151
|
Abstract
Primary hyperparathyroidism (PHPT), in addition to cancer, represents an important cause of hypercalcaemia in the general population. Furthermore, hypercalcaemia, in the course of uraemic HPT, represents the late stage of chronic renal failure refractory to therapy. Neck surgery is still the only curative approach for these forms of HPT and medical treatment rarely exhibits an effective control on HPT and HPT-dependent hypercalcaemia. Moreover, some HPT patients may not undergo neck surgery due to the presence of other concomitant disorders. Therefore, more effective therapeutic approaches are needed than the commonly used 'palliative' treatments. The identification of a specific membrane receptor able to bind extracellular calcium on cells of the parathyroid and other tissues has allowed the development of new molecules acting through this receptor to reduce both parathyroid hormone secretion and the rate of parathyroid cell proliferation. Consequently, they may substantially contribute to the regulation of bloodstream calcium levels in HPT patients. Preliminary results obtained in clinical trials are encouraging, demonstrating a good efficacy and safety of such drugs. However, more in vitro and in vivo, as well as long-term clinical studies, will be necessary before they can be commonly used as therapeutical molecules in the clinical practice.
Collapse
Affiliation(s)
- Alberto Falchetti
- Department of Internal Medicine, University of Florence and Centro di Riferimento Regionale Tumori Endocrini Ereditari, Azienda Ospedaliera Careggi, Florence, Italy.
| |
Collapse
|
152
|
|
153
|
Canaff L, Hendy GN. Calcium-sensing receptor gene transcription is up-regulated by the proinflammatory cytokine, interleukin-1beta. Role of the NF-kappaB PATHWAY and kappaB elements. J Biol Chem 2005; 280:14177-88. [PMID: 15684428 DOI: 10.1074/jbc.m408587200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The calcium-sensing receptor (CASR) in parathyroid, thyroid, and kidney is essential for calcium homeostasis. Hypocalcemia is common in critically ill patients having increased circulating proinflammatory cytokines, although the causes are unknown. We hypothesized that the cytokines increase CASR expression and reduce the set point for parathyroid hormone suppression by extracellular calcium, leading to hypocalcemia and hypoparathyroidism. Here, we show in vivo in the rat that parathyroid, thyroid, and kidney CASR mRNA and protein increased after injection of interleukin-1beta. This was associated with decreased circulating parathyroid hormone, calcium, and 1,25-dihydroxyvitamin D levels. Interleukin-1beta stimulated endogenous CASR gene transcripts and transfected promoter reporter activity in human thyroid C-cells (TT cells) and kidney proximal tubule (HKC) cells. Cotransfection of NF-kappaB proteins enhanced activity of the reporter constructs, whereas cotransfection with inhibitor-kappaB or application of an NF-kappaB nuclear localization sequence peptide abrogated responsiveness to cytokine or NF-kappaB proteins. Mutagenesis of some, but not all, of the potential kappaB elements in the 5' part of the CASR gene led to loss of responsiveness to cytokine. These elements conferred cytokine responsiveness to a heterologous promoter, and in electrophoretic mobility shift assays, NF-kappaB complexes formed on the same three kappaB elements. In summary, the CASR gene has several functional kappaB elements that mediate its upregulation by proinflammatory cytokines and probably contribute to altered extracellular calcium homeostasis in the critically ill.
Collapse
Affiliation(s)
- Lucie Canaff
- Departments of Medicine, Physiology and Human Genetics, McGill University and Calcium Research Laboratory, Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada
| | | |
Collapse
|
154
|
Mun HC, Franks AH, Culverston EL, Krapcho K, Nemeth EF, Conigrave AD. The Venus Fly Trap Domain of the Extracellular Ca2+-sensing Receptor Is Required for l-Amino Acid Sensing. J Biol Chem 2004. [DOI: 10.1074/jbc.m406164200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
155
|
Abstract
The calcium-sensing receptor (CaR) is activated by small changes in the ionic extracellular calcium concentration (Ca(o)) within the physiological range, allowing the parathyroid gland to regulate serum Ca(o); however, the CaR is also distributed in a number of other tissues where it may sense other endogenous agonists and modulators. CaR agonists are polycationic molecules, and our previous studies suggest that charged residues in the extracellular domain of the CaR are critical for receptor activation through electrostatic interactions. Therefore, pH could also potentially modulate CaR activation by its polycationic agonists. Changes in the concentration of extracellular H(+) substantially altered the activation of the CaR by Ca(o) and other CaR agonists. The effects of external pH on the CaR's sensitivity to its agonists were observed for both acidic and basic deviations from physiological pH of 7.4, with increases in pH rendering the receptor more sensitive to activation by Ca(o) and decreases in pH producing the converse effect. At pH values more acidic than 5.5, CaR sensitivity to its agonists showed some recovery. Changes in the intracellular pH could not account for the effects of external pH on CaR sensitivity to its agonists. Other G-protein-coupled receptors, which are endogenously expressed in human embryonic kidney 293 cells, showed little change in activity with alterations in external pH or effects opposite those found for the CaR. Extracellular pH directly alters the CaR in the case of Ca(o) and Mg(o) activation; however, the charges on many organic and inorganic agonists are pH-dependent. Activating CaR mutations show reduced pH(o) modulation, suggesting a molecular mechanism for increased CaR activity at physiological pH(o). Several CaR-expressing tissues, including regions of the stomach, the kidney, bone, and the brain, could potentially use the CaR as a sensor for pH and acid-base status.
Collapse
Affiliation(s)
- Stephen J Quinn
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
156
|
Abstract
The extracellular calcium-sensing receptor (CaR) originally cloned from bovine parathyroid gland is a G protein-coupled receptor. The physiological relevance of the cloned CaR for sensing and regulating the extracellular calcium concentration has been established by identifying hyper- and hypocalcemic disorders resulting from inactivating and activating mutations, respectively, in the CaR. The cloned CaR has been stably or transiently expressed in human embryonic kidney cells and significant progress has been made in elucidating its regulation and activation process using physiological, biochemical and molecular biological methods. A large collection of naturally occurring CaR mutations offers a valuable resource for studies aimed at understanding the structure-function relationships of the receptor, including functional importance of CaR dimerization. In turn, characterization of these naturally occurring mutations has clarified the pathogenesis of clinical conditions involving abnormalities in the CaR, such as familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism.
Collapse
Affiliation(s)
- Mei Bai
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, 221 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
157
|
Sakwe AM, Larsson M, Rask L. Involvement of protein kinase C-alpha and -epsilon in extracellular Ca2+ signalling mediated by the calcium sensing receptor. Exp Cell Res 2004; 297:560-73. [PMID: 15212956 DOI: 10.1016/j.yexcr.2004.03.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 03/01/2004] [Indexed: 11/30/2022]
Abstract
The sensing of extracellular Ca(2+) concentration ([Ca(2+)](o)) and modulation of cellular processes associated with acute or sustained changes in [Ca(2+)](o) are cell-type specific and mediated by the calcium sensing receptor (CaR). [Ca(2+)](o) signalling requires protein kinase C (PKC), but the identity and role of PKC isoforms in CaR-mediated responses remain unclear. Here we show that high [Ca(2+)](o) activated PKC-alpha and PKC- in parathyroid cells and in human embryonic kidney (HEK293) cells overexpressing the CaR (HEK-CaR) and that this response correlated with the CaR-dependent activation of mitogen-activated protein kinases ERK1/2. Activation of ERK1/2 by acute high [Ca(2+)](o) required influx of Ca(2+)through Ni(2+)-sensitive Ca(2+)channels and phosphatidylinositol-dependent phospholipase C-beta activity. Inhibition of PKC by co-expression of dominant-negative (DN) mutants of PKC-alpha or - with the CaR attenuated sustained ERK1/2 activation. Overexpression of a PKC phosphorylation site (T888A) mutant CaR in HEK293 cells showed that this site was important for ERK1/2 activation at high [Ca(2+)](o). Activation of ERK1/2 by high [Ca(2+)](o) was not necessary for the [Ca(2+)](o)-regulated secretion of parathyroid hormone (PTH) in dispersed bovine parathyroid cells. These data suggest that the CaR-mediated [Ca(2+)](o) signal leading to regulated PTH secretion that requires diacylglycerol-responsive PKC isoforms is not mediated via the ERK pathway.
Collapse
Affiliation(s)
- Amos M Sakwe
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden.
| | | | | |
Collapse
|
158
|
Chattopadhyay N, Yano S, Tfelt-Hansen J, Rooney P, Kanuparthi D, Bandyopadhyay S, Ren X, Terwilliger E, Brown EM. Mitogenic action of calcium-sensing receptor on rat calvarial osteoblasts. Endocrinology 2004; 145:3451-62. [PMID: 15084499 DOI: 10.1210/en.2003-1127] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The parathyroid calcium-sensing receptor (CaR) plays a nonredundant role in systemic calcium homeostasis. In bone, Ca(2+)(o), a major extracellular factor in the bone microenvironment during bone remodeling, could potentially serve as an extracellular first messenger, acting via the CaR, that stimulates the proliferation of preosteoblasts and their differentiation to osteoblasts (OBs). Primary digests of rat calvarial OBs express the CaR as assessed by RT-PCR, Northern, and Western blot analysis, and immunocolocalization of the CaR with the OB marker cbfa-1. Real-time PCR revealed a significant increase in CaR mRNA in 5- and 7-d cultures compared with 3-d cultures post harvesting. High Ca(2+)(o) did not affect the expression of CaR mRNA during this time but up-regulated cyclin D (D1, D2, and D3) genes, which are involved in transition from the G1 to the S phase of the cell cycle, as well as the early oncogenes, c-fos and early growth response-1; high Ca(2+)(o) did not, however, alter IGF-I expression, a mitogenic factor for OBs. The high Ca(2+)(o)-dependent increase in the proliferation of OBs was attenuated after transduction with a dominant-negative CaR (R185Q), confirming that the effect of high Ca(2+)(o) is CaR mediated. Stimulation of proliferation by the CaR involves the Jun-terminal kinase (JNK) pathway, as high Ca(2+)(o) stimulated the phosphorylation of JNK in a CaR-mediated manner, and the JNK inhibitor SP600125 abolished CaR-induced proliferation. Our data, therefore, show that the parathyroid/kidney CaR expressed in rat calvarial OBs exerts a mitogenic effect that involves activation of the JNK pathway and up-regulation of several mitogenic genes.
Collapse
Affiliation(s)
- Naibedya Chattopadhyay
- Division of Endocrinology, Diabetes and Hypertension, Beth Israel Seaconess Medical Center, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
MacLeod RJ, Yano S, Chattopadhyay N, Brown EM. Extracellular calcium-sensing receptor transactivates the epidermal growth factor receptor by a triple-membrane-spanning signaling mechanism. Biochem Biophys Res Commun 2004; 320:455-60. [PMID: 15219850 DOI: 10.1016/j.bbrc.2004.05.198] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Indexed: 10/26/2022]
Abstract
Activation of the extracellular calcium-sensing receptor (CaR) stimulates mitogen-activated protein kinases to upregulate the synthesis and secretion of parathyroid hormone related peptide (PTHrP) from cells expressing the CaR heterologously or endogenously. The current experiments demonstrate that this occurs because CaR activation "transactivates" the EGF receptor (EGFR). Time dependent increases in tyrosine phosphorylation of the EGFR after addition of extracellular calcium ([Ca2+]o, 3 mM) occurred in stably CaR-transfected HEK293 cells but not in non-transfected HEK293 cells. AG1478, an EGFR kinase inhibitor, prevented the CaR-mediated increases of pERK and PTHrP release, while AG1296, a PDGFR kinase inhibitor, had no effect. Inhibitors of matrix metalloproteinase and heparin bound-EGF prevented the CaR-mediated increases of pERK and PTHrP, consistent with a "triple-membrane-spanning signaling" requirement for transactivation of the EGFR by the CaR. Proximal and distal signal transduction cascades activated by the CaR may reflect transactivation of the EGFR by the extracellular calcium-sensing receptor.
Collapse
Affiliation(s)
- R John MacLeod
- Endocrine-Hypertension Division and Membrane Biology Program, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
160
|
Ye CP, Yano S, Tfelt-Hansen J, MacLeod RJ, Ren X, Terwilliger E, Brown EM, Chattopadhyay N. Regulation of a Ca2+-activated K+ channel by calcium-sensing receptor involves p38 MAP kinase. J Neurosci Res 2004; 75:491-8. [PMID: 14743432 DOI: 10.1002/jnr.10875] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
By using pharmacological and molecular approaches, we previously showed that the G-protein-coupled, extracellular calcium (Ca2+(o))-sensing receptor (CaR) regulates a large-conductance (approximately 140 pS), Ca(2+)-activated K+ channel [IK(Ca); CAKC] in U87 astrocytoma cells. Here we show that elevated Ca2+(o) stimulates extracellular-signal-regulated kinase (ERK1/2) and p38 MAP kinase (MAPK). The effect of high Ca2+(o) on p38 MAPK but not ERK1/2 is CaR mediated, insofar as transduction with a dominant-negative CaR (R185Q) using recombinant adeno-associated virus (rAAV) attenuated the activation of p38 MAPK but not of ERK1/2. p38 MAPK activation by the CaR is likely to be protein kinase C (PKC) independent, in that the pan-PKC inhibitor GF109203X failed to abolish the high-Ca2+(o)-induced phosphorylation of p38 MAPK. Consistently with our data on the activation of this kinase, we observed that inhibiting p38 MAPK blocked the activation of the CAKC induced by the specific pharmacological CaR activator NPS R-467. In contrast, inhibiting MEK1 only transiently inhibited the activation of this K+ channel by NPS R-467, despite the continued presence of the antagonist. Similarly to the lack of any effect of the PKC inhibitor on the activation of ERK1/2 and p38 MAPK, inhibiting PKC had no effect on NPS R-467-induced activation of this channel. Therefore, our data show that the CaR, acting via p38 MAPK, regulates a large-conductance CAKC in U87 cells, a process that is PKC independent. Large-conductance CAKCs play an important role in the regulation of cellular volume, so our results have important implications for glioma cell volume regulation.
Collapse
Affiliation(s)
- Chian Ping Ye
- Division of Endocrinology, Hypertension and Diabetes and Membrane Biology Program, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Francesconi A, Duvoisin RM. Divalent cations modulate the activity of metabotropic glutamate receptors. J Neurosci Res 2004; 75:472-9. [PMID: 14743430 DOI: 10.1002/jnr.10853] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) and calcium receptors (CaR) are closely related G protein-coupled receptors (GPCRs). The similar structural and functional properties of mGluRs and CaRs include conserved amino acid residues involved in glutamate binding in mGluRs and Ca2+ binding in the CaR. Furthermore, recent findings have demonstrated that mGluRs can respond to high extracellular Ca2+ (Ca2+(o)) whereas CaR activity is potentiated by L-amino acids. We show that both mGluR1 and mGluR2 are activated by Ca2+(o) in the absence of glutamate in the extracellular media. This activation by Ca2+(o) is antagonized by Mg2+(o). Unlike the CaR, in which the intracellular carboxyl tail has been reported to be involved in Ca2+(o)-dependent activity, the carboxyl tail of mGluRs does not seem to play a role in mediating Ca2+(o) actions. On the other hand, we find that preservation of disulfide bonds in the N-terminal extracellular domain of mGluRs is essential for stimulation by Ca2+(o) as well as glutamate. Because the mGluR1 EC50 for Ca2+(o) is within the physiologic range of Ca2+ in the synaptic cleft, mGluR function is likely regulated by changes in divalent cations caused by synaptic activity under normal or pathologic conditions.
Collapse
Affiliation(s)
- Anna Francesconi
- Margaret M. Dyson Vision Research Institute, Department of Ophthalmology, Weill Medical College of Cornell University, New York, New York, USA.
| | | |
Collapse
|
162
|
Jiang Y, Minet E, Zhang Z, Silver PA, Bai M. Modulation of Interprotomer Relationships Is Important for Activation of Dimeric Calcium-sensing Receptor. J Biol Chem 2004; 279:14147-56. [PMID: 14729680 DOI: 10.1074/jbc.m307422200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular calcium-sensing receptor (CaR) forms a disulfide-linked dimer through cysteine residues within its N-terminal extracellular domain (ECD). However, these disulfide linkages are dispensable for the formation of the dimeric CaR and for the functional reconstitution of two inactive CaRs. In this study, using molecular modeling, mutagenesis, and biochemical and biophysical analyses, we examined the importance of two leucine residues, Leu-112 and Leu-156, in the ECD of the CaR for the non-covalent dimerization and functional reconstitution. We found that the mutant receptor carrying L112S and L156S still exists mostly as a covalently linked dimer and has a significantly higher apparent affinity for calcium than the wild-type receptor. However, a combination of four mutations, L112S, L156S, C129S, and C131S, significantly reduces receptor dimerization and markedly inactivates the CaR. We also found that L112S and L156S mediate the non-covalent intermolecular interactions important for functional reconstitution. Because mutating either the two cysteines or the two leucines enhances the apparent ligand affinity of the CaR, it is likely that the changes in intermolecular relationships between two receptor protomers linked by these leucines and cysteines are essential for receptor activation. Moreover, these mutations are unlikely to have negative effects on the secondary structure of each protomer of the dimeric receptor. Thus, the detrimental effects of the combined mutations on the function of the CaR further suggest that CaR dimerization through its ECD is essential for the formation of a functional tertiary structure of the CaR.
Collapse
Affiliation(s)
- Yongfeng Jiang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
163
|
Chinault SL, Overton MC, Blumer KJ. Subunits of a Yeast Oligomeric G Protein-coupled Receptor Are Activated Independently by Agonist but Function in Concert to Activate G Protein Heterotrimers. J Biol Chem 2004; 279:16091-100. [PMID: 14764600 DOI: 10.1074/jbc.m311099200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors (GPCRs) form dimeric or oligomeric complexes in vivo. However, the function of oligomerization in receptor-mediated G protein activation is unclear. Previous studies of the yeast alpha-factor receptor (STE2 gene product) have indicated that oligomerization promotes signaling. Here we have addressed the mechanism by which oligomerization facilitates G protein signaling by examining the ability of ligand binding- and G protein coupling-defective alpha-factor receptors to form complexes in vivo and to correct their signaling defects when co-expressed (trans complementation). Newly and previously identified receptor mutants indicated that ligand binding involves the exofacial end of transmembrane domain (TM) 4, whereas G protein coupling involves ic1, ic3, the C-terminal tail, and the intracellular ends of TM2 and TM3. Mutant receptors bearing substitutions in these domains formed homo-oligomeric or hetero-oligomeric complexes in vivo, as indicated by results of fluorescence resonance energy transfer experiments. Co-expression of ligand binding- and G protein coupling-defective mutant receptors did not significantly improve signaling. In contrast, co-expression of ic1 and ic3 mutations in trans but not in cis significantly increased signaling efficiency. Therefore, we suggest that subunits of the alpha-factor receptor: 1) are activated independently rather than cooperatively by agonist, and 2) function in a concerted fashion to promote G protein activation, possibly by contacting different subunits or regions of the G protein heterotrimer.
Collapse
Affiliation(s)
- Sharon L Chinault
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
164
|
Abstract
The extracellular calcium-sensing receptor (CaR) is a versatile sensor of small, polycationic molecules ranging from Ca2+ and Mg2+ through polyarginine, spermine, and neomycin. The sensitivity of the CaR to changes in extracellular Ca2+ over the range of 0.05-5 mM positions the CaR as a key mediator of cellular responses to physiologically relevant changes in extracellular Ca2+. For many cell types, including intestinal epithelial cells, breast epithelial cells, keratinocytes, and ovarian surface epithelial cells, changes in extracellular Ca2+ concentration over this range can switch the cellular behaviour from proliferation to terminal differentiation or quiescence. As cancer is predominantly a disease of disordered balance between proliferation, differentiation, and apoptosis, disruptions in the function of the CaR could contribute to the progression of neoplastic disease. Loss of the growth suppressing effects of elevated extracellular Ca2+ have been demonstrated in parathyroid hyperplasias and in colon carcinoma, and have been correlated with changes in the level of CaR expression. Activation of the CaR has also been linked to increased expression and secretion of PTHrP (parathyroid hormone-related peptide), a primary causal factor in hypercalcemia of malignancy and a contributor to metastatic processes involving bone. Although mutation of the CaR does not appear to be an early event in carcinogenesis, loss or upregulation of normal CaR function can contribute to several aspects of neoplastic progression, so that therapeutic strategies directed at the CaR could potentially serve a supportive function in cancer management.
Collapse
Affiliation(s)
- Karin D Rodland
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA 99352, USA
| |
Collapse
|
165
|
Abstract
Extracellular calcium has long been known to affect the rate and magnitude of renal calcium and phosphate recovery. In this review, we consider some of these findings in light of our present understanding of the tubular localization of the calcium-sensing receptor (CaSR). Experiments directly implicating the CaSR in regulating calcium and phosphate transport are described. These results point to an important role of the CaSR in regulating PTH-dependent calcium absorption by cortical thick ascending limbs and on PTH-sensitive proximal tubule phosphate transport. Possible avenues for further investigation are suggested.
Collapse
Affiliation(s)
- Jianming Ba
- Department of Pharmacology, University of Pittsburgh School of Medicine, E-1347 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
166
|
Kifor O, McElduff A, LeBoff MS, Moore FD, Butters R, Gao P, Cantor TL, Kifor I, Brown EM. Activating antibodies to the calcium-sensing receptor in two patients with autoimmune hypoparathyroidism. J Clin Endocrinol Metab 2004; 89:548-56. [PMID: 14764760 DOI: 10.1210/jc.2003-031054] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoimmune hypoparathyroidism is thought to result from immune-mediated destruction of the parathyroid glands. We encountered two patients with hypoparathyroidism and other autoimmune conditions (Graves' disease and Addison's disease, respectively) in whom autoimmune destruction of the parathyroid glands had not taken place. In the first, a histologically normal parathyroid gland was observed at the time of subtotal thyroidectomy; and in the second, the hypoparathyroidism remitted spontaneously. Both patients had antibodies that reacted with the cell surface of bovine parathyroid cells and human embryonic kidney (HEK293) cells transfected with the extracellular calcium-sensing receptor (CaR) but not with nontransfected HEK293 cells. The antibodies also reacted with the same bands on Western analysis of extracts of bovine parathyroid tissue and CaR-transfected HEK293 cells that were identified by an authentic, polyclonal, anti-CaR antiserum and reacted with several peptides with sequences from the CaR's extracellular domain. These anti-CaR antibodies activated the receptor based on their ability to increase inositol phosphate accumulation, activate MAPK, and inhibit PTH secretion. These results, therefore, demonstrate that patients with the biochemical findings of primary hypoparathyroidism can harbor activating antibodies to the CaR, which, in the two cases studied here, did not produce irreversible destruction of the parathyroid glands.
Collapse
Affiliation(s)
- Olga Kifor
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
Disturbances in mineral homeostasis are common in the neonatal period, especially in premature infants and infants who are hospitalised in an intensive care unit. In many cases these disturbances are thought to be exaggerated responses to the normal physiological transition from the intrauterine environment to neonatal independence. By contrast, some disturbances in calcium homeostasis are the result of genetic defects, which in many instances can now be identified at the molecular level. In other cases hypocalcaemia or hypercalcaemia may result from pathological intrauterine conditions, birth trauma or stress, or fetal immaturity. Diagnosis and management of hypocalcaemia and hypercalcaemia in the neonate and infant requires specific knowledge of perinatal mineral physiology and the unique clinical and biochemical features of newborn mineral metabolism. In this chapter we will provide a brief overview of calcium metabolism with an emphasis on the neonatal transition, followed by discussion of the common causes of hypercalcaemia and hypocalcaemia.
Collapse
Affiliation(s)
- Stephanie C Hsu
- Department of Pediatrics, The John Hopkins University, Baltimore, MD 21287, USA
| | | |
Collapse
|
168
|
Abstract
The elucidation of the structure and function of the Ca2+(o)-sensing receptor (CaR) has provided important insights into the normal control of Ca2+(o) homeostasis, particularly the key role of the receptor in kidney and parathyroid. Further studies are needed to define more clearly the homeostatic role of the CaR in additional tissues, both those that are involved and those that are uninvolved in systemic Ca2+(o) homeostasis. The availability of the cloned CaR has also permitted documentation of the molecular basis of inherited disorders of Ca2+(o) sensing, including those in which the receptor is less and or more sensitive than normal to Ca2+(o). Antibodies to the CaR that either activate it or inactivate it produce syndromes resembling the corresponding genetic diseases. Expression of the receptor is abnormally low in 1 degree and 2 degrees hyperparathyroidism, which could contribute to the defective Ca2+(o) sensing in these conditions. The recent discovery of calcimimetics, which sensitize the CaR to Ca2+(o), has provided what will likely be an effective medical therapy for the secondary/tertiary hyperparathyroidism of end stage renal failure as well as for 1 degree hyperparathyroidism.
Collapse
Affiliation(s)
- Edward M Brown
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
169
|
Kuang D, Yao Y, Wang M, Pattabiraman N, Kotra LP, Hampson DR. Molecular similarities in the ligand binding pockets of an odorant receptor and the metabotropic glutamate receptors. J Biol Chem 2003; 278:42551-9. [PMID: 12912984 DOI: 10.1074/jbc.m307120200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5.24 odorant receptor is an amino acid sensing receptor that is expressed in the olfactory epithelium of fish. The 5.24 receptor is a G-protein-coupled receptor that shares amino acid sequence identity to mammalian pheromone receptors, the calcium-sensing receptor, the T1R taste receptors, and the metabotropic glutamate receptors (mGluRs). It is most potently activated by the basic amino acids L-lysine and L-arginine. In this study we generated a homology model of the ligand binding domain of the 5.24 receptor based on the crystal structure of mGluR1 and examined the proposed lysine binding pocket using site-directed mutagenesis. Mutants of truncated glycosylated versions of the receptor containing only the extracellular domain were analyzed in a radioligand binding assay, whereas the analogous full-length membrane-bound mutants were studied using a fluorescence-based functional assay. In silico analysis predicted that aspartate 388 interacts with the terminal amino group on the side chain of the docked lysine molecule. This prediction was supported by experimental observations demonstrating that mutation of this residue caused a 26-fold reduction in the affinity for L-lysine but virtually no change in the affinity for the polar amino acid L-glutamine. In addition, mutations in four highly conserved residues (threonine 175, tyrosine 223, and aspartates 195 and 309) predicted to establish interactions with the alpha amino group of the bound lysine ligand greatly reduced or eliminated binding and receptor activation. These results define the essential features of amino acid selectivity within the 5.24 receptor binding pocket and highlight an evolutionarily conserved motif required for ligand recognition in amino acid activated receptors in the G-protein-coupled receptor superfamily.
Collapse
Affiliation(s)
- Donghui Kuang
- Department of Pharmaceutical Sciences and Institute for Drug Research, University of Toronto, 19 Russell Street, Toronto, Ontario M5S 2S2, Canada
| | | | | | | | | | | |
Collapse
|
170
|
Sayer JA, Pearce SHS. Extracellular calcium-sensing receptor dysfunction is associated with two new phenotypes. Clin Endocrinol (Oxf) 2003; 59:419-21. [PMID: 14510901 DOI: 10.1046/j.1365-2265.2003.01869.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- John A Sayer
- School of Clinical Medical Sciences, University of Newcastle Upon Tyne, Newcastle, UK.
| | | |
Collapse
|
171
|
Tao YX, Segaloff DL. Functional characterization of melanocortin-4 receptor mutations associated with childhood obesity. Endocrinology 2003; 144:4544-51. [PMID: 12959994 DOI: 10.1210/en.2003-0524] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The melanocortin-4 receptor (MC4R) is a member of the rhodopsin-like G protein-coupled receptor family. The binding of alpha-MSH to the MC4R leads to increased cAMP production. Recent pharmacological and genetic studies have provided compelling evidence that MC4R is an important regulator of food intake and energy homeostasis. Allelic variants of MC4R were reported in some children with early-onset severe obesity. However, few studies have been performed to confirm that these allelic variants result in an impairment of the receptor's function. In this study, we expressed wild-type and variant MC4Rs in HEK293 cells and systematically studied ligand binding, agonist-stimulated cAMP, and cell surface expression. Six of the 11 mutants examined had either decreased (S58C, N62S, Y157S, C271Y) or no (P78L, G98R) ligand binding, with proportional impairments in [Nle4, d-Phe7]-alpha-MSH-stimulated cAMP production. Confocal microscopy confirmed that the observed decreases in hormone binding by these mutants are associated with decreased cell surface expression due to intracellular retention of the mutants. The other five allelic variants (D37V, P48S, V50M, I170V, N274S) were found to be expressed at the cell surface and to bind agonist and respond with increased cAMP production normally. The data on these latter five variants raise the question as to whether they are indeed causative of the obesity or not and, if so, by what mechanism. Our data, therefore, stress the importance of characterizing the properties of MC4R variants associated with early-onset severe obesity. We further propose a classification scheme for mutant MC4Rs based upon their properties.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Physiology and Biophysics, 5-471 Bowen Science Building, The University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
172
|
Tfelt-Hansen J, MacLeod RJ, Chattopadhyay N, Yano S, Quinn S, Ren X, Terwilliger EF, Schwarz P, Brown EM. Calcium-sensing receptor stimulates PTHrP release by pathways dependent on PKC, p38 MAPK, JNK, and ERK1/2 in H-500 cells. Am J Physiol Endocrinol Metab 2003; 285:E329-37. [PMID: 12700162 DOI: 10.1152/ajpendo.00489.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevated extracellular calcium ([Ca2+]o) and other agonists potentially acting via the calcium-sensing receptor (CaR) increase parathyroid hormone-related peptide (PTHrP) release from H-500 Leydig cells. Here, we provide strong evidence for the CaR's involvement by using a dominant negative CaR that attenuates high [Ca2+]o-induced PTHrP release. This effect is likely transcriptional, because high [Ca2+]o upregulates the PTHrP transcript, an effect that is abolished by actinomycin D. Regulation of PTHrP release by the CaR involves activation of PKC as well as ERK1/2, p38 MAPK, and JNK pathways. However, we show for the first time that high [Ca2+]o-induced activation of the stress-activated protein kinase SEK1 is PKC independent, because there is an additive effect of a PKC inhibitor in combination with the JNK inhibitor on [Ca2+]o-stimulated PTHrP release. Furthermore, high [Ca2+]o, in a PKC-independent fashion, induces phosphorylation of ERK1/2, SEK1, p38 MAPK, and its downstream transcription factor ATF-2. We conclude that CaR regulation of PTHrP release in H-500 cells involves activation of PKC as well as the ERK1/2, p38 MAPK, and JNK pathways.
Collapse
Affiliation(s)
- J Tfelt-Hansen
- Endocrine-Hypertension Division, Dept. of Medicine and Membrane Biology Program, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Ave., Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Wang Y, Awumey EK, Chatterjee PK, Somasundaram C, Bian K, Rogers KV, Dunn C, Bukoski RD. Molecular cloning and characterization of a rat sensory nerve Ca2+-sensing receptor. Am J Physiol Cell Physiol 2003; 285:C64-75. [PMID: 12637267 DOI: 10.1152/ajpcell.00543.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A full-length cDNA encoding a Ca2+-sensing receptor (CaSR) expressed in rat dorsal root ganglia (DRG) was identified using rapid amplification of 5'-cDNA ends and primer extension and then cloned into the plasmid vector pCR3.1. The DNA sequence of the DRG CaSR was 99.9% homologous with published rat kidney CaSR in the coding region and 247 bp upstream of the start site but showed little homology 5' to this site, which maps to exonic junction I/II, supporting the hypothesis that CaSR message arises as a splice variant and showing tissue-to-tissue heterogeneity. Western blot revealed a doublet of 140 and 160 kDa in a thyroparathyroid preparation and a single 140-kDa band in DRG. Deglycosylation using N-glycanase increased the mobility of CaSR protein from both DRG and thyroparathyroid, whereas endo-H was without effect, indicating that the DGR CaSR is a mature form of the receptor. A DRG CaSR-pEGFP fusion product was constructed, and when transfected into HEK-293 cells, it was distributed at the cell membrane and resulted in extracellular Ca2+ (0.5-3 mM)-evoked increases in intracellular Ca2+, which in some instances exhibited oscillatory behavior. We conclude that DRG CaSR cDNA arises from tissue-specific alternative splicing of a single gene, that the amino acid sequence of DRG CaSR is homologous to other known CaSRs, and that the DRG CaSR undergoes differential posttranslational processing relative to the thyroparathyroid CaSR and is functionally active when transfected into a human-derived cell line.
Collapse
MESH Headings
- Animals
- Base Sequence
- Calcium/metabolism
- Cloning, Molecular
- DNA, Complementary
- Ganglia, Spinal/cytology
- Glycosylation
- Male
- Molecular Sequence Data
- Neurons, Afferent/physiology
- RNA Processing, Post-Transcriptional/physiology
- Rats
- Rats, Wistar
- Receptors, Calcium-Sensing
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Yanlin Wang
- Cardiovascular Disease Research Program, Julius L Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Quarles LD. Extracellular calcium-sensing receptors in the parathyroid gland, kidney, and other tissues. Curr Opin Nephrol Hypertens 2003; 12:349-55. [PMID: 12815330 DOI: 10.1097/00041552-200307000-00002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW The discovery of the extracellular calcium-sensing receptor, CasR has broadened our understanding of calcium homeostasis and led to the development of new pharmacological agents, calcimimetics, for treating hyperparathyroidism. In the present review, I discuss the function of CasR as well as provide evidence for the presence of additional calcium-sensing mechanisms in the skeleton and possibly other tissues. RECENT FINDINGS Inactivating and activating mutations of the CasR respectively cause hereditary hyperparathyroidism, and demonstrate the predominant role of the CasR in controlling parathyroid gland function. Calcimimetics, which increase the sensitivity of CasR to extracellular calcium have been developed to treat secondary and primary hyperparathyroidism. In recent clinical trials in patients with end stage kidney disease, the calcimimetic cinacalcet suppressed parathyroid hormone to a greater degree than conventional therapy with vitamin D analogues without causing hypercalcemia or hyperphosphatemia. CasR receptor also has functions in other tissues, including regulation of renal calcium excretion and calcitonin secretion by thyroidal C-cells, but the presence of redundant sensing mechanisms for extracellular calcium in other tissues, including bone, confounds the assessment of the receptor's function at these sites. Mouse genetic approaches have so far failed to identify any essential, non-redundant role for the calcium-sensing receptor in regulating chondrogenesis or osteogenesis, and have failed to establish a function for the protein outside of the parathyroid gland, kidney, and thyroidal C-cells. Rather, there is evidence for other putative calcium sensing receptor-like mechanisms in osteoblasts that remain to be identified. SUMMARY Sensing of extracellular calcium by CasR is important in regulating calcium homeostasis, but CasR may have vestigial function in various tissues where it is expressed in low abundance. The relative importance of CasR and the novel calcium-sensing mechanisms in mediating response to extracellular calcium in many of these tissues remain to be determined.
Collapse
Affiliation(s)
- L Darryl Quarles
- Center for Bone and Mineral Disorders, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
175
|
Abstract
Ca2+ is well established as an intracellular second messenger. However, the molecular identification of a detector for extracellular Ca2+--the extracellular calcium-sensing receptor--has opened up the possibility that Ca2+ might also function as a messenger outside cells. Information about the local extracellular Ca2+ concentration is conveyed to the interior of many cell types through this unique G-protein-coupled receptor. Here, we describe new emerging concepts concerning the signalling function of extracellular Ca2+, with particular emphasis on the extracellular calcium-sensing receptor.
Collapse
Affiliation(s)
- Aldebaran M Hofer
- West Roxbury Veterans Affairs Medical Center and Brigham and Women's Hospital, Department of Surgery, Harvard Medical School, Room 2B111, 1400 VFW Parkway, West Roxbury, Massachusetts 02132, USA.
| | | |
Collapse
|
176
|
Abstract
In the twelve years since the molecular elucidation of the metabotropic glutamate receptor subtype 1, a class III family of G-protein-coupled receptors has emerged; members of this family include the calcium-sensing receptor, the GABA(B) receptor, some odorant receptors and some taste receptors. Atomic structures of the ligand-binding core of the original metabotropic glutamate receptor 1 obtained using X-ray crystallography provide a foundation for determining the initial receptor activation of this important family of G-protein-coupled receptors.
Collapse
Affiliation(s)
- Hisato Jingami
- Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Suita-City, Osaka 565-0874, Japan.
| | | | | |
Collapse
|
177
|
Calcium receptor-induced serotonin secretion by parafollicular cells: role of phosphatidylinositol 3-kinase-dependent signal transduction pathways. J Neurosci 2003. [PMID: 12657663 DOI: 10.1523/jneurosci.23-06-02049.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Elevation of extracellular Ca2+ (increase[Ca2+]e) stimulates the Ca2+ receptor (CaR) to induce secretion of 5-hydroxytryptamine (5-HT) from the calcium-sensing parafollicular (PF) cells. The CaR has been reported to couple to Galpha(q) with subsequent activation of protein kinase C-gamma (PKCgamma). We have identified a parallel transduction pathway in primary cultures of sheep PF cells by using a combinatorial approach in which we expressed adenoviral-encoded dominant-negative signaling proteins and performed in vitro kinase assays. The role of the CaR was established by expression of a dominant-negative CaR that eliminated calcium-induced 5-HT secretion but not secretion in response to KCl or phorbol esters. The calcium-induced secretion was inhibited by a dominant-negative p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3-K). PI3-K activity was also assayed using isoform-specific antibodies. The activity of p85/p110beta (PI3-Kbeta) immunocomplexes was elevated by increase[Ca2+]e and activated by Gbetagamma subunits. In addition, secretion of 5-HT was antagonized by the expression of a minigene encoding a peptide scavenger of Gbetagamma subunits (C-terminal fragment peptide of bovine beta-adrenergic receptor kinase). One target of PI3-K activity is phosphoinositide-dependent kinase-1 (PDK1), which in turn activated PKCzeta. Expression of a dominant-negative PKCzeta in PF cells reduced 5-HT secretion. Together, these observations establish that increase[Ca2+]e evokes 5-HT secretion from PF cells by stimulating both Galpha(q)- and Gbetagamma-signaling pathways downstream of the CaR. The betagamma cascade subsequently activates PI3-Kbeta-dependent signaling that is coupled to PDK1 and the downstream effector PKCzeta, and results in an increase in 5-HT release.
Collapse
|
178
|
Tu Q, Pi M, Karsenty G, Simpson L, Liu S, Quarles LD. Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background. J Clin Invest 2003; 111:1029-37. [PMID: 12671052 PMCID: PMC152586 DOI: 10.1172/jci17054] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To understand the role of the calcium-sensing receptor (CasR) in the skeleton, we used a genetic approach to ablate parathyroid glands and remove the confounding effects of elevated parathyroid hormone (PTH) in CasR-deficient mice. CasR deficiency was transferred onto the glial cells missing 2-deficient (Gcm2-deficient) background by intercrossing CasR- and Gcm2-deficient mice. Superimposed Gcm2 deficiency rescued the perinatal lethality in CasR-deficient mice in association with ablation of the parathyroid glands and correction of the severe hyperparathyroidism. In addition, the double homozygous CasR- and Gcm2-deficient mice demonstrated healing of the abnormal mineralization of cartilage and bone associated with CasR deficiency, indicating that rickets and osteomalacia in CasR-deficient mice are not due to an independent function of CasR in bone and cartilage but to the effect of severe hyperparathyroidism in the neonate. Analysis of the skeleton of 6-week-old homozygous CasR- and Gcm2-deficient mice also failed to identify any essential, nonredundant role for CasR in regulating chondrogenesis or osteogenesis, but further studies are needed to establish the function of CasR in the skeleton. In contrast, concomitant Gcm2 and CasR deficiency failed to rescue the hypocalciuria in CasR-deficient mice, consistent with direct regulation of urinary calcium excretion by CasR in the kidney. Double Gcm2- and CasR-deficient mice provide an important model for evaluating the extraparathyroid functions of CasR.
Collapse
Affiliation(s)
- Qisheng Tu
- Center for Bone and Mineral Disorders, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
179
|
Tu Q, Pi M, Karsenty G, Simpson L, Liu S, Quarles LD. Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background. J Clin Invest 2003. [DOI: 10.1172/jci200317054] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
180
|
Komoto I, Kato M, Itami A, Shimada Y, Doi R, Hosotani R, Imamura M. Expression and function of the calcium-sensing receptor in pancreatic islets and insulinoma cells. Pancreas 2003; 26:178-84. [PMID: 12604917 DOI: 10.1097/00006676-200303000-00015] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
INTRODUCTION We previously demonstrated that human insulinoma cells express the calcium-sensing receptor (CaR). AIM To investigate the expression of CaR in the human pancreas and to evaluate the differences in responses of human insulinoma cells and normal rat islets to extracellular calcium2+ [Ca2+]o. METHODOLOGY To evaluate CaR expression in the normal human pancreas, immunohistochemical and reverse transcription polymerase chain reaction studies were performed. To evaluate the response of normal islets and insulinoma cells to changes in the [Ca2+]o concentration, cytosolic free calcium levels were measured by microfluorometry. Because it is difficult to obtain viable normal human islets, we used normal rat islets instead. RESULTS CaR is expressed in both human pancreatic islets and human insulinoma cells. Microfluorometry showed an increase in the [Ca2+]i level in response to changes in the [Ca2+]o concentration, with a more sensitive response in human insulinoma cells than in normal islets. When 1 micromol/L wortmannin (a selective phosphatidylinositol 3-kinase inhibitor) was added to the perfusion medium, the response disappeared in insulinoma cells but not in islets. CONCLUSION Both insulinoma cells and islets expressed CaR; however, the reactivity to changes in the [Ca2+]o concentration was different between them. These findings suggest that the signaling pathways controlling the changes in [Ca2+]i differ between normal rat islets and human insulinoma cells.
Collapse
Affiliation(s)
- Izumi Komoto
- Department of Surgery and Surgical Basic Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
181
|
Shiraishi N, Kitamura K, Kohda Y, Narikiyo T, Adachi M, Miyoshi T, Iwashita K, Nonoguchi H, Miller RT, Tomita K. Increased endothelin-1 expression in the kidney in hypercalcemic rats. Kidney Int 2003; 63:845-52. [PMID: 12631065 DOI: 10.1046/j.1523-1755.2003.00801.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Although hypercalcemia causes diuresis and natriuresis, the molecular mechanisms of these effects are not well established. Recently, the important role of the calcium-sensing receptor (CaR) in hypercalcemia-induced polyuria was reported. Endothelin-1 (ET-1) that is locally produced in the nephron has been suggested to have the natriuretic and/or diuretic effects in the kidney. Therefore, we hypothesized that ET-1 expression could be increased through the activation of CaR in the kidney in hypercalcemia. METHODS Rats were made hypercalcemic by dihydrotachysterol (DHT) treatment. The urinary concentration of ET-1 and the mRNA expression of ET-1 in the kidney were determined. Immunohistochemistry was performed to determine types of the cells that produce ET-1. CaR and ET-1 promoter luciferase constructs were co-expressed in COS-7 cells and the ET-1 promoter activity following the addition of extracellular calcium was measured by the luciferase assay. RESULTS In hypercalcemic rat, urinary ET-1 excretion was increased by twofold, and ET-1 mRNA expression was increased in the kidney cortex by threefold. In cortical collecting duct (CCD), both principal cells and intercalated cells synthesized ET-1. In cells that express CaR, ET-1 promoter was activated in a dose-dependent manner by extracellular calcium over the range of 0.5 to 3.0 mmol/L. CONCLUSIONS First, activation of CaR increases ET-1 transcription in a dose-dependent manner. Second, hypercalcemia increases ET-1 production in the kidney cortex. These data suggest the possibility that CaR might play an important role in hypercalcemia-induced increase in ET-1 production.
Collapse
Affiliation(s)
- Naoki Shiraishi
- Third Department of Internal Medicine, Kumamoto University School of Medicine, Kumamoto, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Hobson SA, Wright J, Lee F, McNeil SE, Bilderback T, Rodland KD. Activation of the MAP kinase cascade by exogenous calcium-sensing receptor. Mol Cell Endocrinol 2003; 200:189-98. [PMID: 12644311 DOI: 10.1016/s0303-7207(01)00749-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In Rat-1 fibroblasts and ovarian surface epithelial cells, extracellular calcium induces a proliferative response which appears to be mediated by the G-protein coupled calcium-sensing receptor (CaR), as expression of the nonfunctional CaR-R795W mutant inhibits both thymidine incorporation and activation of the extracellular-regulated kinase (ERK) in response to calcium. In this report we utilized CaR-transfected HEK293 cells to demonstrate that functional CaR is necessary and sufficient for calcium-induced ERK activation. CaR-dependent ERK activation was blocked by co-expression of the Ras dominant-negative mutant, Ras N17, and by exposure to the phosphatidyl inositol 3' kinase inhibitors wortmannin and LY294002. In contrast to Rat-1 fibroblasts, CaR-mediated in vitro kinase activity of ERK2 was unaffected by tyrosine kinase inhibitor herbimycin in CaR-transfected HEK293 cells. These results suggest that usage of distinct pathways downstream of the CaR varies in a cell-type specific manner, suggesting a potential mechanism by which activation of the CaR could couple to distinct calcium-dependent responses.
Collapse
Affiliation(s)
- Susan A Hobson
- Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | | | | | | | |
Collapse
|
183
|
Viñals M, Xu S, Vasile E, Krieger M. Identification of the N-linked glycosylation sites on the high density lipoprotein (HDL) receptor SR-BI and assessment of their effects on HDL binding and selective lipid uptake. J Biol Chem 2003; 278:5325-32. [PMID: 12429731 DOI: 10.1074/jbc.m211073200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The murine class B, type I scavenger receptor mSR-BI, a high density lipoprotein (HDL) receptor that mediates selective uptake of HDL lipids, contains 11 potential N-linked glycosylation sites and unknown numbers of both endoglycosidase H-sensitive and -resistant oligosaccharides. We have examined the consequences of mutating each of these sites (Asn --> Gln or Thr --> Ala) on post-translational processing of mSR-BI, cell surface expression, and HDL binding and lipid transport activities. All 11 sites were glycosylated; however, disruption of only two (Asn-108 and Asn-173) substantially altered expression and function. There was very little detectable post-translational processing of these two mutants to endoglycosidase H resistance and very low cell surface expression, suggesting that oligosaccharide modification at these sites apparently plays an important role in endoplasmic reticulum folding and/or intracellular transport. Strikingly, although the low levels of the 108 and 173 mutants that were expressed on the cell surface exhibited a marked reduction in their ability to transfer lipids from HDL to cells, they nevertheless bound nearly normal amounts of HDL. Indeed, the affinity of (125)I-HDL binding to the 173 mutant was similar to that of the wild-type receptor. Thus, N-linked glycosylation can influence both the intracellular transport and lipid-transporter activity of SR-BI. The ability to uncouple the HDL binding and lipid transport activities of mSR-BI by in vitro mutagenesis should provide a powerful tool for further analysis of the mechanism of SR-BI-mediated selective lipid uptake.
Collapse
Affiliation(s)
- Marisa Viñals
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
184
|
Cetani F, Pardi E, Borsari S, Tonacchera M, Morabito E, Pinchera A, Marcocci C, Dipollina G. Two Italian kindreds with familial hypocalciuric hypercalcaemia caused by loss-of-function mutations in the calcium-sensing receptor (CaR) gene: functional characterization of a novel CaR missense mutation. Clin Endocrinol (Oxf) 2003; 58:199-206. [PMID: 12580936 DOI: 10.1046/j.1365-2265.2003.01696.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Description of two unrelated Italian kindreds with familial hypocalciuric hypercalcaemia (FHH), an autosomal dominant disease mostly caused by heterozygous inactivating mutations of the Ca2+ sensing receptor (CaR). PATIENTS AND DESIGN We studied 11 members of the two families. Genomic DNA was isolated from peripheral blood leucocytes in all family members and in 50 unrelated Italian controls. Total serum and ionized calcium, PTH, creatinine, phosphate, magnesium, and urinary calcium clearance to creatinine clearance ratio were measured. Direct sequencing of the entire coding region of the CaR was performed in the probands. Functional studies were performed in COS-7 cells transiently expressing the mutated CaR. RESULTS In the proband of family A direct sequencing revealed a novel heterozygous Y218C missense mutation in exon 4. The same mutation was identified in the affected but not in the unaffected family members or in any of the 50 unrelated Italian controls. Transient expression of the Y218C CaR in COS-7 cells revealed a blunted Ca2+-evoked accumulation of inositol trisphosphates, indicating that the Y218C is a loss-of-function mutation. Cotransfection experiments showed that the mutant receptor had no impact on the function of the wild-type receptor, suggesting that a reduced expression of the normal CaR, rather than a dominant-negative effect, accounted for the functional impairment. In the proband of family B an already described heterozygous P55L missense mutation in exon 2 of the CaR gene was found. The same mutation was identified in the affected family members. CONCLUSIONS We described two familial hypocalciuric hypercalcaemia kindreds with loss-of-function mutations of the Ca2+ receptor gene and identified a novel heterozygous mutation (Y218C) characterized by a blunted response to Ca2+ stimulation compared to the wild-type receptor and no interference with the function of the wild-type Ca2+ receptor.
Collapse
Affiliation(s)
- Filomena Cetani
- Dipartimento di Endocrinologia e Metabolismo, Università di Pisa, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
185
|
MacLeod RJ, Chattopadhyay N, Brown EM. PTHrP stimulated by the calcium-sensing receptor requires MAP kinase activation. Am J Physiol Endocrinol Metab 2003; 284:E435-42. [PMID: 12388158 DOI: 10.1152/ajpendo.00143.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increases in extracellular calcium concentration ([Ca(2+)](o)) stimulate from normal and malignant cells secretion of parathroid hormone-related protein (PTHrP), a major mediator of humoral hypercalcemia of malignancy. Because the calcium-sensing receptor (CaR) is a determinant of calcium-regulated hormone secretion, we examined whether HEK cells stably transfected with human CaR secreted PTHrP in response to CaR stimulation. Increases in [Ca(2+)](o) or neomycin and Gd(3+) all substantially increased PTHrP secretion in CaR-HEK cells but had no effect on nontransfected cells. CaR activation likewise increased PTHrP transcripts. PD-098059 and U-0126, inhibitors of the mitogen-activated protein kinase kinase MEK1/2, abolished CaR-stimulated secretion but had no effect on basal secretion. An inhibitor of p38 MAP kinase, SB-203580, also attenuated CaR-stimulated secretion. Western analysis revealed that CaR activation caused a robust increase in MEK1/2 and p38 MAP kinase phosphorylation. A Src family kinase inhibitor, PP2, blocked both basal and CaR-stimulated secretion. We conclude that CaR specifically mediates the effect of increasing [Ca(2+)](o) on PTHrP synthesis and secretion and that activated MEK1/2 and p38 MAP kinases are determinants of the CaR's stimulation of PTHrP secretion.
Collapse
Affiliation(s)
- R John MacLeod
- Endocrine-Hypertension Division and Membrane Biology Program, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115,USA.
| | | | | |
Collapse
|
186
|
|
187
|
Jiang YF, Zhang Z, Kifor O, Lane CR, Quinn SJ, Bai M. Protein kinase C (PKC) phosphorylation of the Ca2+ o-sensing receptor (CaR) modulates functional interaction of G proteins with the CaR cytoplasmic tail. J Biol Chem 2002; 277:50543-9. [PMID: 12409307 DOI: 10.1074/jbc.m205798200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) activates Ca(2+) influx independent of the release of intracellular Ca(2+) stores. The latter can be negatively regulated by protein kinase C (PKC) through phosphorylation of Thr-888 of the CaR. In this study, we substituted Thr-888 with various amino acid residues or a stop codon to understand how PKC phosphorylation of the CaR inhibits receptor-mediated release of intracellular Ca(2+) stores. Substitutions of Thr-888 with hydrophobic and hydrophilic amino acid residues had various effects on CaR-mediated release of intracellular Ca(2+) stores as well as activation of Ca(2+) influx. Several point mutations, such as T888D, had marked negative effects on CaR-mediated release of intracellular Ca(2+) stores but not on phorbol myristate acetate-insensitive activation of Ca(2+) influx. Presumably, the negatively charged aspartate mimics phospho-threonine. Interestingly, truncating the receptor at 888 had an even more pronounced negative effect on CaR-elicited release of intracellular Ca(2+) stores without significantly affecting CaR-mediated activation of Ca(2+) influx. Therefore, truncation at position 888 of the CaR affects the activity of the receptor in a manner that resembles PKC phosphorylation of the CaR. This in turn suggests that PKC phosphorylation of the CaR prevents G protein subtypes from interacting with the region of the receptor critical for releasing Ca(2+) stores, which is missing in the truncated receptor.
Collapse
Affiliation(s)
- Yong-Feng Jiang
- Endocrine-Hypertension Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
188
|
Yamaguchi T, Yamauchi M, Sugimoto T, Chauhan D, Anderson KC, Brown EM, Chihara K. The extracellular calcium Ca2+o-sensing receptor is expressed in myeloma cells and modulates cell proliferation. Biochem Biophys Res Commun 2002; 299:532-8. [PMID: 12459170 DOI: 10.1016/s0006-291x(02)02690-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The calcium-sensing receptor (CaR) is a G protein-coupled receptor that plays key roles in extracellular calcium ion (Ca(2+)(o)) homeostasis by enabling parathyroid, kidney, and other cells to directly "sense" changes in Ca(2+)(o). In multiple myeloma-associated bone disease, myeloma cells could raise the level of Ca(2+)(o) within their immediate vicinity in the bone marrow microenvironment, through their known capacity to cause bone destruction by stimulating osteoclastic bone resorption. Thus if myeloma cells expressed the CaR, they might sense these locally elevated levels of Ca(2+)(o), which could, in turn, potentially modify their function(s) in ways that could contribute to myeloma bone disease or other aspects of the pathophysiology of this disabling hematological malignancy. In this study, we examined the expression of the CaR in three myeloma cell lines, human U266, IM-9, and RPMI8226 cells. CaR protein was present in all three cell lines as assessed by immunocytochemistry and Western blot analysis using a monoclonal antibody specific for the CaR. Moreover, the use of reverse transcription-polymerase chain reaction (RT-PCR) with CaR-specific primers, followed by nucleotide sequencing of the amplified products, also identified CaR transcripts in the three cell lines. Exposure to known polycationic agonists of the CaR, including high Ca(2+)(o) (2.5mM), neomycin, and gadolinium (Gd(3+)) as well as a specific CaR activator, NPS R467, augmented cell proliferation in all three cell lines. RT-PCR revealed that U266 cells, but not IM-9 cells or RPMI8226 cells, expressed interleukin-6 (IL-6), the expression of which was not enhanced by treatments with CaR agonists. Therefore, taken together, our data first document the fact that the myeloma cell lines, U266, IM-9, and RPMI8226, all express CaR protein and mRNA. Moreover, the CaR expressed on myeloma cells could sense the locally high levels of Ca(2+)(o) in the vicinity of sites of osteoclastic bone resorption and stimulate their proliferation in an IL-6-independent manner. These processes may result in promoting further growth of the tumor and aggravating the associated bone disease.
Collapse
Affiliation(s)
- Toru Yamaguchi
- Department of Internal Medicine, Takatsuki General Hospital, 1-3-13 Kosobe-cho, Takatsuki 569-1192, Japan.
| | | | | | | | | | | | | |
Collapse
|
189
|
Yamauchi M, Sugimoto T, Yamaguchi T, Yano S, Wang J, Bai M, Brown EM, Chihara K. Familial hypocalciuric hypercalcemia caused by an R648stop mutation in the calcium-sensing receptor gene. J Bone Miner Res 2002; 17:2174-82. [PMID: 12469911 DOI: 10.1359/jbmr.2002.17.12.2174] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, we report an 84-year-old female proband in a Japanese family with familial hypocalciuric hypercalcemia (FHH) caused by an R648stop mutation in the extracellular calcium-sensing receptor (CaR) gene. At the age of 71 years, she presented with hypercalcemia (11.4 mg/dl), hypocalciuria (Cca/Ccr = 0.003), hypermagnesemia (2.9 mg/dl), and a high-serum parathyroid hormone (PTH) level (midregion PTH, 3225 [160-520] pg/ml). At the age of 74 years, a family screening was carried out and revealed a total of 9 hypercalcemic individuals (all intact PTH values <62 pg/dl) among 17 family members tested, thus, being diagnosed as FHH. Two and one-half of three clearly enlarged parathyroid glands were resected, because persistently high PTH levels (intact PTH, 292 pg/ml; midregion PTH, 5225 pg/ml) and the presence of a markedly enlarged parathyroid gland by several imaging modalities (ultrasonography, computed tomography [CT], magnetic resonance imaging [MRI], and subtraction scintigraphy) suggested coexistent primary hyperparathyroidism (pHPT); however, hypercalcemia persisted postoperatively. Histological and immunohistochemical examination revealed that the resected parathyroid glands showed lipohyperplasia as well as normally expressed Ki67, vitamin D receptor (VDR), and the CaR. Sequence analysis disclosed that the proband and all affected family members had a heterozygous nonsense (R648stop) mutation in the CaR gene. This mutation is located in the first intracellular loop; thus, it would be predicted to produce a truncated CaR having only one transmembrane domain (TMD) and lacking its remaining TMDs, intracellular loops, and C-terminal tail. Western analysis of biotinylated HEK293 cells transiently transfected with this mutant receptor showed cell surface expression of the truncated protein at a level comparable with that of the wild-type CaR. The mutant receptor, however, exhibited no increase in intracellular free calcium concentration (Ca2+i) when exposed to high extracellular calcium concentrations (Ca2+o). The proband's clinical course was complicated because of associated renal tubular acidosis (RTA) and nephrotic syndrome. However, it was unclear whether their association affected the development of elevated serum PTH and parathyroid gland enlargement. This report is the first to show that an R648stop CaR mutation yields a truncated receptor that is expressed on the cell surface but is devoid of biological activity, resulting in FHH.
Collapse
Affiliation(s)
- Mika Yamauchi
- Division of Endocrinology/Metabolism, Neurology, and Hematology/Oncology, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Hu J, Reyes-Cruz G, Chen W, Jacobson KA, Spiegel AM. Identification of acidic residues in the extracellular loops of the seven-transmembrane domain of the human Ca2+ receptor critical for response to Ca2+ and a positive allosteric modulator. J Biol Chem 2002; 277:46622-31. [PMID: 12297503 PMCID: PMC3425642 DOI: 10.1074/jbc.m207100200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the role of the eight acidic residues in the extracellular loops (exo-loops) of the seven-transmembrane domain of the human Ca(2+) receptor (hCaR) in receptor activation by Ca(2+) and in response to a positive allosteric modulator, NPS R-568. Both in the context of the full-length receptor and of a truncated receptor lacking the extracellular domain (Rho-C-hCaR), we mutated each acidic residue to alanine, singly and in combination, and tested the effect on expression of the receptor, on activation by Ca(2+), and on NPS R-568 augmentation of sensitivity to Ca(2+). Of the eight acidic residues, mutation of any of three in exo-loop 2, Asp(758), Glu(759), and Glu(767), increased the sensitivity of both the full-length hCaR and of Rho-C-hCaR to activation by Ca(2+). Mutation of all five acidic residues in exo-loop 2, whether in the full-length receptor or in Rho-C-hCaR, impaired cell surface expression of the mutant receptor and thereby largely abolished response to Ca(2+). Mutation of Glu(837) in exo-loop 3 to alanine did not alter Ca(2+) sensitivity of the full-length receptor, but in both the latter context and in Rho-C-hCaR, alanine substitution of Glu(837) drastically reduced sensitivity to NPS R-568. Our data point to a key role of three specific acidic residues in exo-loop 2 in hCaR activation and to Glu(837) at the junction between exo-loop 3 and transmembrane helix seven in response to NPS R-568. We speculate on the basis of these results that the three acidic residues we identified in exo-loop 2 help maintain an inactive conformation of the seven-transmembrane domain of the hCaR.
Collapse
Affiliation(s)
- Jianxin Hu
- Molecular Pathophysiology Section, NIDCD, National Institutes of Health, Bethesda, Maryland 20892
| | - Guadalupe Reyes-Cruz
- Molecular Pathophysiology Section, NIDCD, National Institutes of Health, Bethesda, Maryland 20892
| | - Wangzhong Chen
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Allen M. Spiegel
- Molecular Pathophysiology Section, NIDCD, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
191
|
Pi M, Spurney RF, Tu Q, Hinson T, Quarles LD. Calcium-sensing receptor activation of rho involves filamin and rho-guanine nucleotide exchange factor. Endocrinology 2002; 143:3830-8. [PMID: 12239094 DOI: 10.1210/en.2002-220240] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We investigated the role of Galphaq, filamin, Rho, the RhoGEF Lbc, and the C terminus of calcium-sensing receptor (CasR) in CasR signaling. We found that Ca(2+), Mg(2+), or the calcimimetic R isomer of N-(3-[2-chlorophenyl]propyl)-(R)-alpha-methyl-3-methoxybenzylamine (NPS-R568) stimulated serum response element (SRE) activity human embryonic kidney 293 cells transfected with CasR and an SRE-luciferase reporter construct. Coexpression of either the dominant negative Galphaq(305-359) minigene, regulators of G protein signaling (RGS)2 or RGS4, inhibited CasR-stimulated SRE activity, consistent with CasR activation of Galphaq. The cytoskeletal associated Rho protein is involved CasR activation of SRE, as evidenced by CasR-mediated increase in membrane-associated Rho A and by the ability of Clostridium botulinum C3 (C3) exoenzyme to inhibit both CasR and GalphaqQL-stimulated SRE activity. Overexpression of the RhoGEF Lbc, lacking either the Dbl-homology or Pleckstrin homology domain, as well as the filamin peptide (1530-1875) inhibited CasR-mediated activation of SRE. A carboxyl-terminal CasR minigene, CasR(906-980), encoding a filamin binding region, also blocked CasR- and GalphaqQL-stimulated SRE activity. Potential interactions between CasR, RhoGEF Lbc, Rho A, Galphaq, and filamin were demonstrated by reciprocal coimmunoprecipitation studies. Our results suggest that the C terminus of CasR may interact with filamin to create a cytoskeletal scaffold necessary for the spatial organization of Galphaq, RhoGEF Lbc, and Rho signaling pathways upstream of SRE activation.
Collapse
Affiliation(s)
- Min Pi
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
192
|
Zhang Z, Jiang Y, Quinn SJ, Krapcho K, Nemeth EF, Bai M. L-phenylalanine and NPS R-467 synergistically potentiate the function of the extracellular calcium-sensing receptor through distinct sites. J Biol Chem 2002; 277:33736-41. [PMID: 12114500 DOI: 10.1074/jbc.m200978200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) can be potentiated by allosteric activators including calcimimetics and l-amino acids. In this study, we found that many mutations had differential effects on the functional modulation of the CaR by these two allosteric activators, supporting the idea that these modulators act through distinct sites. 10 mm l-phenylalanine and 1 microm NPS R-467, submaximal doses of the two agents, each elicited similar modulation of R185Q. However, there are different relative potencies for these two modulators with some receptors being more responsive to l-phenylalanine and others being more responsive to NPS R-467. The responsiveness of the CaR to Ca(2+)(o) appears to be essential to observe the potentiating action of l-phenylalanine but not of NPS R-467 on the receptor. NPS R-467 reduces the Hill coefficients of the wild-type as well as mutant receptors, suggesting that engagement of all Ca(2+) binding sites is not required when the receptor is activated by NPS R-467. In contrast, l-phenylalanine has little effect on the Hill coefficients of mutant receptors. The two-site model is further supported by the observation that these two classes of modulators exert a synergistic effect on CaRs with inactivating mutations that are responsive to both modulators.
Collapse
Affiliation(s)
- Zaixiang Zhang
- Department of Medicine, Endocrine-Hypertension Division, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
193
|
Zhang Z, Qiu W, Quinn SJ, Conigrave AD, Brown EM, Bai M. Three adjacent serines in the extracellular domains of the CaR are required for L-amino acid-mediated potentiation of receptor function. J Biol Chem 2002; 277:33727-35. [PMID: 12095982 DOI: 10.1074/jbc.m200976200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) is a key player in Ca(2+)(o) homeostasis. The activity of CaR can be potentiated by various l-amino acids. In this study, we examined whether conserved amino acid residues involved in the binding of glutamate to metabotropic glutamate receptors (mGluRs) also participate in the potentiation of the activity of CaR by l-phenylalanine. Ser-170 corresponding to Thr-188 in rat mGluR1a appears to be important for the modulating actions of phenylalanine. In the presence of phenylalanine, a mutant CaR with a single mutation S170A showed no significant decrease in its EC(50) for stimulation by Ca(2+)(o) and a modest increase in its maximal activity. In addition, mutating Ser-169 and Ser-171 together with Ser-170 yielded a more complete block of the phenylalanine modulation than did the single mutation. The presence of the triple mutation, S169A/S170A/S171A, also eliminated phenylalanine potentiation of the activities of heterodimeric receptors in which one of the monomeric receptors had intact triple serines (A877Stop). The putative amino acid binding site of the CaR is probably close to or structurally dependent on the Ca(2+)(o) binding sites of the receptor, because mutant CaRs with mutations in the putative amino acid binding site exhibited severely reduced responses to Ca(2+)(o).
Collapse
Affiliation(s)
- Zaixiang Zhang
- Department of Medicine, Endocrine-Hypertension Division, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
194
|
Zhu CC, Cook LB, Hinkle PM. Dimerization and phosphorylation of thyrotropin-releasing hormone receptors are modulated by agonist stimulation. J Biol Chem 2002; 277:28228-37. [PMID: 12023974 DOI: 10.1074/jbc.m204221200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dimerization and phosphorylation of thyrotropin-releasing hormone (TRH) receptors was characterized using HEK293 and pituitary GHFT cells expressing epitope-tagged receptors. TRH receptors tagged with FLAG and hemagglutinin epitopes were co-precipitated only if they were co-expressed, and 10-30% of receptors were isolated as hemagglutinin/FLAG-receptor dimers under basal conditions. The abundance of receptor dimers was increased when cells had been stimulated by TRH, indicating that TRH either stabilizes pre-existing dimers or increases dimer formation. TRH increased receptor dimerization and phosphorylation within 1 min in a dose-dependent manner. TRH increased phosphorylation of both receptor monomers and dimers, documented by incorporation of (32)P and an upshift in receptor mobility reversed by phosphatase treatment. The ability of TRH to increase receptor phosphorylation and dimerization did not depend on signal transduction, because it was not inhibited by the phospholipase C inhibitor. Receptor phosphorylation required an agonist but was not blocked by the casein kinase II inhibitor apigenin, the protein kinase C inhibitor GF109203X, or expression of a dominant negative form of G protein-coupled receptor kinase 2. TRH receptors lacking most of the cytoplasmic carboxyl terminus formed dimers constitutively but failed to undergo agonist-induced dimerization and phosphorylation. TRH also increased phosphorylation and dimerization of TRH receptors expressed in GHFT pre-lactotroph cells.
Collapse
Affiliation(s)
- Chang-Cheng Zhu
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
195
|
Hu J, Mora S, Colussi G, Proverbio MC, Jones KA, Bolzoni L, De Ferrari ME, Civati G, Spiegel AM. Autosomal dominant hypocalcemia caused by a novel mutation in the loop 2 region of the human calcium receptor extracellular domain. J Bone Miner Res 2002; 17:1461-9. [PMID: 12162500 DOI: 10.1359/jbmr.2002.17.8.1461] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report a novel missense mutation N124K in the extracellular calcium receptor (CaR) identified in two related subjects with the phenotypic features of autosomal dominant hypocalcemia (ADH). Expression of the N124K mutant receptor created by site-directed mutagenesis and transfected into HEK-293 cells was comparable with that of the wild-type (WT) receptor and two other mutant receptors N118K and L125P identified in subjects with ADH. Functional characterization by the extracellular Ca2+ ion ([Ca2+]0)-stimulated phosphoinositide (PI) hydrolysis in transfected HEK-293 cells showed that the N124K mutant receptor was left-shifted in Ca2+ sensitivity. This biochemical gain-of-function is comparable with that seen in other missense mutations of the CaR identified in subjects with ADH. We tested a series of missense substitutions (R, Q, E, and G) in addition to K for N124 and found that only the N124K mutation and to a much lesser extent N124R caused a left shift in Ca2+ sensitivity. Thus, a specific substitution, not merely a mutation of the N124 residue, is required for receptor activation. The N124K mutation is one of eight naturally occurring mutations in subjects with ADH identified in a short segment A116-C129 of the CaR extracellular domain (ECD). We present a hypothesis to explain receptor activation by mutations in this region based on the recently described three-dimensional structure of the related metabotropic glutamate type 1 receptor (mGluR1).
Collapse
Affiliation(s)
- Jianxin Hu
- Molecular Pathophysiology Section, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Miyashiro K, Hauache OM. Mutações do Gene do Receptor Sensível ao Cálcio Extracelular e Suas Doenças Associadas. ACTA ACUST UNITED AC 2002. [DOI: 10.1590/s0004-27302002000400012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
O receptor sensível ao cálcio extracelular (CaR) é um receptor acoplado à proteína G (GPCR), que exerce um papel essencial na regulação da homeostase do cálcio extracelular. O CaR encontra-se expresso em todos os tecidos relacionados com o controle desta homeostase (paratiróides, células C tiroideanas, rins, intestino e ossos). Logo após a clonagem do CaR, mutações inativadoras e ativadoras do gene deste receptor foram associadas com doenças genéticas humanas: hipercalcemia hipocalciúrica familiar (FHH) e hiperparatiroidismo neonatal severo (NSHPT) são causados por mutações inativadoras do gene do CaR, enquanto que a hipocalcemia autossômica dominante é resultante de mutações ativadoras do gene do CaR. Apesar de raras, tais doenças devem ser consideradas no diagnóstico diferencial de distúrbios hipercalcêmicos e hipocalcêmicos. O reconhecimento do papel fundamental do CaR na manutenção da homeostase do cálcio extracelular motivou o desenvolvimento de drogas capazes de modular a função do CaR, ativando-o (drogas calcimiméticas) ou inativando-o (drogas calciolíticas). Tais drogas têm uma implicação terapêutica potencial, como o controle clínico de casos específicos de hiperparatiroidismo primário e urêmico com o uso de drogas calcimiméticas e um tratamento promissor para osteoporose com o uso de drogas calciolíticas.
Collapse
|
197
|
Mellado M, Martínez-A C, Rodríguez-Frade JM. Analysis of G-protein-coupled receptor dimerization following chemokine signaling. Methods 2002; 27:349-57. [PMID: 12217651 DOI: 10.1016/s1046-2023(02)00093-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
An abundance of information has been generated in recent decades on the signaling events triggered through G-protein-coupled receptors (GPCRs). Nonetheless, the structural changes at the cell surface that provoke receptor activation are only now beginning to be understood. It is becoming clear that receptors are not isolated entities that are activated following ligand binding, but that they interact with other molecules already present or recruited to the vicinity, which results in a wide variety of new signaling possibilities. Understanding receptor interactions with relatives and/or friends on the cell surface is thus critical. The most important point is to determine which of these interactions are "casual" and which give rise to functional consequences.
Collapse
Affiliation(s)
- Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnologi;a, CSIC-Universidad Autónoma de Madrid, Campus de Cantoblanco, Spain
| | | | | |
Collapse
|
198
|
Nearing J, Betka M, Quinn S, Hentschel H, Elger M, Baum M, Bai M, Chattopadyhay N, Brown EM, Hebert SC, Harris HW. Polyvalent cation receptor proteins (CaRs) are salinity sensors in fish. Proc Natl Acad Sci U S A 2002; 99:9231-6. [PMID: 12093923 PMCID: PMC123123 DOI: 10.1073/pnas.152294399] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To determine whether calcium polyvalent cation-sensing receptors (CaRs) are salinity sensors in fish, we used a homology-based cloning strategy to isolate a 4.1-kb cDNA encoding a 1,027-aa dogfish shark (Squalus acanthias) kidney CaR. Expression studies in human embryonic kidney cells reveal that shark kidney senses combinations of Ca(2+), Mg(2+), and Na(+) ions at concentrations present in seawater and kidney tubules. Shark kidney is expressed in multiple shark osmoregulatory organs, including specific tubules of the kidney, rectal gland, stomach, intestine, olfactory lamellae, gill, and brain. Reverse transcriptase-PCR amplification using specific primers in two teleost fish, winter flounder (Pleuronectes americanus) and Atlantic salmon (Salmo salar), reveals a similar pattern of CaR tissue expression. Exposure of the lumen of winter flounder urinary bladder to the CaR agonists, Gd(3+) and neomycin, reversibly inhibit volume transport, which is important for euryhaline teleost survival in seawater. Within 24-72 hr after transfer of freshwater-adapted Atlantic salmon to seawater, there are increases in their plasma Ca(2+), Mg(2+), and Na(+) that likely serve as a signal for internal CaRs, i.e., brain, to sense alterations in salinity in the surrounding water. We conclude that CaRs act as salinity sensors in both teleost and elasmobranch fish. Their tissue expression patterns in fish provide insights into CaR functions in terrestrial animals including humans.
Collapse
|
199
|
Abstract
Changes in extracellular calcium (Ca(2+)o) concentration ([Ca2+]o) affect kidney function both under basal and hormone-stimulated conditions. The molecular identification of an extracellular Ca(2+)-sensing receptor (CaR) has confirmed a direct role of Ca(2+)o on parathyroid and kidney function (i.e. independent of calciotropic hormones) as a modulator of Ca2+ homeostasis. In addition, evidence accumulated over the last 10 years has shown that CaR is also expressed in regions outside the calcium homeostatic system where its role is largely undefined but seems to be linked to regulation of local ionic homeostasis. The parathyroid and kidney CaRs are 1081 and 1079 amino acids long, respectively, and belong to the type III family of G protein-coupled receptors (GPCRs), which includes other CaRs, metabotropic glutamate receptors and putative vomeronasal organ receptors. For the CaR, its low (millimolar) affinity for Ca2+, its positive cooperativity and its large ion-sensing extracellular domain, indicate that the receptor is more sensitive to changes in net cationic charge rather than to a specific ligand. Mg2+, trivalent cations of the lanthanide series and polyvalent cations such as spermine and aminoglycoside antibiotics can all activate the receptor in vitro with EC50 values in the micromolar range for trivalent and polyvalent cations or in the millimolar range for Ca2+ and Mg2+. In addition to true CaR agonists, CaR sensitivity to Ca(2+)o is also susceptible to allosteric modulation by ionic strength, L-amino acids and by pharmacological agents. This review will address endogenous and exogenous CaR agonists, the role of the receptor in the calcium homeostatic system and some speculation on possible role(s) of the CaR in regions not involved in mineral ion homeostasis.
Collapse
|
200
|
Sato K, Hasegawa Y, Nakae J, Nanao K, Takahashi I, Tajima T, Shinohara N, Fujieda K. Hydrochlorothiazide effectively reduces urinary calcium excretion in two Japanese patients with gain-of-function mutations of the calcium-sensing receptor gene. J Clin Endocrinol Metab 2002; 87:3068-73. [PMID: 12107202 DOI: 10.1210/jcem.87.7.8639] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Gain-of-function mutations of the calcium-sensing receptor (CaR) gene cause autosomal dominant and/or sporadic hypocalcemia with hypercalciuria. Because treatment of the hypocalcemia with vitamin D and/or calcium in patients with such mutations results in increased hypercalciuria, nephrocalcinosis, and renal impairment, its use should be limited to alleviating the symptoms of symptomatic patients. Because thiazide diuretics have been successfully used to treat patients with hypercalciuria and hypoparathyroidism, they are theoretically useful in reducing urine calcium excretion and maintaining serum calcium levels in patients with gain-of-function mutations of the CaR gene. In this study, we report on the clinical course, molecular analysis, and effects of hydrochlorothiazide therapy in two Japanese patients with gain-of-function mutations of the CaR gene. Within a few weeks after birth, they developed generalized tonic seizures due to hypocalcemia (serum calcium values: 1.1 mmol/liter and 1.3 mmol/liter, respectively). Despite treatment with the standard dose of 1,25-dihydroxyvitamin D(3) in one patient and 1alpha-hydroxyvitamin D(3) in the other, acceptable serum calcium levels near the lower limit of normal were not established, and their urinary calcium excretion inappropriately increased. Addition of hydrochlorothiazide (1 mg/kg) reduced their urinary calcium excretion and maintained their serum calcium concentrations near the lower limit of normal, allowing the 1,25-dihydroxyvitamin D(3) and 1alpha-hydroxyvitamin D(3) doses to be reduced, and it alleviated their symptoms. A heterozygous missense mutation was identified in both patients. In one patient, the mutation was A843E in the seventh transmembrane domain of the CaR, and in the other it was L125P in the N-terminal extracellular domain. In vitro transient transfection of their mutant CaR cDNAs into HEK293 cells shifted the concentration-response curve of Ca(2+) to the left. In conclusion, two sporadic cases of hypercalciuric hypocalcemia were due to de novo gain-of-function mutations of the CaR gene. Hydrochlorothiazide with vitamin D(3) successfully reduced the patients' urinary calcium excretion and controlled their serum calcium concentrations and symptoms. Thiazide diuretics are effective in patients with gain-of function mutations of the CaR gene.
Collapse
Affiliation(s)
- Kohei Sato
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo 060-0835, Japan
| | | | | | | | | | | | | | | |
Collapse
|