151
|
Blockade of peripheral and spinal Na+/H+ exchanger increases formalin-induced long-lasting mechanical allodynia and hyperalgesia in rats. Brain Res 2012; 1475:19-30. [DOI: 10.1016/j.brainres.2012.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 12/14/2022]
|
152
|
Proton-gated ion channels in mouse bone marrow stromal cells. Stem Cell Res 2012; 9:59-68. [DOI: 10.1016/j.scr.2012.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/05/2012] [Accepted: 04/30/2012] [Indexed: 01/07/2023] Open
|
153
|
Petroff E, Snitsarev V, Gong H, Abboud FM. Acid sensing ion channels regulate neuronal excitability by inhibiting BK potassium channels. Biochem Biophys Res Commun 2012; 426:511-5. [PMID: 22960074 DOI: 10.1016/j.bbrc.2012.08.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 08/22/2012] [Indexed: 11/25/2022]
Abstract
Acid sensing ion channels (ASICs), Ca(2+) and voltage-activated potassium channels (BK) are widely present throughout the central nervous system. Previous studies have shown that when expressed together in heterologous cells, ASICs inhibit BK channels, and this inhibition is relieved by acidic extracellular pH. We hypothesized that ASIC and BK channels might interact in neurons, and that ASICs may regulate BK channel activity. We found that ASICs inhibited BK currents in cultured wild-type cortical neurons, but not in ASIC1a/2/3 triple knockout neurons. The inhibition in the wild-type was partially relieved by a drop in extracellular pH to 6. To test the consequences of ASIC-BK interaction for neuronal excitability, we compared action potential firing in cultured cortical neurons from wild-type and ASIC1a/2/3 null mice. We found that in the knockout, action potentials were narrow and exhibited increased after-hyperpolarization. Moreover, the excitability of these neurons was significantly increased. These findings are consistent with increased BK channel activity in the neurons from ASIC1a/2/3 null mice. Our data suggest that ASICs can act as endogenous pH-dependent inhibitors of BK channels, and thereby can reduce neuronal excitability.
Collapse
Affiliation(s)
- Elena Petroff
- Department of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA.
| | | | | | | |
Collapse
|
154
|
Geffeney SL, Goodman MB. How we feel: ion channel partnerships that detect mechanical inputs and give rise to touch and pain perception. Neuron 2012; 74:609-19. [PMID: 22632719 DOI: 10.1016/j.neuron.2012.04.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
Every moment of every day, our skin and its embedded sensory neurons are bombarded with mechanical cues that we experience as pleasant or painful. Knowing the difference between innocuous and noxious mechanical stimuli is critical for survival and relies on the function of mechanoreceptor neurons that vary in their size, shape, and sensitivity. Their function is poorly understood at the molecular level. This review emphasizes the importance of integrating analysis at the molecular and cellular levels and focuses on the discovery of ion channel proteins coexpressed in the mechanoreceptors of worms, flies, and mice.
Collapse
Affiliation(s)
- Shana L Geffeney
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
155
|
Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes. Nature 2012; 489:400-5. [PMID: 22842900 DOI: 10.1038/nature11375] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/10/2012] [Indexed: 11/08/2022]
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent, amiloride-sensitive channels involved in diverse physiological processes ranging from nociception to taste. Despite the importance of ASICs in physiology, we know little about the mechanism of channel activation. Here we show that psalmotoxin activates non-selective and Na(+)-selective currents in chicken ASIC1a at pH 7.25 and 5.5, respectively. Crystal structures of ASIC1a-psalmotoxin complexes map the toxin binding site to the extracellular domain and show how toxin binding triggers an expansion of the extracellular vestibule and stabilization of the open channel pore. At pH 7.25 the pore is approximately 10 Å in diameter, whereas at pH 5.5 the pore is largely hydrophobic and elliptical in cross-section with dimensions of approximately 5 by 7 Å, consistent with a barrier mechanism for ion selectivity. These studies define mechanisms for activation of ASICs, illuminate the basis for dynamic ion selectivity and provide the blueprints for new therapeutic agents.
Collapse
|
156
|
Sherwood TW, Frey EN, Askwith CC. Structure and activity of the acid-sensing ion channels. Am J Physiol Cell Physiol 2012; 303:C699-710. [PMID: 22843794 DOI: 10.1152/ajpcell.00188.2012] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The acid-sensing ion channels (ASICs) are a family of proton-sensing channels expressed throughout the nervous system. Their activity is linked to a variety of complex behaviors including fear, anxiety, pain, depression, learning, and memory. ASICs have also been implicated in neuronal degeneration accompanying ischemia and multiple sclerosis. As a whole, ASICs represent novel therapeutic targets for several clinically important disorders. An understanding of the correlation between ASIC structure and function will help to elucidate their mechanism of action and identify potential therapeutics that specifically target these ion channels. Despite the seemingly simple nature of proton binding, multiple studies have shown that proton-dependent gating of ASICs is quite complex, leading to activation and desensitization through distinct structural components. This review will focus on the structural aspects of ASIC gating in response to both protons and the newly discovered activators GMQ and MitTx. ASIC modulatory compounds and their action on proton-dependent gating will also be discussed. This review is dedicated to the memory of Dale Benos, who made a substantial contribution to our understanding of ASIC activity.
Collapse
Affiliation(s)
- Thomas W Sherwood
- Dept. of Neuroscience, The Ohio State Univ. Wexner Medical Center, Columbus, OH 43210, USA
| | | | | |
Collapse
|
157
|
Abstract
Acid-sensing ion channels (ASICs) are present in neurons and may contribute to chemoreception. Among six subunits of ASICs, ASIC1 is mainly expressed in the central nervous system. Recently, multiple sites in the brain including the lateral hypothalamus (LH) have been found to be sensitive to extracellular acidification. Since LH contains orexin neurons and innervates the medulla respiratory center, we hypothesize that ASIC1 is expressed on the orexin neuron and contributes to acid-induced increase in respiratory drive. To test this hypothesis, we used double immunofluorescence to determine whether ASIC1 is expressed on orexin neurons in the LH, and assessed integrated phrenic nerve discharge (iPND) in intact rats in response to acidification of the LH. We found that ASIC1 was co-localized with orexinA in the LH. Microinjection of acidified artificial cerebrospinal fluid increased the amplitude of iPND by 70% (pH 7.4 v.s. pH 6.5:1.05±0.12 v.s. 1.70±0.10, n = 6, P<0.001) and increased the respiratory drive (peak amplitude of iPND/inspiratory time, PA/Ti) by 40% (1.10±0.23 v.s. 1.50±0.38, P<0.05). This stimulatory effect was abolished by blocking ASIC1 with a nonselective inhibitor (amiloride 10 mM), a selective inhibitor (PcTX1, 10 nM) or by damaging orexin neurons in the LH. Current results support our hypothesis that the orexin neuron in the LH can exert an excitation on respiration via ASIC1 during local acidosis. Since central acidification is involved in breathing dysfunction in a variety of pulmonary diseases, understanding its underlying mechanism may improve patient management.
Collapse
|
158
|
Song N, Zhang G, Geng W, Liu Z, Jin W, Li L, Cao Y, Zhu D, Yu J, Shen L. Acid sensing ion channel 1 in lateral hypothalamus contributes to breathing control. PLoS One 2012; 7:e39982. [PMID: 22792205 PMCID: PMC3391217 DOI: 10.1371/journal.pone.0039982] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/30/2012] [Indexed: 12/20/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are present in neurons and may contribute to chemoreception. Among six subunits of ASICs, ASIC1 is mainly expressed in the central nervous system. Recently, multiple sites in the brain including the lateral hypothalamus (LH) have been found to be sensitive to extracellular acidification. Since LH contains orexin neurons and innervates the medulla respiratory center, we hypothesize that ASIC1 is expressed on the orexin neuron and contributes to acid-induced increase in respiratory drive. To test this hypothesis, we used double immunofluorescence to determine whether ASIC1 is expressed on orexin neurons in the LH, and assessed integrated phrenic nerve discharge (iPND) in intact rats in response to acidification of the LH. We found that ASIC1 was co-localized with orexinA in the LH. Microinjection of acidified artificial cerebrospinal fluid increased the amplitude of iPND by 70% (pH 7.4 v.s. pH 6.5:1.05±0.12 v.s. 1.70±0.10, n = 6, P<0.001) and increased the respiratory drive (peak amplitude of iPND/inspiratory time, PA/Ti) by 40% (1.10±0.23 v.s. 1.50±0.38, P<0.05). This stimulatory effect was abolished by blocking ASIC1 with a nonselective inhibitor (amiloride 10 mM), a selective inhibitor (PcTX1, 10 nM) or by damaging orexin neurons in the LH. Current results support our hypothesis that the orexin neuron in the LH can exert an excitation on respiration via ASIC1 during local acidosis. Since central acidification is involved in breathing dysfunction in a variety of pulmonary diseases, understanding its underlying mechanism may improve patient management.
Collapse
Affiliation(s)
- Nana Song
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guihong Zhang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenye Geng
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zibing Liu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weizhong Jin
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Li
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yinxiang Cao
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jerry Yu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pulmonary Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Linlin Shen
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
159
|
Wang JQ, Chu XP, Guo ML, Jin DZ, Xue B, Berry TJ, Fibuch EE, Mao LM. Modulation of ionotropic glutamate receptors and Acid-sensing ion channels by nitric oxide. Front Physiol 2012; 3:164. [PMID: 22654773 PMCID: PMC3359525 DOI: 10.3389/fphys.2012.00164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/07/2012] [Indexed: 11/13/2022] Open
Abstract
Ionotropic glutamate receptors (iGluR) are ligand-gated ion channels and are densely expressed in broad areas of mammalian brains. Like iGluRs, acid-sensing ion channels (ASIC) are ligand (H+)-gated channels and are enriched in brain cells and peripheral sensory neurons. Both ion channels are enriched at excitatory synaptic sites, functionally coupled to each other, and subject to the modulation by a variety of signaling molecules. Central among them is a gasotransmitter, nitric oxide (NO). Available data show that NO activity-dependently modulates iGluRs and ASICs via either a direct or an indirect pathway. The former involves a NO-based and cGMP-independent post-translational modification (S-nitrosylation) of extracellular cysteine residues in channel subunits or channel-interacting proteins. The latter is achieved by NO activation of soluble guanylyl cyclase, which in turn triggers an intracellular cGMP-sensitive cascade to indirectly modulate iGluRs and ASICs. The NO modification is usually dynamic and reversible. Modified channels undergo significant, interrelated changes in biochemistry and electrophysiology. Since NO synthesis is enhanced in various neurological disorders, the NO modulation of iGluRs and ASICs is believed to be directly linked to the pathogenesis of these disorders. This review summarizes the direct and indirect modifications of iGluRs and ASICs by NO and analyzes the role of the NO-iGluR and NO-ASIC coupling in cell signaling and in the pathogenesis of certain related neurological diseases.
Collapse
Affiliation(s)
- John Q Wang
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City Kansas City, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Potentiation of acid-sensing ion channel activity by the activation of 5-HT₂ receptors in rat dorsal root ganglion neurons. Neuropharmacology 2012; 63:494-500. [PMID: 22580376 DOI: 10.1016/j.neuropharm.2012.04.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 02/02/2023]
Abstract
Acid-sensing ion channels (ASICs), as key sensors for extracellular protons, are expressed in nociceptive sensory neurons and contribute to signalling pain caused by tissue acidosis. ASICs are also the subject of various factors. Here, we further provide evidence that the activity of ASICs is potentiated by the activation of 5-HT₂ receptors in rat dorsal root ganglion neurons. A specific 5-HT₂ receptor agonist, α-methyl-5-HT, dose-dependently enhanced proton-gated currents with an EC₅₀ of 0.13 ± 0.07 nM. The α-methyl-5-HT enhancing effect on proton-gated currents was blocked by cyproheptadine, a 5-HT₂ receptor antagonist, and removed by intracellular dialysis of either GDP-β-S or protein kinase C inhibitor GF109203X. Moreover, α-methyl-5-HT altered acid-evoked membrane excitability of rat DRG neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, α-methyl-5-HT increased nociceptive responses to injection of acetic acid in rats. These results suggest that α-methyl-5-HT up-regulates the activity of ASICs via 5-HT₂ receptor and protein kinase C dependent signal pathways in rat primary sensory neurons and this potentiation contributed to acid- mediated pain in tissue injury and inflammation.
Collapse
|
161
|
Expression of acid-sensing ion channels of gastric mucosa from patients with Henoch-Schönlein purpura. J Pediatr Gastroenterol Nutr 2012; 54:561-3. [PMID: 22157923 DOI: 10.1097/mpg.0b013e318244255f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acid-sensing ion channels (ASICs) are members of the voltage-insensitive, amiloride-sensitive degenerin/epithelial Na channel family of cation channels and have been shown to mediate pain associated with tissue acidosis after inflammation or injury; however, the expression and role of ASICs in gastrointestinal tract of Henoch-Schönlein purpura (HSP) patients were still uncertain. The present study was designed to examine the expression and localization of ASICs in gastric mucosa from patients with HSP using immunochemical techniques. The results showed that there was a significant increase in the mean relative optical density of ASIC2 and ASIC3 but not ASIC1a in the lining epithelium and glandular tubes of gastric mucosa from HSP patients with HSP. This finding suggested that ASICs may be related to the pathogenesis of gastrointestinal manifestations in patients with HSP.
Collapse
|
162
|
Del Valle ME, Cobo T, Cobo JL, Vega JA. Mechanosensory neurons, cutaneous mechanoreceptors, and putative mechanoproteins. Microsc Res Tech 2012; 75:1033-43. [PMID: 22461425 DOI: 10.1002/jemt.22028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/31/2012] [Indexed: 01/16/2023]
Abstract
The mammalian skin has developed sensory structures (mechanoreceptors) that are responsible for different modalities of mechanosensitivity like touch, vibration, and pressure sensation. These specialized sensory organs are anatomically and functionally connected to a special subset of sensory neurons called mechanosensory neurons, which electrophysiologically correspond with Aβ fibers. Although mechanosensory neurons and cutaneous mechanoreceptors are rather well known, the biology of the sense of touch still remains poorly understood. Basically, the process of mechanosensitivity requires the conversion of a mechanical stimulus into an electrical signal through the activation of ion channels that gate in response to mechanical stimuli. These ion channels belong primarily to the family of the degenerin/epithelium sodium channels, especially the subfamily acid-sensing ion channels, and to the family of transient receptor potential channels. This review compiles the current knowledge on the occurrence of putative mechanoproteins in mechanosensory neurons and mechanoreceptors, as well as the involvement of these proteins on the biology of touch. Furthermore, we include a section about what the knock-out mice for mechanoproteins are teaching us. Finally, the possibilities for mechanotransduction in mechanoreceptors, and the common involvement of the ion channels, extracellular membrane, and cytoskeleton, are revisited.
Collapse
Affiliation(s)
- M E Del Valle
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain
| | | | | | | |
Collapse
|
163
|
Abstract
The epithelial Na(+) channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity.
Collapse
Affiliation(s)
- Yawar J Qadri
- Department of Physiology and Biophysics, University of Alabama at Birmingham, AL 35294, USA
| | | | | |
Collapse
|
164
|
Kikuchi S, Ninomiya T, Kawamata T, Ogasawara N, Kojima T, Tachi N, Tatsumi H. The acid-sensing ion channel 2 (ASIC2) of ciliated cells in the developing rat nasal septum. ACTA ACUST UNITED AC 2011; 73:81-9. [PMID: 21566334 DOI: 10.1679/aohc.73.81] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The airway epithelium is exposed to an acidic environment in certain conditions. The acid-sensing ion channel 2 (ASIC2) belongs to the epithelial amiloride-sensitive sodium channel and degenerin (ENaC/DEG) family and is expressed on cilia of the respiratory epithelium. The aim of this study was to detect the expression of ASIC2 in the nasal septum in the embryonic stage of the rat. ASIC2 expression was not observed in the primary cilium but was found in some cilia on embryonic day 17 (E17). After E18, all cilia showed ASIC2 immunoreactivity. RT-PCR analysis revealed that ASIC2b, a subtype of ASIC2, was expressed in the nasal septum while ASIC2a was not. Quantitative Real-time RT-PCR studies indicated that the expression level of ASIC2 mRNA was highest on E21, just before birth. These results imply that ASIC2 plays little part in the development of the nasal septum epithelium. On the other hand, ASIC2, especially ASIC2b, may function for the survival and retention of ciliated cells of the nasal septum against dynamic changes in the pH environment at birth.
Collapse
Affiliation(s)
- Shin Kikuchi
- Department of Anatomy, Sapporo Medical University School of Medicine, Japan.
| | | | | | | | | | | | | |
Collapse
|
165
|
The DEG/ENaC protein MEC-10 regulates the transduction channel complex in Caenorhabditis elegans touch receptor neurons. J Neurosci 2011; 31:12695-704. [PMID: 21880930 DOI: 10.1523/jneurosci.4580-10.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gentle touch sensation in Caenorhabditis elegans is mediated by the MEC-4/MEC-10 channel complex, which is expressed exclusively in six touch receptor neurons (TRNs). The complex contains two pore-forming subunits, MEC-4 and MEC-10, as well as the accessory subunits MEC-2, MEC-6, and UNC-24. MEC-4 is essential for channel function, but beyond its role as a pore-forming subunit, the functional contribution of MEC-10 to the channel complex and to touch sensation is unclear. We addressed this question using behavioral assays, in vivo electrophysiological recordings from TRNs, and heterologous expression of mutant MEC-10 isoforms. Animals with a deletion in mec-10 showed only a partial loss of touch sensitivity and a modest decrease in the size of the mechanoreceptor current (MRC). In contrast, five previously identified mec-10 alleles acted as recessive gain-of-function alleles that resulted in complete touch insensitivity. Each of these alleles produced a substantial decrease in MRC size and a shift in the reversal potential in vivo. The latter finding indicates that these mec-10 mutations alter the ionic selectivity of the transduction channel in vivo. All mec-10 mutant animals had properly localized channel complexes, indicating that the loss of MRCs was not attributable to a dramatic mislocalization of transduction channels. Finally, electrophysiological examination of heterologously expressed complexes suggests that mutant MEC-10 proteins may affect channel current via MEC-2.
Collapse
|
166
|
Mammana A, Carroll GT, Areephong J, Feringa BL. A chiroptical photoswitchable DNA complex. J Phys Chem B 2011; 115:11581-7. [PMID: 21879715 DOI: 10.1021/jp205893y] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interesting structural, electronic, and optical properties of DNA provide fascinating opportunities for developing nanoscale smart materials by integrating DNA with opto-electronic components. In this article we demonstrate the electrostatic binding of an amine-terminated dithienylethene (DET) molecular switch to double-stranded synthetic polynucleotides. The DET switch can undergo photochemical ring-closure and opening reactions. Circular dichroism (CD) and UV-vis spectroscopy show that both the open, 1o, and the closed, 1c, forms of the switch bind to DNA. Upon addition of DNA to a solution of 1o or 1c, the UV-vis spectrum displays a hypochromic effect, indicative of an interaction between the switch and the DNA. The chirality of the DNA double-helix is transmitted to the switching unit which displays a well-defined CD signal upon supramolecular complexation to the DNA. Additionally, the CD signal of the DNA attenuates, demonstrating that both components of the complex mutually influence each other's structure; the DNA induces chirality in the switch, and the switch modifies the structure of the DNA. Modulation of the chiroptical properties of the complex is achieved by photochemically switching the DET between its ring open and closed isomers. A pH dependence study of the binding shows that when the pH is increased the switches lose their binding ability, indicating that electrostatic interactions between protonated amines and the negatively charged phosphate backbone are the dominant driving force for binding to the DNA. A comparison of poly(deoxyguanylic-deoxycytidylic) acid [poly(dGdC)(2)] polynucleotides with poly(deoxyadenylic-deoxythymidylic) acid [poly(dAdT)(2)] shows distinct differences in the CD spectra of the complexes.
Collapse
Affiliation(s)
- Angela Mammana
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | | | | | | |
Collapse
|
167
|
Heteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death. J Neurosci 2011; 31:9723-34. [PMID: 21715637 DOI: 10.1523/jneurosci.1665-11.2011] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acid-sensing ion channel (ASIC) subunits associate to form homomeric or heteromeric proton-gated ion channels in neurons throughout the nervous system. The ASIC1a subunit plays an important role in establishing the kinetics of proton-gated currents in the CNS, and activation of ASIC1a homomeric channels induces neuronal death after local acidosis that accompanies cerebral ischemia. The ASIC2b subunit is expressed in the brain in a pattern that overlaps ASIC1a, yet the contribution of ASIC2b has remained elusive. We find that coexpression of ASIC2b with ASIC1a in Xenopus oocytes results in novel proton-gated currents with properties distinct from ASIC1a homomeric channels. In particular, ASIC2b/1a heteromeric channels are inhibited by the nonselective potassium channel blockers tetraethylammonium and barium. In addition, steady-state desensitization is induced at more basic pH values, and Big Dynorphin sensitivity is enhanced in these unique heteromeric channels. Cultured hippocampal neurons show proton-gated currents consistent with ASIC2b contribution, and these currents are lacking in neurons from mice with an ACCN1 (ASIC2) gene disruption. Finally, we find that these ASIC2b/1a heteromeric channels contribute to acidosis-induced neuronal death. Together, our results show that ASIC2b confers unique properties to heteromeric channels in central neurons. Furthermore, these data indicate that ASIC2, like ASIC1, plays a role in acidosis-induced neuronal death and implicate the ASIC2b/1a subtype as a novel pharmacological target to prevent neuronal injury after stroke.
Collapse
|
168
|
Walder RY, Gautam M, Wilson SP, Benson CJ, Sluka KA. Selective targeting of ASIC3 using artificial miRNAs inhibits primary and secondary hyperalgesia after muscle inflammation. Pain 2011; 152:2348-2356. [PMID: 21843914 DOI: 10.1016/j.pain.2011.06.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/14/2011] [Accepted: 06/28/2011] [Indexed: 12/11/2022]
Abstract
Acid-sensing ion channels (ASICs) are activated by acidic pH and may play a significant role in the development of hyperalgesia. Earlier studies show ASIC3 is important for induction of hyperalgesia after muscle insult using ASIC3-/- mice. ASIC3-/- mice lack ASIC3 throughout the body, and the distribution and composition of ASICs could be different from wild-type mice. We therefore tested whether knockdown of ASIC3 in primary afferents innervating muscle of adult wild-type mice prevented development of hyperalgesia to muscle inflammation. We cloned and characterized artificial miRNAs (miR-ASIC3) directed against mouse ASIC3 (mASIC3) to downregulate ASIC3 expression in vitro and in vivo. In CHO-K1 cells transfected with mASIC3 cDNA in culture, the miR-ASIC3 constructs inhibited protein expression of mASIC3 and acidic pH-evoked currents and had no effect on protein expression or acidic pH-evoked currents of ASIC1a. When miR-ASIC3 was used in vivo, delivered into the muscle of mice using a herpes simplex viral vector, both muscle and paw mechanical hyperalgesia were reduced after carrageenan-induced muscle inflammation. ASIC3 mRNA in DRG and protein levels in muscle were decreased in vivo by miR-ASIC3. In CHO-K1 cells co-transfected with ASIC1a and ASIC3, miR-ASIC3 reduced the amplitude of acidic pH-evoked currents, suggesting an overall inhibition in the surface expression of heteromeric ASIC3-containing channels. Our results show, for the first time, that reducing ASIC3 in vivo in primary afferent fibers innervating muscle prevents the development of inflammatory hyperalgesia in wild-type mice, and thus, may have applications in the treatment of musculoskeletal pain in humans.
Collapse
Affiliation(s)
- Roxanne Y Walder
- Physical Therapy and Rehabilitation Sciences Graduate Program, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA Neuroscience Graduate Program, Pain Research Program, The University of Iowa, Iowa City, IA, USA Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA Department of Internal Medicine, Pain Research Program, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | | | | | | | | |
Collapse
|
169
|
Matricon J, Gelot A, Etienne M, Lazdunski M, Muller E, Ardid D. Spinal cord plasticity and acid-sensing ion channels involvement in a rodent model of irritable bowel syndrome. Eur J Pain 2011; 15:335-43. [PMID: 20888277 DOI: 10.1016/j.ejpain.2010.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
Abstract
Irritable bowel syndrome (IBS) is a common functional gastro-intestinal disorder characterized by intractable chronic abdominal pain. In this study, we examined the possible spinal mechanisms underlying colonic hypersensitivity (CHS) using a non-inflammatory rat model of IBS induced by rectal enemas of butyrate, a short-chain fatty acid. We hypothesized that spinal plasticity could be responsible for CHS and that ASIC channels, which are known to support pain-elicited currents in the spinal cord, could contribute to central sensitization in our model of IBS. First, in order to determine if visceral pain relies on changes in spinal activity, we analyzed Fos expression in the spinal cord of rats treated with butyrate following a challenge with repetitive noxious colorectal distension. We found that Fos immunoreactivity was increased in thoracic T10-11-12, lumbar L1-2-6 and sacral S1 spinal segments. In control rats treated with saline, noxious repetitive colorectal distensions evoked Fos expression only in L1-2-6 and S1 spinal segments. Secondly, intrathecal injection of PcTx1, a specific ASIC1A antagonist, in the lumbar spinal cord completely prevented the development of CHS induced by butyrate. ASIC1 and 2 mRNAs, especially ASIC1A, were upregulated in the lumbar spinal cord. ASIC1A could thus contribute to spinal sensitization in our model of IBS, as it is supported by spinal colocalization of ASIC1A and Fos proteins. The whole data pinpoint a potential critical role of thoracic spinal cord in non-inflammatory pain states such as IBS and suggest that ASIC channels are part of the molecular effectors of central sensitization leading to visceral pain.
Collapse
Affiliation(s)
- Julien Matricon
- Clermont Université, Université d'Auvergne, Pharmacologie fondamentale et clinique de douleur, Laboratoire de Pharmacologie Médicale, BP 10448, F-63000 Clermont-Ferrand, Inserm U 766, F-63001 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
170
|
Li MH, Inoue K, Si HF, Xiong ZG. Calcium-permeable ion channels involved in glutamate receptor-independent ischemic brain injury. Acta Pharmacol Sin 2011; 32:734-40. [PMID: 21552295 DOI: 10.1038/aps.2011.47] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Brain ischemia is a leading cause of death and long-term disabilities worldwide. Unfortunately, current treatment is limited to thrombolysis, which has limited success and a potential side effect of intracerebral hemorrhage. Searching for new cell injury mechanisms and therapeutic interventions has become a major challenge in the field. It has been recognized for many years that intracellular Ca(2+) overload in neurons is essential for neuronal injury associated with brain ischemia. However, the exact pathway(s) underlying the toxic Ca(2+) loading remained elusive. This review discusses the role of two Ca(2+)-permeable cation channels, TRPM7 and acid-sensing channels, in glutamate-independent Ca(2+) toxicity associated with brain ischemia.
Collapse
|
171
|
Springauf A, Bresenitz P, Gründer S. The interaction between two extracellular linker regions controls sustained opening of acid-sensing ion channel 1. J Biol Chem 2011; 286:24374-84. [PMID: 21576243 DOI: 10.1074/jbc.m111.230797] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Activation of acid-sensing ion channels (ASICs) contributes to neuronal death during stroke, to axonal degeneration during neuroinflammation, and to pain during inflammation. Although understanding ASIC gating may help to modulate ASIC activity during these pathologic situations, at present it is poorly understood. The ligand, H(+), probably binds to several sites, among them amino acids within the large extracellular domain. The extracellular domain is linked to the two transmembrane domains by the wrist region that is connected to two anti-parallel β-strands, β1 and β12. Thus, the wrist region together with those β-strands may have a crucial role in transmitting ligand binding to pore opening and closing. Here we show that amino acids in the β1-β2 linker determine constitutive opening of ASIC1b from shark. The most crucial residue within the β1-β2 linker (Asp(110)), when mutated from aspartate to cysteine, can be altered by cysteine-modifying reagents much more readily when channels are closed than when they are desensitized. Finally, engineering of a cysteine at position 110 and at an adjacent position in the β11-β12 linker leads to spontaneous formation of a disulfide bond that traps the channel in the desensitized conformation. Collectively, our results suggest that the β1-β2 and β11-β12 linkers are dynamic during gating and tightly appose to each other during desensitization gating. Hindrance of this tight apposition leads to reopening of the channel. It follows that the β1-β2 and β11-β12 linkers modulate gating movements of ASIC1 and may thus be drug targets to modulate ASIC activity.
Collapse
Affiliation(s)
- Andreas Springauf
- Department of Physiology, RWTH Aachen University, D-52074 Aachen, Germany
| | | | | |
Collapse
|
172
|
Melzner J, Bitter T, Guntinas-Lichius O, Gottschall R, Walther M, Gudziol H. Comparison of the orthonasal and retronasal detection thresholds for carbon dioxide in humans. Chem Senses 2011; 36:435-41. [PMID: 21398414 DOI: 10.1093/chemse/bjr013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several studies have investigated the orthonasal detection threshold for carbon dioxide (CO(2)) in humans. The aim of current study was to investigate whether 24 healthy young subjects exhibited differences of CO(2) detection thresholds during orthonasal or retronasal stimulation. As nasal mucosa is believed to desensitize to CO(2) concentrations at or below 4% (v/v) during expiration, the second aim of the study was to explore the influence during nasal versus oral breathing on the detection thresholds. CO(2) stimuli of varying concentrations and a duration of 1000 ms were applied with an air-dilution olfactometer in either the anterior nasal cavity or the nasopharynx during nasal respectively oral breathing. In these 4 conditions, the mean CO(2) detection thresholds using the staircase forced-choice procedure were between 3.9% and 5.3% (v/v). Statistical analysis revealed a significant difference between orthonasal and retronasal stimulation. The CO(2) detection threshold was lower in retronasal stimulation. The nasopharyngeal mucosa is more sensitive to perithreshold CO(2) stimuli than the nasal mucosa. The breathing route had no influence on the detection thresholds. The results of this study indicate that the natural contact of the nasal mucosa with approximately 4% (v/v) CO(2) during nasal expiration does not influence CO(2) detection thresholds.
Collapse
Affiliation(s)
- Johannes Melzner
- Department of Otorhinolaryngology, University Hospital Jena, Germany.
| | | | | | | | | | | |
Collapse
|
173
|
Abstract
Acid-sensing ion channels (ASICs) are proton-gated cation channels that exist throughout the mammalian central and peripheral nervous systems. ASIC1 is the most abundant of all the ASICs and is likely to modulate synaptic transmission. Identifying the proton-binding sites of ASCI1 is required to elucidate its pH-sensing mechanism. By using the crystal structure of ASIC1, the protonation states of each titratable site of ASIC1 were calculated by solving the Poisson-Boltzmann equation under conditions wherein the protonation states of all these sites are simultaneously in equilibrium. Four acidic-acidic residue pairs—Asp238-Asp350, Glu220-Asp408, Glu239-Asp346, and Glu80-Glu417—were found to be highly protonated. In particular, the Glu80-Glu417 pair in the inner pore was completely protonated and possessed 2 H+, implying its possible importance as a proton-binding site. The pKa of Glu239, which forms a pair with a possible pH-sensing site Asp346, differs among each homo-trimer subunit due to the different H-bond pattern of Thr237 in the different protein conformations of the subunits. His74 possessed a pKa of ≈6–7. Conservation of His74 in the proton-sensitive ASIC3 that lacks a residue corresponding to Asp346 may suggest its possible pH-sensing role in proton-sensitive ASICs.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
174
|
Delmas P, Hao J, Rodat-Despoix L. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 2011; 12:139-53. [PMID: 21304548 DOI: 10.1038/nrn2993] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The somatosensory system mediates fundamental physiological functions, including the senses of touch, pain and proprioception. This variety of functions is matched by a diverse array of mechanosensory neurons that respond to force in a specific fashion. Mechanotransduction begins at the sensory nerve endings, which rapidly transform mechanical forces into electrical signals. Progress has been made in establishing the functional properties of mechanoreceptors, but it has been remarkably difficult to characterize mechanotranducer channels at the molecular level. However, in the past few years, new functional assays have provided insights into the basic properties and molecular identity of mechanotransducer channels in mammalian sensory neurons. The recent identification of novel families of proteins as mechanosensing molecules will undoubtedly accelerate our understanding of mechanotransduction mechanisms in mammalian somatosensation.
Collapse
Affiliation(s)
- Patrick Delmas
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, UMR 6231, Centre National de la Recherche Scientifique, Université de la Méditerranée, CS80011, Boulevard Pierre Dramard, 13344 Marseille Cedex 15, France.
| | | | | |
Collapse
|
175
|
Wang W, Petralia RS, Takamiya K, Xia J, Li YQ, Huganir RL, Tao YX, Yaster M. Preserved acute pain and impaired neuropathic pain in mice lacking protein interacting with C Kinase 1. Mol Pain 2011; 7:11. [PMID: 21291534 PMCID: PMC3038962 DOI: 10.1186/1744-8069-7-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/03/2011] [Indexed: 12/01/2022] Open
Abstract
Protein interacting with C Kinase 1 (PICK1), a PDZ domain-containing scaffolding protein, interacts with multiple different proteins in the mammalian nervous system and is believed to play important roles in diverse physiological and pathological conditions. In this study, we report that PICK1 is expressed in neurons of the dorsal root ganglion (DRG) and spinal cord dorsal horn, two major pain-related regions. PICK1 was present in approximately 29.7% of DRG neurons, most of which were small-less than 750 μm2 in cross-sectional area. Some of these PICK1-positive cells co-labeled with isolectin B4 or calcitonin-gene-related peptide. In the dorsal horn, PICK1 immunoreactivity was concentrated in the superficial dorsal horn, where it was prominent in the postsynaptic density, axons, and dendrites. Targeted disruption of PICK1 gene did not affect basal paw withdrawal responses to acute noxious thermal and mechanical stimuli or locomotor reflex activity, but it completely blocked the induction of peripheral nerve injury-induced mechanical and thermal pain hypersensitivities. PICK1 appears to be required for peripheral nerve injury-induced neuropathic pain development and to be a potential biochemical target for treating this disorder.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Dong X, Ko KH, Chow J, Tuo B, Barrett KE, Dong H. Expression of acid-sensing ion channels in intestinal epithelial cells and their role in the regulation of duodenal mucosal bicarbonate secretion. Acta Physiol (Oxf) 2011; 201:97-107. [PMID: 20969730 DOI: 10.1111/j.1748-1716.2010.02207.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIMS As little is currently known about acid-sensing ion channels (ASICs) in intestinal epithelial cells, the aims of the present study were to investigate the expression and function of ASICs in intestinal epithelial cells, particularly their physiological role in the acid-stimulated duodenal mucosal bicarbonate secretion (DMBS). METHODS RT-PCR and digital Ca²(+) imaging were used to determine the expression and function of ASICs in HT29 cells and SCBN cells, intestinal epithelial crypt cell lines. The acid-stimulated DMBS was measured in C57 black mice in vivo to study the role of ASICs in this physiological process. RESULTS ASIC1a mRNA expression was detected in the duodenal mucosa stripped from mice and epithelial cell lines, in which cytoplasmic free Ca²(+) ([Ca²(+) ](cyt)) in response to extracellular acidosis was also increased. In Ca²(+) -containing solutions, acidosis (pH 6.0-5.0) raised [Ca²(+) ](cyt) in both HT29 cells and SCBN cells in a similar pH-dependent manner. Acidosis-induced increase in [Ca²(+) ](cyt) was markedly inhibited by amiloride (an ASICs blocker), SK&F96365 (a blocker for non-selective cation channels), or in Ca²(+) -free solutions; but was abolished by amiloride in Ca²(+) -free solutions. However, acidosis-induced increase in [Ca²(+) ](cyt) was slightly affected by U73122 (a PLC inhibitor), or nifedipine (a voltage-gated Ca²(+) channel blocker). After acidosis raised [Ca²(+) ](cyt) , stimulation of purinergic receptors with ATP further increased [Ca²(+) ](cyt) , but acidosis-induced increase in [Ca²(+) ](cyt) was not altered by suramin. Moreover, acid-stimulated murine DMBS was significantly attenuated by amiloride. CONCLUSION Therefore, ASICs are functionally expressed in intestinal epithelial cells, and may play a role in acid-stimulated DMBS through a Ca²(+) signalling pathway.
Collapse
Affiliation(s)
- X Dong
- Department of Medicine, University of California, San Diego, USA
| | | | | | | | | | | |
Collapse
|
177
|
Karczewski J, Spencer RH, Garsky VM, Liang A, Leitl MD, Cato MJ, Cook SP, Kane S, Urban MO. Reversal of acid-induced and inflammatory pain by the selective ASIC3 inhibitor, APETx2. Br J Pharmacol 2010; 161:950-60. [PMID: 20860671 DOI: 10.1111/j.1476-5381.2010.00918.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Inflammatory pain is triggered by activation of pathways leading to the release of mediators such as bradykinin, prostaglandins, interleukins, ATP, growth factors and protons that sensitize peripheral nociceptors. The activation of acid-sensitive ion channels (ASICs) may have particular relevance in the development and maintenance of inflammatory pain. ASIC3 is of particular interest due to its restricted tissue distribution in the nociceptive primary afferent fibres and its high sensitivity to protons. EXPERIMENTAL APPROACH To examine the contribution of ASIC3 to the development and maintenance of muscle pain and inflammatory pain, we studied the in vivo efficacy of a selective ASIC3 inhibitor, APETx2, in rats. KEY RESULTS Administration of APETx2 into the gastrocnemius muscle prior to the administration of low pH saline prevented the development of mechanical hypersensitivity, whereas APETx2 administration following low-pH saline was ineffective in reversing hypersensitivity. The prevention of mechanical hypersensitivity produced by acid administration was observed whether APETx2 was applied via i.m. or i.t. routes. In the complete Freund's adjuvant (CFA) inflammatory pain model, local administration of APETx2 resulted in a potent and complete reversal of established mechanical hypersensitivity, whereas i.t. application of APETx2 was ineffective. CONCLUSIONS AND IMPLICATIONS ASIC3 contributed to the development of mechanical hypersensitivity in the acid-induced muscle pain model, whereas ASIC3 contributed to the maintenance of mechanical hypersensitivity in the CFA inflammatory pain model. The contribution of ASIC3 to established hypersensitivity associated with inflammation suggests that this channel may be an effective analgesic target for inflammatory pain states.
Collapse
Affiliation(s)
- Jerzy Karczewski
- Departments of Pain Research and Medicinal Chemistry, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Hoagland EN, Sherwood TW, Lee KG, Walker CJ, Askwith CC. Identification of a calcium permeable human acid-sensing ion channel 1 transcript variant. J Biol Chem 2010; 285:41852-62. [PMID: 21036899 DOI: 10.1074/jbc.m110.171330] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acid-sensing ion channels (ASICs) are proton-gated cation channels activated when extracellular pH declines. In rodents, the Accn2 gene encodes transcript variants ASIC1a and ASIC1b, which differ in the first third of the protein and display distinct channel properties. In humans, ACCN2 transcript variant 2 (hVariant 2) is homologous to mouse ASIC1a. In this article, we study two other human ACCN2 transcript variants. Human ACCN2 transcript variant 1 (hVariant 1) is not present in rodents and contains an additional 46 amino acids directly preceding the proposed channel gate. We report that hVariant 1 does not produce proton-gated currents under normal conditions when expressed in heterologous systems. We also describe a third human ACCN2 transcript variant (hVariant 3) that is similar to rodent ASIC1b. hVariant 3 is more abundantly expressed in dorsal root ganglion compared with brain and shows basic channel properties analogous to rodent ASIC1b. Yet, proton-gated currents from hVariant 3 are significantly more permeable to calcium than either hVariant 2 or rodent ASIC1b, which shows negligible calcium permeability. hVariant 3 also displays a small acid-dependent sustained current. Such a sustained current is particularly intriguing as ASIC1b is thought to play a role in sensory transduction in rodents. In human DRG neurons, hVariant 3 could induce sustained calcium influx in response to acidic pH and make a major contribution to acid-dependent sensations, such as pain.
Collapse
Affiliation(s)
- Erin N Hoagland
- Department of Neuroscience, The Ohio State University School of Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
179
|
Blanchard MG, Kellenberger S. Effect of a temperature increase in the non-noxious range on proton-evoked ASIC and TRPV1 activity. Pflugers Arch 2010; 461:123-39. [PMID: 20924599 DOI: 10.1007/s00424-010-0884-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 02/08/2023]
Abstract
Acid-sensing ion channels (ASICs) are neuronal H(+)-gated cation channels, and the transient receptor potential vanilloid 1 channel (TRPV1) is a multimodal cation channel activated by low pH, noxious heat, capsaicin, and voltage. ASICs and TRPV1 are present in sensory neurons. It has been shown that raising the temperature increases TRPV1 and decreases ASIC H(+)-gated current amplitudes. To understand the underlying mechanisms, we have analyzed ASIC and TRPV1 function in a recombinant expression system and in dorsal root ganglion (DRG) neurons at room and physiological temperature. We show that temperature in the range studied does not affect the pH dependence of ASIC and TRPV1 activation. A temperature increase induces, however, a small alkaline shift of the pH dependence of steady-state inactivation of ASIC1a, ASIC1b, and ASIC2a. The decrease in ASIC peak current amplitudes at higher temperatures is likely in part due to the observed accelerated open channel inactivation kinetics and for some ASIC types to the changed pH dependence of steady-state inactivation. The increase in H(+)-activated TRPV1 current at the higher temperature is at least in part due to a hyperpolarizing shift in its voltage dependence. The contribution of TRPV1 relative to ASICs to H(+)-gated currents in DRG neurons increases with higher temperature and acidity. Still, ASICs remain the principal pH sensors of DRG neurons at 35°C in the pH range ≥6.
Collapse
Affiliation(s)
- Maxime G Blanchard
- Département de Pharmacologie et de Toxicologie, Université de Lausanne, Rue du Bugnon 27, Lausanne, Switzerland
| | | |
Collapse
|
180
|
Deval E, Gasull X, Noël J, Salinas M, Baron A, Diochot S, Lingueglia E. Acid-sensing ion channels (ASICs): pharmacology and implication in pain. Pharmacol Ther 2010; 128:549-58. [PMID: 20807551 DOI: 10.1016/j.pharmthera.2010.08.006] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue acidosis is a common feature of many painful conditions. Protons are indeed among the first factors released by injured tissues, inducing a local pH fall that depolarizes peripheral free terminals of nociceptors and leads to pain. ASICs are excitatory cation channels directly gated by extracellular protons that are expressed in the nervous system. In sensory neurons, they act as "chemo-electrical" transducers and are involved in somatic and visceral nociception. Two highly specific inhibitory peptides isolated from animal venoms have considerably helped in the understanding of the physiological roles of these channels in pain. At the peripheral level, ASIC3 is important for inflammatory pain. Its expression and its activity are potentiated by several pain mediators present in the "inflammatory soup" that sensitize nociceptors. ASICs have also been involved in some aspects of mechanosensation and mechanonociception, notably in the gastrointestinal tract, but the underlying mechanisms remain to be determined. At the central level, ASIC1a is largely expressed in spinal cord neurons where it has been proposed to participate in the processing of noxious stimuli and in central sensitization. Blocking ASIC1a in the spinal cord also produces a potent analgesia in a broad range of pain conditions through activation of the opiate system. Targeting ASIC channels at different levels of the nervous system could therefore be an interesting strategy for the relief of pain.
Collapse
Affiliation(s)
- Emmanuel Deval
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 6097 CNRS/Université de Nice-Sophia Antipolis (UNS), 660, route des Lucioles, 06560 Valbonne, France.
| | | | | | | | | | | | | |
Collapse
|
181
|
ASIC1a channels are activated by endogenous protons during ischemia and contribute to synergistic potentiation of intracellular Ca(2+) overload during ischemia and acidosis. Cell Calcium 2010; 48:70-82. [PMID: 20678793 DOI: 10.1016/j.ceca.2010.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 06/30/2010] [Accepted: 07/05/2010] [Indexed: 01/27/2023]
Abstract
Acidosis accompanying cerebral ischemia activates acid-sensing ion channels (ASIC) causing increases in intracellular calcium concentration ([Ca(2+)]i) and enhanced neuronal death. Experiments were undertaken in rat cortical neurons to explore the effects of ASIC1a activation on ischemia-induced [Ca(2+)]i elevations and whole-cell currents. There was a significant contribution of ASIC1a channels to ischemia-evoked [Ca(2+)]i increases at pH 7.4, suggesting that ASIC1a channels are activated by endogenous protons during ischemia. The combination of ischemia and acidosis resulted in synergistic increases in [Ca(2+)]i and plasma membrane currents relative to acidosis or ischemia alone. ASIC1a inhibitors significantly blunted [Ca(2+)]i increases and a transient current activated by ischemia+acidosis, demonstrating that homomeric ASIC1a channels are involved. However, ASIC1a inhibitors failed to diminish a sustained current activated in response to combined ischemia and acidosis, indicating that acidosis can potentiate ischemia effects through mechanisms other than ASIC1a. The [Ca(2+)]i overload produced by acidosis and ischemia was not blocked by tetrodotoxin, 2-amino-5-phosphonopentanoic acid or nifedipine. Thus, acidosis and activation of ASIC1a channels during ischemia can promote [Ca(2+)]i overload in the absence of neurotransmission, independent of NMDA receptor or L-type voltage-gated Ca(2+) channel activation. Postsynaptic ASIC1a channels play a critical role in ischemia-induced [Ca(2+)]i dysregulation and membrane dysfunction.
Collapse
|
182
|
Abstract
Mechanosensitive ion channels are gated directly by physical stimuli and transduce these stimuli into electrical signals. Several criteria must apply for a channel to be considered mechanically gated. Mechanosensitive channels from bacterial systems have met these criteria, but few eukaryotic channels have been confirmed by the same standards. Recent work has suggested or confirmed that diverse types of channels, including TRP channels, K(2P) channels, MscS-like proteins, and DEG/ENaC channels, are mechanically gated. Several studies point to the importance of the plasma membrane for channel gating, but intracellular and/or extracellular structures may also be required.
Collapse
Affiliation(s)
- Jóhanna Arnadóttir
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| | | |
Collapse
|
183
|
Suman A, Mehta B, Guo ML, Chu XP, Fibuch EE, Mao LM, Wang JQ. Alterations in subcellular expression of acid-sensing ion channels in the rat forebrain following chronic amphetamine administration. Neurosci Res 2010; 68:1-8. [PMID: 20566346 DOI: 10.1016/j.neures.2010.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/27/2010] [Accepted: 06/01/2010] [Indexed: 12/20/2022]
Abstract
Acid-sensing ion channels (ASICs) are densely expressed in broad areas of mammalian brains and actively modulate synaptic transmission and a variety of neuronal activities. To explore whether ASICs are linked to addictive properties of drugs of abuse, we investigated the effect of the psychostimulant amphetamine on subcellular ASIC expression in the rat forebrain in vivo. Repeated administration of amphetamine (once daily for 7 days, 1.25 mg/kg for days 1/7, 4 mg/kg for days 2-6) induced typical behavioral sensitization. At a 14-day withdrawal period, ASIC1 protein levels were increased in the defined surface and intracellular compartments in the striatum (both caudate putamen and nucleus accumbens) in amphetamine-treated rats relative to saline-treated rats as detected by a surface protein cross-linking assay. ASIC2 proteins, however, remained stable in the striatum. In the medial prefrontal cortex, repeated amphetamine administration had no effect on ASIC1 expression in either the surface or the intracellular pool. However, amphetamine selectively reduced the surface expression of ASIC2 in this region. These data identify ASICs as a sensitive target to repeated stimulant exposure. The region- and compartment-specific regulation of ASIC1 and ASIC2 expression may constitute a key synaptic adaptation in reward circuits critical for psychomotor plasticity.
Collapse
Affiliation(s)
- Ajay Suman
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | | | | | | | | | |
Collapse
|
184
|
Ohbuchi T, Sato K, Suzuki H, Okada Y, Dayanithi G, Murphy D, Ueta Y. Acid-sensing ion channels in rat hypothalamic vasopressin neurons of the supraoptic nucleus. J Physiol 2010; 588:2147-62. [PMID: 20442265 DOI: 10.1113/jphysiol.2010.187625] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Body fluid balance requires the release of arginine vasopressin (AVP) from the neurohypophysis. The hypothalamic supraoptic nucleus (SON) is a major site of AVP synthesis, and AVP release is controlled somatodendritically or at the level of nerve terminals by electrical activities of magnocellular neurosecretory cells (MNCs). Acid-sensing ion channels (ASICs) are neuronal voltage-insensitive cationic channels that are activated by extracellular acidification. Although ASICs are widely expressed in the central nervous system, functional ASICs have not been assessed in AVP neurons. ASICs are modulated by lactate (La(-)), which reduces the extracellular calcium ion concentration. We hypothesize that ASICs modify neuronal function through La(-) that is generated during local hypoxia resulting from osmotic stimulation in the SON. In the present study, we used the whole-cell patch-clamp technique to show that acid-induced ASIC current is enhanced by La(-) in isolated rat SON MNCs that express an AVP-enhanced green fluorescent protein (eGFP) transgene. Immunohistochemistry and multi-cell reverse transcriptase-polymerase chain reaction experiments revealed that these neurons express the ASIC1a and ASIC2a subunits. In addition, increased La(-) production was specifically observed in the SON after osmotic stress. These results suggest that interaction between ASICs and La(-) in the SON plays an important role in the regulatory mechanism of body fluid homeostasis.
Collapse
Affiliation(s)
- Toyoaki Ohbuchi
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | |
Collapse
|
185
|
Li T, Yang Y, Canessa CM. Two residues in the extracellular domain convert a nonfunctional ASIC1 into a proton-activated channel. Am J Physiol Cell Physiol 2010; 299:C66-73. [PMID: 20427715 DOI: 10.1152/ajpcell.00100.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Acid-sensing ion channels (ASICs) are proton-activated sodium channels of the nervous system. Mammals express four ASICs, and orthologs of these genes have been found in all chordates examined to date. Despite a high degree of sequence conservation of all ASICs across species, the response to a given increase in external proton concentration varies markedly: from large and slowly inactivating inward currents to no detectable currents. The underlying bases of this functional variability and whether it stems from differences in proton-binding sites or in structures that translate conformational changes have not been determined yet. We show here that the ASIC1 ortholog of an early vertebrate, lamprey ASIC1, does not respond to protons; however, only two amino acid substitutions for the corresponding ones in rat ASIC1, Q77L and T85L, convert lamprey ASIC1 into a highly sensitive proton-activated channel with apparent H(+) affinity of pH(50) 7.2. Addition of C73H increases the magnitude of the currents by fivefold, and W64R confers desensitization similar to that of the mammalian counterpart. Most amino acid substitutions in these four positions increase the rates of opening and closing the pore, whereas only few, namely, the ones in rat ASIC1, slow the rates. The four residues are located in a contiguous segment made by the beta1-beta2-linker, beta1-strand, and the external segment of the first transmembrane helix. We conclude that the segment thus defined modulates the kinetics of opening and closing the pore and that fast kinetics of desensitization rather than lack of acid sensor accounts for the absence of proton-induced currents in the parent lamprey ASIC1.
Collapse
Affiliation(s)
- Tianbo Li
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
186
|
Meotti FC, Coelho IDS, Santos ARS. The nociception induced by glutamate in mice is potentiated by protons released into the solution. THE JOURNAL OF PAIN 2010; 11:570-8. [PMID: 20338819 DOI: 10.1016/j.jpain.2009.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/19/2009] [Accepted: 09/23/2009] [Indexed: 12/13/2022]
Abstract
UNLABELLED In this study we compare the effect of a glutamate solution with pH adjusted to 7 (3-30 micromol/paw), a non-pH-adjusted glutamate solution (.3-30 micromol/paw, pH range 2.24-1.14), and an acid solution (2% acetic acid, pH 1.4-7) in terms of causing licking behavior in mice. The sum of licking seconds was recorded in the first 15 minutes following the intraplantar (i.pl.) injection of the solutions. Protons potentiated the nociception induced by glutamate. The ED(50) values were 2.5 (1.5-4.2) and 15.1 (11.5-19.9) micromol/paw for the non-pH-adjusted and pH-adjusted glutamate solutions, respectively. The acid solutions at pH 1.4, 2 and 4 induced a similar nociception. The blocking of the acid-sensitive ion channels (ASICs) by amiloride and the antagonism of the transient receptor potential vanilloid subtype-1 (TRPV1) by capsazepine, injected via i.pl., significantly decreased the nociception mediated by acid and by non-pH-adjusted glutamate solutions, but did not affect the nociception caused by the pH-adjusted glutamate solution. The pretreatment with the NMDA-receptor antagonist (MK-801, i.pl.), with the cyclooxygenase inhibitor (indomethacin, i.pl.) or the disruption of the sensorial C fibers by capsaicin, decreased the nociceptive effect of the 3 algogen tested. In summary, the protons present in aqueous solution of glutamate can cause nociception per se or can potentiate the nociception caused by glutamate. These effects are related to the activation of ASICs, TRPV1 and NMDA receptors, inhibition of the synthesis of prostanoids, and disruption of the C fibers. PERSPECTIVE The nociception induced by glutamate is a useful method for investigation of the mechanisms of nociception and the effects of new analgesic drugs. Our findings showed that the protons released from glutamic acid have to be removed from the solution to avoid misinterpretation of results in the search for new analgesic drugs.
Collapse
Affiliation(s)
- Flavia Carla Meotti
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | |
Collapse
|
187
|
Liechti LA, Bernèche S, Bargeton B, Iwaszkiewicz J, Roy S, Michielin O, Kellenberger S. A combined computational and functional approach identifies new residues involved in pH-dependent gating of ASIC1a. J Biol Chem 2010; 285:16315-29. [PMID: 20299463 DOI: 10.1074/jbc.m109.092015] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are key receptors for extracellular protons. These neuronal nonvoltage-gated Na(+) channels are involved in learning, the expression of fear, neurodegeneration after ischemia, and pain sensation. We have applied a systematic approach to identify potential pH sensors in ASIC1a and to elucidate the mechanisms by which pH variations govern ASIC gating. We first calculated the pK(a) value of all extracellular His, Glu, and Asp residues using a Poisson-Boltzmann continuum approach, based on the ASIC three-dimensional structure, to identify candidate pH-sensing residues. The role of these residues was then assessed by site-directed mutagenesis and chemical modification, combined with functional analysis. The localization of putative pH-sensing residues suggests that pH changes control ASIC gating by protonation/deprotonation of many residues per subunit in different channel domains. Analysis of the function of residues in the palm domain close to the central vertical axis of the channel allowed for prediction of conformational changes of this region during gating. Our study provides a basis for the intrinsic ASIC pH dependence and describes an approach that can also be applied to the investigation of the mechanisms of the pH dependence of other proteins.
Collapse
Affiliation(s)
- Luz Angélica Liechti
- Department of Pharmacology and Toxicology, University of Lausanne, 1005 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
188
|
Chai S, Li M, Branigan D, Xiong ZG, Simon RP. Activation of acid-sensing ion channel 1a (ASIC1a) by surface trafficking. J Biol Chem 2010; 285:13002-11. [PMID: 20185828 DOI: 10.1074/jbc.m109.086041] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent Na(+) channels activated by extracellular protons. ASIC1a is expressed in neurons in mammalian brain and is implicated in long term potentiation of synaptic transmission that contributes to learning and memory. In ischemic brain injury, however, activation of this Ca(2+)-permeable channel plays a critical role in acidosis-mediated, glutamate-independent, Ca(2+) toxicity. We report here the identification of insulin as a regulator of ASIC1a surface expression. In modeled ischemia using Chinese hamster ovary cells, serum depletion caused a significant increase in ASIC1a surface expression that resulted in the potentiation of ASIC1a activity. Among the components of serum, insulin was identified as the key factor that maintains a low level of ASIC1a on the plasma membrane. Neurons subjected to insulin depletion increased surface expression of ASIC1a with resultant potentiation of ASIC1a currents. Intracellularly, ASIC1a is predominantly localized to the endoplasmic reticulum in Chinese hamster ovary cells, and this intracellular localization is also observed in neurons. Under conditions of serum or insulin depletion, the intracellular ASIC1a is translocated to the cell surface, increasing the surface expression level. These results reveal an important trafficking mechanism of ASIC1a that is relevant to both the normal physiology and the pathological activity of this channel.
Collapse
Affiliation(s)
- Sunghee Chai
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232, USA.
| | | | | | | | | |
Collapse
|
189
|
Linley JE, Rose K, Ooi L, Gamper N. Understanding inflammatory pain: ion channels contributing to acute and chronic nociception. Pflugers Arch 2010; 459:657-69. [DOI: 10.1007/s00424-010-0784-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 01/04/2010] [Accepted: 01/06/2010] [Indexed: 02/06/2023]
|
190
|
Springauf A, Gründer S. An acid-sensing ion channel from shark (Squalus acanthias) mediates transient and sustained responses to protons. J Physiol 2010; 588:809-20. [PMID: 20064854 DOI: 10.1113/jphysiol.2009.182931] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated Na(+) channels. They are implicated in synaptic transmission, detection of painful acidosis, and possibly sour taste. The typical ASIC current is a transient, completely desensitizing current that can be blocked by the diuretic amiloride. ASICs are present in chordates but are absent in other animals. They have been cloned from urochordates, jawless vertebrates, cartilaginous shark and bony fish, from chicken and different mammals. Strikingly, all ASICs that have so far been characterized from urochordates, jawless vertebrates and shark are not gated by protons, suggesting that proton gating evolved relatively late in bony fish and that primitive ASICs had a different and unknown gating mechanism. Recently, amino acids that are crucial for the proton gating of rat ASIC1a have been identified. These residues are completely conserved in shark ASIC1b (sASIC1b), prompting us to re-evaluate the proton sensitivity of sASIC1b. Here we show that, contrary to previous findings, sASIC1b is indeed gated by protons with half-maximal activation at pH 6.0. sASIC1b desensitizes quickly but incompletely, efficiently encoding transient as well as sustained proton signals. Our results show that the conservation of the amino acids crucial for proton gating can predict proton sensitivity of an ASIC and increase our understanding of the evolution of ASICs.
Collapse
Affiliation(s)
- Andreas Springauf
- Department of Physiology, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany.
| | | |
Collapse
|
191
|
Walder RY, Rasmussen LA, Rainier JD, Light AR, Wemmie JA, Sluka KA. ASIC1 and ASIC3 play different roles in the development of Hyperalgesia after inflammatory muscle injury. THE JOURNAL OF PAIN 2009; 11:210-8. [PMID: 20015700 DOI: 10.1016/j.jpain.2009.07.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/01/2009] [Accepted: 07/13/2009] [Indexed: 01/23/2023]
Abstract
UNLABELLED Acid-sensing ion channels (ASICs) respond to acidosis that normally occurs after inflammation. We examined the expression of ASIC1, ASIC2, and ASIC3 mRNAs in lumbar dorsal root ganglion neurons before and 24 hours after carrageenan-induced muscle inflammation. Muscle inflammation causes bilateral increases of ASIC2 and ASIC3 but not ASIC1 (neither ASIC1a nor ASIC1b) mRNA, suggesting differential regulation of ASIC1 versus ASIC2 and ASIC3 mRNA. Similar mRNA increases were observed after inflammation in knockout mice: ASIC2 mRNA increases in ASIC3-/- mice; ASIC2 and ASIC3 mRNAs increase in ASIC1-/- mice. Prior behavioral studies in ASIC3-/- mice showed deficits in secondary hyperalgesia (increased response to noxious stimuli outside the site of injury) but not primary hyperalgesia (increased response to noxious stimuli at the site of injury). In this study, we show that ASIC1-/- mice do not develop primary muscle hyperalgesia but develop secondary paw hyperalgesia. In contrast, and as expected, ASIC3-/- mice develop primary muscle hyperalgesia but do not develop secondary paw hyperalgesia. The pharmacological utility of the nonselective ASIC inhibitor A-317567, given locally, was tested. A-317567 reverses both the primary and the secondary hyperalgesia induced by carrageenan muscle inflammation. Thus, peripherally located ASIC1 and ASIC3 play different roles in the development of hyperalgesia after muscle inflammation. PERSPECTIVE This study shows changes in ASIC mRNA expression and behavioral hyperalgesia of C57Bl/6 (wild type), ASIC1-/-, and ASIC3-/- mice before and after the induction of muscle inflammation. A-317567 was effective in reversing hyperalgesia in these animals, suggesting the potential of ASICs as therapeutic targets for muscle inflammatory pain.
Collapse
Affiliation(s)
- Roxanne Y Walder
- Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | |
Collapse
|
192
|
ASIC1 and ASIC3 play different roles in the development of Hyperalgesia after inflammatory muscle injury. THE JOURNAL OF PAIN 2009; 146:5-6. [PMID: 20015700 DOI: 10.1016/j.pain.2009.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 07/02/2009] [Indexed: 12/11/2022]
Abstract
UNLABELLED Acid-sensing ion channels (ASICs) respond to acidosis that normally occurs after inflammation. We examined the expression of ASIC1, ASIC2, and ASIC3 mRNAs in lumbar dorsal root ganglion neurons before and 24 hours after carrageenan-induced muscle inflammation. Muscle inflammation causes bilateral increases of ASIC2 and ASIC3 but not ASIC1 (neither ASIC1a nor ASIC1b) mRNA, suggesting differential regulation of ASIC1 versus ASIC2 and ASIC3 mRNA. Similar mRNA increases were observed after inflammation in knockout mice: ASIC2 mRNA increases in ASIC3-/- mice; ASIC2 and ASIC3 mRNAs increase in ASIC1-/- mice. Prior behavioral studies in ASIC3-/- mice showed deficits in secondary hyperalgesia (increased response to noxious stimuli outside the site of injury) but not primary hyperalgesia (increased response to noxious stimuli at the site of injury). In this study, we show that ASIC1-/- mice do not develop primary muscle hyperalgesia but develop secondary paw hyperalgesia. In contrast, and as expected, ASIC3-/- mice develop primary muscle hyperalgesia but do not develop secondary paw hyperalgesia. The pharmacological utility of the nonselective ASIC inhibitor A-317567, given locally, was tested. A-317567 reverses both the primary and the secondary hyperalgesia induced by carrageenan muscle inflammation. Thus, peripherally located ASIC1 and ASIC3 play different roles in the development of hyperalgesia after muscle inflammation. PERSPECTIVE This study shows changes in ASIC mRNA expression and behavioral hyperalgesia of C57Bl/6 (wild type), ASIC1-/-, and ASIC3-/- mice before and after the induction of muscle inflammation. A-317567 was effective in reversing hyperalgesia in these animals, suggesting the potential of ASICs as therapeutic targets for muscle inflammatory pain.
Collapse
|
193
|
The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell 2009; 139:1012-21. [PMID: 19945383 DOI: 10.1016/j.cell.2009.10.029] [Citation(s) in RCA: 310] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/07/2009] [Accepted: 09/21/2009] [Indexed: 02/07/2023]
Abstract
The amygdala processes and directs inputs and outputs that are key to fear behavior. However, whether it directly senses fear-evoking stimuli is unknown. Because the amygdala expresses acid-sensing ion channel-1a (ASIC1a), and ASIC1a is required for normal fear responses, we hypothesized that the amygdala might detect a reduced pH. We found that inhaled CO(2) reduced brain pH and evoked fear behavior in mice. Eliminating or inhibiting ASIC1a markedly impaired this activity, and localized ASIC1a expression in the amygdala rescued the CO(2)-induced fear deficit of ASIC1a null animals. Buffering pH attenuated fear behavior, whereas directly reducing pH with amygdala microinjections reproduced the effect of CO(2). These data identify the amygdala as an important chemosensor that detects hypercarbia and acidosis and initiates behavioral responses. They also give a molecular explanation for how rising CO(2) concentrations elicit intense fear and provide a foundation for dissecting the bases of anxiety and panic disorders.
Collapse
|
194
|
Smith ESJ, Lewin GR. Nociceptors: a phylogenetic view. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:1089-106. [PMID: 19830434 PMCID: PMC2780683 DOI: 10.1007/s00359-009-0482-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/15/2009] [Accepted: 09/20/2009] [Indexed: 02/07/2023]
Abstract
The ability to react to environmental change is crucial for the survival of an organism and an essential prerequisite is the capacity to detect and respond to aversive stimuli. The importance of having an inbuilt "detect and protect" system is illustrated by the fact that most animals have dedicated sensory afferents which respond to noxious stimuli called nociceptors. Should injury occur there is often sensitization, whereby increased nociceptor sensitivity and/or plasticity of nociceptor-related neural circuits acts as a protection mechanism for the afflicted body part. Studying nociception and nociceptors in different model organisms has demonstrated that there are similarities from invertebrates right through to humans. The development of technology to genetically manipulate organisms, especially mice, has led to an understanding of some of the key molecular players in nociceptor function. This review will focus on what is known about nociceptors throughout the Animalia kingdom and what similarities exist across phyla; especially at the molecular level of ion channels.
Collapse
Affiliation(s)
- Ewan St John Smith
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, 13125 Berlin-Buch, Germany.
| | | |
Collapse
|
195
|
|
196
|
Acid-sensing (proton-gated) ion channels (ASICs). Br J Pharmacol 2009. [DOI: 10.1111/j.1476-5381.2009.00503_2.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
197
|
Passero CJ, Okumura S, Carattino MD. Conformational changes associated with proton-dependent gating of ASIC1a. J Biol Chem 2009; 284:36473-36481. [PMID: 19858190 DOI: 10.1074/jbc.m109.055418] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Acid-sensing ion channels are proton-gated Na(+) channels expressed predominantly in neurons. How channel structure translates an environmental stimulus into changes in pore permeability remains largely undefined. The pore of ASIC1 is defined by residues in the second transmembrane domain (TM2), although a segment of the outer vestibule is formed by residues of TM1. We used the voltage clamp fluorometry technique to define the role of the region preceding TM2 (pre-TM2) in activation and desensitization of mouse ASIC1a. Oocytes expressing E425C channels labeled with Alexa Fluor 488 C5-maleimide showed a change in the emission of the fluorescent probe in response to extracellular acidification. The time course of the change in fluorescence correlated with activation but not desensitization of E425C channels. The fluorescence emission did not change following extracellular acidification in oocytes carrying an inactivating mutation (W287G/E425C), although these channels were labeled and expressed at the plasma membrane. Our data indicate that pore opening occurs in conjunction with a conformational rearrangement of the pre-TM2. We observed a change in the emission of the fluorescent probe when labeled E425C channels transition from the desensitized to the resting state. The substituted-cysteine-accessibility method was used to determine whether the pre-TM2 has different conformations in the resting and desensitized states. State-dependent changes in accessibility to 2-[(trimethylammonium)ethyl]methanethiosulfonate bromide modification were observed in oocytes expressing K421C, K422C, Y424C, and E425C channels. Our results suggest that the pre-TM2 of ASIC1a undergoes dynamic conformational rearrangements during proton-dependent gating.
Collapse
Affiliation(s)
- Christopher J Passero
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Sora Okumura
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
198
|
ASIC2 subunits target acid-sensing ion channels to the synapse via an association with PSD-95. J Neurosci 2009; 29:8438-46. [PMID: 19571134 DOI: 10.1523/jneurosci.1284-09.2009] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acid-sensing ion channel-1a (ASIC1a) mediates H(+)-gated current to influence normal brain physiology and impact several models of disease. Although ASIC2 subunits are widely expressed in brain and modulate ASIC1a current, their function remains poorly understood. We identified ASIC2a in dendrites, dendritic spines, and brain synaptosomes. This localization largely relied on ASIC2a binding to PSD-95 and matched that of ASIC1a, which does not coimmunoprecipitate with PSD-95. We found that ASIC2 and ASIC1a associated in brain, and through its interaction with PSD-95, ASIC2 increased ASIC1a localization in dendritic spines. Consistent with earlier work showing that acidic pH elevated spine [Ca(2+)](i) by activating ASIC1a, loss of ASIC2 decreased the percentage of spines responding to acid. Moreover, like a reduction of ASIC1a, the number of spine synapses fell in ASIC2(-/-) neurons. These results indicate that ASIC2 facilitates ASIC1a localization and function in dendritic spines and suggest that the two subunits work in concert to regulate neuronal function.
Collapse
|
199
|
Hattori T, Chen J, Harding AMS, Price MP, Lu Y, Abboud FM, Benson CJ. ASIC2a and ASIC3 heteromultimerize to form pH-sensitive channels in mouse cardiac dorsal root ganglia neurons. Circ Res 2009; 105:279-86. [PMID: 19590043 DOI: 10.1161/circresaha.109.202036] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Acid-sensing ion channels (ASICs) are Na+ channels that are activated by acidic pH. Their expression in cardiac afferents and remarkable sensitivity to small pH changes has made them leading candidates to sense cardiac ischemia. OBJECTIVE Four genes encode six different ASIC subunits, however it is not yet clear which of the ASIC subunits contribute to the composition of ASICs in cardiac afferents. METHODS AND RESULTS Here, we labeled cardiac afferents using a retrograde tracer dye in mice, which allowed for patch-clamp studies of murine cardiac afferents. We found that a higher percentage of cardiac sensory neurons from the dorsal root ganglia respond to acidic pH and generated larger currents compared to those from the nodose ganglia. The ASIC-like current properties of the cardiac dorsal root ganglia neurons from wild-type mice most closely matched the properties of ASIC2a/3 heteromeric channels. This was supported by studies in ASIC-null mice: acid-evoked currents from ASIC3(-/-) cardiac afferents matched the properties of ASIC2a channels, and currents from ASIC2(-/-) cardiac afferents matched the properties of ASIC3 channels. CONCLUSIONS We conclude that ASIC2a and -3 are the major ASIC subunits in cardiac dorsal root ganglia neurons and provide potential molecular targets to attenuate chest pain and deleterious reflexes associated with cardiac disease.
Collapse
Affiliation(s)
- Tomonori Hattori
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
200
|
Jensen JE, Durek T, Alewood PF, Adams DJ, King GF, Rash LD. Chemical synthesis and folding of APETx2, a potent and selective inhibitor of acid sensing ion channel 3. Toxicon 2009; 54:56-61. [DOI: 10.1016/j.toxicon.2009.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/06/2009] [Accepted: 03/12/2009] [Indexed: 10/21/2022]
|