151
|
Nijstad N, Gautier T, Briand F, Rader DJ, Tietge UJF. Biliary sterol secretion is required for functional in vivo reverse cholesterol transport in mice. Gastroenterology 2011; 140:1043-51. [PMID: 21134376 DOI: 10.1053/j.gastro.2010.11.055] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/02/2010] [Accepted: 11/24/2010] [Indexed: 01/26/2023]
Abstract
BACKGROUND & AIMS High-density lipoproteins (HDLs) protect against atherosclerotic cardiovascular disease, mainly by promoting reverse cholesterol transport (RCT). Biliary sterol secretion supposedly represents the final step in RCT, but the relevance of this pathway has not been explored. We tested the dependency of RCT on functional biliary sterol secretion. METHODS Macrophage-to-feces RCT was studied in mice with abolished (bile duct ligation) or decreased biliary sterol secretion (adenosine triphosphate binding cassette transporter B4 (Abcb4)-/- mice, with and without administration of a liver X receptor [LXR] agonist) after intraperitoneal injection of (3)H-cholesterol-loaded primary macrophage foam cells from mice. Fecal tracer excretion and also fecal mass sterol excretion were measured. Metabolism and tissue uptake of HDL cholesteryl ester was assessed with HDL kinetic studies. RESULTS Bile-duct ligation completely abolished RCT from (3)H-cholesterol-loaded macrophages to feces (P < .001). In Abcb4-/- mice lacking biliary cholesterol secretion, RCT was decreased markedly; fecal (3)H-tracer excretion was almost absent within neutral sterols (P < .001) and reduced within bile acids (P < .05). LXR activation stimulated RCT in wild-type (5.5-fold; P < .001) but not Abcb4-/- mice, whereas mass fecal sterol excretion increased similarly in both models (P < .05). Kinetic studies revealed minimal uptake of HDL cholesteryl ester by the intestine, which decreased on LXR activation (P < .05). CONCLUSIONS Functional RCT depends on biliary sterol secretion; there is no compensatory increase in RCT via bile acids. The stimulating effect of LXR agonists on RCT requires biliary cholesterol secretion. These results have implications for therapies against atherosclerotic cardiovascular disease targeting the RCT pathway.
Collapse
Affiliation(s)
- Niels Nijstad
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
152
|
Abstract
Membrane transporters expressed by the hepatocyte and enterocyte play critical roles in maintaining the enterohepatic circulation of bile acids, an effective recycling and conservation mechanism that largely restricts these potentially cytotoxic detergents to the intestinal and hepatobiliary compartments. In doing so, the hepatic and enterocyte transport systems ensure a continuous supply of bile acids to be used repeatedly during the digestion of multiple meals throughout the day. Absorption of bile acids from the intestinal lumen and export into the portal circulation is mediated by a series of transporters expressed on the enterocyte apical and basolateral membranes. The ileal apical sodium-dependent bile acid cotransporter (abbreviated ASBT; gene symbol, SLC10A2) is responsible for the initial uptake of bile acids across the enterocyte brush border membrane. The bile acids are then efficiently shuttled across the cell and exported across the basolateral membrane by the heteromeric Organic Solute Transporter, OSTα-OSTβ. This chapter briefly reviews the tissue expression, physiology, genetics, pathophysiology, and transport properties of the ASBT and OSTα-OSTβ. In addition, the chapter discusses the relationship between the intestinal bile acid transporters and drug metabolism, including development of ASBT inhibitors as novel hypocholesterolemic or hepatoprotective agents, prodrug targeting of the ASBT to increase oral bioavailability, and involvement of the intestinal bile acid transporters in drug absorption and drug-drug interactions.
Collapse
Affiliation(s)
- Paul A Dawson
- Department of Internal Medicine, Section on Gastroenterology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| |
Collapse
|
153
|
Temel RE, Brown JM. A new framework for reverse cholesterol transport: Non-biliary contributions to reverse cholesterol transport. World J Gastroenterol 2010; 16:5946-52. [PMID: 21157970 PMCID: PMC3007104 DOI: 10.3748/wjg.v16.i47.5946] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reduction of low-density lipoprotein-cholesterol through statin therapy has only modestly decreased coronary heart disease (CHD)-associated mortality in developed countries, which has prompted the search for alternative therapeutic strategies for CHD. Major efforts are now focused on therapies that augment high-density lipoprotein (HDL)-mediated reverse cholesterol transport (RCT), and ultimately increase the fecal disposal of cholesterol. The process of RCT has long been thought to simply involve HDL-mediated delivery of peripheral cholesterol to the liver for biliary excretion out of the body. However, recent studies have revealed a novel pathway for RCT that does not rely on biliary secretion. This non-biliary pathway rather involves the direct excretion of cholesterol by the proximal small intestine. Compared to RCT therapies that augment biliary sterol loss, modulation of non-biliary fecal sterol loss through the intestine is a much more attractive therapeutic strategy, given that excessive biliary cholesterol secretion can promote gallstone formation. However, we are at an early stage in understanding the molecular mechanisms regulating the non-biliary pathway for RCT, and much additional work is required in order to effectively target this pathway for CHD prevention. The purpose of this review is to discuss our current understanding of biliary and non-biliary contributions to RCT with particular emphasis on the possibility of targeting the intestine as an inducible cholesterol secretory organ.
Collapse
|
154
|
Abstract
Cholesterol is of vital importance for the human body. It is a constituent for most biological membranes, it is needed for the formation of bile salts, and it is the precursor for steroid hormones and vitamin D. However, the presence of excess cholesterol in cells, and in particular in macrophages in the arterial vessel wall, might be harmful. The accumulation of cholesterol in arteries can lead to atherosclerosis, and in turn, to other cardiovascular diseases. The route that is primarily thought to be responsible for the disposal of cholesterol is called reverse cholesterol transport (RCT). Therefore, RCT is seen as an interesting target for the development of drugs aimed at the prevention of atherosclerosis. Research on RCT has taken off in recent years. In this review, the classical concepts about RCT are discussed, together with new insights about this topic.
Collapse
|
155
|
Abstract
The reverse cholesterol transport pathway (RCT) is the focus of many cholesterol-lowering therapies. By way of this pathway, excess cholesterol is collected from peripheral tissues and delivered back to the liver and gastrointestinal tract for excretion from the body. For a long time this removal via the hepatobiliary secretion was considered to be the sole route involved in the RCT. However, observations from early studies in animals and humans already pointed towards the possibility of another route. In the last few years it has become evident that a non-biliary cholesterol secretion pathway exists in which the intestine plays a central role. This transintestinal cholesterol efflux (TICE) pathway contributes significantly to the total fecal neutral sterol excretion. Moreover, recent studies have shown that TICE is also sensitive to stimulation. As a consequence, the direct role of cholesterol secretion from blood via TICE makes the intestine a suitable and approachable target for cholesterol removal from the body and possibly reduction of atherosclerosis. In this review, the discovery and recent findings contributing to understanding the mechanism of TICE will be discussed.
Collapse
|
156
|
Abstract
Despite a robust inverse association between high-density lipoprotein (HDL) cholesterol levels and atherosclerotic cardiovascular disease, the development of new therapies based on pharmacologic enhancement of HDL metabolism has proven challenging. Emerging evidence suggests that static measurement of HDL levels has inherent limitations as a surrogate for overall HDL functionality, particularly with regard to the rate of flux through the macrophage reverse cholesterol transport (RCT) pathway. Recent research has provided important insight into the molecular underpinnings of RCT, the process by which excess cellular cholesterol is effluxed from peripheral tissues and returned to the liver for ultimate intestinal excretion. This review discusses the critical importance and current strategies for quantifying RCT flux. It also highlights therapeutic strategies for augmenting macrophage RCT via three conceptual approaches: 1) improved efflux of cellular cholesterol via targeting the macrophage; 2) enhanced cholesterol efflux acceptor functionality of circulating HDL; and 3) increased hepatic uptake and biliary/intestinal excretion.
Collapse
|
157
|
Steck TL, Lange Y. Cell cholesterol homeostasis: mediation by active cholesterol. Trends Cell Biol 2010; 20:680-7. [PMID: 20843692 DOI: 10.1016/j.tcb.2010.08.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 08/03/2010] [Accepted: 08/12/2010] [Indexed: 12/15/2022]
Abstract
Recent evidence suggests that the major pathways mediating cell cholesterol homeostasis respond to a common signal: active membrane cholesterol. Active cholesterol is the fraction that exceeds the complexing capacity of the polar bilayer lipids. Increments in plasma membrane cholesterol exceeding this threshold have an elevated chemical activity (escape tendency) and redistribute via diverse transport proteins to both circulating plasma lipoproteins and intracellular organelles. Active cholesterol thereby prompts several feedback responses. It is the substrate for its own esterification and for the synthesis of regulatory side-chain oxysterols. It also stimulates manifold pathways that down-regulate the biosynthesis, curtail the ingestion and increase the export of cholesterol. Thus, the abundance of cell cholesterol is tightly coupled to that of its polar lipid partners through active cholesterol.
Collapse
Affiliation(s)
- Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| | | |
Collapse
|
158
|
Jakulj L, Vissers MN, van Roomen CP, van der Veen JN, Vrins CLJ, Kunne C, Stellaard F, Kastelein JJP, Groen AK. Ezetimibe stimulates faecal neutral sterol excretion depending on abcg8 function in mice. FEBS Lett 2010; 584:3625-8. [PMID: 20659465 DOI: 10.1016/j.febslet.2010.07.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 07/20/2010] [Indexed: 11/19/2022]
Abstract
Ezetimibe stimulates faecal neutral sterol (FNS) excretion in mice, which cannot be explained by cholesterol absorption inhibition alone. We investigated whether these effects are mediated via the sterol exporter ATP binding cassette transporter G8 (abcg8). Ezetimibe increased FNS excretion 2.7-fold in WT mice and 1.5-fold in abcg8(-/-) mice, without affecting biliary cholesterol secretion. Daily FNS excretion exceeded the sum of dietary cholesterol intake and biliary secretion by about 60%. Ezetimibe enhanced this 'extra' FNS excretion by 3.5-fold and 1.5-fold in wildtype (WT) and abcg8(-/-) mice, respectively. Ezetimibe stimulates fecal sterol excretion of non-biliary and non-dietary origin, probably through stimulation of trans-intestinal cholesterol excretion. We show that this effect depends on intact abcg8 function.
Collapse
Affiliation(s)
- Lily Jakulj
- Department of Vascular Medicine, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Temel RE, Sawyer JK, Yu L, Lord C, Degirolamo C, McDaniel A, Marshall S, Wang N, Shah R, Rudel LL, Brown JM. Biliary sterol secretion is not required for macrophage reverse cholesterol transport. Cell Metab 2010; 12:96-102. [PMID: 20620999 PMCID: PMC2913877 DOI: 10.1016/j.cmet.2010.05.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/07/2010] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
Abstract
Recent evidence suggests that the intestine may play a direct facilitative role in reverse cholesterol transport (RCT), independent of hepatobiliary secretion. In order to understand the nonbiliary pathway for RCT, we created both genetic and surgical models of biliary cholesterol insufficiency. To genetically inhibit biliary cholesterol secretion, we generated mice in which Niemann-Pick C1-Like 1 (NPC1L1) was overexpressed in the liver. Compared to controls, NPC1L1(Liver-Tg) mice exhibit a >90% decrease in biliary cholesterol secretion, yet mass fecal sterol loss and macrophage RCT are normal. To surgically inhibit biliary emptying into the intestine, we have established an acute biliary diversion model. Strikingly, macrophage RCT persists in mice surgically lacking the ability to secrete bile into the intestine. Collectively, these studies demonstrate that mass fecal sterol loss and macrophage RCT can proceed in the absence of biliary sterol secretion, challenging the obligate role of bile in RCT.
Collapse
Affiliation(s)
- Ryan E Temel
- Section on Lipid Sciences, Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
van Meer H, van Straten EME, Baller JFW, van Dijk TH, Plösch T, Kuipers F, Verkade HJ. The effects of intrauterine malnutrition on maternal-fetal cholesterol transport and fetal lipid synthesis in mice. Pediatr Res 2010; 68:10-5. [PMID: 20386142 DOI: 10.1203/pdr.0b013e3181e1219b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intrauterine malnutrition is associated with increased susceptibility to chronic diseases in adulthood. Growth-restricted infants display a less favorable lipid profile already shortly postnatal. Maternal low protein diet (LPD) during gestation is a well-defined model of fetal programming in rodents and affects lipid metabolism of the offspring. Effects of LPD throughout gestation on physiologic relevant parameters of lipid metabolism are unclear. We aimed to determine effects of LPD on maternal-fetal cholesterol fluxes and fetal lipid synthesis in mice. Pregnant mice (dams) were fed with a control (18% casein) or an LPD (9% casein) from E0.5 onward. We quantified maternal-fetal cholesterol transport and maternal cholesterol absorption at E19.5 using stable isotopes. We determined fetal lipid biosynthesis at E19.5, after administration of (1-C)-acetate from E17.5 onward. LPD did not change fetal and maternal plasma and hepatic concentrations of cholesterol and triglycerides. LPD affected neither the magnitudes of maternal-fetal cholesterol flux, maternal cholesterol absorption, nor fetal synthesis of cholesterol and palmitate (both groups, approximately 14% and approximately 13%, respectively). We conclude that LPD throughout gestation in mice does not affect maternal-fetal cholesterol transport, fetal cholesterol or fatty acid synthesis, indicating that programming effects of LPD are not mediated by short-term changes in maternal-fetal lipid metabolism.
Collapse
Affiliation(s)
- Hester van Meer
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 BN Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
161
|
Mangat R, Warnakula S, Wang Y, Russell J, Uwiera R, Vine D, Proctor S. Model of intestinal chylomicron over-production and Ezetimibe treatment: Impact on the retention of cholesterol in arterial vessels. ATHEROSCLEROSIS SUPP 2010; 11:17-24. [DOI: 10.1016/j.atherosclerosissup.2010.04.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 04/12/2010] [Accepted: 04/18/2010] [Indexed: 01/28/2023]
|
162
|
Abstract
PURPOSE OF REVIEW Regulation of cholesterol homeostasis is a complex interplay of a multitude of metabolic pathways situated in different organs. The liver plays a central role and has received most attention of the research community. In this review, we discuss recent progress in the understanding of the emerging role of the intestine in cholesterol transport. RECENT FINDINGS In recent years, insight in the transport systems that mediate intestinal cholesterol excretion has deepened considerably. Evidence is emerging that the proximal part of the small intestine is able to secrete cholesterol actively, a pathway called transintestinal cholesterol efflux (TICE). In mice, TICE accounts for up to 70% of fecal neutral sterol excretion. SUMMARY The small intestine plays a significant role in the regulation of body cholesterol homeostasis. Active processes control both absorption and excretion of the sterol and the pathways involved are being elucidated. TICE might provide an attractive target for therapy aiming at reduction of atherosclerosis.
Collapse
|
163
|
Oosterveer MH, Grefhorst A, Groen AK, Kuipers F. The liver X receptor: control of cellular lipid homeostasis and beyond Implications for drug design. Prog Lipid Res 2010; 49:343-52. [PMID: 20363253 DOI: 10.1016/j.plipres.2010.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/22/2010] [Accepted: 03/19/2010] [Indexed: 11/30/2022]
Abstract
Liver X receptor (LXR) α and β are nuclear receptors that control cellular metabolism. LXRs modulate the expression of genes involved in cholesterol and lipid metabolism in response to changes in cellular cholesterol status. Because of their involvement in cholesterol homeostasis, LXRs have emerged as promising drug targets for anti-atherosclerotic therapies. In rodents, synthetic LXR agonists promote cellular cholesterol efflux, transport and excretion. As a result, the progression of atherosclerosis is halted. However, pharmacological LXR activation also induces hepatic steatosis and promotes the secretion of atherogenic triacylglycerol-rich VLDL particles by the liver, complicating the clinical application of LXR agonists. The more recently emerged roles of LXRs in fat tissue, pituitary and brain may have implications for treatment of obesity and Alzheimer disease. In addition to the improvements in atherosclerosis, LXR activation exerts beneficial effects on glucose control in mouse models of type 2 diabetes. Future therapeutic strategies aiming to exert beneficial effects on cholesterol and glucose homeostasis, while circumventing the undesired effects on hepatic lipid metabolism, should target specific LXR-mediated processes. Therefore, tissue and/or isotype-specific effects of LXR action need to be established. The consequences of combinatorial drug approaches and the identification of the co-regulatory networks involved in the LXR-mediated control of particular genes may contribute to development of novel LXR agonists. Finally, pathway analyses of LXR actions provide tools to evaluate and optimize the effectiveness of novel therapeutic strategies to prevent and/or treat metabolic diseases.
Collapse
Affiliation(s)
- Maaike H Oosterveer
- Department of Pediatrics, Center for Liver Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
164
|
Yasuda T, Grillot D, Billheimer JT, Briand F, Delerive P, Huet S, Rader DJ. Tissue-specific liver X receptor activation promotes macrophage reverse cholesterol transport in vivo. Arterioscler Thromb Vasc Biol 2010; 30:781-6. [PMID: 20110577 DOI: 10.1161/atvbaha.109.195693] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE We previously reported that a systemic liver X receptor (LXR) agonist promoted macrophage reverse-cholesterol transport (mRCT) in vivo. Because LXR are expressed in multiple tissues involved in RCT (macrophages, liver, intestine), we analyzed the effect of tissue-specific LXR agonism on mRCT. METHODS AND RESULTS In initial studies, the systemic LXR agonist GW3965 failed to promote mRCT in a setting in which LXR was expressed in macrophages but not in liver or intestine. To evaluate the effect of LXR activation specifically in small intestine on mRCT, wild-type mice were treated with either intestinal-specific LXR agonist (GW6340) or systemic LXR agonist (GW3965). Both GW3965 and GW6340 significantly promoted excretion of [(3)H]-sterol in feces by 162% and 52%, respectively. To evaluate the requirement for macrophage LXR activation, we assessed the ability of GW3965 to promote mRCT in wild-type mice using primary macrophages deficient in LXR alpha/beta vs wild-type macrophages. Whereas GW3965 treatment promoted fecal excretion compared with vehicle, its overall ability to promote mRCT was significantly attenuated using LXR alpha/beta knockout macrophages. CONCLUSIONS We demonstrate that intestinal-specific LXR agonism promotes macrophage RCT in vivo and that macrophage LXR itself plays an important, but not predominant, role in promoting RCT in response to an LXR agonist.
Collapse
Affiliation(s)
- Tomoyuki Yasuda
- Translational Medicine and Therapeutics and Cardiovascular Institute, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
165
|
Tissue Specific Expression of Lipid Metabolism Related Molecules in Digestive Organs of Miniature Pigs. Lab Anim Res 2010. [DOI: 10.5625/lar.2010.26.3.273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
166
|
Briand F, Tréguier M, André A, Grillot D, Issandou M, Ouguerram K, Sulpice T. Liver X receptor activation promotes macrophage-to-feces reverse cholesterol transport in a dyslipidemic hamster model. J Lipid Res 2009; 51:763-70. [PMID: 19965597 DOI: 10.1194/jlr.m001552] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Liver X receptor (LXR) activation promotes reverse cholesterol transport (RCT) in rodents but has major side effects (increased triglycerides and LDL-cholesterol levels) in species expressing cholesteryl ester transfer protein (CETP). In the face of dyslipidemia, it remains unclear whether LXR activation stimulates RCT in CETP species. We therefore used a hamster model made dyslipidemic with a 0.3% cholesterol diet and treated with vehicle or LXR agonist GW3965 (30 mg/kg bid) over 10 days. To investigate RCT, radiolabeled (3)H-cholesterol macrophages or (3)H-cholesteryl oleate-HDL were then injected to measure plasma and feces radioactivity over 72 or 48 h, respectively. The cholesterol-enriched diet increased VLDL-triglycerides and total cholesterol levels in all lipoprotein fractions and strongly increased liver lipids. Overall, GW3965 failed to improve both dyslipidemia and liver steatosis. However, after (3)H-cholesterol labeled macrophage injection, GW3965 treatment significantly increased the (3)H-tracer appearance by 30% in plasma over 72 h, while fecal (3)H-cholesterol excretion increased by 156% (P < 0.001). After (3)H-cholesteryl oleate-HDL injection, GW3965 increased HDL-derived cholesterol fecal excretion by 64% (P < 0.01 vs. vehicle), while plasma fractional catabolic rate remained unchanged. Despite no beneficial effect on dyslipidemia, LXR activation promotes macrophage-to-feces RCT in dyslipidemic hamsters. These results emphasize the use of species with a more human-like lipoprotein metabolism for drug profiling.
Collapse
Affiliation(s)
- François Briand
- Physiogenex SAS, Prologue Biotech, Rue Pierre et Marie Curie, B.P. 28262, Labège-Innopole, France.
| | | | | | | | | | | | | |
Collapse
|