151
|
Somatic Hypomethylation of Pericentromeric SST1 Repeats and Tetraploidization in Human Colorectal Cancer Cells. Cancers (Basel) 2021; 13:cancers13215353. [PMID: 34771515 PMCID: PMC8582499 DOI: 10.3390/cancers13215353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
Somatic DNA hypomethylation and aneuploidy are hallmarks of cancer, and there is evidence for a causal relationship between them in knockout mice but not in human cancer. The non-mobile pericentromeric repetitive elements SST1 are hypomethylated in about 17% of human colorectal cancers (CRC) with some 5-7% exhibiting strong age-independent demethylation. We studied the frequency of genome doubling, a common event in solid tumors linked to aneuploidy, in randomly selected single cell clones of near-diploid LS174T human CRC cells differing in their level of SST1 demethylation. Near-diploid LS174T cells underwent frequent genome-doubling events generating near-tetraploid clones with lower levels of SST1 methylation. In primary CRC, strong SST1 hypomethylation was significantly associated with global genomic hypomethylation and mutations in TP53. This work uncovers the association of the naturally occurring demethylation of the SST1 pericentromeric repeat with the onset of spontaneous tetraploidization in human CRC cells in culture and with TP53 mutations in primary CRCs. Altogether, our findings provide further support for an oncogenic pathway linking somatic hypomethylation and genetic copy number alterations in a subset of human CRC.
Collapse
|
152
|
Desaulniers D, Vasseur P, Jacobs A, Aguila MC, Ertych N, Jacobs MN. Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. Int J Mol Sci 2021; 22:10969. [PMID: 34681626 PMCID: PMC8535778 DOI: 10.3390/ijms222010969] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics involves a series of mechanisms that entail histone and DNA covalent modifications and non-coding RNAs, and that collectively contribute to programing cell functions and differentiation. Epigenetic anomalies and DNA mutations are co-drivers of cellular dysfunctions, including carcinogenesis. Alterations of the epigenetic system occur in cancers whether the initial carcinogenic events are from genotoxic (GTxC) or non-genotoxic (NGTxC) carcinogens. NGTxC are not inherently DNA reactive, they do not have a unifying mode of action and as yet there are no regulatory test guidelines addressing mechanisms of NGTxC. To fil this gap, the Test Guideline Programme of the Organisation for Economic Cooperation and Development is developing a framework for an integrated approach for the testing and assessment (IATA) of NGTxC and is considering assays that address key events of cancer hallmarks. Here, with the intent of better understanding the applicability of epigenetic assays in chemical carcinogenicity assessment, we focus on DNA methylation and histone modifications and review: (1) epigenetic mechanisms contributing to carcinogenesis, (2) epigenetic mechanisms altered following exposure to arsenic, nickel, or phenobarbital in order to identify common carcinogen-specific mechanisms, (3) characteristics of a series of epigenetic assay types, and (4) epigenetic assay validation needs in the context of chemical hazard assessment. As a key component of numerous NGTxC mechanisms of action, epigenetic assays included in IATA assay combinations can contribute to improved chemical carcinogen identification for the better protection of public health.
Collapse
Affiliation(s)
- Daniel Desaulniers
- Environmental Health Sciences and Research Bureau, Hazard Identification Division, Health Canada, AL:2203B, Ottawa, ON K1A 0K9, Canada
| | - Paule Vasseur
- CNRS, LIEC, Université de Lorraine, 57070 Metz, France;
| | - Abigail Jacobs
- Independent at the Time of Publication, Previously US Food and Drug Administration, Rockville, MD 20852, USA;
| | - M. Cecilia Aguila
- Toxicology Team, Division of Human Food Safety, Center for Veterinary Medicine, US Food and Drug Administration, Department of Health and Human Services, Rockville, MD 20852, USA;
| | - Norman Ertych
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Diedersdorfer Weg 1, 12277 Berlin, Germany;
| | - Miriam N. Jacobs
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton OX11 0RQ, UK;
| |
Collapse
|
153
|
Roberti MP, Rauber C, Kroemer G, Zitvogel L. Impact of the ileal microbiota on colon cancer. Semin Cancer Biol 2021; 86:955-966. [PMID: 34624451 DOI: 10.1016/j.semcancer.2021.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/20/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022]
Abstract
Besides tumor cell-intrinsic oncogenic pathways, host and environmental factors have a major impact on cancer immunosurveillance and the efficacy of immunotherapeutics. Several modalities of anticancer treatments including immunogenic chemotherapies and immune checkpoint inhibitors lose their efficacy in patients treated with broad-spectrum antibiotics, pointing to a key role for the gut microbiota. The complex interactions between intestinal microbes, gut immunity and anti-tumor responses constitute an emerging field of investigation. In this work, we revise key primary literature, with an emphasis on recent mechanistic insights, unraveling the interplay between the immunosurveillance of colon cancers and ileal factors including the local microbiota, tissue architecture and immune system.
Collapse
Affiliation(s)
- Maria Paula Roberti
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Conrad Rauber
- Department of Gastroenterology and Infectious Diseases, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le Cancer, INSERM U1138, Université de Paris, Sorbonne Université, Centre de Recherche des Cordeliers, Paris, France; Metabolomics Platform, Gustave Roussy Cancer Campus, Villejuif, 94805, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Department of Women's and Children's Health, Karolinska University Hospital, 17176, Stockholm, Sweden; Gustave Roussy, 94800, Villejuif, France.
| | - Laurence Zitvogel
- Université Paris-Saclay, Gustave Roussy, Villejuif, France; Gustave Roussy, 94800, Villejuif, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, France; Equipe Labellisée-Ligue Nationale contre le Cancer, 94800, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, 94800 Villejuif, France.
| |
Collapse
|
154
|
Interaction between Microsatellite Instability (MSI) and Tumor DNA Methylation in the Pathogenesis of Colorectal Carcinoma. Cancers (Basel) 2021; 13:cancers13194956. [PMID: 34638440 PMCID: PMC8508563 DOI: 10.3390/cancers13194956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary In colorectal cancer (CRC), mutations may occur in short, repeated DNA sequences, known as microsatellite instability (MSI). Tumor DNA methylation is another molecular change now recognized as an important biomarker in CRC. In a genome-wide scale, for the first time, we explored whether DNA methylation is associated with MSI status in CRC. We analyzed 250 paired samples (tumor and corresponding normal) from 125 CRC patients (m = 72, f = 53) at different stages. We found that many genes were methylated in tumor tissue compared to normal tissue. However, almost four times more genes showed such methylation changes in the tumor if the patient who also had MSI compared to patients without MSI. Our study shows an association of MSI and DNA methylation in CRC. The study also indicates an opportunity for potential use of certain immune checkpoint inhibitors (CTLA4 and HAVCR2 inhibitors) in CRC with MSI. Abstract In colorectal cancer (CRC), the role of microsatellite instability (MSI) is well known. In a genome-wide scale, for the first time, we explored whether differential methylation is associated with MSI. We analyzed 250 paired samples from 125 CRC patients (m = 72, f = 53) at different stages. Of them, 101 had left-sided CRC, 30 had MSI, 34 had somatic mutation in KRAS proto-oncogene (KRAS), and 6 had B-Raf proto-oncogene (BRAF) exon 15p.V600E mutation. MSI was more frequent in right-sided tumors (54% vs. 17%, p = 0.003). Among the microsatellite stable (MSS) CRC, a paired comparison revealed 1641 differentially methylated loci (DML) covering 686 genes at FDR 0.001 with delta beta ≥ 20%. Similar analysis in MSI revealed 6209 DML covering 2316 genes. ANOVA model including interaction (Tumor*MSI) revealed 23,322 loci, where the delta beta was different among MSI and MSS patients. Our study shows an association between MSI and tumor DNA methylation in the pathogenesis of CRC. Given the interaction seen in this study, it may be worth considering the MSI status while looking for methylation markers in CRC. The study also indicates an opportunity for potential use of certain immune checkpoint inhibitors (CTLA4 and HAVCR2 inhibitors) in CRC with MSI.
Collapse
|
155
|
Gebhard C, Mulet-Lazaro R, Glatz D, Schwarzfischer-Pfeilschifter L, Schirmacher P, Gaedcke J, Weichert W, Reuschel E, Dietmaier W, Rehli M. Aberrant DNA methylation patterns in microsatellite stable human colorectal cancers define a new marker panel for the CpG island methylator phenotype. Int J Cancer 2021; 150:617-625. [PMID: 34591983 DOI: 10.1002/ijc.33831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023]
Abstract
A distinct group of colorectal carcinomas (CRCs) referred to as the "CpG island methylator phenotype" (CIMP) shows an extremely high incidence of de novo DNA methylation and may share common pathological, clinical or molecular features. However, there is limited consensus about which CpG islands (CGIs) define a CIMP, particularly in microsatellite stable (MSS) carcinomas. To study this phenotype in a systematic manner, we analyzed genome-wide CGI DNA methylation profiles of 19 MSS CRC using methyl-CpG immunoprecipitation (MCIp) and hybridization on 244K CGI oligonucleotide microarrays, determined KRAS and BRAF mutation status and compared disease-related DNA methylation changes to chromosomal instability as detected by microarray-based comparative genomic hybridization. Results were validated using mass spectrometry analysis of bisulfite-converted DNA at a subset of 76 individual CGIs in 120 CRC and 43 matched normal tissue samples. Both genome-wide profiling and CpG methylation fine mapping segregated a group of CRC showing pronounced and frequent de novo DNA methylation of a distinct group of CGIs that only partially overlapped with previously established classifiers. The CIMP group defined in our study revealed significant association with colon localization, either KRAS or BRAF mutation, and mostly minor chromosomal losses but no association with known histopathological features. Our data provide a basis for defining novel marker panels that may enable a more reliable classification of CIMP in all CRCs, independently of the MS status.
Collapse
Affiliation(s)
- Claudia Gebhard
- Regensburg Center for Interventional Immunology (RCI), University Regensburg and University Medical Center Regensburg, Regensburg, Germany.,Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Roger Mulet-Lazaro
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dagmar Glatz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | | | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jochen Gaedcke
- Department of General and Visceral Surgery, University Medical Center, Göttingen, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich (TUM), Munich, Germany
| | - Edith Reuschel
- Department of Obstetrics and Gynecology, Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Wolfgang Dietmaier
- Institute of Pathology, University Hospital Regensburg, Regensburg, Germany
| | - Michael Rehli
- Regensburg Center for Interventional Immunology (RCI), University Regensburg and University Medical Center Regensburg, Regensburg, Germany.,Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
156
|
Interplay between Epigenetics and Cellular Metabolism in Colorectal Cancer. Biomolecules 2021; 11:biom11101406. [PMID: 34680038 PMCID: PMC8533383 DOI: 10.3390/biom11101406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/30/2023] Open
Abstract
Cellular metabolism alterations have been recognized as one of the most predominant hallmarks of colorectal cancers (CRCs). It is precisely regulated by many oncogenic signaling pathways in all kinds of regulatory levels, including transcriptional, post-transcriptional, translational and post-translational levels. Among these regulatory factors, epigenetics play an essential role in the modulation of cellular metabolism. On the one hand, epigenetics can regulate cellular metabolism via directly controlling the transcription of genes encoding metabolic enzymes of transporters. On the other hand, epigenetics can regulate major transcriptional factors and signaling pathways that control the transcription of genes encoding metabolic enzymes or transporters, or affecting the translation, activation, stabilization, or translocation of metabolic enzymes or transporters. Interestingly, epigenetics can also be controlled by cellular metabolism. Metabolites not only directly influence epigenetic processes, but also affect the activity of epigenetic enzymes. Actually, both cellular metabolism pathways and epigenetic processes are controlled by enzymes. They are highly intertwined and are essential for oncogenesis and tumor development of CRCs. Therefore, they are potential therapeutic targets for the treatment of CRCs. In recent years, both epigenetic and metabolism inhibitors are studied for clinical use to treat CRCs. In this review, we depict the interplay between epigenetics and cellular metabolism in CRCs and summarize the underlying molecular mechanisms and their potential applications for clinical therapy.
Collapse
|
157
|
Yamazaki J, Jelinek J, Yokoyama S, Takiguchi M. Genome-wide DNA methylation profile in feline haematological tumours: A preliminary study. Res Vet Sci 2021; 140:221-228. [PMID: 34534903 DOI: 10.1016/j.rvsc.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/18/2021] [Accepted: 09/06/2021] [Indexed: 01/17/2023]
Abstract
Although DNA methylation has been analysed in few studies for a limited number of loci in cats with diseases, genome-wide profile of DNA methylation has never been addressed. The hypothesis for this study is that next-generation sequencing with sequential digestion of genomic DNA with SmaI and XmaI enzymes could provide highly quantitative information on methylation levels in cats. Using blood from four healthy control cats and two disease cats as well as three feline lymphoma/leukemia cell lines, approximately 74-94 thousand CpG sites across the cat genome could be analysed. CpG sites in CpG island (CGI) were broadly either methylated or unmethylated in normal blood, while CpG sites in non-CpG islands (NCGI) are largely methylated. Lymphoma cell lines showed thousands of CpG sites with gain of methylation at normally unmethylated CGI sites and loss of methylation at normally methylated NCGI sites. Hypermethylated CpG sites located at promoter regions included genes annotated with 'developmental process' and 'anatomical structure morphogenesis' such as HOXD10. This highly quantitative method would be suitable for studies of DNA methylation changes not only in cancer but also in other common diseases in cats.
Collapse
Affiliation(s)
- Jumpei Yamazaki
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan; One Health Research Center, Hokkaido University, Japan; Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan.
| | | | - Shoko Yokoyama
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan; One Health Research Center, Hokkaido University, Japan; Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - Mitsuyoshi Takiguchi
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| |
Collapse
|
158
|
Harland A, Liu X, Ghirardello M, Galan MC, Perks CM, Kurian KM. Glioma Stem-Like Cells and Metabolism: Potential for Novel Therapeutic Strategies. Front Oncol 2021; 11:743814. [PMID: 34532295 PMCID: PMC8438230 DOI: 10.3389/fonc.2021.743814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
Glioma stem-like cells (GSCs) were first described as a population which may in part be resistant to traditional chemotherapeutic therapies and responsible for tumour regrowth. Knowledge of the underlying metabolic complexity governing GSC growth and function may point to potential differences between GSCs and the tumour bulk which could be harnessed clinically. There is an increasing interest in the direct/indirect targeting or reprogramming of GSC metabolism as a potential novel therapeutic approach in the adjuvant or recurrent setting to help overcome resistance which may be mediated by GSCs. In this review we will discuss stem-like models, interaction between metabolism and GSCs, and potential current and future strategies for overcoming GSC resistance.
Collapse
Affiliation(s)
- Abigail Harland
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Xia Liu
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mattia Ghirardello
- Galan Research Group, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - M Carmen Galan
- Galan Research Group, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Claire M Perks
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Kathreena M Kurian
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
159
|
Takahashi S, Okamoto K, Tanahashi T, Fujimoto S, Nakagawa T, Bando M, Ma B, Kawaguchi T, Fujino Y, Mitsui Y, Kitamura S, Miyamoto H, Sato Y, Muguruma N, Bando Y, Sato T, Fujimori T, Takayama T. S100P Expression via DNA Hypomethylation Promotes Cell Growth in the Sessile Serrated Adenoma/Polyp-Cancer Sequence. Digestion 2021; 102:789-802. [PMID: 33395688 DOI: 10.1159/000512575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/26/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS Sessile serrated adenomas/polyps (SSA/Ps) are a putative precursor lesion of colon cancer. Although the relevance of DNA hypermethylation in the SSA/P-cancer sequence is well documented, the role of DNA hypomethylation is unknown. We investigated the biological relevance of DNA hypomethylation in the SSA/P-cancer sequence by using 3-dimensional organoids of SSA/P. METHODS We first analyzed hypomethylated genes using datasets from our previous DNA methylation array analysis on 7 SSA/P and 2 cancer in SSA/P specimens. Expression levels of hypomethylated genes in SSA/P specimens were determined by RT-PCR and immunohistochemistry. We established 3-dimensional SSA/P organoids and performed knockdown experiments using a lentiviral shRNA vector. DNA hypomethylation at CpG sites of the gene was quantitated by MassARRAY analysis. RESULTS The mean number of hypomethylated genes in SSA/P and cancer in SSA/P was 41.6 ± 27.5 and 214 ± 19.8, respectively, showing a stepwise increment in hypomethylation during the SSA/P-cancer sequence. S100P, S100α2, PKP3, and MUC2 were most commonly hypomethylated in SSA/P specimens. The mRNA and protein expression levels of S100P, S100α2, and MUC2 were significantly elevated in SSA/P compared with normal colon tissues, as revealed by RT-PCR and immunohistochemistry, respectively. Among these, mRNA and protein levels were highest for S100P. Knockdown of the S100P gene using a lentiviral shRNA vector in 3-dimensional SSA/P organoids inhibited cell growth by >50% (p < 0.01). The mean diameter of SSA/P organoids with S100P gene knockdown was significantly smaller compared with control organoids. MassARRAY analysis of DNA hypomethylation in the S100P gene revealed significant hypomethylation at specific CpG sites in intron 1, exon 1, and the 5'-flanking promoter region. CONCLUSION These results suggest that DNA hypomethylation, including S100P hypomethylation, is supposedly associated with the SSA/P-cancer sequence. S100P overexpression via DNA hypomethylation plays an important role in promoting cell growth in the SSA/P-cancer sequence.
Collapse
Affiliation(s)
- Sayo Takahashi
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Okamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshihito Tanahashi
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shota Fujimoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tadahiko Nakagawa
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Bando
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Beibei Ma
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tomoyuki Kawaguchi
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasuteru Fujino
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasuhiro Mitsui
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Shinji Kitamura
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroshi Miyamoto
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasushi Sato
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Naoki Muguruma
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshimi Bando
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | | | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan,
| |
Collapse
|
160
|
Miao YD, Mu LJ, Mi DH. Metabolism-associated genes in occurrence and development of gastrointestinal cancer: Latest progress and future prospect. World J Gastrointest Oncol 2021; 13:758-771. [PMID: 34457185 PMCID: PMC8371517 DOI: 10.4251/wjgo.v13.i8.758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/27/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancer remains one of the most prevalent cancers in the world. The occurrence and progression of GI cancer involve multiple events. Metabolic reprogramming is one of the hallmarks of cancer and is intricately related to tumorigenesis. Many metabolic genes are involved in the occurrence and development of GI cancer. Research approaches combining tumor genomics and metabolomics are more likely to provide deeper insights into this field. In this paper, we review the roles of metabolism-associated genes, especially those involved in the regulation pathways, in the occurrence and progression of GI cancer. We provide the latest progress and future prospect into the different molecular mechanisms of metabolism-associated genes involved in the occurrence and development of GI cancer.
Collapse
Affiliation(s)
- Yan-Dong Miao
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Lin-Jie Mu
- The First Affiliated Hospital, Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Deng-Hai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Dean’s Office, Gansu Academy of Traditional Chinese Medicine, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
161
|
Epigenetic Regulation in Melanoma: Facts and Hopes. Cells 2021; 10:cells10082048. [PMID: 34440824 PMCID: PMC8392422 DOI: 10.3390/cells10082048] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/25/2022] Open
Abstract
Cutaneous melanoma is a lethal disease, even when diagnosed in advanced stages. Although recent progress in biology and treatment has dramatically improved survival rates, new therapeutic approaches are still needed. Deregulation of epigenetics, which mainly controls DNA methylation status and chromatin remodeling, is implied not only in cancer initiation and progression, but also in resistance to antitumor drugs. Epigenetics in melanoma has been studied recently in both melanoma preclinical models and patient samples, highlighting its potential role in different phases of melanomagenesis, as well as in resistance to approved drugs such as immune checkpoint inhibitors and MAPK inhibitors. This review summarizes what is currently known about epigenetics in melanoma and dwells on the recognized and potential new targets for testing epigenetic drugs, alone or together with other agents, in advanced melanoma patients.
Collapse
|
162
|
Cao M, Zhang C, Zhou L. DNA methylation detection technology and plasma-based methylation biomarkers in screening of gastrointestinal carcinoma. Epigenomics 2021; 13:1327-1339. [PMID: 34369810 DOI: 10.2217/epi-2021-0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA methylation is of paramount importance for the evolution of human cancers. Its high sensitivity and specificity make it a potential biomarker for early cancer screening in the context of an increasing global burden of gastrointestinal (GI) carcinoma. More DNA methylation biomarkers are emerging with the development of liquid biopsy and sensitive DNA methylation detection technology. This review provides an overview of DNA methylation, focusing on the presentation and comparison of 5-methylcytosine detection technologies, and introduces the promising plasma-based cell-free DNA (cfDNA) methylation biomarkers published in recent years for early screening of GI carcinoma. Finally, we summarize and discuss the future of plasma cfDNA methylation markers detection as a clinical tool for early screening of GI carcinoma.
Collapse
Affiliation(s)
- Mengjiao Cao
- Department of Biochemistry, Department of the Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuanfeng Zhang
- Department of Biochemistry, Department of the Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Linfu Zhou
- Department of Biochemistry, Department of the Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
163
|
Sobanski T, Arantes LMRB, Dos Santos W, Matsushita M, de Oliveira MA, Costa M, de Carvalho AC, Berardinelli GN, Syrjänen K, Reis RM, Guimarães DP. Methylation profile of colon cancer genes in colorectal precursor lesions and tumor tissue: perspectives for screening. Scand J Gastroenterol 2021; 56:920-928. [PMID: 34218733 DOI: 10.1080/00365521.2021.1922744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AIMS Epigenetic alterations of genes involved in colorectal carcinogenesis are likely to be informative biomarkers for early detection. We assessed the methylation profile of a panel of seven colon cancer-related genes comparing normal colon, colorectal cancer (CRC) precursor lesions and cancer tissues from a Brazilian cohort. METHODS The cohort comprised 114 CRC patients, including 40 matched normal tissue, 47 patients with adenomas, 33 with serrated polyps and 8 with normal colonic biopsy. DNA methylation status of SEPT9, ALX4, NDRG4, BMP3, APC, p16 and MLH1 was determined by pyrosequencing and correlated with clinicopathological features. Sensitivity, specificity, positive predictive value and negative predictive value were calculated for all genes using cancer endpoint. RESULTS The most frequently methylated genes in cancer and in precancer lesions were SEPT9, ALX4, NDRG4, and BMP3, ranging from 55.3 to 95% of the samples. Overall, the frequency of methylation of these four genes in normal colonic tissue was significantly lower as compared to cancer or precursor lesions both in adenoma-carcinoma (p < .001 and p < .050) and serrated (sessile-serrated lesion) (p < .001 and p < .050) pathways. Additionally, sensitivity for the cancer endpoint ranged from 65.6 to 91.8%, and specificity from 17.9 to 62.9% for SEPT9, ALX4, NDRG4, and BMP3 genes. Moreover, the comethylation of ≥4 genes was higher in sessile-serrated lesion (87.5%) and conventional adenomas (78.7%) than in hyperplastic polyps (43.7%) (p = .025) and was significantly associated with proximal cancers (p = .042). CONCLUSIONS Our study suggests the DNA methylation can constitute potential biomarkers in CRC screening of Brazilian population.
Collapse
Affiliation(s)
- Thais Sobanski
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | | | | | - Maraisa Costa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | - Kari Syrjänen
- SMW Consultants Ltd, Kaarina, Finland.,Department of Clinical Research, Biohit Oyj, Helsinki, Finland
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,3ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Denise Peixoto Guimarães
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Department of Endoscopy, Barretos Cancer Hospital, Barretos, Brazil
| |
Collapse
|
164
|
Hossain SM, Lynch-Sutherland CF, Chatterjee A, Macaulay EC, Eccles MR. Can Immune Suppression and Epigenome Regulation in Placenta Offer Novel Insights into Cancer Immune Evasion and Immunotherapy Resistance? EPIGENOMES 2021; 5:16. [PMID: 34968365 PMCID: PMC8594685 DOI: 10.3390/epigenomes5030016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of mortality and morbidity in the developed world. Cancer progression involves genetic and epigenetic alterations, accompanied by aggressive changes, such as increased immune evasion, onset of metastasis, and drug resistance. Similar to cancer, DNA hypomethylation, immune suppression, and invasive cell behaviours are also observed in the human placenta. Mechanisms that lead to the acquisition of invasive behaviour, immune evasion, and drug and immunotherapy resistance are presently under intense investigations to improve patient outcomes. Here, we review current knowledge regarding the similarities between immune suppression and epigenome regulation, including the expression of repetitive elements (REs), endogenous retroviruses (ERVs) and transposable elements (TEs) in cells of the placenta and in cancer, which are associated with changes in immune regulation and invasiveness. We explore whether immune suppression and epigenome regulation in placenta offers novel insights into immunotherapy resistance in cancer, and we also discuss the implications and the knowledge gaps relevant to these findings, which are rapidly being accrued in these quite disparate research fields. Finally, we discuss potential linkages between TE, ERV and RE activation and expression, regarding mechanisms of immune regulation in placenta and cancer. A greater understanding of the role of immune suppression and associated epigenome regulation in placenta could help to elucidate some comparable mechanisms operating in cancer, and identify potential new therapeutic targets for treating cancer.
Collapse
Affiliation(s)
- Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
| | - Chiemi F. Lynch-Sutherland
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Erin C. Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand; (S.M.H.); (C.F.L.-S.); (A.C.); (E.C.M.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
165
|
Meessen S, Currey N, Jahan Z, Parker HW, Jenkins MA, Buchanan DD, Hopper JL, Segelov E, Dahlstrom JE, Kohonen-Corish MRJ. Tetranucleotide and Low Microsatellite Instability Are Inversely Associated with the CpG Island Methylator Phenotype in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13143529. [PMID: 34298744 PMCID: PMC8308094 DOI: 10.3390/cancers13143529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary A type of DNA mismatch repair defect known as “elevated microsatellite alterations at selected tetranucleotide repeats” (EMAST) is found across many different cancers. Tetranucleotide microsatellite instability, which is caused by MSH3 mismatch repair gene/protein loss-of-function, shares a molecular basis with “low microsatellite instability” (MSI-L) in colorectal cancer. Tetranucleotide microsatellite instability is also a byproduct of “high microsatellite instability” (MSI-H) that arises from deficiency of mismatch repair due to MSH2, MSH6, MLH1 or PMS2 gene alterations. MSH3-related EMAST is emerging as a biomarker of poor prognosis in colorectal cancer and needs to be clearly differentiated from MSI-H. Here, we show that tumours with non-MSI-H-related EMAST or MSI-L rarely show concordant promoter methylation of multiple marker genes. Colorectal tumours that are positive for a single (1/5) tetranucleotide repeat marker are an important subset of the EMAST spectrum. Abstract MSH3 gene or protein deficiency or loss-of-function in colorectal cancer can cause a DNA mismatch repair defect known as “elevated microsatellite alterations at selected tetranucleotide repeats” (EMAST). A high percentage of MSI-H tumors exhibit EMAST, while MSI-L is also linked with EMAST. However, the distribution of CpG island methylator phenotype (CIMP) within the EMAST spectrum is not known. Five tetranucleotide repeat and five MSI markers were used to classify 100 sporadic colorectal tumours for EMAST, MSI-H and MSI-L according to the number of unstable markers detected. Promoter methylation was determined using methylation-specific PCR for MSH3, MCC, CDKN2A (p16) and five CIMP marker genes. EMAST was found in 55% of sporadic colorectal carcinomas. Carcinomas with only one positive marker (EMAST-1/5, 26%) were associated with advanced tumour stage, increased lymph node metastasis, MSI-L and lack of CIMP-H. EMAST-2/5 (16%) carcinomas displayed some methylation but MSI was rare. Carcinomas with ≥3 positive EMAST markers (13%) were more likely to have a proximal colon location and be MSI-H and CIMP-H. Our study suggests that EMAST/MSI-L is a valuable prognostic and predictive marker for colorectal carcinomas that do not display the high methylation phenotype CIMP-H.
Collapse
Affiliation(s)
- Sabine Meessen
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (S.M.); (N.C.)
| | - Nicola Currey
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (S.M.); (N.C.)
| | - Zeenat Jahan
- The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia; (Z.J.); (H.W.P.)
| | - Hannah W. Parker
- The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia; (Z.J.); (H.W.P.)
- Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC 3000, Australia; (M.A.J.); (J.L.H.)
| | - Daniel D. Buchanan
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3010, Australia;
- University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, VIC 3010, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Melbourne, VIC 3010, Australia
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC 3000, Australia; (M.A.J.); (J.L.H.)
| | - Eva Segelov
- Department of Oncology, Monash University and Monash Health, Melbourne, VIC 3168, Australia;
| | - Jane E. Dahlstrom
- ACT Pathology, The Canberra Hospital and Australian National University Medical School, Canberra, ACT 2605, Australia;
| | - Maija R. J. Kohonen-Corish
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (S.M.); (N.C.)
- The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW 2037, Australia; (Z.J.); (H.W.P.)
- Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- Microbiome Research Centre, St George & Sutherland Clinical School, UNSW Sydney, Sydney, NSW 2217, Australia
- School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
- Correspondence:
| |
Collapse
|
166
|
Mayerhofer C, Niemeyer CM, Flotho C. Current Treatment of Juvenile Myelomonocytic Leukemia. J Clin Med 2021; 10:3084. [PMID: 34300250 PMCID: PMC8305558 DOI: 10.3390/jcm10143084] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare pediatric leukemia characterized by mutations in five canonical RAS pathway genes. The diagnosis is made by typical clinical and hematological findings associated with a compatible mutation. Although this is sufficient for clinical decision-making in most JMML cases, more in-depth analysis can include DNA methylation class and panel sequencing analysis for secondary mutations. NRAS-initiated JMML is heterogeneous and adequate management ranges from watchful waiting to allogeneic hematopoietic stem cell transplantation (HSCT). Upfront azacitidine in KRAS patients can achieve long-term remissions without HSCT; if HSCT is required, a less toxic preparative regimen is recommended. Germline CBL patients often experience spontaneous resolution of the leukemia or exhibit stable mixed chimerism after HSCT. JMML driven by PTPN11 or NF1 is often rapidly progressive, requires swift HSCT and may benefit from pretransplant therapy with azacitidine. Because graft-versus-leukemia alloimmunity is central to cure high risk patients, the immunosuppressive regimen should be discontinued early after HSCT.
Collapse
Affiliation(s)
- Christina Mayerhofer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (C.M.); (C.M.N.)
| | - Charlotte M. Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (C.M.); (C.M.N.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
| | - Christian Flotho
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (C.M.); (C.M.N.)
- German Cancer Consortium (DKTK), 79106 Freiburg, Germany
| |
Collapse
|
167
|
Colorectal Cancer: From Genetic Landscape to Targeted Therapy. JOURNAL OF ONCOLOGY 2021; 2021:9918116. [PMID: 34326875 PMCID: PMC8277501 DOI: 10.1155/2021/9918116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/25/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer type and the second cause of death worldwide. The advancement in understanding molecular pathways involved in CRC has led to new classifications based on the molecular characteristics of each tumor and also improved CRC management through the integration of targeted therapy into clinical practice. In this review, we will present the main molecular pathways involved in CRC carcinogenesis, the molecular classifications. The anti-VEGF and anti-EGFR therapies currently used in CRC treatment and those under clinical investigation will also be outlined, as well as the mechanisms of primary and acquired resistance to anti-EGFR monoclonal antibodies (cetuximab and panitumumab). Targeted therapy has led to great improvement in the treatment of metastatic CRC. However, there has been variability in CRC treatment outcomes due to molecular heterogeneity in colorectal tumors, which underscores the need for identifying prognostic and predictive biomarkers for CRC-targeted drugs.
Collapse
|
168
|
Tan E, Sahin IH. Defining the current role of immune checkpoint inhibitors in the treatment of mismatch repair-deficient/microsatellite stability-high colorectal cancer and shedding light on future approaches. Expert Rev Gastroenterol Hepatol 2021; 15:735-742. [PMID: 33539189 DOI: 10.1080/17474124.2021.1886077] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction: Mismatch repair deficient (MMR-D)/microsatellite instability-high (MSI-H) colorectal cancer (CRC) carries unique biologic features including high tumor mutation burden, increased amount of mutation-associated neoantigen generation, and the presence of marked tumor-infiltrating lymphocytes. Immune checkpoint inhibitor (ICI) therapy has rapidly changed the treatment algorithm of MMR-D/MSI-H CRC.Areas covered: In this review article, we discuss the recent data regarding the use of ICIs in metastatic MMR-D/MSI-H CRC patients. We also elaborated on potential biomarkers of ICI response and innovative therapeutic approaches that may prevail resistance mechanisms for the treatment of MMR-D/MSI-H colorectal cancer.Expert opinion: Pembrolizumab was recently granted approval by the FDA as first-line therapy for metastatic MMR-D/MSI-H CRC based on the results of the Keynote 177 study. The combination of nivolumab and ipilimumab will also likely be a choice for the initial therapy of MMR-D/MSI-H CRC in the near future. More therapeutic modalities with novel immunomodulatory agents as well as targeted therapy directed to immune resistance pathways are needed. The novel approaches discussed in this review article will define potential treatment options for the management of MMR-D/MSI-H CRC patients who progress on first-line ICI therapy.
Collapse
Affiliation(s)
- Elaine Tan
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ibrahim Halil Sahin
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
169
|
Lepore Signorile M, Disciglio V, Di Carlo G, Pisani A, Simone C, Ingravallo G. From Genetics to Histomolecular Characterization: An Insight into Colorectal Carcinogenesis in Lynch Syndrome. Int J Mol Sci 2021; 22:ijms22136767. [PMID: 34201893 PMCID: PMC8268977 DOI: 10.3390/ijms22136767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Lynch syndrome is a hereditary cancer-predisposing syndrome caused by germline defects in DNA mismatch repair (MMR) genes such as MLH1, MSH2, MSH6, and PMS2. Carriers of pathogenic mutations in these genes have an increased lifetime risk of developing colorectal cancer (CRC) and other malignancies. Despite intensive surveillance, Lynch patients typically develop CRC after 10 years of follow-up, regardless of the screening interval. Recently, three different molecular models of colorectal carcinogenesis were identified in Lynch patients based on when MMR deficiency is acquired. In the first pathway, adenoma formation occurs in an MMR-proficient background, and carcinogenesis is characterized by APC and/or KRAS mutation and IGF2, NEUROG1, CDK2A, and/or CRABP1 hypermethylation. In the second pathway, deficiency in the MMR pathway is an early event arising in macroscopically normal gut surface before adenoma formation. In the third pathway, which is associated with mutations in CTNNB1 and/or TP53, the adenoma step is skipped, with fast and invasive tumor growth occurring in an MMR-deficient context. Here, we describe the association between molecular and histological features in these three routes of colorectal carcinogenesis in Lynch patients. The findings summarized in this review may guide the use of individualized surveillance guidelines based on a patient’s carcinogenesis subtype.
Collapse
Affiliation(s)
- Martina Lepore Signorile
- Medical Genetics, National Institute for Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (V.D.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute for Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (V.D.)
| | - Gabriella Di Carlo
- Department of Emergency and Organ Transplantation, Section of Pathology, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Antonio Pisani
- Gastroenterology and Digestive Endoscopy Unit, National Institute for Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Cristiano Simone
- Medical Genetics, National Institute for Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (M.L.S.); (V.D.)
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, 70124 Bari, Italy
- Correspondence: (C.S.); (G.I.)
| | - Giuseppe Ingravallo
- Department of Emergency and Organ Transplantation, Section of Pathology, University of Bari Aldo Moro, 70124 Bari, Italy;
- Correspondence: (C.S.); (G.I.)
| |
Collapse
|
170
|
Epigenetic dysregulation in myeloid malignancies. Blood 2021; 138:613-624. [PMID: 34157099 DOI: 10.1182/blood.2019004262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/19/2021] [Indexed: 12/18/2022] Open
Abstract
Epigenetic deregulation is now a well-recognized -though not yet fully understood- mechanism that contributes to the development and progression of myeloid malignancies. In the past 15 years, next generation sequencing studies have revealed patterns of aberrant DNA methylation, altered chromatin states, and mutations in chromatin modifiers across the spectrum of myeloid malignancies. Studies into the mechanisms that drive these diseases through mouse modeling have helped identify new avenues for therapeutic interventions, from initial treatment to resistant, relapsed disease. This is particularly significant when chemotherapy with cytotoxic agents remains the general standard of care. In this review, we will discuss some of the recent findings of epigenetic mechanisms and how these are informing the development of more targeted strategies for therapeutic intervention in myeloid malignancies.
Collapse
|
171
|
IDH Inhibitors and Beyond: The Cornerstone of Targeted Glioma Treatment. Mol Diagn Ther 2021; 25:457-473. [PMID: 34095989 DOI: 10.1007/s40291-021-00537-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
Diffuse low-grade gliomas account for approximately 20% of all primary brain tumors, they arise from glial cells and show infiltrative growth without histological features of malignancy. Mutations of the IDH1 and IDH2 genes constitute a reliable molecular signature of low-grade gliomas and are the earliest driver mutations occurring during gliomagenesis, representing a relevant biomarker with diagnostic, prognostic, and predictive value. IDH mutations induce a neomorphic enzyme that converts α-ketoglutarate to the oncometabolite D-2-hydroxyglutarate, which leads to widespread effects on cellular epigenetics and metabolism. Currently, there are no approved molecularly targeted therapies and the standard treatment for low-grade gliomas consists of radiation therapy and chemotherapy, with rising concern about treatment-related toxicities. Targeting D-2-hydroxyglutarate is considered a novel attractive therapeutic approach for low-grade gliomas and the insights from clinical trials suggest that mutant-selective IDH inhibitors are the ideal candidates, with a favorable benefit/risk ratio. A pivotal question is whether blocking IDH neomorphic activity may activate alternative oncogenetic pathways, inducing acquired resistance to IDH inhibitors. Based on this rationale, combination therapies to enhance the antitumor activity of IDH inhibitors and approaches aimed at exploiting, rather than inhibiting, the metabolism of IDH-mutant cancer cells, such as poly (adenosine 5'-diphosphate-ribose) polymerase inhibitors, are emerging from preclinical research and clinical trials. In this review, we discuss the pivotal role of IDH mutations in gliomagenesis and the complex interactions between the genomic and epigenetic landscapes, providing an overview of how, in the last decade, therapeutic approaches for low-grade gliomas have evolved.
Collapse
|
172
|
Kang B, Lee HS, Jeon SW, Park SY, Choi GS, Lee WK, Heo S, Lee DH, Kim DS. Progressive alteration of DNA methylation of Alu, MGMT, MINT2, and TFPI2 genes in colonic mucosa during colorectal cancer development. Cancer Biomark 2021; 32:231-236. [PMID: 34092617 DOI: 10.3233/cbm-203259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world. It is characterized by different pathways of carcinogenesis and is a heterogeneous disease with diverse molecular landscapes that reflect histopathological and clinical information. Changes in the DNA methylation status of colon epithelial cells have been identified as critical components in CRC development and appear to be emerging biomarkers for the early detection and prognosis of CRC. OBJECTIVE To explore the underlying disease mechanisms and identify more effective biomarkers of CRC. METHODS We compared the levels and frequencies of DNA methylation in 11 genes (Alu, APC, DAPK, MGMT, MLH1, MINT1, MINT2, MINT3, p16, RGS6, and TFPI2) in colorectal cancer and its precursor adenomatous polyp with normal tissue of healthy subjects using pyrosequencing and then evaluated the clinical value of these genes. RESULTS Aberrant methylation of Alu, MGMT, MINT2, and TFPI2 genes was progressively accumulated during the normal-adenoma-carcinoma progression. Additionally, CGI methylation occurred either as an adenoma-associated event for APC, MLH1, MINT1, MINT31, p16, and RGS6 or a tumor-associated event for DAPK. Moreover, relatively high levels and frequencies of DAPK, MGMT, and TFPI2 methylation were detected in the peritumoral nonmalignant mucosa of cancer patients in a field-cancerization manner, as compared to normal mucosa from healthy subjects. CONCLUSION This study identified several biomarkers associated with the initiation and progression of CRC. As novel findings, they may have important clinical implications for CRC diagnostic and prognostic applications. Further large-scale studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Ben Kang
- Department of Pediatrics and Bio-medical Research Institute, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Hyun Seok Lee
- Department of Internal Medicine, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Seong Woo Jeon
- Department of Internal Medicine, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Soo Yeun Park
- Department of General Surgery, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Gyu Seog Choi
- Department of General Surgery, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Won Kee Lee
- Department of Preventive Medicine, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Somi Heo
- Department of Preventive Medicine, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Duk Hee Lee
- Department of Preventive Medicine, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| | - Dong Sun Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, Dongin-dong, Jung-gu, Daegu, Korea
| |
Collapse
|
173
|
Lorzadeh A, Romero-Wolf M, Goel A, Jadhav U. Epigenetic Regulation of Intestinal Stem Cells and Disease: A Balancing Act of DNA and Histone Methylation. Gastroenterology 2021; 160:2267-2282. [PMID: 33775639 PMCID: PMC8169626 DOI: 10.1053/j.gastro.2021.03.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Genetic mutations or regulatory failures underlie cellular malfunction in many diseases, including colorectal cancer and inflammatory bowel diseases. However, mutational defects alone fail to explain the complexity of such disorders. Epigenetic regulation-control of gene action through chemical and structural changes of chromatin-provides a platform to integrate multiple extracellular inputs and prepares the cellular genome for appropriate gene expression responses. Coregulation by polycomb repressive complex 2-mediated trimethylation of lysine 27 on histone 3 and DNA methylation has emerged as one of the most influential epigenetic controls in colorectal cancer and many other diseases, but molecular details remain inadequate. Here we review the molecular interplay of these epigenetic features in relation to gastrointestinal development, homeostasis, and disease biology. We discuss other epigenetic mechanisms pertinent to the balance of trimethylation of lysine 27 on histone 3 and DNA methylation and their actions in gastrointestinal cancers. We also review the current molecular understanding of chromatin control in the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Maile Romero-Wolf
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
174
|
Epigenetic plasticity, selection, and tumorigenesis. Biochem Soc Trans 2021; 48:1609-1621. [PMID: 32794546 DOI: 10.1042/bst20191215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022]
Abstract
Epigenetic processes converge on chromatin in order to direct a cell's gene expression profile. This includes both maintaining a stable cell identity, but also priming the cell for specific controlled transitions, such as differentiation or response to stimuli. In cancer, this normally tight control is often disrupted, leading to a wide scale hyper-plasticity of the epigenome and allowing stochastic gene activation and silencing, cell state transition, and potentiation of the effects of genetic lesions. Many of these epigenetic disruptions will confer a proliferative advantage to cells, allowing for a selection process to occur and leading to tumorigenesis even in the case of reversible or unstable epigenetic states. This review seeks to highlight how the fundamental epigenetic shifts in cancer contribute to tumorigenesis, and how understanding an integrated view of cancer genetics and epigenetics may more effectively guide research and treatment.
Collapse
|
175
|
Advani SM, Swartz MD, Loree J, Davis JS, Sarsashek AM, Lam M, Lee MS, Bressler J, Lopez DS, Daniel CR, Morris V, Shureqi I, Kee B, Dasari A, Vilar E, Overman M, Hamilton S, Maru D, Braithwaite D, Kopetz S. Epidemiology and Molecular-Pathologic Characteristics of CpG Island Methylator Phenotype (CIMP) in Colorectal Cancer. Clin Colorectal Cancer 2021; 20:137-147.e1. [PMID: 33229221 DOI: 10.1016/j.clcc.2020.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND CpG island methylator phenotype (CIMP) forms a distinct epigenetic phenotype in colorectal cancer (CRC). Though associated with distinct clinicopathologic characteristics, limited evidence exists of the association of CIMP with patient's reported lifestyle factors and tumor molecular characteristics. We assessed the associations of these characteristics in a pooled analysis of CRC patients. PATIENTS AND METHODS We pooled data from 3 CRC patient cohorts: Assessment of Targeted Therapies Against Colorectal Cancer (ATTACC), biomarker-based protocol (Integromics), and The Cancer Genome Atlas (TCGA). CIMP was measured using the classical 6-gene methylated-in-tumor (MINT) marker panel (MINT1, MINT2, MINT31, p14, p16, and MLH1) in ATTACC and genome-wide human methylation arrays in Integromics and TCGA, respectively. CIMP-High (CIMP-H) was defined as ≥ 3 of 6 methylated markers in ATTACC. In TCGA and Integromics, CIMP-H group was defined on the basis of clusters of methylation profiles and high levels of methylation in tumor samples. Baseline comparisons of characteristics across CIMP groups (CIMP-H vs. CIMP-0) were performed by Student t test or chi-square test for continuous or categorical variables, respectively. Further logistic regression analyses were performed to compute the odds ratio (OR) of these associations. RESULTS Pooled prevalence of CIMP-H was 22% across 3 data sets. CIMP-H CRC tumors were associated with older age at diagnosis (OR, 1.02; 95% confidence interval [CI], 1.01, 1.03), microsatellite instability-high (MSI-H) status (OR, 9.15; 95% CI, 4.45, 18.81), BRAF mutation (OR, 7.70; 95% CI, 4.98, 11.87), right-sided tumor location (OR, 2.40; 95% CI, 1.78, 3.22), poor differentiation (OR, 2.94; 95% CI, 1.95, 4.45), and mucinous histology (OR, 2.47; 95% CI, 1.77, 3.47), as reported previously in the literature. CIMP-H tumors were also found to be associated with self-reported history of alcohol consumption (OR, ever vs. never, 1.58; 95% CI, 1.07, 2.34). Pathologically, CIMP-H tumors were associated with the presence of intraepithelial lymphocytes (OR, 3.31; 95% CI, 1.41, 7.80) among patients in the Integromics cohort. CONCLUSION CIMP-H tumors were associated with history of alcohol consumption and presence of intraepithelial lymphocytes. In addition, we confirmed the previously known association of CIMP with age, MSI-H status, BRAF mutation, sidedness, and mucinous histology. Molecular pathologic epidemiology associations help us explore the underlying association of lifestyle and clinical factors with molecular subsets like CIMP and help guide cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- Shailesh M Advani
- Social Behavioral Research Branch, National Human Genome Research Institute, National Institute of Health, Bethesda, MD; Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Oncology, Georgetown University School of Medicine, Washington, DC.
| | - Michael D Swartz
- Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston, Houston, TX
| | - Jonathan Loree
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer S Davis
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amir Mehvarz Sarsashek
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Lam
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Sangmin Lee
- Division of Gastrointestinal Oncology, University of North Carolina Chapel Hill, Chapel Hill, NC
| | - Jan Bressler
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
| | - David S Lopez
- Department of Preventive Medicine and Population Health, UTMB School of Medicine, Galveston, TX
| | - Carrie R Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Van Morris
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Imad Shureqi
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bryan Kee
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Arvind Dasari
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Overman
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stanley Hamilton
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dipen Maru
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dejana Braithwaite
- Department of Oncology, Georgetown University School of Medicine, Washington, DC
| | - Scott Kopetz
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
176
|
A systematic review and meta-analysis of the DNA methylation in colorectal cancer among Iranian population. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
177
|
Lui RN, Kyaw MH, Lam TYT, Ching JYL, Chan VCW, Wong MCS, Sung JJY. Prevalence and risk factors for sessile serrated lesions in an average risk colorectal cancer screening population. J Gastroenterol Hepatol 2021; 36:1656-1662. [PMID: 33617148 DOI: 10.1111/jgh.15368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIM The reported prevalence and risk factors for sessile serrated lesions (SSLs) show significant variation. We aimed to specifically study the prevalence and potential risk factors of SSLs in an average risk colorectal cancer (CRC) screening population of Chinese subjects. METHODS This is a case-control study of prospectively collected data from a territory-wide colorectal screening program in Hong Kong. Information on risk factors was obtained from questionnaires completed prior to screening colonoscopy. We compared subjects with SSLs against controls without these lesions to identify potential risk factors using multivariable logistic regression. RESULTS Of 12 039 asymptomatic screening subjects, 6011 subjects received a screening colonoscopy with 2214 subjects (36.8%) having conventional adenomas, 486 subjects (8.1%) having hyperplastic polyps, and 85 subjects (1.4%) having SSLs only. Of these subjects, three had synchronous advanced adenomas and were excluded from the analysis. More than 60% of these lesions were in the proximal colon. We compared these 82 subjects with SSLs only and 3226 controls without any polyps. After multivariable logistic regression, age ≥ 66 years, smoking, and diabetes mellitus (DM) were significant independent risk factors for SSLs. CONCLUSION In this study, we report the prevalence of SSLs to be 1.4%. Age ≥ 66 years, smoking, and DM were independent risk factors for these lesions. Our findings provide relevant new data that should be taken into consideration when designing region-specific surveillance programs for SSLs with the ultimate goal of reducing the risk of CRC.
Collapse
Affiliation(s)
- Rashid N Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Moe H Kyaw
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Thomas Y T Lam
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Jessica Y L Ching
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Victor C W Chan
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Martin C S Wong
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Joseph J Y Sung
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
178
|
Bacolod MD. The Epigenetic Factors that Drive Cancer Drug Resistance. Curr Cancer Drug Targets 2021; 21:269-273. [PMID: 34112067 DOI: 10.2174/156800962104210527150438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Manny D Bacolod
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, United States
| |
Collapse
|
179
|
Hatano Y, Ideta T, Hirata A, Hatano K, Tomita H, Okada H, Shimizu M, Tanaka T, Hara A. Virus-Driven Carcinogenesis. Cancers (Basel) 2021; 13:2625. [PMID: 34071792 PMCID: PMC8198641 DOI: 10.3390/cancers13112625] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer arises from the accumulation of genetic and epigenetic alterations. Even in the era of precision oncology, carcinogens contributing to neoplastic process are still an important focus of research. Comprehensive genomic analyses have revealed various combinations of base substitutions, referred to as the mutational signatures, in cancer. Each mutational signature is believed to arise from specific DNA damage and repair processes, including carcinogens. However, as a type of carcinogen, tumor viruses increase the cancer risk by alternative mechanisms, including insertional mutagenesis, viral oncogenes, and immunosuppression. In this review, we summarize virus-driven carcinogenesis to provide a framework for the control of malignant cell proliferation. We first provide a brief overview of oncogenic viruses and describe their implication in virus-related tumors. Next, we describe tumor viruses (HPV, Human papilloma virus; HBV, Hepatitis B virus; HCV, Hepatitis C virus; EBV, Epstein-Barr virus; Kaposi sarcoma herpesvirus; MCV, Merkel cell polyoma virus; HTLV-1, Human T-cell lymphotropic virus, type-1) and tumor virus-related cancers. Lastly, we introduce emerging tumor virus candidates, human cytomegalovirus (CMV), human herpesvirus-6 (HHV-6) and adeno-associated virus-2 (AAV-2). We expect this review to be a hub in a complex network of data for virus-associated carcinogenesis.
Collapse
Affiliation(s)
- Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| | - Takayasu Ideta
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.I.); (M.S.)
- Department of Laboratory Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Akihiro Hirata
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1194, Japan;
| | - Kayoko Hatano
- Department of Obstetrics and Gynecology, Gifu University Hospital, Gifu 501-1194, Japan;
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan;
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.I.); (M.S.)
| | - Takuji Tanaka
- Department of Diagnostic Pathology (DDP) and Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, Gifu 500-8513, Japan;
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| |
Collapse
|
180
|
Miller SA, Policastro RA, Sriramkumar S, Lai T, Huntington TD, Ladaika CA, Kim D, Hao C, Zentner GE, O'Hagan HM. LSD1 and Aberrant DNA Methylation Mediate Persistence of Enteroendocrine Progenitors That Support BRAF-Mutant Colorectal Cancer. Cancer Res 2021; 81:3791-3805. [PMID: 34035083 DOI: 10.1158/0008-5472.can-20-3562] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/23/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022]
Abstract
Despite the connection of secretory cells, including goblet and enteroendocrine (EEC) cells, to distinct mucus-containing colorectal cancer histologic subtypes, their role in colorectal cancer progression has been underexplored. Here, our analysis of The Cancer Genome Atlas (TCGA) and single-cell RNA-sequencing data demonstrates that EEC progenitor cells are enriched in BRAF-mutant colorectal cancer patient tumors, cell lines, and patient-derived organoids. In BRAF-mutant colorectal cancer, EEC progenitors were blocked from differentiating further by DNA methylation and silencing of NEUROD1, a key gene required for differentiation of intermediate EECs. Mechanistically, secretory cells and the factors they secrete, such as trefoil factor 3, promoted colony formation and activation of cell survival pathways in the entire cell population. Lysine-specific demethylase 1 (LSD1) was identified as a critical regulator of secretory cell specification in vitro and in a colon orthotopic xenograft model, where LSD1 loss blocks formation of EEC progenitors and reduces tumor growth and metastasis. These findings reveal an important role for EEC progenitors in supporting colorectal cancer. SIGNIFICANCE: This study establishes enteroendocrine progenitors as a targetable population that promotes BRAF-mutant colorectal cancer and can be blocked by LSD1 inhibition to suppress tumor growth.
Collapse
Affiliation(s)
- Samuel A Miller
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Robert A Policastro
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana
| | - Shruthi Sriramkumar
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana.,Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Tim Lai
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana.,Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana.,Department of Mathematics, Indiana University, Bloomington, Indiana
| | - Thomas D Huntington
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Christopher A Ladaika
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana.,Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Daeho Kim
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chunhai Hao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Gabriel E Zentner
- Genome, Cell, and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana.,Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, Indiana.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Heather M O'Hagan
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana. .,Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine, Bloomington, Indiana.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
181
|
Gaiani F, Marchesi F, Negri F, Greco L, Malesci A, de’Angelis GL, Laghi L. Heterogeneity of Colorectal Cancer Progression: Molecular Gas and Brakes. Int J Mol Sci 2021; 22:ijms22105246. [PMID: 34063506 PMCID: PMC8156342 DOI: 10.3390/ijms22105246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
The review begins with molecular genetics, which hit the field unveiling the involvement of oncogenes and tumor suppressor genes in the pathogenesis of colorectal cancer (CRC) and uncovering genetic predispositions. Then the notion of molecular phenotypes with different clinical behaviors was introduced and translated in the clinical arena, paving the way to next-generation sequencing that captured previously unrecognized heterogeneity. Among other molecular regulators of CRC progression, the extent of host immune response within the tumor micro-environment has a critical position. Translational sciences deeply investigated the field, accelerating the pace toward clinical transition, due to its strong association with outcomes. While the perturbation of gut homeostasis occurring in inflammatory bowel diseases can fuel carcinogenesis, micronutrients like vitamin D and calcium can act as brakes, and we discuss underlying molecular mechanisms. Among the components of gut microbiota, Fusobacterium nucleatum is over-represented in CRC, and may worsen patient outcome. However, any translational knowledge tracing the multifaceted evolution of CRC should be interpreted according to the prognostic and predictive frame of the TNM-staging system in a perspective of clinical actionability. Eventually, we examine challenges and promises of pharmacological interventions aimed to restrain disease progression at different disease stages.
Collapse
Affiliation(s)
- Federica Gaiani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, via Gramsci 14, 43126 Parma, Italy
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy; (F.M.); (A.M.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20132 Milan, Italy
| | - Francesca Negri
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy;
| | - Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy;
| | - Alberto Malesci
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy; (F.M.); (A.M.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
| | - Gian Luigi de’Angelis
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, via Gramsci 14, 43126 Parma, Italy
| | - Luigi Laghi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Italy;
- Correspondence:
| |
Collapse
|
182
|
Datta I, Noushmehr H, Brodie C, Poisson LM. Expression and regulatory roles of lncRNAs in G-CIMP-low vs G-CIMP-high Glioma: an in-silico analysis. J Transl Med 2021; 19:182. [PMID: 33926464 PMCID: PMC8086286 DOI: 10.1186/s12967-021-02844-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Clinically relevant glioma subtypes, such as the glioma-CpG island methylator phenotype (G-CIMP), have been defined by epigenetics. In this study, the role of long non-coding RNAs in association with the poor-prognosis G-CMIP-low phenotype and the good-prognosis G-CMIP-high phenotype was investigated. Functional associations of lncRNAs with mRNAs and miRNAs were examined to hypothesize influencing factors of the aggressive phenotype. METHODS RNA-seq data on 250 samples from TCGA's Pan-Glioma study, quantified for lncRNA and mRNAs (GENCODE v28), were analyzed for differential expression between G-CIMP-low and G-CIMP-high phenotypes. Functional interpretation of the differential lncRNAs was performed by Ingenuity Pathway Analysis. Spearman rank order correlation estimates between lncRNA, miRNA, and mRNA nominated differential lncRNA with a likely miRNA sponge function. RESULTS We identified 4371 differentially expressed features (mRNA = 3705; lncRNA = 666; FDR ≤ 5%). From these, the protein-coding gene TP53 was identified as an upstream regulator of differential lncRNAs PANDAR and PVT1 (p = 0.0237) and enrichment was detected in the "development of carcinoma" (p = 0.0176). Two lncRNAs (HCG11, PART1) were positively correlated with 342 mRNAs, and their correlation estimates diminish after adjusting for either of the target miRNAs: hsa-miR-490-3p, hsa-miR-129-5p. This suggests a likely sponge function for HCG11 and PART1. CONCLUSIONS These findings identify differential lncRNAs with oncogenic features that are associated with G-CIMP phenotypes. Further investigation with controlled experiments is needed to confirm the molecular relationships.
Collapse
Affiliation(s)
- Indrani Datta
- Department of Public Health Sciences, Center for Bioinformatics, Henry Ford Health System, 1 Ford Place, 3C, Detroit, MI, 48202, USA
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, USA
| | - Houtan Noushmehr
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, USA
| | - Chaya Brodie
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, USA
| | - Laila M Poisson
- Department of Public Health Sciences, Center for Bioinformatics, Henry Ford Health System, 1 Ford Place, 3C, Detroit, MI, 48202, USA.
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, USA.
| |
Collapse
|
183
|
Bazzocco S, Dopeso H, Martínez-Barriocanal Á, Anguita E, Nieto R, Li J, García-Vidal E, Maggio V, Rodrigues P, de Marcondes PG, Schwartz S, Aaltonen LA, Sánchez A, Mariadason JM, Arango D. Identification of ZBTB18 as a novel colorectal tumor suppressor gene through genome-wide promoter hypermethylation analysis. Clin Epigenetics 2021; 13:88. [PMID: 33892786 PMCID: PMC8063439 DOI: 10.1186/s13148-021-01070-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
Background Cancer initiation and progression are driven by genetic and epigenetic changes. Although genome/exome sequencing has significantly contributed to the characterization of the genetic driver alterations, further investigation is required to systematically identify cancer driver genes regulated by promoter hypermethylation. Results Using genome-wide analysis of promoter methylation in 45 colorectal cancer cell lines, we found that higher overall methylation levels were associated with microsatellite instability (MSI), faster proliferation and absence of APC mutations. Because epigenetically silenced genes could represent important oncogenic drivers, we used mRNA expression profiling of colorectal cancer cell lines and primary tumors to identify a subset of 382 (3.9%) genes for which promoter methylation was negatively associated with gene expression. Remarkably, a significant enrichment in zinc finger proteins was observed, including the transcriptional repressor ZBTB18. Re-introduction of ZBTB18 in colon cancer cells significantly reduced proliferation in vitro and in a subcutaneous xenograft mouse model. Moreover, immunohistochemical analysis revealed that ZBTB18 is frequently lost or reduced in colorectal tumors, and reduced ZBTB18 expression was found to be associated with lymph node metastasis and shorter survival of patients with locally advanced colorectal cancer. Conclusions We identified a set of 382 genes putatively silenced by promoter methylation in colorectal cancer that could significantly contribute to the oncogenic process. Moreover, as a proof of concept, we demonstrate that the epigenetically silenced gene ZBTB18 has tumor suppressor activity and is a novel prognostic marker for patients with locally advanced colorectal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01070-0.
Collapse
Affiliation(s)
- Sarah Bazzocco
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Higinio Dopeso
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Águeda Martínez-Barriocanal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain.,Group of Molecular Oncology, IRBLleida, 25198, Lleida, Spain
| | - Estefanía Anguita
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Rocío Nieto
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Jing Li
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Elia García-Vidal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Valentina Maggio
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Paulo Rodrigues
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Priscila Guimarães de Marcondes
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Simo Schwartz
- Group of Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Lauri A Aaltonen
- Department of Medical Genetics, Medicum, University of Helsinki, Biomedicum Helsinki, 00290, Helsinki, Finland
| | - Alex Sánchez
- Departament d'Estadísitica, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, 3086, Australia
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035, Barcelona, Spain. .,Group of Molecular Oncology, IRBLleida, 25198, Lleida, Spain.
| |
Collapse
|
184
|
Nagaraju GP, Kasa P, Dariya B, Surepalli N, Peela S, Ahmad S. Epigenetics and therapeutic targets in gastrointestinal malignancies. Drug Discov Today 2021; 26:2303-2314. [PMID: 33895313 DOI: 10.1016/j.drudis.2021.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) malignancies account for substantial mortality and morbidity worldwide. They are generally promoted by dysregulated signal transduction and epigenetic pathways, which are controlled by specific enzymes. Recent studies demonstrated that histone deacetylases (HDACs) together with DNA methyltransferases (DNMTs) have crucial roles in the signal transduction/epigenetic pathways in GI regulation. In this review, we discuss various enzyme targets and their functional mechanisms responsible for the regulatory processes of GI malignancies. We also discuss the epigenetic therapeutic targets that are mainly facilitated by DNMT and HDAC inhibitors, which have functional consequences and clinical outcomes for GI malignancies.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30332, USA
| | - Prameswari Kasa
- Dr L.V. Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad 500004, India
| | - Begum Dariya
- Department of Biosciences and Biotechnology, Banasthali University, Banasthali 304022, Rajasthan, India
| | | | - Sujatha Peela
- Department of Biotechnology, Dr B.R. Ambedkar University, Srikakulam 532410, AP, India
| | - Sarfraz Ahmad
- AdventHealth Cancer Institute, FSU and UCF Colleges of Medicine, Orlando, FL 32804, USA.
| |
Collapse
|
185
|
Association between risk factors, molecular features and CpG island methylator phenotype colorectal cancer among different age groups in a Taiwanese cohort. Br J Cancer 2021; 125:48-54. [PMID: 33846524 DOI: 10.1038/s41416-021-01300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND CpG island methylator phenotype (CIMP) represents a carcinogenesis pathway of colorectal cancer (CRC) and the association between CIMP CRC, molecular features and risk factors in East Asian population is less studied. METHODS We prospectively enrolled newly diagnosed CRC patients at the National Taiwan University Hospital. Clinicopathological data and risk factors for CRC were collected during interview. The tumour samples were subjected to CIMP, RAS/BRAF mutation and microsatellite instability tests. CIMP-high was determined when ≧3 methylated loci of p16, MINT1, MINT2, MINT31 and MLH1 were identified. Multivariate logistic regression was used to evaluate the association between risk factors and CIMP-high CRC. RESULTS Compared with CIMP-low/negative CRC, CIMP-high CRC was associated with more stage IV disease, BRAF V600E mutation and high body mass index (BMI ≧ 27.5 kg/m2) in younger patients (age < 50 y), and more right-sided tumour, BRAF V600E mutation, MSI-high and colorectal polyp in elder patients (age ≧ 50 y). Multivariate analyses showed that BMI ≧27.5 kg/m2 was significantly associated with CIMP-high CRC in younger patients. CONCLUSIONS We identified distinct clinicopathological features for CIMP-high CRC among different age groups in Taiwan. Our data suggest the association between BMI ≧27.5 kg/m2 and CIMP-high CRC in patients younger than 50 years.
Collapse
|
186
|
Integrated approaches for precision oncology in colorectal cancer: The more you know, the better. Semin Cancer Biol 2021; 84:199-213. [PMID: 33848627 DOI: 10.1016/j.semcancer.2021.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies accounting for approximately 10 % of worldwide cancer incidence and mortality. While early-stage CRC is mainly a preventable and curable disease, metastatic colorectal cancer (mCRC) remains an unmet clinical need. Moreover, about 25 % of CRC cases are diagnosed only at the metastatic stage. Despite the extensive molecular and functional knowledge on this disease, systemic therapy for mCRC still relies on traditional 5-fluorouracil (5-FU)-based chemotherapy regimens. On the other hand, targeted therapies and immunotherapy have shown effectiveness only in a limited subset of patients. For these reasons, there is a growing need to define the molecular and biological landscape of individual patients to implement novel, rationally driven, tailored therapies. In this review, we explore current and emerging approaches for CRC management such as genomic, transcriptomic and metabolomic analysis, the use of liquid biopsies and the implementation of patients' preclinical avatars. In particular, we discuss the contribution of each of these tools in elucidating patient specific features, with the aim of improving our ability in advancing the diagnosis and treatment of colorectal tumors.
Collapse
|
187
|
Chung C. Predictive and prognostic biomarkers with therapeutic targets in colorectal cancer: A 2021 update on current development, evidence, and recommendation. J Oncol Pharm Pract 2021; 28:850-869. [PMID: 33832365 DOI: 10.1177/10781552211005525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although therapeutically actionable molecular alterations are widely distributed across many cancer types, only a handful of them show evidence of clinical utility and are recommended for routine clinical practice in the management of cancers of colon and rectum (CRC). This 2021 update aims to provide a succinct summary on the use of prognostic and/or predictive biomarkers (expanded RAS, BRAF, microsatellite-high [MSI-H] or deficient mismatch repair [dMMR], neurotrophic tyrosine receptor kinase [NTRK] fusion genes, and human epidermal growth factor receptor type II [HER2] gene amplification) associated with CRC. Therapeutic implications of each relevant predictive or prognostic biomarker for patients with CRC are described, along with discussion on new developments on (1) biomarker-driven therapies such as testing of BRAF, MLH1 promoter methylation and MMR germline genes in differentiating sporadic CRC or hereditary conditions such as Lynch syndrome; (2) first-line use of immune checkpoint inhibitors in metastatic CRC; (3) risk stratification and therapy selection based on primary tumor location (left-sided vs. right-sided colon cancer); (3) atypical BRAF mutations; (4) use of EGFR directed therapy in the perioperative oligometastatic disease setting; (5) re-challenge of EGFR directed therapy and (6) personalizing therapy of fluoropyrimidine and irinotecan based on new evidence in pharmacogenomic testing. Data are collected and analyzed from available systematic reviews and meta-analyses of treatments with known therapeutic targets in CRC, which may be associated with predictive and/or prognostic biomarkers. Discussions are presented in an application-based format, with goal to empower pharmacists or other clinicians to gain awareness and understanding in biomarker-driven cancer therapy issues.
Collapse
Affiliation(s)
- Clement Chung
- 23530Houston Methodist West Hospital, Houston, TX, USA
| |
Collapse
|
188
|
Ruiz-Bañobre J, Goel A. Genomic and epigenomic biomarkers in colorectal cancer: From diagnosis to therapy. Adv Cancer Res 2021; 151:231-304. [PMID: 34148615 PMCID: PMC10338180 DOI: 10.1016/bs.acr.2021.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the United States. Despite ongoing efforts aimed at increasing screening for CRC and early detection, and development of more effective therapeutic regimens, the overall morbidity and mortality from this malignancy remains a clinical challenge. Therefore, identifying and developing genomic and epigenomic biomarkers that can improve CRC diagnosis and help predict response to current therapies are of paramount importance for improving survival outcomes in CRC patients, sparing patients from toxicity associated with current regimens, and reducing the economic burden associated with these treatments. Although efforts to develop biomarkers over the past decades have achieved some success, the recent availability of high-throughput analytical tools, together with the use of machine learning algorithms, will likely hasten the development of more robust diagnostic biomarkers and improved guidance for clinical decision-making in the coming years. In this chapter, we provide a systematic and comprehensive overview on the current status of genomic and epigenomic biomarkers in CRC, and comment on their potential clinical significance in the management of patients with this fatal malignancy, including in the context of precision medicine.
Collapse
Affiliation(s)
- Juan Ruiz-Bañobre
- Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), CIBERONC, Santiago de Compostela, Spain; Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), CIBERONC, Santiago de Compostela, Spain
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, United States.
| |
Collapse
|
189
|
Grady WM. Epigenetic alterations in the gastrointestinal tract: Current and emerging use for biomarkers of cancer. Adv Cancer Res 2021; 151:425-468. [PMID: 34148620 DOI: 10.1016/bs.acr.2021.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer is a leading cause of cancer related deaths worldwide. One of the hallmarks of cancer and a fundamental trait of virtually all gastrointestinal cancers is genomic and epigenomic DNA alterations. Cancer cells acquire genetic and epigenetic alterations that drive the initiation and progression of the cancers by altering the molecular and cell biological process of the cells. These alterations, as well as other host and microenvironment factors, ultimately mediate the initiation and progression of cancers, including colorectal cancer. Epigenetic alterations, which include changes affecting DNA methylation, histone modifications, chromatin structure, and noncoding RNA expression, have emerged as a major class of molecular alteration in colon polyps and colorectal cancer. The classes of epigenetic alterations, their status in colorectal polyps and cancer, their effects on neoplasm biology, and their application to clinical care will be discussed.
Collapse
Affiliation(s)
- William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
190
|
Giacopelli B, Wang M, Cleary A, Wu YZ, Schultz AR, Schmutz M, Blachly JS, Eisfeld AK, Mundy-Bosse B, Vosberg S, Greif PA, Claus R, Bullinger L, Garzon R, Coombes KR, Bloomfield CD, Druker BJ, Tyner JW, Byrd JC, Oakes CC. DNA methylation epitypes highlight underlying developmental and disease pathways in acute myeloid leukemia. Genome Res 2021; 31:747-761. [PMID: 33707228 PMCID: PMC8092005 DOI: 10.1101/gr.269233.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia (AML) is a molecularly complex disease characterized by heterogeneous tumor genetic profiles and involving numerous pathogenic mechanisms and pathways. Integration of molecular data types across multiple patient cohorts may advance current genetic approaches for improved subclassification and understanding of the biology of the disease. Here, we analyzed genome-wide DNA methylation in 649 AML patients using Illumina arrays and identified a configuration of 13 subtypes (termed “epitypes”) using unbiased clustering. Integration of genetic data revealed that most epitypes were associated with a certain recurrent mutation (or combination) in a majority of patients, yet other epitypes were largely independent. Epitypes showed developmental blockage at discrete stages of myeloid differentiation, revealing epitypes that retain arrested hematopoietic stem-cell-like phenotypes. Detailed analyses of DNA methylation patterns identified unique patterns of aberrant hyper- and hypomethylation among epitypes, with variable involvement of transcription factors influencing promoter, enhancer, and repressed regions. Patients in epitypes with stem-cell-like methylation features showed inferior overall survival along with up-regulated stem cell gene expression signatures. We further identified a DNA methylation signature involving STAT motifs associated with FLT3-ITD mutations. Finally, DNA methylation signatures were stable at relapse for the large majority of patients, and rare epitype switching accompanied loss of the dominant epitype mutations and reversion to stem-cell-like methylation patterns. These results show that DNA methylation-based classification integrates important molecular features of AML to reveal the diverse pathogenic and biological aspects of the disease.
Collapse
Affiliation(s)
- Brian Giacopelli
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Min Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ada Cleary
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Yue-Zhong Wu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Anna Reister Schultz
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Maximilian Schmutz
- Hematology and Oncology, Medical Faculty, University of Augsburg, 86159 Augsburg, Germany
| | - James S Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA.,Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ann-Kathrin Eisfeld
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Bethany Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Sebastian Vosberg
- Department of Medicine III, University Hospital, LMU Munich, 80539 Munich, Germany.,Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Munich, Germany
| | - Philipp A Greif
- Department of Medicine III, University Hospital, LMU Munich, 80539 Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, 69120 Heidelberg, Germany.,German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rainer Claus
- Department of Medicine II, Stem Cell Transplantation Unit, Klinikum Augsburg, Ludwig-Maximilians University Munich, 86156 Munich, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumorimmunology, Charité-Universitätsmedizin, 13353 Berlin, Germany
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Kevin R Coombes
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Clara D Bloomfield
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Christopher C Oakes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA.,Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
191
|
Li X, Larsson P, Ljuslinder I, Ling A, Löfgren-Burström A, Zingmark C, Edin S, Palmqvist R. A modified protein marker panel to identify four consensus molecular subtypes in colorectal cancer using immunohistochemistry. Pathol Res Pract 2021; 220:153379. [PMID: 33721619 DOI: 10.1016/j.prp.2021.153379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with different genetic and molecular backgrounds, leading to a diverse patient prognosis and treatment response. Four consensus molecular subtypes (CMS 1-4) have recently been proposed based on transcriptome profiling. A clinically practical immunohistochemistry (IHC) based CMS classifier consisting of the four markers FRMD6, ZEB1, HTR2B, and CDX2 was then demonstrated. However, the IHC-CMS classifier did not distinguish between CMS2 and CMS3 tumours. In this study, we have applied the proposed transcriptome based and IHC-based CMS classifiers in a CRC cohort of 65 patients and found a concordance of 77.5 %. Further, we modified the IHC-CMS classifier by analysing the differentially expressed genes between CMS2 and CMS3 tumours using RNA-sequencing data from the TCGA dataset. The result showed that WNT signalling was among the most upregulated pathways in CMS2 tumours, and the expression level of CTNNB1 (encoding β-catenin), a WNT pathway hallmark, was significantly upregulated (P = 1.15 × 10-6). We therefore introduced nuclear β-catenin staining to the IHC-CMS classifier. Using the modified classifier in our cohort, we found a 71.4 % concordance between the IHC and RNA-sequencing based CMS classifiers. Moreover, β-catenin staining could classify 16 out of the 19 CMS2/3 tumours into CMS2 or CMS3, thereby showing an 84.2 % concordance with the RNA-sequencing-based classifier. In conclusion, we evaluated CMS classifiers based on transcriptome and IHC analysis. We present a modified IHC panel that categorizes CRC tumours into the four CMS groups. To our knowledge, this is the first study using IHC to identify all four CMS groups.
Collapse
Affiliation(s)
- Xingru Li
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Pär Larsson
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Agnes Ling
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| |
Collapse
|
192
|
Singh MP, Rai S, Pandey A, Singh NK, Srivastava S. Molecular subtypes of colorectal cancer: An emerging therapeutic opportunity for personalized medicine. Genes Dis 2021; 8:133-145. [PMID: 33997160 PMCID: PMC8099693 DOI: 10.1016/j.gendis.2019.10.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Molecular subtypes-based therapies offer new potential framework for desired and precise outcome in clinical settings. Current treatment strategies in colorectal cancer are largely 'one drug fit all' model for patients that display same pathological conditions. However, CRC is a very heterogenous set of malignancy that does not support for above criteria. Each subtype displays different pathological and genetic signatures. Based on these features, therapeutic stratification for individual patients may be designed, which may ultimately lead to improved therapeutic outcomes. In this comprehensive review, we have attempted to briefly outline major CRC pathways. A detailed overview of molecular subtypes and their clinical significance has been discussed. Present and future methods, governing CRC subtyping in the era of personalized therapy with a special emphasis on CMS subtypes of CRC has been reviewed. Together, discovery and validation of new CRC patient stratification methods, screening for novel therapeutic targets, and enhanced diagnosis of CRC may improve the treatment outcome.
Collapse
Affiliation(s)
- Manish Pratap Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, UP, 211004, India
| | - Sandhya Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, UP, 211004, India
| | - Ashutosh Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, UP, 211004, India
| | - Nand K. Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, UP, 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, UP, 211004, India
| |
Collapse
|
193
|
Ahmad R, Singh JK, Wunnava A, Al-Obeed O, Abdulla M, Srivastava SK. Emerging trends in colorectal cancer: Dysregulated signaling pathways (Review). Int J Mol Med 2021; 47:14. [PMID: 33655327 PMCID: PMC7834960 DOI: 10.3892/ijmm.2021.4847] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequently detected type of cancer, and the second most common cause of cancer‑related mortality globally. The American Cancer Society predicted that approximately 147,950 individuals would be diagnosed with CRC, out of which 53,200 individuals would succumb to the disease in the USA alone in 2020. CRC‑related mortality ranks third among both males and females in the USA. CRC arises from 3 major pathways: i) The adenoma‑carcinoma sequence; ii) serrated pathway; and iii) the inflammatory pathway. The majority of cases of CRC are sporadic and result from risk factors, such as a sedentary lifestyle, obesity, processed diets, alcohol consumption and smoking. CRC is also a common preventable cancer. With widespread CRC screening, the incidence and mortality from CRC have decreased in developed countries. However, over the past few decades, CRC cases and mortality have been on the rise in young adults (age, <50 years). In addition, CRC cases are increasing in developing countries with a low gross domestic product (GDP) due to lifestyle changes. CRC is an etiologically heterogeneous disease classified by tumor location and alterations in global gene expression. Accumulating genetic and epigenetic perturbations and aberrations over time in tumor suppressor genes, oncogenes and DNA mismatch repair genes could be a precursor to the onset of colorectal cancer. CRC can be divided as sporadic, familial, and inherited depending on the origin of the mutation. Germline mutations in APC and MLH1 have been proven to play an etiological role, resulting in the predisposition of individuals to CRC. Genetic alterations cause the dysregulation of signaling pathways leading to drug resistance, the inhibition of apoptosis and the induction of proliferation, invasion and migration, resulting in CRC development and metastasis. Timely detection and effective precision therapies based on the present knowledge of CRC is essential for successful treatment and patient survival. The present review presents the CRC incidence, risk factors, dysregulated signaling pathways and targeted therapies.
Collapse
Affiliation(s)
- Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, Riyadh 11472, Saudi Arabia
| | - Jaikee Kumar Singh
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Amoolya Wunnava
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Omar Al-Obeed
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, Riyadh 11472, Saudi Arabia
| | - Maha Abdulla
- Colorectal Research Chair, Department of Surgery, King Saud University College of Medicine, Riyadh 11472, Saudi Arabia
| | | |
Collapse
|
194
|
Badic B, Tixier F, Cheze Le Rest C, Hatt M, Visvikis D. Radiogenomics in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13050973. [PMID: 33652647 PMCID: PMC7956421 DOI: 10.3390/cancers13050973] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/07/2021] [Accepted: 02/20/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal carcinoma is characterized by intratumoral heterogeneity that can be assessed by radiogenomics. Radiomics, high-throughput quantitative data extracted from medical imaging, combined with molecular analysis, through genomic and transcriptomic data, is expected to lead to significant advances in personalized medicine. However, a radiogenomics approach in colorectal cancer is still in its early stages and many problems remain to be solved. Here we review the progress and challenges in this field at its current stage, as well as future developments. Abstract The steady improvement of high-throughput technologies greatly facilitates the implementation of personalized precision medicine. Characterization of tumor heterogeneity through image-derived features—radiomics and genetic profile modifications—genomics, is a rapidly evolving field known as radiogenomics. Various radiogenomics studies have been dedicated to colorectal cancer so far, highlighting the potential of these approaches to enhance clinical decision-making. In this review, a general outline of colorectal radiogenomics literature is provided, discussing the current limitations and suggested further developments.
Collapse
Affiliation(s)
- Bogdan Badic
- National Institute of Health and Medical Research, LaTIM—Laboratory of Medical Information Processing (INSERM LaTIM), UMR 1101, Université Bretagne Occidentale, 29238 Brest, France; (F.T.); (C.C.L.R.); (M.H.); (D.V.)
- Correspondence: ; Tel.: +33-298-347-215
| | - Florent Tixier
- National Institute of Health and Medical Research, LaTIM—Laboratory of Medical Information Processing (INSERM LaTIM), UMR 1101, Université Bretagne Occidentale, 29238 Brest, France; (F.T.); (C.C.L.R.); (M.H.); (D.V.)
| | - Catherine Cheze Le Rest
- National Institute of Health and Medical Research, LaTIM—Laboratory of Medical Information Processing (INSERM LaTIM), UMR 1101, Université Bretagne Occidentale, 29238 Brest, France; (F.T.); (C.C.L.R.); (M.H.); (D.V.)
- Department of Nuclear Medicine, University Hospital of Poitiers, 86021 Poitiers, France
| | - Mathieu Hatt
- National Institute of Health and Medical Research, LaTIM—Laboratory of Medical Information Processing (INSERM LaTIM), UMR 1101, Université Bretagne Occidentale, 29238 Brest, France; (F.T.); (C.C.L.R.); (M.H.); (D.V.)
| | - Dimitris Visvikis
- National Institute of Health and Medical Research, LaTIM—Laboratory of Medical Information Processing (INSERM LaTIM), UMR 1101, Université Bretagne Occidentale, 29238 Brest, France; (F.T.); (C.C.L.R.); (M.H.); (D.V.)
| |
Collapse
|
195
|
Zhang X, Zhang W, Cao P. Advances in CpG Island Methylator Phenotype Colorectal Cancer Therapies. Front Oncol 2021; 11:629390. [PMID: 33718206 PMCID: PMC7952756 DOI: 10.3389/fonc.2021.629390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/18/2021] [Indexed: 01/05/2023] Open
Abstract
With the aging of the population, the incidence of colorectal cancer in China is increasing. One of the epigenetic alterations: CpG island methylator phenotype (CIMP) plays an important role in the incidence of colorectal cancer. Recent studies have shown that CIMP is closely related to some specific clinicopathological phenotypes and multiple molecular phenotypes in colorectal cancer. In this paper, the newest progress of CIMP colorectal cancer in chemotherapeutic drugs, targeted agents and small molecular methylation inhibitors are going to be introduced. We hope to provide potential clinical treatment strategies for personalized and precise treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Medical Oncology, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Wenjun Zhang
- Department of Colorectal Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Pingan Cao
- Department of Medical Oncology, Dalian University Affiliated Xinhua Hospital, Dalian, China
| |
Collapse
|
196
|
Integrative Transcriptomic Network Analysis of Butyrate Treated Colorectal Cancer Cells. Cancers (Basel) 2021; 13:cancers13040636. [PMID: 33562636 PMCID: PMC7914650 DOI: 10.3390/cancers13040636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 01/14/2023] Open
Abstract
Diet-derived histone deacetylase inhibitor (HDACi), butyrate, alters global acetylation and consequently global gene expression in colorectal cancer (CRC) cells to exert its anticancer effects. Aberrant microRNA (miRNA) expression contributes to CRC development and progression. Butyrate-mediated modulation of microRNA (miRNA) expression remains under-investigated. This study employed a systems biology approach to gain a comprehensive understanding of the complex miRNA-mRNA interactions contributing to the butyrate response in CRC cells. Next-generation sequencing, gene ontology (GO) and pathway enrichment analyses were utilized to reveal the extent of butyrate-mediated gene regulation in CRC cells. Changes in cell proliferation, apoptosis, the cell cycle and gene expression induced by miRNAs and target gene knockdown in CRC cells were assessed. Butyrate induced differential expression of 113 miRNAs and 2447 protein-coding genes in HCT116 cells. Butyrate also altered transcript splicing of 1591 protein-coding genes. GO, and pathway enrichment analyses revealed the cell cycle to be a central target of the butyrate response. Two butyrate-induced miRNAs, miR-139 and miR-542, acted cooperatively with butyrate to induce apoptosis and reduce CRC cell proliferation by regulating target genes, including cell cycle-related EIF4G2 and BIRC5. EIF4G2 RNA interference mimicked the miR-139-mediated reduction in cell proliferation. The cell cycle is a critical pathway involved in the butyrate response of CRC cells. These findings reveal novel roles for miRNAs in the cell cycle-related, anticancer effects of butyrate in CRC cells.
Collapse
|
197
|
Rodriguez-Casanova A, Costa-Fraga N, Bao-Caamano A, López-López R, Muinelo-Romay L, Diaz-Lagares A. Epigenetic Landscape of Liquid Biopsy in Colorectal Cancer. Front Cell Dev Biol 2021; 9:622459. [PMID: 33614651 PMCID: PMC7892964 DOI: 10.3389/fcell.2021.622459] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and is a major cause of cancer-related deaths worldwide. Thus, there is a clinical need to improve early detection of CRC and personalize therapy for patients with this disease. In the era of precision oncology, liquid biopsy has emerged as a major approach to characterize the circulating tumor elements present in body fluids, including cell-free DNA and RNA, circulating tumor cells, and extracellular vesicles. This non-invasive tool has allowed the identification of relevant molecular alterations in CRC patients, including some indicating the disruption of epigenetic mechanisms. Epigenetic alterations found in solid and liquid biopsies have shown great utility as biomarkers for early detection, prognosis, monitoring, and evaluation of therapeutic response in CRC patients. Here, we summarize current knowledge of the most relevant epigenetic mechanisms associated with cancer development and progression, and the implications of their deregulation in cancer cells and liquid biopsy of CRC patients. In particular, we describe the methodologies used to analyze these epigenetic alterations in circulating tumor material, and we focus on the clinical utility of epigenetic marks in liquid biopsy as tumor biomarkers for CRC patients. We also discuss the great challenges and emerging opportunities of this field for the diagnosis and personalized management of CRC patients.
Collapse
Affiliation(s)
- Aitor Rodriguez-Casanova
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Nicolás Costa-Fraga
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Aida Bao-Caamano
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.,Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Laura Muinelo-Romay
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics Laboratory, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
198
|
Grady WM, Yu M, Markowitz SD. Epigenetic Alterations in the Gastrointestinal Tract: Current and Emerging Use for Biomarkers of Cancer. Gastroenterology 2021; 160:690-709. [PMID: 33279516 PMCID: PMC7878343 DOI: 10.1053/j.gastro.2020.09.058] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer, liver cancer, stomach cancer, pancreatic cancer, and esophageal cancer are leading causes of cancer-related deaths worldwide. A fundamental trait of virtually all gastrointestinal cancers is genomic and epigenomic DNA alterations. Cancer cells acquire genetic and epigenetic alterations that drive the initiation and progression of the cancers by altering the molecular and cell biological processes of the cells. These alterations, as well as other host and microenvironment factors, ultimately mediate the clinical behavior of the precancers and cancers and can be used as biomarkers for cancer risk determination, early detection of cancer and precancer, determination of the prognosis of cancer and prediction of the response to therapy. Epigenetic alterations have emerged as one of most robust classes of biomarkers and are the basis for a growing number of clinical tests for cancer screening and surveillance.
Collapse
Affiliation(s)
- William M. Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA,Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ming Yu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | | |
Collapse
|
199
|
Diagnosis of Lynch Syndrome and Strategies to Distinguish Lynch-Related Tumors from Sporadic MSI/dMMR Tumors. Cancers (Basel) 2021; 13:cancers13030467. [PMID: 33530449 PMCID: PMC7865821 DOI: 10.3390/cancers13030467] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Microsatellite instability (MSI) is a hallmark of Lynch syndrome (LS)-related tumors but is not specific, as most of MSI/mismatch repair-deficient (dMMR) tumors are sporadic. Therefore, the identification of MSI/dMMR requires additional diagnostic tools to identify LS. In this review, we address the hallmarks of LS and present recent advances in diagnostic and screening strategies to identify LS patients. We also discuss the pitfalls associated with current strategies, which should be taken into account in order to improve the diagnosis of LS. Abstract Microsatellite instability (MSI) is a hallmark of Lynch syndrome (LS)-related tumors but is not specific to it, as approximately 80% of MSI/mismatch repair-deficient (dMMR) tumors are sporadic. Methods leading to the diagnosis of LS have considerably evolved in recent years and so have tumoral tests for LS screening and for the discrimination of LS-related to MSI-sporadic tumors. In this review, we address the hallmarks of LS, including the clinical, histopathological, and molecular features. We present recent advances in diagnostic and screening strategies to identify LS patients. We also discuss the pitfalls associated with the current strategies, which should be taken into account to improve the diagnosis of LS and avoid inappropriate clinical management.
Collapse
|
200
|
Satorres C, García-Campos M, Bustamante-Balén M. Molecular Features of the Serrated Pathway to Colorectal Cancer: Current Knowledge and Future Directions. Gut Liver 2021; 15:31-43. [PMID: 32340435 PMCID: PMC7817929 DOI: 10.5009/gnl19402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/18/2020] [Accepted: 03/04/2020] [Indexed: 02/05/2023] Open
Abstract
Serrated lesions are the precursor lesions of a new model of colorectal carcinogenesis. From a molecular standpoint, the serrated pathway is thought to be responsible for up to 30% of all colorectal cancer cases. The three major processes of this molecular mechanism are alterations in the mitogen-activated protein kinase pathway, production of the CpG island methylation phenotype, and generation of microsatellite instability. Other contributing processes are activation of WNT, alterations in the regulation of tumor suppressor genes, and alterations in microRNAs or in MUC5AC hypomethylation. Although alterations in the serrated pathway also contribute, their precise roles remain obscure because of the various methodologies and definitions used by different research groups. This knowledge gap affects clinical assessment of precursor lesions for their carcinogenic risk. The present review describes the current literature reporting the molecular mechanisms underlying each type of serrated lesion and each phenotype of serrated pathway colorectal cancer, identifying those areas that merit additional research. We also propose a unified serrated carcinogenesis pathway combining molecular alterations and types of serrated lesions, which ends in different serrated pathway colorectal cancer phenotypes depending on the route followed. Finally, we describe some key issues that need to be addressed in order to incorporate the newest technologies in serrated pathway research and to improve overall knowledge for developing specific prevention strategies and new therapeutic targets.
Collapse
Affiliation(s)
- Carla Satorres
- Gastrointestinal Endoscopy Research Group, La Fe Health Research Institute, Valencia, Spain
- Gastrointestinal Endoscopy Unit, Digestive Diseases Department, La Fe Polytechnic University Hospital, Valencia, Spain
| | - María García-Campos
- Gastrointestinal Endoscopy Unit, Digestive Diseases Department, La Fe Polytechnic University Hospital, Valencia, Spain
| | - Marco Bustamante-Balén
- Gastrointestinal Endoscopy Research Group, La Fe Health Research Institute, Valencia, Spain
- Gastrointestinal Endoscopy Unit, Digestive Diseases Department, La Fe Polytechnic University Hospital, Valencia, Spain
- Corresponding AuthorMarco Bustamante-Balén, ORCIDhttps://orcid.org/0000-0003-2019-0158, E-mail
| |
Collapse
|