151
|
Stan T, Brix J, Schneider-Mergener J, Pfanner N, Neupert W, Rapaport D. Mitochondrial protein import: recognition of internal import signals of BCS1 by the TOM complex. Mol Cell Biol 2003; 23:2239-50. [PMID: 12640110 PMCID: PMC150725 DOI: 10.1128/mcb.23.7.2239-2250.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BCS1, a component of the inner membrane of mitochondria, belongs to the group of proteins with internal, noncleavable import signals. Import and intramitochondrial sorting of BCS1 are encoded in the N-terminal 126 amino acid residues. Three sequence elements were identified in this region, namely, the transmembrane domain (amino acid residues 51 to 68), a presequence type helix (residues 69 to 83), and an import auxiliary region (residues 84 to 126). The transmembrane domain is not required for stable binding to the TOM complex. The Tom receptors (Tom70, Tom22 and Tom20), as determined by peptide scan analysis, interact with the presequence-like helix, yet the highest binding was to the third sequence element. We propose that the initial recognition of BCS1 precursor at the surface of the organelle mainly depends on the auxiliary region and does not require the transmembrane domain. This essential region represents a novel type of signal with targeting and sorting functions. It is recognized by all three known mitochondrial import receptors, demonstrating their capacity to decode various targeting signals. We suggest that the BCS1 precursor crosses the TOM complex as a loop structure and that once the precursor emerges from the TOM complex, all three structural elements are essential for the intramitochondrial sorting to the inner membrane.
Collapse
Affiliation(s)
- Tincuta Stan
- Institut für Physiologische Chemie der Universität München, D-81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
152
|
Bauer MF, Hofmann S, Neupert W. Import of mitochondrial proteins. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 53:57-90. [PMID: 12512337 DOI: 10.1016/s0074-7742(02)53004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Matthias F Bauer
- Institute of Clinical Chemistry, Molecular Diagnostics and Mitochondrial Genetics and Diabetes Research Group, Academic Hospital Munich-Schwabing Kölner Platz, D-80804 München, Germany
| | | | | |
Collapse
|
153
|
Wiedemann N, Kozjak V, Prinz T, Ryan MT, Meisinger C, Pfanner N, Truscott KN. Biogenesis of yeast mitochondrial cytochrome c: a unique relationship to the TOM machinery. J Mol Biol 2003; 327:465-74. [PMID: 12628251 DOI: 10.1016/s0022-2836(03)00118-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The import of cytochrome c into the mitochondrial intermembrane space is not understood at a mechanistic level. While the precursor apocytochrome c can insert into protein-free lipid bilayers, the purified translocase of the outer membrane (TOM) complex supports the translocation of apocytochrome c into proteoliposomes. We report an in organello analysis of cytochrome c import into yeast mitochondria from wild-type cells and different mutants cells, each defective in one of the seven Tom proteins. The import of cytochrome c is not affected by removal of the receptor Tom20 or Tom70. Moreover, neither the transfer protein Tom5 nor the assembly factors Tom6 and Tom7 are needed for import of cytochrome c. When the general import pore (GIP)-protein Tom40 is blocked, the import of cytochrome c is moderately affected. Mitochondria lacking the central receptor and organizing protein Tom22 contain greatly reduced levels of cytochrome c. We conclude that up to two components of the TOM complex, Tom22 and possibly the GIP, are involved in the biogenesis of cytochrome c.
Collapse
Affiliation(s)
- Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, Germany
| | | | | | | | | | | | | |
Collapse
|
154
|
Rehling P, Pfanner N, Meisinger C. Insertion of hydrophobic membrane proteins into the inner mitochondrial membrane--a guided tour. J Mol Biol 2003; 326:639-57. [PMID: 12581629 DOI: 10.1016/s0022-2836(02)01440-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Only a few mitochondrial proteins are encoded by the organellar genome. The majority of mitochondrial proteins are nuclear encoded and thus have to be transported into the organelle from the cytosol. Within the mitochondrion proteins have to be sorted into one of the four sub-compartments: the outer or inner membranes, the intermembrane space or the matrix. These processes are mediated by complex protein machineries within the different compartments that act alone or in concert with each other. The translocation machinery of the outer membrane is formed by a multi-subunit protein complex (TOM complex), that is built up by signal receptors and the general import pore (GIP). The inner membrane houses two multi-subunit protein complexes that each handles special subsets of mitochondrial proteins on their way to their final destination. According to their primary function these two complexes have been termed the pre-sequence translocase (or TIM23 complex) and the protein insertion complex (or TIM22 complex). The identification of components of these complexes and the analysis of the molecular mechanisms underlying their function are currently an exciting and fast developing field of molecular cell biology.
Collapse
Affiliation(s)
- Peter Rehling
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
155
|
|
156
|
Young JC, Hoogenraad NJ, Hartl FU. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 2003; 112:41-50. [PMID: 12526792 DOI: 10.1016/s0092-8674(02)01250-3] [Citation(s) in RCA: 640] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The role of cytosolic factors in protein targeting to mitochondria is poorly understood. Here, we show that in mammals, the cytosolic chaperones Hsp90 and Hsp70 dock onto a specialized TPR domain in the import receptor Tom70 at the outer mitochondrial membrane. This interaction serves to deliver a set of preproteins to the receptor for subsequent membrane translocation dependent on the Hsp90 ATPase. Disruption of the chaperone/Tom70 recognition inhibits the import of these preproteins into mitochondria. In yeast, Hsp70 rather than Hsp90 is used in import, and Hsp70 docking is required for the formation of a productive preprotein/Tom70 complex. We outline a novel mechanism in which chaperones are recruited for a specific targeting event by a membrane-bound receptor.
Collapse
Affiliation(s)
- Jason C Young
- Cellular Biochemistry, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | | | | |
Collapse
|
157
|
Geissler A, Chacinska A, Truscott KN, Wiedemann N, Brandner K, Sickmann A, Meyer HE, Meisinger C, Pfanner N, Rehling P. The mitochondrial presequence translocase: an essential role of Tim50 in directing preproteins to the import channel. Cell 2002; 111:507-18. [PMID: 12437924 DOI: 10.1016/s0092-8674(02)01073-5] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mitochondrial proteins with N-terminal targeting signals are transported across the inner membrane via the presequence translocase, which consists of membrane-integrated channel proteins and the matrix Hsp70 import motor. It has not been known how preproteins are directed to the import channel. We have identified the essential protein Tim50, which exposes its major domain to the intermembrane space. Tim50 interacts with preproteins in transit and directs them to the channel protein Tim23. Inactivation of Tim50 strongly inhibits the import of preproteins with a classical matrix-targeting signal, while preproteins carrying an additional inner membrane-sorting signal do not strictly depend on Tim50. Thus, Tim50 is crucial for guiding the precursors of matrix proteins to their insertion site in the inner membrane.
Collapse
Affiliation(s)
- Andreas Geissler
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Johnston AJ, Hoogenraad J, Dougan DA, Truscott KN, Yano M, Mori M, Hoogenraad NJ, Ryan MT. Insertion and assembly of human tom7 into the preprotein translocase complex of the outer mitochondrial membrane. J Biol Chem 2002; 277:42197-204. [PMID: 12198123 DOI: 10.1074/jbc.m205613200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tom7 is a component of the translocase of the outer mitochondrial membrane (TOM) and assembles into a general import pore complex that translocates preproteins into mitochondria. We have identified the human Tom7 homolog and characterized its import and assembly into the mammalian TOM complex. Tom7 is imported into mitochondria in a nucleotide-independent manner and is anchored to the outer membrane with its C terminus facing the intermembrane space. Unlike studies in fungi, we found that human Tom7 assembles into an approximately 120-kDa import intermediate in HeLa cell mitochondria. To detect subunits within this complex, we employed a novel supershift analysis whereby mitochondria containing newly imported Tom7 were incubated with antibodies specific for individual TOM components prior to separation by blue native electrophoresis. We found that the 120-kDa complex contains Tom40 and lacks receptor components. This intermediate can be chased to the stable approximately 380-kDa mammalian TOM complex that additionally contains Tom22. Overexpression of Tom22 in HeLa cells results in the rapid assembly of Tom7 into the 380-kDa complex indicating that Tom22 is rate-limiting for TOM complex formation. These results indicate that the levels of Tom22 within mitochondria dictate the assembly of TOM complexes and hence may regulate its biogenesis.
Collapse
Affiliation(s)
- Amelia J Johnston
- Department of Biochemistry, La Trobe University, 3086 Melbourne, Australia
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Vial S, Lu H, Allen S, Savory P, Thornton D, Sheehan J, Tokatlidis K. Assembly of Tim9 and Tim10 into a functional chaperone. J Biol Chem 2002; 277:36100-8. [PMID: 12138093 DOI: 10.1074/jbc.m202310200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TIM10 complex is localized in the mitochondrial intermembrane space and mediates insertion of hydrophobic proteins at the inner membrane. We have characterized TIM10 assembly and analyzed the structural properties of its subunits, Tim9 and Tim10. Both proteins are alpha-helical with a protease-resistant central domain, and each self-associates to form mainly dimers and trimers in solution. Tim9 and Tim10 bound to one another with submicromolar affinity in equimolar amounts and assembled in a stable, significantly extended complex that was indistinguishable from the native mitochondrial TIM10 complex. Importantly, the reconstituted TIM10 complex is functional because it bound to the physiological substrate ADP/ATP carrier and displayed chaperone activity in refolding the model substrate firefly luciferase. These data demonstrate that the individual subunits can exist as independent, dynamically self-associating proteins. Assembly into the thermodynamically stable hexameric complex is necessary for the TIM10 chaperone function.
Collapse
Affiliation(s)
- Sarah Vial
- School of Biological Sciences and The Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
160
|
Endo T, Kohda D. Functions of outer membrane receptors in mitochondrial protein import. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:3-14. [PMID: 12191763 DOI: 10.1016/s0167-4889(02)00259-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most mitochondrial proteins are synthesized in the cytosol as precursor proteins and are imported into mitochondria. The targeting signals for mitochondria are encoded in the presequences or in the mature parts of the precursor proteins, and are decoded by the receptor sites in the translocator complex in the mitochondrial outer membrane. The recently determined NMR structure of the general import receptor Tom20 in a complex with a presequence peptide reveals that, although the amphiphilicity and positive charges of the presequence is essential for the import ability of the presequence, Tom20 recognizes only the amphiphilicity, but not the positive charges. This leads to a new model that different features associated with the mitochondrial targeting sequence of the precursor protein can be recognized by the mitochondrial protein import system in different steps during the import.
Collapse
Affiliation(s)
- Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan.
| | | |
Collapse
|
161
|
Abstract
Most mitochondrial proteins are synthesised in the cytosol and must be translocated across one or two membranes to reach their functional destination inside mitochondria. Dynamic protein complexes in the outer and inner membranes function as specific machineries that recognise the various kinds of precursor proteins and promote their translocation through protein-conducting channels. At least three major translocase complexes with a high flexibility and versatility are needed to ensure the proper import of precursor proteins into mitochondria.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany.
| | | |
Collapse
|
162
|
Chacinska A, Pfanner N, Meisinger C. How mitochondria import hydrophilic and hydrophobic proteins. Trends Cell Biol 2002; 12:299-303. [PMID: 12185844 DOI: 10.1016/s0962-8924(02)02310-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Most mitochondrial proteins are nuclear encoded and have to be transported into the organelle after synthesis on cytosolic ribosomes. Three multimeric protein complexes have been identified that import precursor proteins destined for the mitochondria: the TOM complex in the outer membrane and two TIM complexes in the inner membrane. Recent work has provided a detailed view of the different mechanisms operating during the import of the two major classes of mitochondrial proteins--hydrophilic proteins with cleavable presequences and hydrophobic proteins with multiple internal signals.
Collapse
Affiliation(s)
- Agnieszka Chacinska
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
163
|
Mukhopadhyay A, Avramova LV, Weiner H. Tom34 unlike Tom20 does not interact with the leader sequences of mitochondrial precursor proteins. Arch Biochem Biophys 2002; 400:97-104. [PMID: 11913975 DOI: 10.1006/abbi.2002.2777] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tom20 and Tom34 are mammalian liver proteins previously identified by others to be components of the mitochondrial import translocation apparatus. It has been shown that Tom20 interacts with the leader sequence of nuclear coded matrix space precursor proteins. Here we show with recombinantly expressed Tom proteins that Tom34 binds the mature portion of the precursor and not the leader. Both these Tom proteins inhibited the import of newly translated precursor of aldehyde dehydrogenase in an in vitro assay. Only Tom20 inhibited the import of a fusion protein of the leader of aldehyde dehydrogenase attached to dihydrofolate reductase. Antibodies against Tom20 coprecipitated both the precursor of aldehyde dehydrogenase (pALDH) and of dihydrofolate reductase (pA-DHFR). Antibodies against Tom34 interacted only when the mature portion of aldehyde dehydrogenase was present. Similar import inhibition patterns were found when other precursor and chimeric constructs we investigated. When Tom34-green fluorescence protein was transfected to HeLa cells it was observed that Tom34 was found through out the cell. It is concluded from our observation that Tom34 is a cytosolic protein, whose role appeared to be to interact with mature portion of some preproteins and may keep them in an unfolded, import compatible state.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, 1153 Biochemistry Building, West Lafayette, Indiana 47907-1153, USA
| | | | | |
Collapse
|
164
|
Koh JY, Hájek P, Bedwell DM. Overproduction of PDR3 suppresses mitochondrial import defects associated with a TOM70 null mutation by increasing the expression of TOM72 in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:7576-86. [PMID: 11604494 PMCID: PMC99929 DOI: 10.1128/mcb.21.22.7576-7586.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most mitochondrial proteins are synthesized with cleavable amino-terminal targeting signals that interact with the mitochondrial import machinery to facilitate their import from the cytosol. We previously reported that the presequence of the F(1)-ATPase beta subunit precursor (pre-F(1)beta) acts as an intramolecular chaperone that maintains the precursor in an import-competent conformation prior to import (P. Hajek, J. Y. Koh, L. Jones, and D. M. Bedwell, Mol. Cell. Biol. 17:7169-7177, 1997). We also found that a mutant form of pre-F(1)beta with a minimal targeting signal (Delta 1,2 pre-F(1)beta) is inefficiently imported into mitochondria because it rapidly folds into an import-incompetent conformation. We have now analyzed the consequences of reducing the pre-F(1)beta targeting signal to a minimal unit in more detail. We found that Delta 1,2 pre-F(1)beta is more dependent upon the Tom70p receptor for import than WT pre-F(1)beta is, resulting in a growth defect on a nonfermentable carbon source at 15 degrees C. Experiments using an in vitro mitochondrial protein import system suggest that Tom70p functions to maintain a precursor containing the Delta 1,2 pre-F(1)beta import signal in an import-competent conformation. We also identified PDR3, a transcriptional regulator of the pleiotropic drug resistance network, as a multicopy suppressor of the mitochondrial import defects associated with Delta 1,2 pre-F(1)beta in a tom70 Delta strain. The overproduction of PDR3 mediated this effect by increasing the import of Delta 1,2 pre-F(1)beta into mitochondria. This increased the mitochondrial ATP synthase activity to the extent that growth of the mutant strain was restored under the selective conditions. Analysis of the transcription patterns of components of the mitochondrial outer membrane import machinery demonstrated that PDR3 overproduction increased the expression of TOM72, a little studied TOM70 homologue. These results suggest that Tom72p possesses overlapping functions with Tom70p and that the pleiotropic drug resistance network plays a previously unappreciated role in mitochondrial biogenesis.
Collapse
Affiliation(s)
- J Y Koh
- Department of Microbiology, University of Alabama at Birmingham, 35294-2170, USA
| | | | | |
Collapse
|
165
|
Abstract
Most mitochondrial proteins are nuclear-encoded and synthesised as preproteins on polysomes in the cytosol. They must be targeted to and translocated into mitochondria. Newly synthesised preproteins interact with cytosolic factors until their recognition by receptors on the surface of mitochondria. Import into or across the outer membrane is mediated by a dynamic protein complex coined the translocase of the outer membrane (TOM). Preproteins that are imported into the matrix or inner membrane of mitochondria require the action of one of two translocation complexes of the inner membrane (TIMs). The import pathway of preproteins is predetermined by their intrinsic targeting and sorting signals. Energy input in the form of ATP and the electrical gradient across the inner membrane is required for protein translocation into mitochondria. Newly imported proteins may require molecular chaperones for their correct folding.
Collapse
Affiliation(s)
- K N Truscott
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
166
|
Affiliation(s)
- T Krimmer
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
167
|
Abstract
Cellular membranes act as semipermeable barriers to ions and macromolecules. Specialized mechanisms of transport of proteins across membranes have been developed during evolution. There are common mechanistic themes among protein translocation systems in bacteria and in eukaryotic cells. Here we review current understanding of mechanisms of protein transport across the bacterial plasma membrane as well as across several organelle membranes of yeast and mammalian cells. We consider a variety of organelles including the endoplasmic reticulum, outer and inner membranes of mitochondria, outer, inner, and thylakoid membranes of chloroplasts, peroxisomes, and lysosomes. Several common principles are evident: (a) multiple pathways of protein translocation across membranes exist, (b) molecular chaperones are required in the cytosol, inside the organelle, and often within the organelle membrane, (c) ATP and/or GTP hydrolysis is required, (d) a proton-motive force across the membrane is often required, and (e) protein translocation occurs through gated, aqueous channels. There are exceptions to each of these common principles indicating that our knowledge of how proteins translocate across membranes is not yet complete.
Collapse
Affiliation(s)
- F A Agarraberes
- Department of Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
168
|
Gordon DM, Wang J, Amutha B, Pain D. Self-association and precursor protein binding of Saccharomyces cerevisiae Tom40p, the core component of the protein translocation channel of the mitochondrial outer membrane. Biochem J 2001; 356:207-15. [PMID: 11336653 PMCID: PMC1221829 DOI: 10.1042/0264-6021:3560207] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The precursor protein translocase of the mitochondrial outer membrane (Tom) is a multi-subunit complex containing receptors and a general import channel, of which the core component is Tom40p. Nuclear-encoded mitochondrial precursor proteins are first recognized by surface receptors and then pass through the import channel. The Tom complex has been purified; however, the protein-protein interactions that drive its assembly and maintain its stability have been difficult to study. Here we show that Saccharomyces cerevisiae Tom40p expressed in bacteria and purified to homogeneity associates efficiently with itself. The self-association is very strong and can withstand up to 4 M urea or 1 M salt. The tight self-association does not require the N-terminal segment of Tom40p. Furthermore, purified Tom40p preferentially recognizes the targeting sequence of mitochondrial precursor proteins. Although the binding of the targeting sequence to Tom40p is inhibited by urea concentrations in excess of 1 M, it is moderately resistant to 1 M salt. Simultaneous self-assembly and precursor protein binding suggest that Tom40p contains at least two different domains mediating these processes. The experimental approach described here should be useful for analysing protein-protein interactions involving individual or groups of components of the mitochondrial import machinery.
Collapse
Affiliation(s)
- D M Gordon
- Department of Physiology, University of Pennsylvania School of Medicine, 3700 Hamilton Walk, D403 Richards Building, Philadelphia, PA 19104-6085, USA
| | | | | | | |
Collapse
|
169
|
Abstract
The vast majority of mitochondrial proteins are synthesized in the cytosol and are imported into mitochondria by protein machineries located in the mitochondrial membranes. It has become clear that hydrophilic as well as hydrophobic preproteins use a common translocase in the outer mitochondrial membrane, but diverge to two distinct translocases in the inner membrane. The translocases are dynamic, high-molecular-weight complexes that have to provide specific means for the recognition of preproteins, channel formation and generation of import-driving forces.
Collapse
Affiliation(s)
- N Pfanner
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany.
| | | |
Collapse
|
170
|
Neve EP, Ingelman-Sundberg M. Identification and characterization of a mitochondrial targeting signal in rat cytochrome P450 2E1 (CYP2E1). J Biol Chem 2001; 276:11317-22. [PMID: 11133991 DOI: 10.1074/jbc.m008640200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 2E1 (CYP2E1) lacking the hydrophobic NH(2)-terminal hydrophobic transmembrane domain is specifically targeted to mitochondria, where it is processed to a soluble and catalytically active form (Delta2E1) with a mass of about 40 kDa. Small amounts of Delta2E1 were also observed in mitochondria isolated from rat liver, indicating that this form of CYP2E1 is also present in vivo. In the present study the mitochondrial targeting signal was identified and characterized by the use of several NH(2)-terminally truncated and mutated forms of CYP2E1 that were expressed in the mouse H2.35 hepatoma cell line. Two potential mitochondrial targeting sequences were identified in the NH(2) terminus of CYP2E1. Deletion of the first potential mitochondrial targeting sequence located between amino acids 50 and 65, as in Delta(2-64)2E1, still resulted in mitochondrial targeting and processing, but when, in addition to the first, the second potential mitochondrial targeting sequence located between amino acids 74 and 95 was also deleted, as in Delta(2-95)2E1, the mitochondrial targeting was abolished. Mutation of the four positively charged Arg and Lys residues present in this sequence to neutral Ala residues resulted in the abrogation of mitochondrial targeting. Deletion of a hydrophobic stretch of amino acids between residues 76 and 83 also abolished mitochondrial targeting and import. Once imported in the mitochondria, these constructs were further processed to the mature protein Delta2E1. It is concluded that mitochondrial targeting of CYP2E1 is mediated through a sequence located between residues 74 and 95 and that positively charged residues as well as a hydrophobic stretch present in the beginning of this sequence are essential for this process.
Collapse
Affiliation(s)
- E P Neve
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | |
Collapse
|
171
|
Bauer MF, Neupert W. Import of proteins into mitochondria: a novel pathomechanism for progressive neurodegeneration. J Inherit Metab Dis 2001; 24:166-80. [PMID: 11405338 DOI: 10.1023/a:1010314900814] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The vast majority of mitochondrial proteins are encoded as precursors by the nuclear genome. A major aspect of mitochondrial biogenesis is therefore the transfer of nuclear-encoded, cytosplasmically synthesized precursor proteins across and into the mitochondrial membranes. During the past years the use of simple model organisms such as the yeasts S. cerevisiae and N. crassa has helped considerably to identify and unravel the structure and function of a substantial number of components involved in targeting of nuclear-encoded preproteins to mitochondria. Several pathways and a number of components were characterized that are involved in guiding mitochondrial preproteins to their specific sites of function. In particular, import of nuclear-encoded precursor proteins into and across the mitochondrial inner membrane is mediated by two distinct translocases, the TIM23 complex and the TIM22 complex. Both TIM complexes cooperate with the general preprotein translocase of the outer membrane, TOM complex. The TIM complexes differ in the their substrate specificity. While the TIM23 complex mediates import of preproteins with a positively charged matrix targeting signal, the TIM22 complex facilitates the insertion of a class of hydrophobic proteins with internal targeting signals into the inner membrane. Most recently the rapid progress of research has allowed elucidation of a new mitochondrial disease on the molecular level. This rare X-linked progressive neurodegenerative disorder, named Mohr-Tranebjaerg (MT syndrome), is caused by mutations in the DDP1 gene and includes sensorineural deafness, blindness, mental retardation and a complex movement disorder. The analysis of the novel pathomechanism is based on the homology of the affected DDP1 protein to a family of conserved yeast components acting along the TIM22 pathway. This contribution briefly summarizes the current knowledge of the pathways of protein import and proposes a mechanism to explain how defective import leads to neurodegeneration.
Collapse
Affiliation(s)
- M F Bauer
- Institut fur Klinische Chemie, Molekulare Diagnostik und Mitochondriale Genetik am Akad. Lehrkrankenhaus München-Schwabing, Germany.
| | | |
Collapse
|
172
|
Dalbey RE, Kuhn A. Evolutionarily related insertion pathways of bacterial, mitochondrial, and thylakoid membrane proteins. Annu Rev Cell Dev Biol 2001; 16:51-87. [PMID: 11031230 DOI: 10.1146/annurev.cellbio.16.1.51] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The inner membranes of eubacteria and mitochondria, as well as the chloroplast thylakoid membrane, contain essential proteins that function in oxidative phosphorylation and electron transport processes or in photosynthesis. Because most of the organellar proteins are nuclear encoded, they are synthesized in the cytoplasm and subsequently imported into the organelle before they are inserted into the membrane. This review focuses on the pathways of protein insertion into the inner membrane of eubacteria and mitochondria and into the chloroplast thylakoid membrane. In many respects, insertion of proteins into the inner membrane of bacteria is a process similar to that used by proteins of the thylakoid membrane. In both of these systems a signal recognition particle (SRP) and a SecYE-translocase are involved, as in translocation into the endoplasmic reticulum. The pathway of proteins into the mitochondrial membranes appears to be different in that it involves no SecYE-like components. A conservative pathway, recently identified in mitochondria, involves the Oxa1 protein for the insertion of proteins from the matrix. The presence of Oxa1 homologues in eubacteria and chloroplasts suggests that this pathway is evolutionarily conserved.
Collapse
Affiliation(s)
- R E Dalbey
- Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
173
|
Brix J, Ziegler GA, Dietmeier K, Schneider-Mergener J, Schulz GE, Pfanner N. The mitochondrial import receptor Tom70: identification of a 25 kDa core domain with a specific binding site for preproteins. J Mol Biol 2000; 303:479-88. [PMID: 11054285 DOI: 10.1006/jmbi.2000.4120] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mitochondrial import receptor of 70 kDa, Tom70, preferentially recognizes precursors of membrane proteins with internal targeting signals. We report the identification of a stably folded 25 kDa core domain located in the middle portion of Tom70 that contains two of the seven tetratricopeptide repeat motifs of the receptor. The core domain binds non-cleavable and cleavable preproteins carrying internal targeting signals with a specificity indistinguishable from the full-length receptor. Competition studies indicate that both types of preproteins interact with overlapping binding sites of the core domain and that at least one additional interaction site is present in the full-length receptor. We suggest a model of Tom70 function in import of membrane proteins whereby a hydrophobic preprotein concomitantly interacts with several binding sites of the receptor.
Collapse
Affiliation(s)
- J Brix
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, Freiburg, D-79104, Germany
| | | | | | | | | | | |
Collapse
|
174
|
Grey JY, Connor MK, Gordon JW, Yano M, Mori M, Hood DA. Tom20-mediated mitochondrial protein import in muscle cells during differentiation. Am J Physiol Cell Physiol 2000; 279:C1393-400. [PMID: 11029287 DOI: 10.1152/ajpcell.2000.279.5.c1393] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial biogenesis is accompanied by an increased expression of components of the protein import machinery, as well as increased import of proteins destined for the matrix. We evaluated the role of the outer membrane receptor Tom20 by varying its expression and measuring changes in the import of malate dehydrogenase (MDH) in differentiating C2C12 muscle cells. Cells transfected with Tom20 had levels that were twofold higher than in control cells. Labeling of cells followed by immunoprecipitation of MDH revealed equivalent increases in MDH import. This parallelism between import rate and Tom20 levels was also evident as a result of thyroid hormone treatment. Using antisense oligodeoxynucleotides, we inhibited Tom20 expression by 40%, resulting in 40-60% reductions in MDH import. In vitro assays also revealed that import into the matrix was more sensitive to Tom20 inhibition than import into the outer membrane. These data indicate a close relationship between induced changes in Tom20 and the import of a matrix protein, suggesting that Tom20 is involved in determining the kinetics of import. However, this relationship was dissociated during normal differentiation, since the expression of Tom20 remained relatively constant, whereas imported MDH increased 12-fold. Thus Tom20 is important in determining import during organelle biogenesis, but other mechanisms (e.g., intramitochondrial protein degradation or nuclear transcription) likely also play a role in establishing the final mitochondrial phenotype during normal muscle differentiation.
Collapse
Affiliation(s)
- J Y Grey
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | | | |
Collapse
|
175
|
Stan T, Ahting U, Dembowski M, Künkele KP, Nussberger S, Neupert W, Rapaport D. Recognition of preproteins by the isolated TOM complex of mitochondria. EMBO J 2000; 19:4895-902. [PMID: 10990453 PMCID: PMC314223 DOI: 10.1093/emboj/19.18.4895] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A multisubunit complex in the mitochondrial outer membrane, the TOM complex, mediates targeting and membrane translocation of nuclear-encoded preproteins. We have isolated the TOM holo complex, containing the preprotein receptor components Tom70 and Tom20, and the TOM core complex, which lacks these receptors. The interaction of recombinant mitochondrial preproteins with both types of soluble TOM complex was analyzed. Preproteins bound efficiently in a specific manner to the isolated complexes in the absence of chaperones and lipids in a bilayer structure. Using fluorescence correlation spectroscopy, a dissociation constant in the nanomolar range was determined. The affinity was lower when the preprotein was stabilized in its folded conformation. Following the initial binding, the presequence was transferred into the translocation pore in a step that required unfolding of the mature part of the preprotein. This translocation step was also mediated by protease-treated TOM holo complex, which contains almost exclusively Tom40. Thus, the TOM core complex, consisting of Tom40, Tom22, Tom6 and Tom7, is a molecular machine that can recognize and partially translocate mitochondrial precursor proteins.
Collapse
Affiliation(s)
- T Stan
- Institut für Physiologische Chemie der Universität München, Goethestrabetae 33, D-80336 München, Germany
| | | | | | | | | | | | | |
Collapse
|
176
|
Schleiff E, McBride H. The central matrix loop drives import of uncoupling protein 1 into mitochondria. J Cell Sci 2000; 113 ( Pt 12):2267-72. [PMID: 10825298 DOI: 10.1242/jcs.113.12.2267] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The uncoupling protein (UCP1) is a carrier protein of the inner mitochondrial membrane spanning the bilayer six times. It does not contain a typical amino-terminal targeting signal and the mechanism of targeting and insertion is unknown. Here we focus on the biogenesis of UCP1 by analysing the import signals contained within the three repeated units of the protein. The amino-terminal third of the protein can mediate insertion into the outer membrane and therefore acts as artificial targeting signal when fused to DHFR. However, in the context of full-length UCP, the targeting information contained within the first repeated unit is not sufficient to trigger insertion into the outer membrane. Deletion of either the first or third repeated unit from UCP1 did not reduce import into the inner membrane and bound to the outer membrane receptor protein hTom20 with the characteristics of full-length UCP1. Deletion of the second repeat of UCP1 completely abolished all import into the mitochondria. Consistent with this, the central repeat alone was efficiently imported to the inner membrane and bound hTom20 with the characteristics of UCP1. We conclude that the site for binding hTom20 is within the central repeat and that this domain contains the complete targeting signal for directing UCP1 to the inner membrane.
Collapse
Affiliation(s)
- E Schleiff
- Department of Biochemistry, McGill University Montreal, Montreal, Canada, H3G 1Y6.
| | | |
Collapse
|
177
|
Abstract
Mitochondria are surrounded by two membranes that contain independent and non-related protein transport machineries. Remarkable progress was recently achieved in elucidating the structure of the outer membrane import channel and in the identification of new components involved in protein traffic across the intermembrane space and the inner membrane. Traditional concepts of protein targeting and sorting had to be revised. Here we briefly summarize the data on the mitochondrial protein import system with particular emphasis on new developments and perspectives.
Collapse
Affiliation(s)
- J Rassow
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | |
Collapse
|
178
|
Abstract
The mitochondrial protein import machinery specifically recognizes many different preproteins lacking a consensus sequence. The three-dimensional structure of an import receptor complexed to an amino-terminal targeting 'presequence' provides exciting insight into the molecular mechanism of signal recognition.
Collapse
Affiliation(s)
- N Pfanner
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Germany.
| |
Collapse
|
179
|
Abe Y, Shodai T, Muto T, Mihara K, Torii H, Nishikawa S, Endo T, Kohda D. Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 2000; 100:551-60. [PMID: 10721992 DOI: 10.1016/s0092-8674(00)80691-1] [Citation(s) in RCA: 406] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Most mitochondrial proteins are synthesized in the cytosol as precursor proteins with a cleavable N-terminal presequence and are imported into mitochondria. We report here the NMR structure of a general import receptor, rat Tom20, in a complex with a presequence peptide derived from rat aldehyde dehydrogenase. The cytosolic domain of Tom20 forms an all alpha-helical structure with a groove to accommodate the presequence peptide. The bound presequence forms an amphiphilic helical structure with hydrophobic leucines aligned on one side to interact with a hydrophobic patch in the Tom20 groove. Although the positive charges of the presequence are essential for import ability, presequence binding to Tom20 is mediated mainly by hydrophobic rather than ionic interactions.
Collapse
Affiliation(s)
- Y Abe
- Department of Structural Biology, Biomolecular Engineering Research Institute, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Schleiff E. Signals and receptors--the translocation machinery on the mitochondrial surface. J Bioenerg Biomembr 2000; 32:55-66. [PMID: 11768763 DOI: 10.1023/a:1005512412404] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Most proteins involved in mitochondrial biogenesis are encoded by the genome of the nucleus. They are synthesized in the cytosol and have to be transported toward and, subsequently, imported into the organelle. This targeting and import process is initiated by the specific mitochondrial targeting signal, which differs pending on the final localization of the protein. The preprotein will be recognized by cytosolic proteins, which function in transport toward the mitochondria and in maintaining the import competent state of the preprotein. The precursor will be transferred onto a multicomponent complex on the outer mitochondrial membrane, formed by receptor proteins and the general insertion pore (GIP). Some proteins are directly sorted into the outer membrane whereas the majority will be transported over the outer membrane through the import channel followed by further distribution of those proteins.
Collapse
Affiliation(s)
- E Schleiff
- Department of Biochemistry, McGill University, Montreal, Canada.
| |
Collapse
|
181
|
Ryan MT, Wagner R, Pfanner N. The transport machinery for the import of preproteins across the outer mitochondrial membrane. Int J Biochem Cell Biol 2000; 32:13-21. [PMID: 10661891 DOI: 10.1016/s1357-2725(99)00114-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order for proteins to be imported into subcellular compartments, they must first traverse the organellar membranes. In mitochondria, hydrophilic protein channels in both the outer and inner membranes serve such a purpose. Recently, the channel protein of the outer mitochondrial membrane was identified to be Tom40. Tom40 is found in a high molecular weight complex termed the general import pore (GIP) complex where it is tightly associated with the receptor protein Tom22 along with Tom7, Tom6 and Tom5. Tom7 and Tom6 seem to modulate the dynamics of the GIP complex while Tom5 is involved in preprotein transfer from receptors to Tom40. The receptor proteins Tom70 and Tom20 associate with this complex in a weaker manner where they are involved in the initial recognition of preproteins. This review focuses on the identification and characterisation of the transport machinery of the outer mitochondrial membrane and how they are involved in the co-ordination and regulation of events required for the translocation of preproteins into mitochondria.
Collapse
Affiliation(s)
- M T Ryan
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Germany
| | | | | |
Collapse
|
182
|
Ahting U, Thun C, Hegerl R, Typke D, Nargang FE, Neupert W, Nussberger S. The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J Cell Biol 1999; 147:959-68. [PMID: 10579717 PMCID: PMC2169338 DOI: 10.1083/jcb.147.5.959] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Translocation of nuclear-encoded preproteins across the outer membrane of mitochondria is mediated by the multicomponent transmembrane TOM complex. We have isolated the TOM core complex of Neurospora crassa by removing the receptors Tom70 and Tom20 from the isolated TOM holo complex by treatment with the detergent dodecyl maltoside. It consists of Tom40, Tom22, and the small Tom components, Tom6 and Tom7. This core complex was also purified directly from mitochondria after solubilization with dodecyl maltoside. The TOM core complex has the characteristics of the general insertion pore; it contains high-conductance channels and binds preprotein in a targeting sequence-dependent manner. It forms a double ring structure that, in contrast to the holo complex, lacks the third density seen in the latter particles. Three-dimensional reconstruction by electron tomography exhibits two open pores traversing the complex with a diameter of approximately 2.1 nm and a height of approximately 7 nm. Tom40 is the key structural element of the TOM core complex.
Collapse
Affiliation(s)
- U Ahting
- Institut für Physiologische Chemie der Universität München, D-80336 München, Germany
| | | | | | | | | | | | | |
Collapse
|
183
|
Voos W, Martin H, Krimmer T, Pfanner N. Mechanisms of protein translocation into mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1422:235-54. [PMID: 10548718 DOI: 10.1016/s0304-4157(99)00007-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mitochondrial biogenesis utilizes a complex proteinaceous machinery for the import of cytosolically synthesized preproteins. At least three large multisubunit protein complexes, one in the outer membrane and two in the inner membrane, have been identified. These translocase complexes cooperate with soluble proteins from the cytosol, the intermembrane space and the matrix. The translocation of presequence-containing preproteins through the outer membrane channel includes successive electrostatic interactions of the charged mitochondrial targeting sequence with a chain of import components. Translocation across the inner mitochondrial membrane utilizes the energy of the proton motive force of the inner membrane and the hydrolysis of ATP. The matrix chaperone system of the mitochondrial heat shock protein 70 forms an ATP-dependent import motor by interaction with the polypeptide chain in transit and components of the inner membrane translocase. The precursors of integral inner membrane proteins of the metabolite carrier family interact with newly identified import components of the intermembrane space and are inserted into the inner membrane by a second translocase complex. A comparison of the full set of import components between the yeast Sacccharomyces cerevisiae and the nematode Caenorhabditis elegans demonstrates an evolutionary conservation of most components of the mitochondrial import machinery with a possible greater divergence for the import pathway of the inner membrane carrier proteins.
Collapse
Affiliation(s)
- W Voos
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Str. 7, D-79104, Freiburg, Germany.
| | | | | | | |
Collapse
|
184
|
Diekert K, Kispal G, Guiard B, Lill R. An internal targeting signal directing proteins into the mitochondrial intermembrane space. Proc Natl Acad Sci U S A 1999; 96:11752-7. [PMID: 10518522 PMCID: PMC18358 DOI: 10.1073/pnas.96.21.11752] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Import of most nucleus-encoded preproteins into mitochondria is mediated by N-terminal presequences and requires a membrane potential and ATP hydrolysis. Little is known about the chemical nature and localization of other mitochondrial targeting signals or of the mechanisms by which they facilitate membrane passage. Mitochondrial heme lyases lack N-terminal targeting information. These proteins are localized in the intermembrane space and are essential for the covalent attachment of heme to c type cytochromes. For import of heme lyases, the translocase of the mitochondrial outer membrane complex is both necessary and sufficient. Here, we report the identification of the targeting signal of mitochondrial heme lyases in the third quarter of these proteins. The targeting sequence is highly conserved among all known heme lyases. Its chemical character is hydrophilic because of a large fraction of both positively and negatively charged amino acid residues. These features clearly distinguish this signal from classical presequences. When inserted into a cytosolic protein, the targeting sequence directs the fusion protein into the intermembrane space, even in the absence of a membrane potential or ATP hydrolysis. The heme lyase targeting sequence represents the first topogenic signal for energy-independent transport into the intermembrane space and harbors two types of information. It assures accurate recognition and translocation by the translocase of the mitochondrial outer membrane complex, and it is responsible for driving the import reaction by undergoing high-affinity interactions with components of the intermembrane space.
Collapse
Affiliation(s)
- K Diekert
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Robert-Koch-Strasse 5, 35033 Marburg, Germany
| | | | | | | |
Collapse
|
185
|
Abstract
Carrier proteins located in the inner membrane of mitochondria are responsible for the exchange of metabolites between the intermembrane space and the matrix of this organelle. All members of this family are nuclear-encoded and depend on translocation machineries for their import into mitochondria. Recently many new translocation components responsible for the import of carrier proteins were identified. It is now possible to describe a detailed import pathway for this class of proteins. This review highlights the contribution made by translocation components to the process of carrier protein import into mitochondria.
Collapse
Affiliation(s)
- K N Truscott
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Germany
| | | |
Collapse
|
186
|
van Wilpe S, Ryan MT, Hill K, Maarse AC, Meisinger C, Brix J, Dekker PJ, Moczko M, Wagner R, Meijer M, Guiard B, Hönlinger A, Pfanner N. Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase. Nature 1999; 401:485-9. [PMID: 10519552 DOI: 10.1038/46802] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitochondrial preproteins are imported by a multisubunit translocase of the outer membrane (TOM), including receptor proteins and a general import pore. The central receptor Tom22 binds preproteins through both its cytosolic domain and its intermembrane space domain and is stably associated with the channel protein Tom40 (refs 11-13). Here we report the unexpected observation that a yeast strain can survive without Tom22, although it is strongly reduced in growth and the import of mitochondrial proteins. Tom22 is a multifunctional protein that is required for the higher-level organization of the TOM machinery. In the absence of Tom22, the translocase dissociates into core complexes, representing the basic import units, but lacks a tight control of channel gating. The single membrane anchor of Tom22 is required for a stable interaction between the core complexes, whereas its cytosolic domain serves as docking point for the peripheral receptors Tom20 and Tom70. Thus a preprotein translocase can combine receptor functions with distinct organizing roles in a multidomain protein.
Collapse
Affiliation(s)
- S van Wilpe
- Institute for Molecular Cell Biology, BioCentrum Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
|
188
|
Ryan MT, Müller H, Pfanner N. Functional staging of ADP/ATP carrier translocation across the outer mitochondrial membrane. J Biol Chem 1999; 274:20619-27. [PMID: 10400693 DOI: 10.1074/jbc.274.29.20619] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ADP/ATP carrier (AAC) is the major representative of the inner membrane carrier proteins of mitochondria that are synthesized without cleavable presequences. The characterization of the import pathway of AAC into mitochondria has mainly depended on an operational staging system. Here, we introduce two approaches for analyzing the import of AAC, blue native electrophoresis and folding-induced translocation arrest, that allow a functional staging of AAC transport across the outer membrane. (i) Blue native electrophoresis permits a direct monitoring of the receptor stage of AAC and its chase into mitochondria. Binding to this stage requires the receptor protein Tom70 but not Tom37 or Tom20. (ii) A fusion protein between AAC and dihydrofolate reductase can be selectively arrested in the general import pore complex of the outer membrane by ligand induced folding of the passenger protein. Cross-linking demonstrates that the arrested preprotein is in close contact not only with several receptors and Tim10 but also with the channel protein Tom40, providing the first direct evidence that cleavable preproteins and carrier preproteins interact with the same outer membrane channel. The staging system presented here permits a molecular dissection of AAC transport across the outer mitochondrial membrane, relates it to functional units of the translocases, and indicates a coordinated and successive cooperation of distinct translocase subcomplexes during transfer of the preprotein.
Collapse
Affiliation(s)
- M T Ryan
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
189
|
Kurz M, Martin H, Rassow J, Pfanner N, Ryan MT. Biogenesis of Tim proteins of the mitochondrial carrier import pathway: differential targeting mechanisms and crossing over with the main import pathway. Mol Biol Cell 1999; 10:2461-74. [PMID: 10397776 PMCID: PMC25469 DOI: 10.1091/mbc.10.7.2461] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Two major routes of preprotein targeting into mitochondria are known. Preproteins carrying amino-terminal signals mainly use Tom20, the general import pore (GIP) complex and the Tim23-Tim17 complex. Preproteins with internal signals such as inner membrane carriers use Tom70, the GIP complex, and the special Tim pathway, involving small Tims of the intermembrane space and Tim22-Tim54 of the inner membrane. Little is known about the biogenesis and assembly of the Tim proteins of this carrier pathway. We report that import of the preprotein of Tim22 requires Tom20, although it uses the carrier Tim route. In contrast, the preprotein of Tim54 mainly uses Tom70, yet it follows the Tim23-Tim17 pathway. The positively charged amino-terminal region of Tim54 is required for membrane translocation but not for targeting to Tom70. In addition, we identify two novel homologues of the small Tim proteins and show that targeting of the small Tims follows a third new route where surface receptors are dispensable, yet Tom5 of the GIP complex is crucial. We conclude that the biogenesis of Tim proteins of the carrier pathway cannot be described by either one of the two major import routes, but involves new types of import pathways composed of various features of the hitherto known routes, including crossing over at the level of the GIP.
Collapse
Affiliation(s)
- M Kurz
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
190
|
Brix J, Rüdiger S, Bukau B, Schneider-Mergener J, Pfanner N. Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. J Biol Chem 1999; 274:16522-30. [PMID: 10347216 DOI: 10.1074/jbc.274.23.16522] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Preproteins destined for mitochondria either are synthesized with amino-terminal signal sequences, termed presequences, or possess internal targeting information within the protein. The preprotein translocase of the outer mitochondrial membrane (designated Tom) contains specific import receptors. The cytosolic domains of three import receptors, Tom20, Tom22, and Tom70, have been shown to interact with preproteins. Little is known about the internal targeting information in preproteins and the distribution of binding sequences for the three import receptors. We have studied the binding of the purified cytosolic domains of Tom20, Tom22, and Tom70 to cellulose-bound peptide scans derived from a presequence-carrying cleavable preprotein, cytochrome c oxidase subunit IV, and a non-cleavable preprotein with internal targeting information, the phosphate carrier. All three receptor domains are able to bind efficiently to linear 13-mer peptides, yet with different specificity. Tom20 preferentially binds to presequence segments of subunit IV. Tom22 binds to segments corresponding to the carboxyl-terminal part of the presequence and the amino-terminal part of the mature protein. Tom70 does not bind efficiently to any region of subunit IV. In contrast, Tom70 and Tom20 bind to multiple segments within the phosphate carrier, yet the amino-terminal region is excluded. Both charged and uncharged peptides derived from the phosphate carrier show specific binding properties for Tom70 and Tom20, indicating that charge is not a critical determinant of internal targeting sequences. This feature contrasts with the crucial role of positively charged amino acids in presequences. Our results demonstrate that linear peptide segments of preproteins can serve as binding sites for all three receptors with differential specificity and imply different mechanisms for translocation of cleavable and non-cleavable preproteins.
Collapse
Affiliation(s)
- J Brix
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
191
|
Kushnareva YE, Campo ML, Kinnally KW, Sokolove PM. Signal presequences increase mitochondrial permeability and open the multiple conductance channel. Arch Biochem Biophys 1999; 366:107-15. [PMID: 10334870 DOI: 10.1006/abbi.1999.1190] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have reported that the signal presequence of cytochrome oxidase subunit IV from Neurospora crassa increases the permeability of isolated rat liver mitochondria [P. M. Sokolove and K. W. Kinnally (1996) Arch. Biochem. Biophys. 336, 69] and regulates the behavior of the mutiple conductance channel (MCC) of yeast inner mitochondrial membrane [T. A. Lohret and K. W. Kinnally (1995) J. Biol. Chem. 270, 15950]. Here we examine in greater detail the action of a number of mitochondrial presequences from various sources and of several control peptides on the permeability of isolated rat liver mitochondria and on MCC activity monitored via patch-clamp techniques in both mammalian mitoplasts and a reconstituted yeast system. The data indicate that the ability to alter mitochondrial permeability is a property of most, but not all, signal peptides. Furthermore, it is clear that, although signal peptides are characterized by positive charge and the ability to form amphiphilic alpha helices, these two characteristics are not sufficient to guarantee mitochondrial effects. Finally, the results reveal a strong correlation between peptide effects on the permeability of isolated mitochondria and on MCC activity: peptides that induced swelling of mouse and rat mitochondria also activated the quiescent MCC of mouse mitoplasts and induced flickering of active MCC reconstituted from yeast mitochondrial membranes. Moreover, relative peptide efficacies were very similar for mitochondrial swelling and both types of patch-clamp experiments. We propose that patch-clamp recordings of MCC activity and the high-amplitude swelling induced by signal peptides reflect the opening of a single channel. Based on the selective responsiveness of that channel to signal peptides and the dependence of its opening in isolated mitochondria on membrane potential, we further suggest that the channel is involved in the mitochondrial protein import process.
Collapse
Affiliation(s)
- Y E Kushnareva
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | | | | | | |
Collapse
|
192
|
Iwata K, Nakai M. Interaction between mitochondrial precursor proteins and cytosolic soluble domains of mitochondrial import receptors, Tom20 and Tom70, measured by surface plasmon resonance. Biochem Biophys Res Commun 1998; 253:648-52. [PMID: 9918781 DOI: 10.1006/bbrc.1998.9769] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the interaction between mitochondrial precursor proteins and postulated mitochondrial surface receptor proteins, Tom20 and Tom70, by using a methodology of surface plasmon resonance. For these studies, import-competent mitochondrial precursor proteins, pCOXIV-DHFR and pSu9-DHFR, and cytosolic domains of the two receptor proteins were separately expressed in and purified from E. coli cells as a soluble form. By measuring surface plasmon resonance, both of the purified precursor proteins were found to specifically bind to either of the cytosolic domains of import receptors immobilized on a sensor chip. On the other hand, import-incompetent SynB2-DHFR and DHFR itself were shown to possess little or no binding abilities to the sensor chip, respectively. Using this system, we could demonstrate that the proposed carboxy-terminal acidic bristle domain of Tom20 is not essential for the precursor binding. Chemical modification of the acidic amino acid residues of either cytosolic domain on the sensor chip partially inhibited the binding of pSu9-DHFR, whereas the binding of pCOXIV-DHFR was almost unaffected. These results suggest that distinct set of amino acid residues of the receptor proteins might be responsible for the binding of different precursor proteins.
Collapse
Affiliation(s)
- K Iwata
- Institute for Protein Research, Osaka University, Suita, Japan
| | | |
Collapse
|
193
|
Künkele KP, Juin P, Pompa C, Nargang FE, Henry JP, Neupert W, Lill R, Thieffry M. The isolated complex of the translocase of the outer membrane of mitochondria. Characterization of the cation-selective and voltage-gated preprotein-conducting pore. J Biol Chem 1998; 273:31032-9. [PMID: 9813001 DOI: 10.1074/jbc.273.47.31032] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complex of the translocase mitochondrial outer membrane (TOM), mediates recognition, unfolding, and translocation of preproteins. We have used a combination of biochemical and electrophysiological methods to study the properties of the preprotein-conducting pore of the purified TOM complex. The pore is cation-selective and voltage-gated. It shows three main conductance levels with characteristic slow and fast kinetics transitions to states of lower conductance following application of transmembrane voltages. These electrical properties distinguish it from the mitochondrial voltage-dependent anion channel (porin) and are identical to those of the previously described peptide-sensitive channel. Binding of antibodies to the C terminus of Tom40 on the intermembrane space side of the outer membrane modifies the channel properties and allows determination of the orientation of the channel within the lipid bilayer. Mitochondrial presequence peptides specifically interact with the pore and decrease the ion flow through the channel in a voltage-dependent manner. We propose that the presequence-induced closures of the pore are related to structural alterations of the TOM complex observed during the various stages of preprotein movement across the mitochondrial outer membrane.
Collapse
Affiliation(s)
- K P Künkele
- Institut für Physiologische Chemie, Physikalische Biochemie und Zellbiologie der Universität München, Goethestrasse 33, 80336 Munich, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Dekker PJ, Ryan MT, Brix J, Müller H, Hönlinger A, Pfanner N. Preprotein translocase of the outer mitochondrial membrane: molecular dissection and assembly of the general import pore complex. Mol Cell Biol 1998; 18:6515-24. [PMID: 9774667 PMCID: PMC109237 DOI: 10.1128/mcb.18.11.6515] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The preprotein translocase of the outer mitochondrial membrane (Tom) is a multisubunit machinery containing receptors and a general import pore (GIP). We have analyzed the molecular architecture of the Tom machinery. The receptor Tom22 stably associates with Tom40, the main component of the GIP, in a complex with a molecular weight of approximately 400,000 ( approximately 400K), while the other receptors, Tom20 and Tom70, are more loosely associated with this GIP complex and can be found in distinct subcomplexes. A yeast mutant lacking both Tom20 and Tom70 can still form the GIP complex when sufficient amounts of Tom22 are synthesized. Besides the essential proteins Tom22 and Tom40, the GIP complex contains three small subunits, Tom5, Tom6, and Tom7. In mutant mitochondria lacking Tom6, the interaction between Tom22 and Tom40 is destabilized, leading to the dissociation of Tom22 and the generation of a subcomplex of approximately 100K containing Tom40, Tom7, and Tom5. Tom6 is required to promote but not to maintain a stable association between Tom22 and Tom40. The following conclusions are suggested. (i) The GIP complex, containing Tom40, Tom22, and three small Tom proteins, forms the central unit of the outer membrane import machinery. (ii) Tom20 and Tom70 are not essential for the generation of the GIP complex. (iii) Tom6 functions as an assembly factor for Tom22, promoting its stable association with Tom40.
Collapse
Affiliation(s)
- P J Dekker
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
195
|
Hill K, Model K, Ryan MT, Dietmeier K, Martin F, Wagner R, Pfanner N. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins [see comment]. Nature 1998; 395:516-21. [PMID: 9774109 DOI: 10.1038/26780] [Citation(s) in RCA: 381] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mitochondrial outer membrane contains machinery for the import of preproteins encoded by nuclear genes. Eight different Tom (translocase of outer membrane) proteins have been identified that function as receptors and/or are related to a hypothetical general import pore. Many mitochondrial membrane channel activities have been described, including one related to Tim23 of the inner-membrane protein-import system; however, the pore-forming subunit(s) of the Tom machinery have not been identified until now. Here we describe the expression and functional reconstitution of Tom40, an integral membrane protein with mainly beta-sheet structure. Tom40 forms a cation-selective high-conductance channel that specifically binds to and transports mitochondrial-targeting sequences added to the cis side of the membrane. We conclude that Tom40 is the pore-forming subunit of the mitochondrial general import pore and that it constitutes a hydrophilic, approximately 22 A wide channel for the import of preproteins.
Collapse
Affiliation(s)
- K Hill
- Biophysik, Universität Osnabrück, Germany
| | | | | | | | | | | | | |
Collapse
|
196
|
Schleiff E, Turnbull JL. Functional and structural properties of the mitochondrial outer membrane receptor Tom20. Biochemistry 1998; 37:13043-51. [PMID: 9748309 DOI: 10.1021/bi9807456] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tom20 is an outer mitochondrial membrane protein that functions as a component of the import receptor complex for cytoplasmically synthesized mitochondrial precursor proteins. The human homologue, hTom20, consists of an N-terminal membrane anchor region predicted between aa5-25 and a soluble cytosolic domain from aa30 to 145. To analyze the properties of hTom20, we have expressed several truncations of the cytosolic domain as fusion proteins with glutathione S-transferase. Our studies reveal that the cytosolic region of hTom20 is a monomeric protein in solution containing two domains which are involved in different functions of the receptor. The N-terminal region is involved in membrane binding (aa30-60) and recognition of the cleavable matrix targeting signals (aa50-90). In addition, we have demonstrated that the receptor recognizes the alpha-helical state of the matrix targeting signal. The dissociation constant for this interaction in the presence of a detergent which induces this secondary structure is 0.6 microM, one-fifth the value in the absence of detergent. In aqueous solution, the region between aa30 and 60 is loosely folded and stabilized against proteolytic cleavage by interaction with detergents or a matrix targeting signal. Our work further shows that the remainder of the cytosolic domain of hTom20, aa60-145, is a compactly folded globular domain containing a region (aa90-145) that is critical for the recognition of proteins bearing internal signal sequences such as the uncoupling protein and porin.
Collapse
Affiliation(s)
- E Schleiff
- Department of Biochemistry, McGill University, Montreal, Canada.
| | | |
Collapse
|
197
|
Rapaport D, Künkele KP, Dembowski M, Ahting U, Nargang FE, Neupert W, Lill R. Dynamics of the TOM complex of mitochondria during binding and translocation of preproteins. Mol Cell Biol 1998; 18:5256-62. [PMID: 9710610 PMCID: PMC109111 DOI: 10.1128/mcb.18.9.5256] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translocation of preproteins across the mitochondrial outer membrane is mediated by the TOM complex. This complex consists of receptor components for the initial contact with preproteins at the mitochondrial surface and membrane-embedded proteins which promote transport and form the translocation pore. In order to understand the interplay between the translocating preprotein and the constituents of the TOM complex, we analyzed the dynamics of the TOM complex of Neurospora crassa and Saccharomyces cerevisiae mitochondria by following the structural alterations of the essential pore component Tom40 during the translocation of preproteins. Tom40 exists in a homo-oligomeric assembly and dynamically interacts with Tom6. The Tom40 assembly is influenced by a block of negatively charged amino acid residues in the cytosolic domain of Tom22, indicating a cross-talk between preprotein receptors and the translocation pore. Preprotein binding to specific sites on either side of the outer membrane (cis and trans sites) induces distinct structural alterations of Tom40. To a large extent, these changes are mediated by interaction with the mitochondrial targeting sequence. We propose that such targeting sequence-induced adaptations are a critical feature of translocases in order to facilitate the movement of preproteins across cellular membranes.
Collapse
Affiliation(s)
- D Rapaport
- Institut für Physiologische Chemie, Physikalische Biochemie und Zellbiologie der Universität München, 80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
198
|
Davis AJ, Ryan KR, Jensen RE. Tim23p contains separate and distinct signals for targeting to mitochondria and insertion into the inner membrane. Mol Biol Cell 1998; 9:2577-93. [PMID: 9725913 PMCID: PMC25530 DOI: 10.1091/mbc.9.9.2577] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/1998] [Accepted: 06/23/1998] [Indexed: 11/11/2022] Open
Abstract
The Tim23 protein is an essential inner membrane (IM) component of the yeast mitochondrial protein import pathway. Tim23p does not carry an amino-terminal presequence; therefore, the targeting information resides within the mature protein. Tim23p is anchored in the IM via four transmembrane segments and has two positively charged loops facing the matrix. To identify the import signal for Tim23p, we have constructed several altered versions of the Tim23 protein and examined their function and import in yeast cells, as well as their import into isolated mitochondria. We replaced the positively charged amino acids in one or both loops with alanine residues and found that the positive charges are not required for import into mitochondria, but at least one positively charged loop is required for insertion into the IM. Furthermore, we find that the signal to target Tim23p to mitochondria is carried in at least two of the hydrophobic transmembrane segments. Our results suggest that Tim23p contains separate import signals: hydrophobic segments for targeting Tim23p to mitochondria, and positively charged loops for insertion into the IM. We therefore propose that Tim23p is imported into mitochondria in at least two distinct steps.
Collapse
Affiliation(s)
- A J Davis
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
199
|
Komiya T, Rospert S, Koehler C, Looser R, Schatz G, Mihara K. Interaction of mitochondrial targeting signals with acidic receptor domains along the protein import pathway: evidence for the 'acid chain' hypothesis. EMBO J 1998; 17:3886-98. [PMID: 9670006 PMCID: PMC1170724 DOI: 10.1093/emboj/17.14.3886] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial precursor proteins with basic targeting signals may be transported across the outer membrane by sequential binding to acidic receptor sites of increasing affinity. To test this 'acid chain' hypothesis, we assayed the interaction of mitochondrial precursors with three acidic receptor domains: the cytosolic domain of Tom20 and the intermembrane space domain of Tom22 and Tim23. The apparent affinity and salt resistance of precursor binding increased in the order Tom20<Tom22 (internal)<Tim23. Precursor binding to the three acidic receptor domains and to the pure cytosolic domain of Tom70 was inhibited by excess targeting peptide, but not by an equally basic control peptide. In this membrane-free and defined system, a precursor pre-bound to the Tom70 or Tom20 domain was transferred efficiently to the Tim23 domain. Transfer was stimulated by the internal Tom22 domain and was much less efficient in the reverse direction. Precursors destined for the outer membrane bound only to Tom20, but not to the internal Tom22 or the Tim23 domain, and a precursor destined for the inner membrane bound only to the Tom20 and the internal Tom22 domain, but not to the Tim23 domain. These results suggest that specific and sequential binding of a targeting signal to strategically situated acidic receptors delivers a precursor across the outer membrane and contributes to intramitochondrial sorting of imported proteins.
Collapse
Affiliation(s)
- T Komiya
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812, Japan
| | | | | | | | | | | |
Collapse
|
200
|
Palmisano A, Zara V, Hönlinger A, Vozza A, Dekker PJ, Pfanner N, Palmieri F. Targeting and assembly of the oxoglutarate carrier: general principles for biogenesis of carrier proteins of the mitochondrial inner membrane. Biochem J 1998; 333 ( Pt 1):151-8. [PMID: 9639574 PMCID: PMC1219567 DOI: 10.1042/bj3330151] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have studied the targeting and assembly of the 2-oxoglutarate carrier (OGC), an integral inner-membrane protein of mitochondria. The precursor of OGC, synthesized without a cleavable presequence, is transported into mitochondria in an ATP- and membrane potential-dependent manner. Import of the mammalian OGC occurs efficiently into both mammalian and yeast mitochondria. Targeting of OGC reveals a clear dependence on the mitochondrial surface receptor Tom70 (the 70 kDa subunit of the translocase of the outer mitochondrial membrane), whereas a cleavable preprotein depends on Tom20 (the 20 kDa subunit), supporting a model of specificity differences of the receptors and the existence of distinct targeting pathways to mitochondria. The assembly of minute amounts of OGC imported in vitro to the dimeric form can be monitored by blue native electrophoresis of digitonin-lysed mitochondria. The assembly of mammalian OGC and fungal ADP/ATP carrier occurs with high efficiency in both mammalian and yeast mitochondria. These findings indicate a dynamic behaviour of the carrier dimers in the mitochondrial inner membrane and suggest a high conservation of the assembly reactions from mammals to fungi.
Collapse
Affiliation(s)
- A Palmisano
- Dipartimento Farmaco-Biologico, Università di Bari, Via E. Orabona 4, I-70125 Bari, Italy
| | | | | | | | | | | | | |
Collapse
|