151
|
Nice DC, Sato TK, Stromhaug PE, Emr SD, Klionsky DJ. Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J Biol Chem 2002; 277:30198-207. [PMID: 12048214 PMCID: PMC2754692 DOI: 10.1074/jbc.m204736200] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autophagy is a catabolic membrane-trafficking mechanism involved in cell maintenance and development. Most components of autophagy also function in the cytoplasm to vacuole targeting (Cvt) pathway, a constitutive biosynthetic pathway required for the transport of aminopeptidase I (Ape1). The protein components of autophagy and the Cvt pathway include a putative complex composed of Apg1 kinase and several interacting proteins that are specific for either the Cvt pathway or autophagy. A second required complex includes a phosphatidylinositol (PtdIns) 3-kinase and associated proteins that are involved in its activation and localization. The majority of proteins required for the Cvt and autophagy pathways localize to a perivacuolar pre-autophagosomal structure. We show that the Cvt13 and Cvt20 proteins are required for transport of precursor Ape1 through the Cvt pathway. Both proteins contain phox homology domains that bind PtdIns(3)P and are necessary for membrane localization to the pre-autophagosomal structure. Functional phox homology domains are required for Cvt pathway function. Cvt13 and Cvt20 interact with each other and with an autophagy-specific protein, Apg17, that interacts with Apg1 kinase. These results provide the first functional connection between the Apg1 and PtdIns 3-kinase complexes. The data suggest a role for PtdIns(3)P in the Cvt pathway and demonstrate that this lipid is required at the pre-autophagosomal structure.
Collapse
Affiliation(s)
- Daniel C. Nice
- Department of Molecular, Cellular, and Developmental Biology and the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Trey K. Sato
- Department of Cellular and Molecular Medicine and Howard Hughes Medical Institute, University of California School of Medicine, San Diego, La Jolla, California 92093
| | - Per E. Stromhaug
- Department of Molecular, Cellular, and Developmental Biology and the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Scott D. Emr
- Department of Cellular and Molecular Medicine and Howard Hughes Medical Institute, University of California School of Medicine, San Diego, La Jolla, California 92093
| | - Daniel J. Klionsky
- Department of Molecular, Cellular, and Developmental Biology and the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
- To whom correspondence should be addressed: Dept. of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109. Tel.: 734-615-6556; Fax: 734-647-0884;
| |
Collapse
|
152
|
Seaman MNJ, Williams HP. Identification of the functional domains of yeast sorting nexins Vps5p and Vps17p. Mol Biol Cell 2002; 13:2826-40. [PMID: 12181349 PMCID: PMC117945 DOI: 10.1091/mbc.02-05-0064] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sorting nexins (Snxs) are a recently discovered family of conserved hydrophilic cytoplasmic proteins that have been found associated with membranes of the endocytic system and that are implicated in the trafficking of many endosomal membrane proteins, including the epidermal growth factor receptor and transferrin receptor. Snx proteins are partly defined by the presence of a p40 phox homology domain that has recently been shown to bind phosphatidylinositol 3-phosphate. Most Snx proteins also contain a predicted coiled-coils domain in the carboxyl-terminal half of the protein and have been shown to form dimers with other members of the Snx family. The yeast sorting nexins Vps5p and Vps17p form a dimer and are also components of the retromer complex that mediates endosome-to-Golgi transport of the carboxypeptidase Y receptor Vps10p. To functionally define the different domains of the yeast sorting nexins Vps5p and Vps17p, we have generated various truncations to examine the role that the different domains of Vps5p/Vps17p play in their respective functions. Herein, we show that the C-terminal halves of Vps5p and Vps17p, which contain the coiled-coils domains, are necessary and sufficient for their interaction. We have also mapped the retromer assembly domain to the N-terminal half of Vps5p and found that binding of Vps5p by Vps17p synergizes the interaction between Vps5p and other retromer components. Additionally, we have examined which domain(s) of Vps5p is necessary for membrane association.
Collapse
Affiliation(s)
- Matthew N J Seaman
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, University of Cambridge, Addenbrookes Hospital, United Kingdom.
| | | |
Collapse
|
153
|
Abstract
The endosomal system of yeast is simpler than that of animal cells, but as it is mapped more similarities are emerging. A key role for ubiquitin in sorting proteins to and into multivesicular bodies has been demonstrated. The finding that Phox homology domains recognise phosphatidylinositol 3-phosphate explains how sorting nexins are recruited to endosomes, where they mediate the retrieval of membrane proteins from the endocytic pathway.
Collapse
Affiliation(s)
- Hugh R B Pelham
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
154
|
Wang Y, Zhou Y, Szabo K, Haft CR, Trejo J. Down-regulation of protease-activated receptor-1 is regulated by sorting nexin 1. Mol Biol Cell 2002; 13:1965-76. [PMID: 12058063 PMCID: PMC117618 DOI: 10.1091/mbc.e01-11-0131] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Degradation or "down-regulation" of protease-activated receptor-1 (PAR1), a G protein-coupled receptor for thrombin, is critical for termination of receptor signaling. Toward understanding the molecular mechanisms by which activated PAR1 is internalized, sorted to lysosomes, and degraded, we investigated whether PAR1 interacted with sorting nexin 1 (SNX1). SNX1 is a membrane-associated protein that functions in lysosomal sorting of the epidermal growth factor receptor. In vitro biochemical binding assays revealed a specific interaction between a glutathione S-transferase fusion of SNX1 and PAR1. In HeLa cells, activated PAR1 colocalized with endogenous SNX1 and coimmunoprecipitated SNX1. SNX1 contains a phox homology domain predicted to bind phosphatidylinositol-3-phosphate and a C-terminal coiled-coil region. To assess SNX1 function, we examined the effects of SNX1 deletion mutants on PAR1 trafficking. Neither the N terminus nor phox homology domain of SNX1 affected PAR1 trafficking. By contrast, overexpression of SNX1 C-terminal domain markedly inhibited agonist-induced degradation of PAR1, whereas internalization remained virtually intact. Immunofluorescence microscopy studies revealed substantial PAR1 accumulation in an early endosome antigen-1-positive compartment in agonist-treated cells expressing SNX1 C terminus. By contrast, lysosome-associated membrane protein-1 distribution was unperturbed. Together, these findings strongly suggest a role for SNX1 in sorting of PAR1 from early endosomes to lysosomes. Moreover, this study provides the first example of a protein involved in lysosomal sorting of a G protein-coupled receptor in mammalian cells.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, North Carolina 27599-7365, USA
| | | | | | | | | |
Collapse
|
155
|
Zhong Q, Lazar CS, Tronchère H, Sato T, Meerloo T, Yeo M, Songyang Z, Emr SD, Gill GN. Endosomal localization and function of sorting nexin 1. Proc Natl Acad Sci U S A 2002; 99:6767-72. [PMID: 11997453 PMCID: PMC124477 DOI: 10.1073/pnas.092142699] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2001] [Accepted: 03/12/2002] [Indexed: 11/18/2022] Open
Abstract
There are 17 human members of the sorting nexin (SNX) family of proteins that contain Phox (PX) domains. Yeast orthologs function in vesicular trafficking and mammalian proteins have been implicated in endocytic trafficking of cell surface receptors. The first member of this family, SNX1, was identified via interaction with the epidermal growth factor receptor. The present studies indicate that SNX1 and SNX2 are colocalized to tubulovesicular endosomal membranes and this localization depends on PI 3-kinase activity. Point mutations in the PX domain that abolish recognition of phosphorylated phosphatidylinositol (PtdIns) in vitro abolish vesicle localization in vivo indicating that lipid binding by the PX domain is necessary for localization to vesicle membranes. Deletion of a predicted coiled-coil region in the COOH terminus of SNX1 also abolished vesicle localization, indicating that this helical domain, too, is necessary for SNX1 localization. Thus, both PX domain recognition of PtdIns and COOH terminal helical domains are necessary for localization of SNX1 with neither alone being sufficient. Regulated overexpression of the NH(2) terminus of SNX1 containing the PX domain decreased the rate of ligand-induced epidermal growth factor receptor degradation, an effect consistent with inhibition of endogenous SNX1 function in the endosome compartment. SNX1 thus functions in regulating trafficking in the endosome compartment via PX domain recognition of phosphorylated PtdIns and via interaction with other protein components.
Collapse
Affiliation(s)
- Qi Zhong
- Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093-0650, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
|
157
|
Dowler S, Kular G, Alessi DR. Protein lipid overlay assay. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:pl6. [PMID: 11972359 DOI: 10.1126/stke.2002.129.pl6] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Protein Lipid Overlay (PLO) assay enables the identification of the lipid ligands with which lipid binding proteins interact. This assay also provides qualitative information on the relative affinity with which a protein binds to a lipid. In the PLO assay, serial dilutions of different lipids are spotted onto a nitrocellulose membrane to which they attach. These membranes are then incubated with a lipid binding protein possessing an epitope tag. The membranes are washed and the protein, still bound to the membrane by virtue of its interaction with lipid(s), is detected by immunoblotting with an antibody recognizing the epitope tag. This procedure requires only a few micrograms of protein and is quicker and cheaper to perform than other methods that have been developed to assess protein-lipid interactions. The reagents required for the PLO assay are readily available from commercial sources and the assay can be performed in any laboratory, even by those with no prior expertise in this area.
Collapse
Affiliation(s)
- Simon Dowler
- MRC Protein Phosphorylation Unit, School of Life Sciences, MSI/WTB Complex University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | | | | |
Collapse
|
158
|
Gary JD, Sato TK, Stefan CJ, Bonangelino CJ, Weisman LS, Emr SD. Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member. Mol Biol Cell 2002; 13:1238-51. [PMID: 11950935 PMCID: PMC102265 DOI: 10.1091/mbc.01-10-0498] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Revised: 12/14/2001] [Accepted: 01/08/2002] [Indexed: 11/11/2022] Open
Abstract
The Saccharomyces cerevisiae FAB1 gene encodes the sole phosphatidylinositol 3-phosphate [PtdIns(3)P] 5-kinase responsible for synthesis of the polyphosphoinositide PtdIns(3,5)P(2). VAC7 encodes a 128-kDa transmembrane protein that localizes to vacuolar membranes. Both vac7 and fab1 null mutants have dramatically enlarged vacuoles and cannot grow at elevated temperatures. Additionally, vac7Delta mutants have nearly undetectable levels of PtdIns(3,5)P(2), suggesting that Vac7 functions to regulate Fab1 kinase activity. To test this hypothesis, we isolated a fab1 mutant allele that bypasses the requirement for Vac7 in PtdIns(3,5)P(2) production. Expression of this fab1 allele in vac7Delta mutant cells suppresses the temperature sensitivity, vacuolar morphology, and PtdIns(3,5)P(2) defects normally exhibited by vac7Delta mutants. We also identified a mutant allele of FIG4, whose gene product contains a Sac1 polyphosphoinositide phosphatase domain, which suppresses vac7Delta mutant phenotypes. Deletion of FIG4 in vac7Delta mutant cells suppresses the temperature sensitivity and vacuolar morphology defects, and dramatically restores PtdIns(3,5)P(2) levels. These results suggest that generation of PtdIns(3,5)P(2) by the Fab1 lipid kinase is regulated by Vac7, whereas turnover of PtdIns(3,5)P(2) is mediated in part by the Sac1 polyphosphoinositide phosphatase family member Fig4.
Collapse
Affiliation(s)
- Jonathan D Gary
- Department of Cellular and Molecular Medicine, University of California at San Diego, School of Medicine, La Jolla, CA 92093-0668, USA
| | | | | | | | | | | |
Collapse
|
159
|
Bibliography. Current awareness on yeast. Yeast 2002; 19:467-74. [PMID: 11921095 DOI: 10.1002/yea.822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
160
|
Ellson CD, Andrews S, Stephens LR, Hawkins PT. The PX domain: a new phosphoinositide-binding module. J Cell Sci 2002; 115:1099-105. [PMID: 11884510 DOI: 10.1242/jcs.115.6.1099] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PX domain, which until recently was an orphan domain, has emerged as the latest member of the phosphoinositide-binding module superfamily. Structural studies have revealed that it has a novel fold and identified key residues that interact with the bound phosphoinositide, enabling some prediction of phosphoinositide-binding specificity. Specificity for PtdIns(3)P appears to be the most common, and several proteins containing PX domains localise to PtdIns(3)P-rich endosomal and vacuolar structures through their PX domains: these include the yeast t-SNARE Vam7p, mammalian sorting nexins (involved in membrane trafficking events) and the Ser/Thr kinase CISK, which is implicated in cell survival. Additionally,phosphoinositide binding to the PX domains of p40phox and p47phox appears to play a critical role in the active assembly of the neutrophil oxidase complex.
Collapse
Affiliation(s)
- Chris D Ellson
- The Inositide Laboratory, The Babraham Institute, Babraham, Cambridge, CB2 4AT, UK.
| | | | | | | |
Collapse
|
161
|
Abstract
Although ligand activation of receptor signaling is well understood, less is known about how a cell switches off signaling by the activated receptor. In his Perspective, Gill discusses new work (Haj et al.) that visualizes one step in the process of deactivating a ligand-activated receptor tyrosine kinase--the dephosphorylation of the internalized receptor by a phosphatase in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Gordon N Gill
- University of California, San Diego, La Jolla, CA 92093-0650, USA.
| |
Collapse
|
162
|
Zhan Y, Virbasius JV, Song X, Pomerleau DP, Zhou GW. The p40phox and p47phox PX domains of NADPH oxidase target cell membranes via direct and indirect recruitment by phosphoinositides. J Biol Chem 2002; 277:4512-8. [PMID: 11729195 DOI: 10.1074/jbc.m109520200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Phox homology (PX) domain has recently been reported to bind to phosphoinositides, and some PX domains can localize to endosomes in vivo. Here we show data to support the conclusion that the p40(phox) PX domain binds to phosphatidylinositol 3-phosphate specifically in vitro and localizes to endosomes in intact cells. In addition, its Y59A/L65Q mutant, which has decreased affinity for phosphatidylinositol 3-phosphate in vitro, fails to target EGFP-p40-PX to endosomes. However, unlike published results, we find that the p47(phox) PX domain weakly binds to many phosphoinositides in vitro showing slightly higher affinity for phosphatidylinositol 3,4,5-trisphosphate. Moreover, we show for the first time that upon insulin-like growth factor-1 stimulation of COS cells, the p47(phox) PX domain is localized to the plasma membrane, and this subcellular localization is dependent on PI 3-kinase activity. Unexpectedly, its R42Q mutant that loses in vitro phosphoinositide-binding ability can still target EGFP-p47-PX to the plasma membrane. Our data suggest that the translocation of p47(phox) PX domain to the plasma membrane does involve 3'-phosphoinositide(s) in the process, but the phosphoinositide-binding of p47(phox) PX domain is not sufficient to recruit it to the plasma membrane. Therefore, the p40(phox) and p47(phox) PX domains can target subcellular membranes via direct or indirect recruitment by phosphoinositides, while both are under the control of phosphatidylinositol 3-kinase activity.
Collapse
Affiliation(s)
- Yong Zhan
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|