III) and Pb(II) to proteins is poorly understood. To clarify the requirements for toxic metal binding to metalloregulatory sensor proteins such as As(III) in ArsR/ArsD and Pb(II) in PbrR or replacing Zn(II) in δ-aminolevulinc acid dehydratase (ALAD), we have employed computational and experimental methods examining the binding of these heavy metals to designed peptide models. The computational results show that the mode of coordination of As(III) and Pb(II) is greatly influenced by the steric bulk within the second coordination environment of the metal. The proposed basis of this selectivity is the large size of the ion and, most important, the influence of the stereochemically active lone pair in hemidirected complexes of the metal ion as being crucial. The experimental data show that switching a bulky leucine layer above the metal binding site by a smaller alanine residue enhances the Pb(II) binding affinity by a factor of five, thus supporting experimentally the hypothesis of lone pair steric hindrance. These complementary approaches demonstrate the potential importance of a stereochemically active lone pair as a metal recognition mode in proteins and, specifically, how the second coordination sphere environment affects the affinity and selectivity of protein targets by certain toxic ions.
Collapse
Affiliation(s)
- Giuseppe Zampella
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan (Italy), Tel: + 39 02 64483416, Fax: +39 02 64483478,
| | - Kosh P. Neupane
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA), Tel.: +1 734 763 1519, Fax: +1 734 936 7628,
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan (Italy), Tel: + 39 02 64483416, Fax: +39 02 64483478,
| | - Vincent L. Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA), Tel.: +1 734 763 1519, Fax: +1 734 936 7628,
| |
Collapse
|
154
|
Hou L, Zhang X, Wang D, Baccarelli A. Environmental chemical exposures and human epigenetics. Int J Epidemiol 2012; 41:79-105. [PMID: 22253299 PMCID: PMC3304523 DOI: 10.1093/ije/dyr154] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2011] [Indexed: 02/06/2023] Open
Abstract
Every year more than 13 million deaths worldwide are due to environmental pollutants, and approximately 24% of diseases are caused by environmental exposures that might be averted through preventive measures. Rapidly growing evidence has linked environmental pollutants with epigenetic variations, including changes in DNA methylation, histone modifications and microRNAs. Environ mental chemicals and epigenetic changes All of these mechanisms are likely to play important roles in disease aetiology, and their modifications due to environmental pollutants might provide further understanding of disease aetiology, as well as biomarkers reflecting exposures to environmental pollutants and/or predicting the risk of future disease. We summarize the findings on epigenetic alterations related to environmental chemical exposures, and propose mechanisms of action by means of which the exposures may cause such epigenetic changes. We discuss opportunities, challenges and future directions for future epidemiology research in environmental epigenomics. Future investigations are needed to solve methodological and practical challenges, including uncertainties about stability over time of epigenomic changes induced by the environment, tissue specificity of epigenetic alterations, validation of laboratory methods, and adaptation of bioinformatic and biostatistical methods to high-throughput epigenomics. In addition, there are numerous reports of epigenetic modifications arising following exposure to environmental toxicants, but most have not been directly linked to disease endpoints. To complete our discussion, we also briefly summarize the diseases that have been linked to environmental chemicals-related epigenetic changes.
Collapse
Affiliation(s)
- Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
155
|
Su LJ, Mahabir S, Ellison GL, McGuinn LA, Reid BC. Epigenetic Contributions to the Relationship between Cancer and Dietary Intake of Nutrients, Bioactive Food Components, and Environmental Toxicants. Front Genet 2012; 2:91. [PMID: 22303385 PMCID: PMC3266615 DOI: 10.3389/fgene.2011.00091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 12/06/2011] [Indexed: 12/21/2022] Open
Abstract
Epigenetics is the study of heritable changes in gene expression that occur without a change in DNA sequence. Cancer is a multistep process derived from combinational crosstalk between genetic alterations and epigenetic influences through various environmental factors. The observation that epigenetic changes are reversible makes them an attractive target for cancer prevention. Until recently, there have been difficulties studying epigenetic mechanisms in interactions between dietary factors and environmental toxicants. The development of the field of cancer epigenetics during the past decade has been advanced rapidly by genome-wide technologies - which initially employed microarrays but increasingly are using high-throughput sequencing - which helped to improve the quality of the analysis, increase the capacity of sample throughput, and reduce the cost of assays. It is particularly true for applications of cancer epigenetics in epidemiologic studies that examine the relationship among diet, epigenetics, and cancer because of the issues of tissue heterogeneity, the often limiting amount of DNA samples, and the significant cost of the analyses. This review offers an overview of the state of the science in nutrition, environmental toxicants, epigenetics, and cancer to stimulate further exploration of this important and developing area of science. Additional epidemiologic research is needed to clarify the relationship between these complex epigenetic mechanisms and cancer.
Collapse
Affiliation(s)
- L. Joseph Su
- Modifiable Risk Factors Branch, Division of Cancer Control and Population Sciences, National Cancer InstituteBethesda, MD, USA
| | - Somdat Mahabir
- Modifiable Risk Factors Branch, Division of Cancer Control and Population Sciences, National Cancer InstituteBethesda, MD, USA
| | - Gary L. Ellison
- Modifiable Risk Factors Branch, Division of Cancer Control and Population Sciences, National Cancer InstituteBethesda, MD, USA
| | - Laura A. McGuinn
- Modifiable Risk Factors Branch, Division of Cancer Control and Population Sciences, National Cancer InstituteBethesda, MD, USA
| | - Britt C. Reid
- Modifiable Risk Factors Branch, Division of Cancer Control and Population Sciences, National Cancer InstituteBethesda, MD, USA
| |
Collapse
|
156
|
On the role of low-dose effects and epigenetics in toxicology. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 101:499-550. [PMID: 22945581 DOI: 10.1007/978-3-7643-8340-4_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For a long time, scientists considered genotoxic effects as the major issue concerning the influence of environmental chemicals on human health. Over the last decades, a new layer superimposed the genome, i.e., the epigenome, tremendously changing this point of view. The term "epigenetics" comprises stable alterations in gene expression potential arising from variations in DNA methylation and a variety of histone modifications, without changing the underlying DNA sequence. Recently, also gene silencing by small noncoding RNAs (ncRNAs), in particular by microRNAs, was included in the list of epigenetic mechanisms. Multiple studies in vivo as well as in vitro have shown that a multitude of different environmental factors are capable of changing the epigenetic pattern as well as miRNA expression in certain cell types, leading to aberrant gene expression profiles in cells and tissues. These changes may have extensive effects concerning the proper gene expression necessary in a specified cell type and can even lead into a state of disease. Especially the roles of epigenetic modifications and miRNA alterations in tumorigenesis have been a major focus in research over the last years. This chapter will give an overview on epigenetic features and on the spectrum of epigenetic changes observed after exposure against environmental chemicals and pollutants.
Collapse
|
157
|
Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. EXPERIENTIA SUPPLEMENTUM (2012) 2012. [PMID: 22945569 DOI: 10.1007/978-3-7643-8340-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Heavy metals are naturally occurring elements that have a high atomic weight and a density at least five times greater than that of water. Their multiple industrial, domestic, agricultural, medical, and technological applications have led to their wide distribution in the environment, raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. They are also classified as human carcinogens (known or probable) according to the US Environmental Protection Agency and the International Agency for Research on Cancer. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, genotoxicity, and carcinogenicity.
Collapse
Affiliation(s)
- Paul B Tchounwou
- NIH-RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, 18750, Jackson, MS, 39217, USA,
| | | | | | | |
Collapse
|
158
|
Wang Z, Yang J, Fisher T, Xiao H, Jiang Y, Yang C. Akt activation is responsible for enhanced migratory and invasive behavior of arsenic-transformed human bronchial epithelial cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:92-7. [PMID: 21954225 PMCID: PMC3261952 DOI: 10.1289/ehp.1104061] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 09/27/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND Arsenic is one of the most common environmental contaminants. Long-term exposure to arsenic causes human bronchial epithelial cell (HBEC) malignant transformation and lung cancer. However, the mechanism of arsenic lung carcinogenesis is not clear, and the migratory and invasive properties of arsenic-transformed cells (As-transformed cells) have rarely been studied. OBJECTIVES This study was designed to investigate the migratory and invasive behavior of As-transformed HBECs and the underlying mechanism. METHODS As-transformed p53lowHBECs were generated by exposing p53-knockdown HBECs to sodium arsenite (2.5 μM) for 16 weeks. Cell migration was assessed by transwell migration and wound-healing assay. Cell invasion was evaluated using Matrigel-coated transwell chambers. Gene overexpression, small interfering RNA (siRNA) knockdowns, and pharmacological inhibitors were used to determine the potential mechanism responsible for enhanced cell migration and invasion. RESULTS Transwell migration and invasion assays revealed that As-transformed p53lowHBECs were highly migratory and invasive. Akt (also known as protein kinase B) and extracellular signal-regulated protein kinase 1/2 (Erk1/2) were strongly activated in As-transformed p53lowHBECs. Stable expression of microRNA 200b in As-transformed p53lowHBECs abolished Akt and Erk1/2 activation and completely suppressed cell migration and invasion. Pharmacological inactivation of Akt but not Erk1/2 significantly decreased cell migration and invasion. Inhibition of Akt reduced the expression of epithelial-to-mesenchymal transition-inducing transcription factors zinc-finger E-box-binding homeobox factor 1 (ZEB1) and ZEB2. siRNA knockdown of ZEB1 and ZEB2 impaired As-transformed p53lowHBEC migration and invasion. CONCLUSIONS Akt activation plays a critical role in enabling As-transformed HBEC migration and invasion by promoting ZEB1 and ZEB2 expression.
Collapse
Affiliation(s)
- Zhishan Wang
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
159
|
Zhang X, Su Y, Zhang M, Sun Z. Opposite effects of arsenic trioxide on the Nrf2 pathway in oral squamous cell carcinoma in vitro and in vivo. Cancer Lett 2011; 318:93-8. [PMID: 22155346 DOI: 10.1016/j.canlet.2011.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/02/2011] [Accepted: 12/03/2011] [Indexed: 01/02/2023]
Abstract
Nuclear factor erythroid derived 2 like 2 (Nrf2) is a critical transcriptional factor in mediating cellular defense mechanisms against oxidative stress or electrophiles. Arsenic has been reported to induce malignant transformation of human cells through Nrf2-dependent signaling pathway. However, arsenic is also a promising cancer therapeutic drug for solid tumors, including oral squamous cell carcinoma (OSCC). It is still unclear how Nrf2 may mediate cellular response of OSCC cells when treated with arsenic. In order to fully understand the impact of arsenic on Nrf2 signaling in human OSCC, we examined expression of Nrf2 and Nrf2-regulated genes in arsenic trioxide (ATO)-treated OSCC cells in vitro and in ATO-treated OSCC xenografts. ATO had anti-cancer effects on both cultured OSCC cells and OSCC xenografts by inhibiting cell growth, suppressing angiogenesis and inducing apoptosis. ATO activated a silent Nrf2 pathway in cultured OSCC cells as shown by induction of Nrf2 and Nrf2-regulated genes, NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), in a dose-dependent manner. On the contrary, Nrf2 pathway became active in OSCC xenograft tumors, and ATO treatment down-regulated expression of Nrf2 and Nrf2-regulated genes. Our study clearly demonstrated opposite effects of ATO on Nrf2 pathway in OSCC cells in vitro and in vivo.
Collapse
Affiliation(s)
- Xinyan Zhang
- Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, No. 4 Tiantanxili, Dongcheng District, Beijing, China.
| | | | | | | |
Collapse
|
160
|
Elamin BK, Callegari E, Gramantieri L, Sabbioni S, Negrini M. MicroRNA response to environmental mutagens in liver. Mutat Res 2011; 717:67-76. [PMID: 21514310 DOI: 10.1016/j.mrfmmm.2011.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 03/18/2011] [Accepted: 03/31/2011] [Indexed: 05/30/2023]
Abstract
During the recent few years, microRNAs emerged as key molecules in the regulation of mammalian cell functions. It was also shown that their altered expression can promote pathologic conditions, such as cancer and other common diseases. Because environmental exposure to biological, chemical or physical agents may be responsible for human diseases, including cancer, uncovering relationships between exposure to environmental carcinogens and expression of microRNAs may help to disclose early mechanisms of disease and it may potentially lead to the development of useful indicators of toxic exposure or novel biomarkers for carcinogenicity testing. The unique expression profile of microRNAs in different types and at different stages of cancer coupled to their remarkable stability in tissues and in serum/plasma suggests that these little molecules may find application as sensitive biomarkers. This review will concentrate on the alterations in microRNA expression in response to environmental factors in relation to the risk of developing liver cancer.
Collapse
Affiliation(s)
- Bahaeldin K Elamin
- Dipartimento di Medicina Sperimentale e Diagnostica, Università di Ferrara, Ferrara, Italy
| | | | | | | | | |
Collapse
|
161
|
Christensen BC, Marsit CJ. Epigenomics in environmental health. Front Genet 2011; 2:84. [PMID: 22303378 PMCID: PMC3268636 DOI: 10.3389/fgene.2011.00084] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 11/04/2011] [Indexed: 12/29/2022] Open
Abstract
This review considers the emerging relationships between environmental factors and epigenetic alterations and the application of genome-wide assessments to better define these relationships. First we will briefly cover epigenetic programming in development, one-carbon metabolism, and exposures that may disrupt normal developmental programming of epigenetic states. In addition, because a large portion of epigenetic research has focused on cancer, we discuss exposures associated with carcinogenesis including asbestos, alcohol, radiation, arsenic, and air pollution. Research on other exposures that may affect epigenetic states such as endocrine disruptors is also described, and we also review the evidence for epigenetic alterations associated with aging that may reflect cumulative effects of exposures. From this evidence, we posit potential mechanisms by which exposures modify epigenetic states, noting that understanding the true effect of environmental exposures on the human epigenome will require additional research with appropriate epidemiologic studies and application of novel technologies. With a more comprehensive understanding of the affects of exposures on the epigenome, including consideration of genetic background, the prediction of the toxic potential of new compounds may be more readily achieved, and may lead to the development of more personalized disease prevention and treatment strategies.
Collapse
Affiliation(s)
- Brock C Christensen
- Section on Biostatistics and Epidemiology, Department of Community and Family Medicine, Dartmouth Medical School Hanover, NH, USA
| | | |
Collapse
|
162
|
Martinez VD, Vucic EA, Becker-Santos DD, Gil L, Lam WL. Arsenic exposure and the induction of human cancers. J Toxicol 2011; 2011:431287. [PMID: 22174709 PMCID: PMC3235889 DOI: 10.1155/2011/431287] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 08/25/2011] [Accepted: 08/25/2011] [Indexed: 12/21/2022] Open
Abstract
Arsenic is a metalloid, that is, considered to be a human carcinogen. Millions of individuals worldwide are chronically exposed through drinking water, with consequences ranging from acute toxicities to development of malignancies, such as skin and lung cancer. Despite well-known arsenic-related health effects, the molecular mechanisms involved are not fully understood; however, the arsenic biotransformation process, which includes methylation changes, is thought to play a key role. This paper explores the relationship of arsenic exposure with cancer development and summarizes current knowledge of the potential mechanisms that may contribute to the neoplastic processes observed in arsenic exposed human populations.
Collapse
Affiliation(s)
- Victor D. Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
- Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia 1027, 8380453 Santiago, Chile
| | - Emily A. Vucic
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | - Daiana D. Becker-Santos
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | - Lionel Gil
- Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia 1027, 8380453 Santiago, Chile
| | - Wan L. Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| |
Collapse
|
163
|
Nelson HH, Marsit CJ, Kelsey KT. Global methylation in exposure biology and translational medical science. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1528-33. [PMID: 21669556 PMCID: PMC3226501 DOI: 10.1289/ehp.1103423] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 06/13/2011] [Indexed: 05/16/2023]
Abstract
BACKGROUND Many groups are actively investigating how the epigenetic state relates to environmental exposures and development of disease, including cancer. There are myriad choices for capturing and measuring the epigenetic state of a tissue, ranging from assessing the total methyl-CpG content to array-based platforms that simultaneously probe hundreds of thousands of CpG loci. There is an emerging literature that uses CpG methylation at repetitive sequences, including LINE-1 (long interspersed nuclear element-1) elements, to capture the epigenomic state. OBJECTIVES We explored the complexity of using CpG methylation at repetitive sequences in epidemiology and translational medical research and suggest needed avenues of research to clarify its meaning and utility. CONCLUSIONS Among the most urgent avenues of research is the need for prospective studies to eliminate the possibilities of reverse causality, and development of new LINE-1 assays that capture both class of LINE-1 element and copy number.
Collapse
Affiliation(s)
- Heather H Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | |
Collapse
|
164
|
Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ. Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 2011; 123:305-32. [PMID: 21750349 PMCID: PMC3179678 DOI: 10.1093/toxsci/kfr184] [Citation(s) in RCA: 722] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/30/2011] [Indexed: 12/23/2022] Open
Abstract
The metalloid arsenic is a natural environmental contaminant to which humans are routinely exposed in food, water, air, and soil. Arsenic has a long history of use as a homicidal agent, but in the past 100 years arsenic, has been used as a pesticide, a chemotherapeutic agent and a constituent of consumer products. In some areas of the world, high levels of arsenic are naturally present in drinking water and are a toxicological concern. There are several structural forms and oxidation states of arsenic because it forms alloys with metals and covalent bonds with hydrogen, oxygen, carbon, and other elements. Environmentally relevant forms of arsenic are inorganic and organic existing in the trivalent or pentavalent state. Metabolism of arsenic, catalyzed by arsenic (+3 oxidation state) methyltransferase, is a sequential process of reduction from pentavalency to trivalency followed by oxidative methylation back to pentavalency. Trivalent arsenic is generally more toxicologically potent than pentavalent arsenic. Acute effects of arsenic range from gastrointestinal distress to death. Depending on the dose, chronic arsenic exposure may affect several major organ systems. A major concern of ingested arsenic is cancer, primarily of skin, bladder, and lung. The mode of action of arsenic for its disease endpoints is currently under study. Two key areas are the interaction of trivalent arsenicals with sulfur in proteins and the ability of arsenic to generate oxidative stress. With advances in technology and the recent development of animal models for arsenic carcinogenicity, understanding of the toxicology of arsenic will continue to improve.
Collapse
Affiliation(s)
- Michael F Hughes
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | |
Collapse
|
165
|
LaSalle JM. A genomic point-of-view on environmental factors influencing the human brain methylome. Epigenetics 2011; 6:862-9. [PMID: 21617367 DOI: 10.4161/epi.6.7.16353] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The etiologic paradigm of complex human disorders such as autism is that genetic and environmental risk factors are independent and additive, but the interactive effects at the epigenetic interface are largely ignored. Genomic technologies have radically changed perspective on the human genome and how the epigenetic interface may impact complex human disorders. Here, I review recent genomic, environmental, and epigenetic findings that suggest a new paradigm of "integrative genomics" in which genetic variation in genomic size may be impacted by dietary and environmental factors that influence the genomic saturation of DNA methylation. Human genomes are highly repetitive, but the interface of large-scale genomic differences with environmental factors that alter the DNA methylome such as dietary folate is under-explored. In addition to obvious direct effects of some environmental toxins on the genome by causing chromosomal breaks, non-mutagenic toxin exposures correlate with DNA hypomethylation that can lead to rearrangements between repeats or increased retrotransposition. Since human neurodevelopment appears to be particularly sensitive to alterations in epigenetic pathways, a further focus will be on how developing neurons may be particularly impacted by even subtle alterations to DNA methylation and proposing new directions towards understanding the quixotic etiology of autism by integrative genomic approaches.
Collapse
Affiliation(s)
- Janine M LaSalle
- Medical Microbiology and Immunology, UC Davis School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
166
|
Abstract
Although it is widely accepted that chronic exposure to arsenite, nickel, chromium and cadmium increases cancer incidence in individuals, the molecular mechanisms underlying their ability to transform cells remain largely unknown. Carcinogenic metals are typically weak mutagens, suggesting that genetic-based mechanisms may not be primarily responsible for metal-induced carcinogenesis. Growing evidence shows that environmental metal exposure involves changes in epigenetic marks, which may lead to a possible link between heritable changes in gene expression and disease susceptibility and development. Here, we review recent advances in the understanding of metal exposure affecting epigenetic marks and discuss establishment of heritable gene expression in metal-induced carcinogenesis.
Collapse
Affiliation(s)
- Ricardo Martinez-Zamudio
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | | |
Collapse
|
167
|
Cohen SM. Reply to "Reversal and prevention of arsenic-induced human bronchial epithelial cell malignant transformation by microRNA-200b". Toxicol Sci 2011; 122:606; author reply 607-9. [PMID: 21670144 DOI: 10.1093/toxsci/kfr151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
168
|
Vandegehuchte MB, Janssen CR. Epigenetics and its implications for ecotoxicology. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:607-624. [PMID: 21424724 DOI: 10.1007/s10646-011-0634-0] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/05/2011] [Indexed: 05/30/2023]
Abstract
Epigenetics is the study of mitotically or meiotically heritable changes in gene function that occur without a change in the DNA sequence. Interestingly, epigenetic changes can be triggered by environmental factors. Environmental exposure to e.g. metals, persistent organic pollutants or endocrine disrupting chemicals has been shown to modulate epigenetic marks, not only in mammalian cells or rodents, but also in environmentally relevant species such as fish or water fleas. The associated changes in gene expression often lead to modifications in the affected organism's phenotype. Epigenetic changes can in some cases be transferred to subsequent generations, even when these generations are no longer exposed to the external factor which induced the epigenetic change, as observed in a study with fungicide exposed rats. The possibility of this phenomenon in other species was demonstrated in water fleas exposed to the epigenetic drug 5-azacytidine. This way, populations can experience the effects of their ancestors' exposure to chemicals, which has implications for environmental risk assessment. More basic research is needed to assess the potential phenotypic and population-level effects of epigenetic modifications in different species and to evaluate the persistence of chemical exposure-induced epigenetic effects in multiple subsequent generations.
Collapse
Affiliation(s)
- Michiel B Vandegehuchte
- Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University (UGent), Jozef Plateaustraat 22, 9000 Ghent, Belgium.
| | | |
Collapse
|
169
|
Fragou D, Fragou A, Kouidou S, Njau S, Kovatsi L. Epigenetic mechanisms in metal toxicity. Toxicol Mech Methods 2011; 21:343-52. [DOI: 10.3109/15376516.2011.557878] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
170
|
Koturbash I, Beland FA, Pogribny IP. Role of epigenetic events in chemical carcinogenesis—a justification for incorporating epigenetic evaluations in cancer risk assessment. Toxicol Mech Methods 2011; 21:289-97. [DOI: 10.3109/15376516.2011.557881] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
171
|
Rat H9c2 cardiac myocytes are sensitive to arsenite due to a modest activation of transcription factor Nrf2. Arch Toxicol 2011; 85:1509-16. [PMID: 21465251 DOI: 10.1007/s00204-011-0700-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
Abstract
The mechanism underlying the hepatotoxicity induced by arsenic exposure is well investigated. However, little is known about the detailed mechanisms of arsenic-induced cardiotoxicity or cardiac factors involved in high sensitivity to arsenicals in spite of the fact that arsenic trioxide, which is used to treat acute promyelocytic leukemia, causes cardiotoxicity. Here, we show that rat H9c2(2-1) cardiac myocytes exhibit high sensitivity to inorganic arsenite (As(III)) as compared with rat-derived four cell lines (liver epithelial TRL1215 cells, kidney epithelial NRK-52E cells, PC12 phechromocytoma cells and C6 glioma cells). Furthermore, we found a lower steady-state level of glutathione and glutamyl-cysteine ligase (GCL) in H9c2(2-1) cells compared with TRL1215 cells, resulting in an increase in arsenic accumulation. In addition, we detected that the up-regulation of GCL and multi-drug resistance-associated protein (MRP) caused by As(III) was extremely low in H9c2(2-1) cells compared with TRL1215 cells. It is known that Nrf2, which regulates GCL and MRP expression, plays an important role in the protection of cells from arsenicals. We investigated the participation of Nrf2 in the difference of sensitivity to arsenicals between H9c2(2-1) and TRL1215 cells and found that Nrf2 was clearly activated by As(III) exposure in TRL1215 cells but only poorly activated in H9c2(2-1) cells. Considering these results together, we propose that modest activation of Nrf2 during exposure to As(III) in H9c2(2-1) cardiac myocytes leads to reduced ability to metabolize and excrete arsenic.
Collapse
|
172
|
Tokar EJ, Qu W, Waalkes MP. Arsenic, stem cells, and the developmental basis of adult cancer. Toxicol Sci 2011; 120 Suppl 1:S192-203. [PMID: 21071725 PMCID: PMC3043086 DOI: 10.1093/toxsci/kfq342] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/08/2010] [Indexed: 12/18/2022] Open
Abstract
That chemical insults or nutritive changes during in utero and/or postnatal life can emerge as diseases much later in life are now being accepted as a recurring phenomenon. In this regard, inorganic arsenic is a multisite human carcinogen found at high levels in the drinking water of millions of people, although it has been difficult until recently to produce tumors in rodents with this metalloid. A mouse transplacental model has been developed where maternal exposure to inorganic arsenic either acts as a complete carcinogen or enhances carcinogenic response to other agents given subsequently in the offspring, producing tumors during adulthood. Similarly, human data now have emerged showing that arsenic exposure during the in utero period and/or in early life is associated with cancer in adulthood. The mouse arsenic transplacental model produces tumors or enhances response to other agents in multiple strains and tissues, including sites concordant with human targets of arsenic carcinogenesis. It is now believed that cancer often is a stem cell (SC)-based disease, and there is no reason to think cancer induced by developmental chemical exposure is any different. Indeed, arsenic impacts human SC population dynamics in vitro by blocking exit into differentiation pathways and whereby creating more key targets for transformation. In fact, during in vitro malignant transformation, arsenic causes a remarkable survival selection of SCs, creating a marked overabundance of cancer SCs (CSCs) compared with other carcinogens once a cancer phenotype is obtained. In addition, skin cancers produced following in utero arsenic exposure in mice are highly enriched in CSCs. Thus, arsenic impacts key, long-lived SC populations as critical targets to cause or facilitate later oncogenic events in adulthood as a possible mechanism of developmental basis of adult disease.
Collapse
Affiliation(s)
| | | | - Michael P. Waalkes
- National Toxicology Program Laboratories, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
173
|
van den Brand M, Flucke UE, Bult P, Weemaes CMR, van Deuren M. Angiosarcoma in a patient with immunodeficiency, centromeric region instability, facial anomalies (ICF) syndrome. Am J Med Genet A 2011; 155A:622-5. [PMID: 21337690 DOI: 10.1002/ajmg.a.33831] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 11/08/2010] [Indexed: 11/10/2022]
Abstract
The Immunodeficiency, Centromeric region instability, and Facial anomalies (ICF) syndrome (OMIM #242860) is a rare autosomal recessive disorder caused by defective DNA methylation. Hematological disease and malignancy (macrophage activation syndrome, myelodysplastic syndrome, and Hodgkin lymphoma) have been reported in three patients. To date, there have been no reports of either epithelial or mesenchymal malignancies. We present a patient with all clinical and laboratory findings of the ICF syndrome who died of a metastatic angiosarcoma of the liver. This is the first report of a non-hematological malignancy in the ICF syndrome. The young age at which our patient developed an angiosarcoma suggests an effect of the defective DNA methylation observed in the ICF syndrome. Therefore, with improvement of recognition and treatment of the ICF syndrome, malignancy could become more common in this condition.
Collapse
Affiliation(s)
- Michiel van den Brand
- Department of Pathology, Radboud University Nijmegen Medical Center, The Netherlands
| | | | | | | | | |
Collapse
|
174
|
Szyf M. The implications of DNA methylation for toxicology: toward toxicomethylomics, the toxicology of DNA methylation. Toxicol Sci 2011; 120:235-55. [PMID: 21297083 DOI: 10.1093/toxsci/kfr024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identifying agents that have long-term deleterious impact on health but exhibit no immediate toxicity is of prime importance. It is well established that long-term toxicity of chemicals could be caused by their ability to generate changes in the DNA sequence through the process of mutagenesis. Several assays including the Ames test and its different modifications were developed to assess the mutagenic potential of chemicals (Ames, B. N., Durston, W. E., Yamasaki, E., and Lee, F. D. (1973a). Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. U.S.A. 70, 2281-2285; Ames, B. N., Lee, F. D., and Durston, W. E. (1973b). An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Natl. Acad. Sci. U.S.A. 70, 782-786). These tests have also been employed for assessing the carcinogenic potential of compounds. However, the DNA molecule contains within its chemical structure two layers of information. The DNA sequence that bears the ancestral genetic information and the pattern of distribution of covalently bound methyl groups on cytosines in DNA. DNA methylation patterns are generated by an innate program during gestation but are attuned to the environment in utero and throughout life including physical and social exposures. DNA function and health could be stably altered by exposure to environmental agents without changing the sequence, just by changing the state of DNA methylation. Our current screening tests do not detect agents that have long-range impact on the phenotype without altering the genotype. The realization that long-range damage could be caused without changing the DNA sequence has important implications on the way we assess the safety of chemicals, drugs, and food and broadens the scope of definition of toxic agents.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
175
|
Pacchierotti F, Eichenlaub-Ritter U. Environmental Hazard in the Aetiology of Somatic and Germ Cell Aneuploidy. Cytogenet Genome Res 2011; 133:254-68. [DOI: 10.1159/000323284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
176
|
Ren X, McHale CM, Skibola CF, Smith AH, Smith MT, Zhang L. An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:11-9. [PMID: 20682481 PMCID: PMC3018488 DOI: 10.1289/ehp.1002114] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 08/02/2010] [Indexed: 05/08/2023]
Abstract
BACKGROUND Exposure to arsenic, an established human carcinogen, through consumption of highly contaminated drinking water is a worldwide public health concern. Several mechanisms by which arsenical compounds induce tumorigenesis have been proposed, including oxidative stress, genotoxic damage, and chromosomal abnormalities. Recent studies have suggested that epigenetic mechanisms may also mediate toxicity and carcinogenicity resulting from arsenic exposure. OBJECTIVE We examined the evidence supporting the roles of the three major epigenetic mechanisms-DNA methylation, histone modification, and microRNA (miRNA) expression-in arsenic toxicity and, in particular, carcinogenicity. We also investigated future research directions necessary to clarify epigenetic and other mechanisms in humans. DATA SOURCES AND SYNTHESIS We conducted a PubMed search of arsenic exposure and epigenetic modification through April 2010 and summarized the in vitro and in vivo research findings, from both our group and others, on arsenic-associated epigenetic alteration and its potential role in toxicity and carcinogenicity. CONCLUSIONS Arsenic exposure has been shown to alter methylation levels of both global DNA and gene promoters; histone acetylation, methylation, and phosphorylation; and miRNA expression, in studies analyzing mainly a limited number of epigenetic end points. Systematic epigenomic studies in human populations exposed to arsenic or in patients with arsenic-associated cancer have not yet been performed. Such studies would help to elucidate the relationship between arsenic exposure, epigenetic dysregulation, and carcinogenesis and are becoming feasible because of recent technological advancements.
Collapse
Affiliation(s)
- Xuefeng Ren
- Division of Environmental Health Sciences, School of Public Health, University of California–Berkeley, Berkeley, California 94720, USA.
| | | | | | | | | | | |
Collapse
|
177
|
Rossman TG, Klein CB. Genetic and epigenetic effects of environmental arsenicals. Metallomics 2011; 3:1135-41. [DOI: 10.1039/c1mt00074h] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
178
|
Global DNA methylation in the mouse liver is affected by methyl deficiency and arsenic in a sex-dependent manner. Arch Toxicol 2010; 85:653-61. [PMID: 20978746 DOI: 10.1007/s00204-010-0611-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 10/07/2010] [Indexed: 12/30/2022]
Abstract
Arsenic, a carcinogen, is assumed to induce global DNA hypomethylation by consuming the universal methyl donor S-adenosylmethionine (SAM) in the body. A previous study reported that a methyl-deficient diet (MDD) with arsenic intake greatly reduced global DNA methylation (the content of 5-methylcytosine) in the liver of male C57BL/6 mice. In the present study, we investigated the DNA methylation level, SAM content, and expression of DNA methyltransferases (DNMTs) in the liver of male and female C57BL/6 mice fed a methyl-sufficient diet (MSD), an MDD, or an MDD + arsenic. The DNA methylation level was accurately determined by measuring the content of genomic 5-methyldeoxycytidine (5medC) by high-performance liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) using stable-isotope-labeled 5medC and deoxycytidine (dC) as internal standards. The results of this study revealed that while the MDD and arsenic tended to reduce the genomic 5meC content in the male mice livers, the MDD + arsenic significantly increased the 5meC content in the female mice livers. Another unexpected finding was the small differences in 5meC content among the groups. The MDD and MDD + arsenic suppressed DNMT1 expression only in the male mice livers. In contrast, SAM content was reduced by the MDD and MDD + arsenic only in the livers of female mice, showing that the changes in 5meC content were not attributable to SAM content. The sex-dependent changes in 5meC content induced by methyl deficiency and arsenic may be involved in differences in male and female susceptibility to diseases via epigenetic modification of physiological functions.
Collapse
|
179
|
Steffens AA, Hong GM, Bain LJ. Sodium arsenite delays the differentiation of C2C12 mouse myoblast cells and alters methylation patterns on the transcription factor myogenin. Toxicol Appl Pharmacol 2010; 250:154-61. [PMID: 20965206 DOI: 10.1016/j.taap.2010.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 12/01/2022]
Abstract
Epidemiological studies have correlated arsenic exposure with cancer, skin diseases, and adverse developmental outcomes such as spontaneous abortions, neonatal mortality, low birth weight, and delays in the use of musculature. The current study used C2C12 mouse myoblast cells to examine whether low concentrations of arsenic could alter their differentiation into myotubes, indicating that arsenic can act as a developmental toxicant. Myoblast cells were exposed to 20 nM sodium arsenite, allowed to differentiate into myotubes, and expression of the muscle-specific transcription factor myogenin, along with the expression of tropomyosin, suppressor of cytokine signaling 3 (Socs3), prostaglandin I2 synthesis (Ptgis), and myocyte enhancer 2 (Mef2), was investigated using QPCR and immunofluorescence. Exposing C2C12 cells to 20 nM sodium arsenite delayed the differentiation process, as evidenced by a significant reduction in the number of multinucleated myotubes, a decrease in myogenin mRNA expression, and a decrease in the total number of nuclei expressing myogenin protein. The expression of mRNA involved in myotube formation, such as Ptgis and Mef2 mRNA, was also significantly reduced by 1.6-fold and 4-fold during differentiation. This was confirmed by immunofluorescence for Mef2, which showed a 2.6-fold reduction in nuclear translocation. Changes in methylation patterns in the promoter region of myogenin (-473 to +90) were examined by methylation-specific PCR and bisulfite genomic sequencing. Hypermethylated CpGs were found at -236 and -126 bp, whereas hypomethylated CpGs were found at -207 bp in arsenic-exposed cells. This study indicates that 20 nM sodium arsenite can alter myoblast differentiation by reducing the expression of the transcription factors myogenin and Mef2c, which is likely due to changes in promoter methylation patterns. The delay in muscle differentiation may lead to developmental abnormalities.
Collapse
Affiliation(s)
- Amanda A Steffens
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | | | | |
Collapse
|
180
|
Wilhelm-Benartzi CS, Koestler DC, Houseman EA, Christensen BC, Wiencke JK, Schned AR, Karagas MR, Kelsey KT, Marsit CJ. DNA methylation profiles delineate etiologic heterogeneity and clinically important subgroups of bladder cancer. Carcinogenesis 2010; 31:1972-6. [PMID: 20802236 DOI: 10.1093/carcin/bgq178] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA methylation profiles can be used to define molecular cancer subtypes that may better inform disease etiology and clinical decision-making. This investigation aimed to create DNA methylation profiles of bladder cancer based on CpG methylation from almost 800 cancer-related genes and to then examine the relationship of those profiles with exposures related to risk and clinical characteristics. DNA, derived from formalin-fixed paraffin-embedded tumor samples obtained from incident cases involved in a population-based case-control study of bladder cancer in New Hampshire, was used for methylation profiling on the Illumina GoldenGate Methylation Bead Array. Unsupervised clustering of those loci with the greatest change in methylation between tumor and non-diseased tissue was performed to defined molecular subgroups of disease, and univariate tests of association followed by multinomial logistic regression was used to examine the association between these classes, bladder cancer risk factors and clinical phenotypes. Membership in the two most methylated classes was significantly associated with invasive disease (P < 0.001 for both class 3 and 4). Male gender (P = 0.04) and age >70 years (P = 0.05) was associated with membership in one of the most methylated classes. Finally, average water arsenic levels in the highest percentile predicted membership in an intermediately methylated class of tumors (P = 0.02 for both classes). Exposures and demographic associated with increased risk of bladder cancer specifically associate with particular subgroups of tumors defined by DNA methylation profiling and these subgroups may define more aggressive disease.
Collapse
Affiliation(s)
- C S Wilhelm-Benartzi
- Department of Community Health, Center for Environmental Health and Technology, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Boellmann F, Zhang L, Clewell HJ, Schroth GP, Kenyon EM, Andersen ME, Thomas RS. Genome-wide Analysis of DNA Methylation and Gene Expression Changes in the Mouse Lung following Subchronic Arsenate Exposure. Toxicol Sci 2010; 117:404-17. [DOI: 10.1093/toxsci/kfq225] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
182
|
Ronco AM, Llaguno E, Epuñan MJ, Llanos MN. Effect of cadmium on cortisol production and 11beta-hydroxysteroid dehydrogenase 2 expression by cultured human choriocarcinoma cells (JEG-3). Toxicol In Vitro 2010; 24:1532-7. [PMID: 20624455 DOI: 10.1016/j.tiv.2010.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 06/08/2010] [Accepted: 07/02/2010] [Indexed: 11/17/2022]
Abstract
Cadmium is a toxicant with known carcinogenic and endocrine disruptor effects. We have previously reported that prenatal exposure to cadmium may induce low birth weight which is associated to increased foetal exposure to glucocorticoids; both signals constitute "hallmarks" of developmental programming. Since the effect of cadmium on the glucocorticoid system of placental carcinogenic cells is unknown, in the present work, we studied the effect of acute low dose of cadmium on cortisol production and 11beta-HSD2 expression and activity by cultured human choriocarcinoma cells (JEG-3). In addition, it was also evaluated whether those effects were related to the methylation index of the HSD11B2 gene, which can be regulated by epigenetic mechanisms. Cells were incubated with low cadmium dose (0.5 and 1 microM) for 24h and viability (MTT), cortisol production (EIA), 11beta-HSD2 expression (qRT-PCR) and activity (radioassay), and methylation index of the HSD11B2 gene were determined. Results show lower cortisol concentrations in the incubation media of exposed cells, which were associated to increased 11beta-HSD2 expression and activity and to a lower methylation index of the gene. These results suggest that cadmium-induced endocrine disruptor effects on JEG-3 cells could be mediated by changes in the methylation status of some target genes.
Collapse
Affiliation(s)
- Ana Maria Ronco
- Laboratory of Nutrition and Metabolic Regulation, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
183
|
Abstract
Patients with chronic kidney disease undergoing hemodialysis (HD) are potentially at risk of deficiency and excess of trace elements. HD exposes patients to large volumes of water (>120 l/week) in the form of dialysate. Although levels of certain ions (such as potassium and calcium) are carefully regulated in dialysate, many others are measured infrequently, if ever. As a result, substances in lower concentrations in the dialysis may be leached from the body. Conversely, toxic trace elements present in water but not in blood may accumulate and cause toxicity. Given that essential trace elements play key roles in multiple biological systems including immunological defense against oxidation and infection, it has been hypothesized that the increased morbidity and mortality seen in HD patients may in part be due to the imbalance of trace elements that has not been recognized. A recent systematic review has shown that compared with healthy controls, HD patients have significantly lower blood levels of zinc, manganese, and selenium, while blood levels of lead are likely to accumulate. Other trace elements, such as mercury and arsenic, are biologically plausible causes of excess mortality in dialysis patients, but available evidence is inconclusive as to whether they consistently accumulate in this population. Whether altered trace element levels are potentially reversible causes of adverse clinical outcomes in dialysis patients remains to be determined. This review highlights key issues related to this hypothesis, with special emphasis on zinc, manganese, selenium, lead, mercury, and arsenic.
Collapse
Affiliation(s)
- Diana Rucker
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
184
|
Majumdar S, Chanda S, Ganguli B, Mazumder DNG, Lahiri S, Dasgupta UB. Arsenic exposure induces genomic hypermethylation. ENVIRONMENTAL TOXICOLOGY 2010; 25:315-8. [PMID: 19437452 DOI: 10.1002/tox.20497] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Gene-specific hypermethylation has previously been detected in Arsenic exposed persons. To monitor the level of whole genome methylation in persons exposed to different levels of Arsenic via drinking water, DNA was extracted from peripheral blood mononuclear cells of 64 persons. Uptake of methyl group from (3)H labeled S-Adenosyl Methionine after incubation of DNA with SssI methylase was measured. Results showed statistically significant (P = 0.0004) decrease in uptake of (3)H methyl group in the persons exposed to 250-500 microg/L arsenic, indicating genomic hypermethylation.
Collapse
Affiliation(s)
- Sunipa Majumdar
- Department of Biophysics, Molecular Biology and Genetics, University of Calcutta, 92 APC Road, Kolkata, India
| | | | | | | | | | | |
Collapse
|
185
|
Druwe IL, Vaillancourt RR. Influence of arsenate and arsenite on signal transduction pathways: an update. Arch Toxicol 2010; 84:585-96. [PMID: 20502880 DOI: 10.1007/s00204-010-0554-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 04/29/2010] [Indexed: 11/29/2022]
Abstract
Arsenic has been a recognized contaminant and toxicant, as well as a medicinal compound throughout human history. Populations throughout the world are exposed to arsenic and these exposures have been associated with a number of human cancers. Not much is known about the role of arsenic as a human carcinogen and more recently its role in non-cancerous diseases, such as cardiovascular disease, hypertension and diabetes mellitus have been uncovered. The health effects associated with arsenic are numerous and the association between arsenic exposure and human disease has intensified the search for molecular mechanisms that describe the biological activity of arsenic in humans and leads to the aforementioned disease states. Arsenic poses a human health risk due in part to the regulation of cellular signal transduction pathways and over the last few decades, some cellular mechanisms that account for arsenic toxicity, as well as, signal transduction pathways have been discovered. However, given the ubiquitous nature of arsenic in the environment, making sense of all the data remains a challenge. This review will focus on our knowledge of signal transduction pathways that are regulated by arsenic.
Collapse
Affiliation(s)
- Ingrid L Druwe
- Department of Pharmacology and Toxicology, The University of Arizona College of Pharmacy, 1703 E. Mabel Street, Tucson, AZ 85721, USA
| | | |
Collapse
|
186
|
Tokar EJ, Qu W, Liu J, Liu W, Webber MM, Phang JM, Waalkes MP. Arsenic-specific stem cell selection during malignant transformation. J Natl Cancer Inst 2010; 102:638-49. [PMID: 20339138 PMCID: PMC2864291 DOI: 10.1093/jnci/djq093] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 02/02/2010] [Accepted: 02/26/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Arsenic is a carcinogen that targets the urogenital system, including the prostate. Although the mechanisms for arsenic-induced carcinogenesis are undefined, arsenic drives overaccumulation of stem cells and cancer stem cells (CSCs) in vivo and in vitro, indicating that these cells are a key target population. Disruption of stem cell population dynamics may be critical to acquisition of cancer phenotype. We tested the hypothesis that prostate stem cells have a survival selection advantage during arsenic exposure that favors their accumulation and facilitates their malignant transformation. METHODS Innate and acquired resistance to acute (24-72 hours of exposure) and chronic (6 weeks of exposure) arsenite-induced cytolethality and apoptosis were assessed in a human prostate stem cell line (WPE-stem) and the mature parental cell line (RWPE-1). Real-time reverse transcription-polymerase chain reaction and/or Western blot analysis was used to measure the expression of apoptosis-, stress-, and arsenic-related genes. Arsenic-, cadmium-, and N-methyl-N-nitrosourea-induced isogenic malignant transformants of RWPE-1 cells were compared for acquisition of CSC-like qualities by holoclone and sphere formation assays, growth in soft agar, and expression of CSC biomarkers. All statistical tests were two-sided. RESULTS WPE-stem cells showed innate resistance to arsenic-induced cytolethality (arsenite concentration lethal to 50% of the cells [LC(50)] = 32.4 microM, 95% confidence interval [CI] = 31.5 to 33.3 muM) and apoptosis compared with parental RWPE-1 cells (LC(50) = 10.4 muM, 95% CI = 7.4 to 13.4 microM). Compared with RWPE-1 cells, WPE-stem cells showed noticeably higher expression of antiapoptotic (ie, BCL2, MT), stress-related (ie, NFE2L2, SOD1, PRODH), and arsenic adaptation (ie, ABCC1, GSTP1) factors and noticeably lower expression of proapoptotic factors (ie, BAX, caspases 3, 7, 8, and 9). WPE-stem cells also showed hyper-adaptability to chronic arsenite exposure (5 microM, 6 weeks) compared with RWPE-1 cells (LC(50) = 94.7 vs 32.1 microM, difference = 62.6 muM, 95% CI = 53.3 to 71.9 muM) at levels that in previous work induced a malignant phenotype in RWPE-1 after 30 weeks of exposure. Quantification of CSC-like cells in isogenic RWPE-1 transformants showed that marked overproduction was unique to a malignant phenotype acquired in response to arsenic exposure but not in response to cadmium or N-methyl-N-nitrosourea exposure. CONCLUSIONS An apparent stem cell survival advantage with regard to arsenic causes selection during malignant transformation that manifests itself as an overabundance of CSC-like cells specifically after arsenic-driven acquisition of malignant phenotype. The increased resistance to apoptosis and arsenite hyper-adaptability of WPE-stem cells suggests that arsenite transformation of RWPE-1 cells involves an increase in the number of CSC-like cells.
Collapse
|
187
|
Wnek SM, Jensen TJ, Severson PL, Futscher BW, Gandolfi AJ. Monomethylarsonous acid produces irreversible events resulting in malignant transformation of a human bladder cell line following 12 weeks of low-level exposure. Toxicol Sci 2010; 116:44-57. [PMID: 20375083 DOI: 10.1093/toxsci/kfq106] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arsenic is a known human bladder carcinogen; however, the mechanisms underlying arsenical-induced bladder carcinogenesis are not understood. Previous research has demonstrated that exposure of a nontumorigenic human urothelial cell line, UROtsa, to 50 nM monomethylarsonous acid (MMA(III)) for 52 weeks resulted in malignant transformation. To focus research on the early mechanistic events leading to MMA(III)-induced malignancy, the goal of this research was to resolve the critical period in which continuous MMA(III) exposure (50 nM) induces the irreversible malignant transformation of UROtsa cells. An increased growth rate of UROtsa cells results after 12 weeks of MMA(III) exposure. Anchorage-independent growth occurred after 12 weeks with a continued increase in colony formation when 12-week exposed cells were cultured for an additional 12 or 24 weeks without MMA(III) exposure. UROtsa cells as early as 12 weeks MMA(III) exposure were tumorigenic in severe combined immunodeficiency mice with tumorigenicity increasing when 12-week exposed cells were cultured for an additional 12 or 24 weeks in the absence of MMA(III) exposure. To assess potential underlying mechanisms associated with the early changes that occur during MMA(III)-induced malignancy, DNA methylation was assessed in known target gene promoter regions. Although DNA methylation remains relatively unchanged after 12 weeks of exposure, aberrant DNA methylation begins to emerge after an additional 12 weeks in culture and continues to increase through 24 weeks in culture without MMA(III) exposure, coincident with the progression of a tumorigenic phenotype. Overall, these data demonstrate that 50 nM MMA(III) is capable of causing irreversible malignant transformation in UROtsa cells after 12 weeks of exposure. Having resolved an earlier timeline in which MMA(III)-induced malignant transformation occurs in UROtsa cells will allow for mechanistic studies focused on the critical biological changes taking place within these cells prior to 12 weeks of exposure, providing further evidence about potential mechanisms of MMA(III)-induced carcinogenesis.
Collapse
Affiliation(s)
- Shawn M Wnek
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | |
Collapse
|
188
|
Fei DL, Li H, Kozul CD, Black KE, Singh S, Gosse JA, DiRenzo J, Martin KA, Wang B, Hamilton JW, Karagas MR, Robbins DJ. Activation of Hedgehog signaling by the environmental toxicant arsenic may contribute to the etiology of arsenic-induced tumors. Cancer Res 2010; 70:1981-8. [PMID: 20179202 PMCID: PMC2831120 DOI: 10.1158/0008-5472.can-09-2898] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exposure to the environmental toxicant arsenic, through both contaminated water and food, contributes to significant health problems worldwide. In particular, arsenic exposure is thought to function as a carcinogen for lung, skin, and bladder cancer via mechanisms that remain largely unknown. More recently, the Hedgehog signaling pathway has also been implicated in the progression and maintenance of these same cancers. Based on these similarities, we tested the hypothesis that arsenic may act in part through activating Hedgehog signaling. Here, we show that arsenic is able to activate Hedgehog signaling in several primary and established tissue culture cells as well as in vivo. Arsenic activates Hedgehog signaling by decreasing the stability of the repressor form of GLI3, one of the transcription factors that ultimately regulate Hedgehog activity. We also show, using tumor samples from a cohort of bladder cancer patients, that high levels of arsenic exposure are associated with high levels of Hedgehog activity. Given the important role Hedgehog signaling plays in the maintenance and progression of a variety of tumors, including bladder cancer, these results suggest that arsenic exposure may in part promote cancer through the activation of Hedgehog signaling. Thus, we provide an important insight into the etiology of arsenic-induced human carcinogenesis, which may be relevant to millions of people exposed to high levels of arsenic worldwide.
Collapse
Affiliation(s)
- Dennis Liang Fei
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Hua Li
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Courtney D. Kozul
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Kendall E. Black
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Samer Singh
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Julie A. Gosse
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - James DiRenzo
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Kathleen A. Martin
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
- Department of Surgery, Dartmouth Medical School, Hanover, NH 03755
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY 10021
| | - Joshua W. Hamilton
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
- Bay Paul Center in Comparative Molecular Biology & Evolution, Marine Biological Laboratory, Woods Hole MA 02543
| | - Margaret R. Karagas
- Section of Biostatistics and Epidemiology, Department of Community and Family Medicine, Dartmouth Medical School, Lebanon, NH 03756
| | - David J. Robbins
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Lebanon, NH 03756
| |
Collapse
|
189
|
Wilhelm CS, Kelsey KT, Butler R, Plaza S, Gagne L, Zens MS, Andrew AS, Morris S, Nelson HH, Schned AR, Karagas MR, Marsit CJ. Implications of LINE1 methylation for bladder cancer risk in women. Clin Cancer Res 2010; 16:1682-9. [PMID: 20179218 DOI: 10.1158/1078-0432.ccr-09-2983] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Epigenetic alterations including changes to cellular DNA methylation levels contribute to carcinogenesis and may serve as powerful biomarkers of the disease. This investigation sought to determine whether hypomethylation at the long interspersed nuclear elements (LINE1), reflective of the level of global DNA methylation, in peripheral blood-derived DNA is associated with increased risk of bladder cancer. EXPERIMENTAL DESIGN LINE1 methylation was measured from blood-derived DNA obtained from participants of a population-based incident case-control study of bladder cancer in New Hampshire. Bisulfite-modified DNA was pyrosequenced to determine LINE1 methylation status; a total of 285 cases and 465 controls were evaluated for methylation. RESULTS Being in the lowest LINE1 methylation decile was associated with a 1.8-fold increased risk of bladder cancer [95% confidence interval (95% CI), 1.12-2.90] in models controlling for gender, age, and smoking, and the association was stronger in women than in men (odds ratio, 2.48; 95% CI, 1.19-5.17 in women; and odds ratio, 1.47; 95% CI, 0.79-2.74 in men). Among controls, women were more likely to have lower LINE1 methylation than men (P = 0.04), and levels of arsenic in the 90th percentile were associated with reduced LINE1 methylation (P = 0.04). CONCLUSIONS LINE1 hypomethylation may be an important biomarker of bladder cancer risk, especially among women.
Collapse
Affiliation(s)
- Charlotte S Wilhelm
- Department of Community Health Center for Environmental Health, Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
Arsenic is a nonmutagenic human carcinogen that induces tumors through unknown mechanisms. A growing body of evidence suggests that its carcinogenicity results from epigenetic changes, particularly in DNA methylation. Changes in gene methylation status, mediated by arsenic, have been proposed to activate oncogene expression or silence tumor suppressor genes, leading to long-term changes in the activity of genes controlling cell transformation. Mostly descriptive, and often contradictory, studies have demonstrated that arsenic exposure is associated with both hypo- and hyper-methylation at various genetic loci in vivo or in vitro. This ambiguity has made it difficult to assess whether the changes induced by arsenic are causally involved in the transformation process or are simply a reflection of the altered physiology of rapidly dividing cancer cells. Here, we discuss the evidence supporting changes in DNA methylation as a cause of arsenic carcinogenesis and highlight the strengths and limitations of these studies, as well as areas where consistencies and inconsistencies exist.
Collapse
Affiliation(s)
- John F Reichard
- Department of Environmental Health & Center for Environmental Genetics, University of Cincinnati College of Medicine, 3223 Eden Avenue, Cincinnati, OH 45267-0056, USA.
| | | |
Collapse
|
191
|
|
192
|
Kojima C, Ramirez DC, Tokar EJ, Himeno S, Drobná Z, Stýblo M, Mason RP, Waalkes MP. Requirement of arsenic biomethylation for oxidative DNA damage. J Natl Cancer Inst 2009; 101:1670-81. [PMID: 19933942 DOI: 10.1093/jnci/djp414] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Inorganic arsenic is an environmental carcinogen that may act through multiple mechanisms including formation of methylated derivatives in vivo. Sodium arsenite (up to 5.0 microM) renders arsenic methylation-competent TRL1215 rat liver epithelial cells tumorigenic in nude mice at 18 weeks of exposure and arsenic methylation-deficient RWPE-1 human prostate epithelial cells tumorigenic at 30 weeks of exposure. We assessed the role of arsenic biomethylation in oxidative DNA damage (ODD) using a recently developed immuno-spin trapping method. METHODS Immuno-spin trapping was used to measure ODD after chronic exposure of cultured TRL1215 vs RWPE-1 cells, or of methylation-competent UROtsa/F35 vs methylation-deficient UROtsa human urothelial cells, to sodium arsenite. Secreted matrix metalloproteinase (MMP)-2 and -9 activity, as analyzed by zymography, cellular invasiveness by using a transwell assay, and colony formation by using soft agar assay were compared in cells exposed to arsenite with and without selenite, an arsenic biomethylation inhibitor, to assess the role of ODD in the transition to an in vitro cancer phenotype. RESULTS Exposure of methylation-competent TRL1215 cells to up to 1.0 microM sodium arsenite was followed by a substantial increase in ODD at 5-18 weeks (eg, at 16 weeks with 1.0 microM arsenite, 1138% of control, 95% confidence interval [CI] = 797% to 1481%), whereas exposure of methylation-deficient RWPE-1 cells to up to 5.0 microM arsenite did not increase ODD for a 30-week period. Inhibition of arsenic biomethylation with sodium selenite abolished arsenic-induced ODD and invasiveness, colony formation, and MMP-2 and -9 hypersecretion in TRL1215 cells. Arsenic induced ODD in methylation-competent UROtsa/F35 cells (eg, at 16 weeks, with 1.0 microM arsenite 225% of control, 95% CI = 188% to 262%) but not in arsenic methylation-deficient UROtsa cells, and ODD levels corresponded to the levels of increased invasiveness, colony formation, and hypersecretion of active MMP-2 and -9 seen after transformation to an in vitro cancer phenotype. CONCLUSION Arsenic biomethylation appears to be obligatory for arsenic-induced ODD and appears linked in some cells with the accelerated transition to an in vitro cancer phenotype.
Collapse
Affiliation(s)
- Chikara Kojima
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, Center for Cancer Research, National Cancer Institute at National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Thompson JA, Franklin CC. Enhanced glutathione biosynthetic capacity promotes resistance to As3+-induced apoptosis. Toxicol Lett 2009; 193:33-40. [PMID: 20006689 DOI: 10.1016/j.toxlet.2009.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 02/01/2023]
Abstract
Trivalent arsenite (As(3+)) is a known human carcinogen capable of inducing both cellular transformation and apoptotic cell death by mechanisms involving the production of reactive oxygen species. The tripeptide antioxidant glutathione (GSH) constitutes a vital cellular defense mechanism against oxidative stress. While intracellular levels of GSH are an important determinant of cellular susceptibility to undergo apoptotic cell death, it is not known whether cellular GSH biosynthetic capacity per se regulates As(3+)-induced apoptosis. The rate-limiting enzyme in GSH biosynthesis is glutamate cysteine ligase (GCL), a heterodimeric holoenzyme composed of a catalytic (GCLC) and a modifier (GCLM) subunit. To determine whether increased GSH biosynthetic capacity enhanced cellular resistance to As(3+)-induced apoptotic cell death, we utilized a mouse liver hepatoma (Hepa-1c1c7) cell line stably overexpressing both GCLC and GCLM. Overexpression of the GCL subunits increased GCL holoenzyme formation and activity and inhibited As(3+)-induced apoptosis. This cytoprotective effect was associated with a decrease in As(3+)-induced caspase activation, cleavage of caspase substrates and translocation of cytochrome c to the cytoplasm. In aggregate, these findings demonstrate that enhanced GSH biosynthetic capacity promotes resistance to As(3+)-induced apoptosis by preventing mitochondrial dysfunction and cytochrome c release and highlight the role of the GSH antioxidant defense system in dictating hepatocyte sensitivity to As(3+)-induced apoptotic cell death.
Collapse
Affiliation(s)
- James A Thompson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA
| | | |
Collapse
|
194
|
Guénin S, Morvan D, Thivat E, Stepien G, Demidem A. Combined methionine deprivation and chloroethylnitrosourea have time-dependent therapeutic synergy on melanoma tumors that NMR spectroscopy-based metabolomics explains by methionine and phospholipid metabolism reprogramming. Nutr Cancer 2009; 61:518-29. [PMID: 19838924 DOI: 10.1080/01635580902803727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Methionine (Met) deprivation stress (MDS) is proposed in association with chemotherapy in the treatment of some cancers. A synergistic effect of this combination is generally acknowledged. However, little is known on the mechanism of the response to this therapeutic strategy. A model of B16 melanoma tumor in vivo was treated by MDS alone and in combination with chloroethylnitrosourea (CENU). It was applied recent developments in proton-NMR spectroscopy-based metabolomics for providing information on the metabolic response of tumors to MDS and combination with chemotherapy. MDS inhibited tumor growth during the deprivation period and growth resumption thereafter. The combination of MDS with CENU induced an effective time-dependent synergy on growth inhibition. Metabolite profiling during MDS showed a decreased Met content (P < 0.01) despite the preservation of the protein content, disorders in sulfur-containing amino acids, glutamine/proline, and phospholipid metabolism [increase of glycerophosphorylcholine (P < 0.01), decrease in phosphocholine (P < 0.05)]. The metabolic profile of MDS combined with CENU and ANOVA analysis revealed the implication of Met and phospholipid metabolism in the observed synergy, which may be interpreted as a Met-sparing metabolic reprogramming of tumors. It follows that combination therapy of MDS with CENU seems to intensify adaptive processes, which may set limitations to this therapeutic strategy.
Collapse
|
195
|
Wang Y, Wang C, Zhang J, Chen Y, Zuo Z. DNA hypomethylation induced by tributyltin, triphenyltin, and a mixture of these in Sebastiscus marmoratus liver. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 95:93-8. [PMID: 19782413 DOI: 10.1016/j.aquatox.2009.06.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/06/2009] [Accepted: 06/09/2009] [Indexed: 05/10/2023]
Abstract
Tributyltin (TBT) and triphenyltin (TPT) coexist in freshwater and marine environments. However, the effects of TBT, TPT, and a mixture of the two on DNA methylation in marine fish livers and the mechanism involved remain to be elucidated. Previous study have proved that abnormal methylation patterns are induced by the balance of transmethylation reaction including the tissue level of S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH) or the activity of DNA (cytosine-5) methyltransferase 1 (DNMT1). Therefore, in the present study, we assessed their ability to cause hepatic DNA hypomethylation in Sebastiscus marmoratus liver and the related mechanism. The results showed that TBT, TPT, and a mixture of the two significantly induced DNA hypomethylation in the fish livers in a dose-dependent manner. Using Pearson correlation coefficient analysis, we identified strong linear correlations between S-adenosylhomocysteine, S-adenosylmethionine, or the SAM to SAH ratio and the hepatic genome-wide 5-methylcytosine content of the DNA, but no correlation between the latter and the DNMT1 expression level. It is therefore proposed that the organotins hypomethylation induced in the marine fish livers was due to altering the balance of the substrate and the product in transmethylation reactions.
Collapse
Affiliation(s)
- Yuqing Wang
- Key Laboratory of the Ministry of Education for Coast and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China
| | | | | | | | | |
Collapse
|
196
|
Irigaray P, Belpomme D. Basic properties and molecular mechanisms of exogenous chemical carcinogens. Carcinogenesis 2009; 31:135-48. [PMID: 19858070 DOI: 10.1093/carcin/bgp252] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exogenous chemical carcinogenesis is an extremely complex multifactorial process during which gene-environment interactions involving chronic exposure to exogenous chemical carcinogens (ECCs) and polymorphisms of cancer susceptibility genes add further complexity. We describe the properties and molecular mechanisms of ECCs that contribute to induce and generate cancer. A basic and specific property of many lipophilic organic ECCs including polycyclic aromatic hydrocarbons and polyhalogenated aromatic hydrocarbons is their ability to bioaccumulate in the adipose tissue from where they may be released in the blood circulation and target peripheral tissues for carcinogenesis. Many organic ECCs are procarcinogens and consequently need to be activated by the cytochrome P450 (CYP) system and/or other enzymes before they can adduct DNA and proteins. Because they contribute not only to the cocarcinogenic and promoting effects of many aromatic pollutants but also to their mutagenic effects, the aryl hydrocarbon receptor-activating and the inducible CYP systems are central to exogenous chemical carcinogenesis. Another basic property of ECCs is their ability to induce stable and bulky DNA adducts that cannot be simply repaired by the different repair systems. In addition, following ECC exposure, mutagenesis may also be caused indirectly by free-radical production and by epigenetic alterations. As a result of complex molecular interplays, direct and/or indirect mutagenesis may especially account for the carcinogenic effects of many exogenous metals and metalloids. Because of these molecular properties and action mechanisms, we conclude that ECCs could be major contributors to human cancer, with obviously great public health consequences.
Collapse
Affiliation(s)
- Philippe Irigaray
- Cancer Research Center, Association for Research and Treatments Against Cancer, Paris, France.
| | | |
Collapse
|
197
|
Jo WJ, Ren X, Chu F, Aleshin M, Wintz H, Burlingame A, Smith MT, Vulpe CD, Zhang L. Acetylated H4K16 by MYST1 protects UROtsa cells from arsenic toxicity and is decreased following chronic arsenic exposure. Toxicol Appl Pharmacol 2009; 241:294-302. [PMID: 19732783 DOI: 10.1016/j.taap.2009.08.027] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/20/2009] [Accepted: 08/24/2009] [Indexed: 01/08/2023]
Abstract
Arsenic, a human carcinogen that is associated with an increased risk of bladder cancer, is commonly found in drinking water. An important mechanism by which arsenic is thought to be carcinogenic is through the induction of epigenetic changes that lead to aberrant gene expression. Previously, we reported that the SAS2 gene is required for optimal growth of yeast in the presence of arsenite (As(III)). Yeast Sas2p is orthologous to human MYST1, a histone 4 lysine 16 (H4K16) acetyltransferase. Here, we show that H4K16 acetylation is necessary for the resistance of yeast to As(III) through the modulation of chromatin state. We further explored the role of MYST1 and H4K16 acetylation in arsenic toxicity and carcinogenesis in human bladder epithelial cells. The expression of MYST1 was knocked down in UROtsa cells, a model of bladder epithelium that has been used to study arsenic-induced carcinogenesis. Silencing of MYST1 reduced acetylation of H4K16 and induced sensitivity to As(III) and to its more toxic metabolite monomethylarsonous acid (MMA(III)) at doses relevant to high environmental human exposures. In addition, both As(III) and MMA(III) treatments decreased global H4K16 acetylation levels in a dose- and time-dependent manner. This indicates that acetylated H4K16 is required for resistance to arsenic and that a reduction in its levels as a consequence of arsenic exposure may contribute to toxicity in UROtsa cells. Based on these findings, we propose a novel role for the MYST1 gene in human sensitivity to arsenic.
Collapse
Affiliation(s)
- William Jaime Jo
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Jensen TJ, Novak P, Wnek SM, Gandolfi AJ, Futscher BW. Arsenicals produce stable progressive changes in DNA methylation patterns that are linked to malignant transformation of immortalized urothelial cells. Toxicol Appl Pharmacol 2009; 241:221-9. [PMID: 19716837 DOI: 10.1016/j.taap.2009.08.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/03/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
Abstract
Aberrant DNA methylation participates in carcinogenesis and is a molecular hallmark of a tumor cell. Tumor cells generally exhibit a redistribution of DNA methylation resulting in global hypomethylation with regional hypermethylation; however, the speed in which these changes emerge has not been fully elucidated and may depend on the temporal location of the cell in the path from normal, finite lifespan to malignant transformation. We used a model of arsenical-induced malignant transformation of immortalized human urothelial cells and DNA methylation microarrays to examine the extent and temporal nature of changes in DNA methylation that occur during the transition from immortal to malignantly transformed. Our data presented herein suggest that during arsenical-induced malignant transformation, aberrant DNA methylation occurs non-randomly, progresses gradually at hundreds of gene promoters, and alters expression of the associated gene, and these changes are coincident with the acquisition of malignant properties, such as anchorage independent growth and tumor formation in immunocompromised mice. The DNA methylation changes appear stable, since malignantly transformed cells removed from the transforming arsenical exhibited no reversion in DNA methylation levels, associated gene expression, or malignant phenotype. These data suggest that arsenicals act as epimutagens and directly link their ability to induce malignant transformation to their actions on the epigenome.
Collapse
Affiliation(s)
- Taylor J Jensen
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
199
|
Chien CW, Ho IC, Lee TC. Induction of neoplastic transformation by ectopic expression of human aldo-keto reductase 1C isoforms in NIH3T3 cells. Carcinogenesis 2009; 30:1813-20. [PMID: 19696165 DOI: 10.1093/carcin/bgp195] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have shown previously that chronic low-dose arsenic exposure induces malignant transformation of human skin keratinocyte HaCaT cells. In this study, we found that several isoforms of aldo-keto reductase 1C (AKR1C) were overexpressed in arsenic-exposed HaCaT cells. The AKR1C family of proteins are phase I drug-metabolizing enzymes involved in maintenance of steroid homeostasis, prostaglandin metabolism and metabolic activation of polycyclic aromatic hydrocarbons. To explore the oncogenic potential of AKR1C isoforms, we established mouse NIH3T3 cell lines ectopically and stably expressing human AKR1C1, AKR1C2 or AKR1C3. Our results showed that ectopic expression of human AKR1C1 and AKR1C2, but not AKR1C3, significantly enhanced foci formation. Following subcutaneous injection of these stable cell lines into nude mice, fibrosarcoma were formed from all three cell lines. However, the number and size of tumors formed by the AKR1C3-expressing cell line was fewer and smaller, respectively, than those formed by AKR1C1- and AKR1C2-expressing cells. Inhibitors of AKR1C, genistein and ursodeoxycholic acid, decreased foci formation in AKR1C1- and AKR1C2-expressing NIH3T3 cells in a dose-dependent manner, implying the association of enzymatic activity and oncogenic potential of AKR1C. The requirement of enzymatic ability for neoplastic transformation was confirmed by establishing a NIH3T3 cell line stably expressing a mutant AKR1C1 lacking enzymatic activity, which did not form foci in culture or tumors in nude mice. Our present study reveals that AKR1C enzymatic activity plays crucial roles on induction of neoplastic transformation of mouse NIH3T3 cells.
Collapse
Affiliation(s)
- Chia-Wen Chien
- Graduate Institute of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | | | | |
Collapse
|
200
|
Fujishiro H, Okugaki S, Yasumitsu S, Enomoto S, Himeno S. Involvement of DNA hypermethylation in down-regulation of the zinc transporter ZIP8 in cadmium-resistant metallothionein-null cells. Toxicol Appl Pharmacol 2009; 241:195-201. [PMID: 19699220 DOI: 10.1016/j.taap.2009.08.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/31/2009] [Accepted: 08/13/2009] [Indexed: 11/29/2022]
Abstract
The Zrt/Irt-related protein 8 (ZIP8) encoded by slc39a8 is now emerging as an important zinc transporter involved in cellular cadmium incorporation. We have previously shown that mRNA and protein levels of ZIP8 were decreased in cadmium-resistant metallothionein-null (A7) cells, leading to a decrease in cadmium accumulation. However, the mechanism by which ZIP8 expression is suppressed in these cells remains to be elucidated. In the present study, we investigated the possibility that epigenetic silencing of the slc39a8 gene by DNA hypermethylation is involved in the down-regulation of ZIP8 expression. A7 cells showed a higher mRNA level of DNA methyltransferase 3b than parental cells. Hypermethylation of the CpG island of the slc39a8 gene was detected in A7 cells. Treatment of A7 cells with 5-aza-deoxycytidine, an inhibitor of DNA methyltransferase, caused demethylation of the CpG island of the slc39a8 gene and enhancement of mRNA and protein levels of ZIP8. In response to the recovery of ZIP8 expression, A7 cells treated with 5-aza-deoxycytidine showed an increase in cadmium accumulation and consequently an increase in sensitivity to cadmium. These results suggest that epigenetic silencing of the slc39a8 gene by DNA hypermethylation plays an important role in the down-regulation of ZIP8 in cadmium-resistant metallothionein-null cells.
Collapse
Affiliation(s)
- Hitomi Fujishiro
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | | | | | | | | |
Collapse
|