151
|
Jordan SW, Corriere MA, Vossen CY, Rosendaal FR, Chaikof EL. Flow-simulated thrombin generation profiles as a predictor of thrombotic risk among pre-menopausal women. Thromb Haemost 2012; 108:258-65. [PMID: 22688389 PMCID: PMC3482384 DOI: 10.1160/th12-02-0098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 04/25/2012] [Indexed: 11/05/2022]
Abstract
A large number of individuals are at risk for deep venous thrombosis (DVT) due to alterations in multiple coagulation factors and inhibitors secondary to malignancy, drug interactions, or other general medical conditions. Traditional metrics of haemostasis such as prothrombin time, partial thromboplastin time, and bleeding time, generally estimate anticoagulation status and bleeding risk rather than thrombosis risk. The objective of this study was to correlate a novel, systems-based metric of clotting potential to risk of DVT from a database derived from the Leiden Thrombophilia Study (LETS). We utilised a computational model of blood coagulation, which addresses the interplay between biochemical factors, blood flow, and physiologic surface initiation of coagulation, to calculate an individualised, systems-based metric of clotting potential, termed the flow-simulated thrombin generation (FSTG), for 210 pre-menopausal women in LETS. Both DVT and oral contraceptive (OC) use were associated with higher values of FSTG. We demonstrated a nearly three-fold increased risk of DVT for each standard deviation increase above the mean in FSTG determined under venous flow conditions, which remained highly predictive after adjustment for age and OC status (adjusted odds ratio 2.66; 95% confidence interval 1.69-4.19; p<0.0001). In conclusion, a systems-based screening approach that integrates biochemical factors and flow haemodynamics identifies small subgroups of patients at risk of thrombosis that may benefit from oral anticoagulants.
Collapse
Affiliation(s)
- Sumanas W Jordan
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
152
|
Biasetti J, Spazzini PG, Swedenborg J, Gasser TC. An integrated fluid-chemical model toward modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms. Front Physiol 2012; 3:266. [PMID: 22934022 PMCID: PMC3429042 DOI: 10.3389/fphys.2012.00266] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/25/2012] [Indexed: 11/13/2022] Open
Abstract
Abdominal Aortic Aneurysms (AAAs) are frequently characterized by the presence of an Intra-Luminal Thrombus (ILT) known to influence their evolution biochemically and biomechanically. The ILT progression mechanism is still unclear and little is known regarding the impact of the chemical species transported by blood flow on this mechanism. Chemical agonists and antagonists of platelets activation, aggregation, and adhesion and the proteins involved in the coagulation cascade (CC) may play an important role in ILT development. Starting from this assumption, the evolution of chemical species involved in the CC, their relation to coherent vortical structures (VSs) and their possible effect on ILT evolution have been studied. To this end a fluid-chemical model that simulates the CC through a series of convection-diffusion-reaction (CDR) equations has been developed. The model involves plasma-phase and surface-bound enzymes and zymogens, and includes both plasma-phase and membrane-phase reactions. Blood is modeled as a non-Newtonian incompressible fluid. VSs convect thrombin in the domain and lead to the high concentration observed in the distal portion of the AAA. This finding is in line with the clinical observations showing that the thickest ILT is usually seen in the distal AAA region. The proposed model, due to its ability to couple the fluid and chemical domains, provides an integrated mechanochemical picture that potentially could help unveil mechanisms of ILT formation and development.
Collapse
Affiliation(s)
- Jacopo Biasetti
- Department of Solid Mechanics, School of Engineering Sciences, KTH Royal Institute of Technology Stockholm, Sweden
| | | | | | | |
Collapse
|
153
|
Colace T, Muthard R, Diamond S. Thrombus growth and embolism on tissue factor-bearing collagen surfaces under flow: role of thrombin with and without fibrin. Arterioscler Thromb Vasc Biol 2012; 32:1466-76. [PMID: 22516070 PMCID: PMC3418805 DOI: 10.1161/atvbaha.112.249789] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/10/2012] [Indexed: 11/16/2022]
Abstract
OBJECTIVE At sites of vascular injury, thrombin is an important mediator in thrombus growth and stability. Using microfluidic flow devices as well as patterned surfaces of collagen and tissue factor (TF), we sought to determine the role that fibrin plays in clot stability without interfering with the production of thrombin. METHODS AND RESULTS We deployed an 8-channel microfluidic device to study coagulation during corn trypsin inhibitor-treated (XIIa-inhibited) whole blood perfusion over lipidated TF linked to a fibrillar collagen type 1 surface. Clot growth and embolization were measured at initial inlet venous (200 s(-1)) or arterial (1000 s(-1)) wall shear rates under constant flow rate or pressure relief mode in the presence or absence of Gly-Pro-Arg-Pro (GPRP) to block fibrin polymerization. Numerical calculations for each mode defined hemodynamic forces on the growing thrombi. In either mode at inlet venous flow, increasing amounts of TF on the surface led to a modest dose-dependent increase (up to 2-fold) in platelet deposition, but resulted in massive fibrin accumulation (>50-fold) only when exceeding a critical TF threshold. At a venous inlet flow, GPRP led to a slight 20% increase in platelet accumulation (P<0.01) in pressure relief mode with thrombi resisting ≈1500 s(-1) before full channel occlusion. GPRP-treated thrombi were unstable under constant flow rate, where shear forces caused embolization at a maximum shear rate of ≈2300 s(-1) (69 dynes/cm2). In constant flow rate mode, the nonocclusive platelet-fibrin deposits (no GPRP) withstood maximum shear rates of ≈29 000 s(-1) (870 dyne/cm2) at ≈95% of full channel occlusion. For arterial inlet shear rate, embolization was marked for either mode with GPRP present when shear forces reached 87 dynes/cm2 (≈2900 s(-1)). Under constant flow rate, platelet-fibrin deposits (no GPRP) withstood maximums of 2400 dynes/cm2 (80,000 s(-1)) at ≈90% of full channel occlusion prior to embolization. CONCLUSIONS Fibrin increased clot strength by 12- to 28-fold. Under pressure relief mode, ≈2-fold more fibrin was produced under venous flow (P<0.001). These studies define embolization criteria for clots formed with surface TF-triggered thrombin production (±fibrin) under venous and arterial flows.
Collapse
Affiliation(s)
- T. Colace
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA USA
| | - R. Muthard
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA USA
| | - S.L. Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
154
|
Studies on the mechanism of action of the aptamer BAX499, an inhibitor of tissue factor pathway inhibitor. Thromb Res 2012; 130:e151-7. [PMID: 22658294 DOI: 10.1016/j.thromres.2012.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 05/01/2012] [Accepted: 05/08/2012] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Promoting thrombin generation by inhibiting tissue factor pathway inhibitor (TFPI) is a potentially viable therapeutic approach to the prevention and/or treatment of bleeding in hemophilia. In this report, we studied the interaction between an aptamer (BAX499; formerly ARC19499) and TFPI that resulted in inhibition of TFPI-mediated regulation of the tissue factor pathway. MATERIALS AND METHODS Enzyme kinetic analyses were performed to study the interaction between BAX499 and recombinant TFPI against factor Xa, the extrinsic Xase and prothrombinase activities. Diluted prothrombin time assay was used to investigate the effects of BAX499 on factor VIII-deficient plasma collected from hemophilia patients. RESULTS Our results indicate that after binding of BAX499 to TFPI, the TFPI/ BAX499 complex retains factor Xa inhibitory activity, albeit with reduced affinity. When tested in an extrinsic Xase activity assay, BAX499 delayed TFPI-mediated inhibition of extrinsic Xase activity. In addition, BAX499 reversed TFPI inhibition of the prothrombinase complex. BAX499 shortened the dilute prothrombin time in factor VIII-deficient plasma, and when added to freshly drawn hemophilia A blood either with or without a factor VIII inhibitor, the whole blood clotting time was also shortened. These results suggest that BAX499 may be a useful addition to the armamentarium of bypassing agents to control bleeding in hemophilic patients with inhibitors.
Collapse
|
155
|
Bravo MC, Orfeo T, Mann KG, Everse SJ. Modeling of human factor Va inactivation by activated protein C. BMC SYSTEMS BIOLOGY 2012; 6:45. [PMID: 22607732 PMCID: PMC3403913 DOI: 10.1186/1752-0509-6-45] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/20/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Because understanding of the inventory, connectivity and dynamics of the components characterizing the process of coagulation is relatively mature, it has become an attractive target for physiochemical modeling. Such models can potentially improve the design of therapeutics. The prothrombinase complex (composed of the protease factor (F)Xa and its cofactor FVa) plays a central role in this network as the main producer of thrombin, which catalyses both the activation of platelets and the conversion of fibrinogen to fibrin, the main substances of a clot. A key negative feedback loop that prevents clot propagation beyond the site of injury is the thrombin-dependent generation of activated protein C (APC), an enzyme that inactivates FVa, thus neutralizing the prothrombinase complex. APC inactivation of FVa is complex, involving the production of partially active intermediates and "protection" of FVa from APC by both FXa and prothrombin. An empirically validated mathematical model of this process would be useful in advancing the predictive capacity of comprehensive models of coagulation. RESULTS A model of human APC inactivation of prothrombinase was constructed in a stepwise fashion by analyzing time courses of FVa inactivation in empirical reaction systems with increasing number of interacting components and generating corresponding model constructs of each reaction system. Reaction mechanisms, rate constants and equilibrium constants informing these model constructs were initially derived from various research groups reporting on APC inactivation of FVa in isolation, or in the presence of FXa or prothrombin. Model predictions were assessed against empirical data measuring the appearance and disappearance of multiple FVa degradation intermediates as well as prothrombinase activity changes, with plasma proteins derived from multiple preparations. Our work integrates previously published findings and through the cooperative analysis of in vitro experiments and mathematical constructs we are able to produce a final validated model that includes 24 chemical reactions and interactions with 14 unique rate constants which describe the flux in concentrations of 24 species. CONCLUSION This study highlights the complexity of the inactivation process and provides a module of equations describing the Protein C pathway that can be integrated into existing comprehensive mathematical models describing tissue factor initiated coagulation.
Collapse
Affiliation(s)
- Maria Cristina Bravo
- Cell and Molecular Biology Program, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
156
|
DeAngelis JP, Wakabayashi H, Fay PJ. Sequences flanking Arg336 in factor VIIIa modulate factor Xa-catalyzed cleavage rates at this site and cofactor function. J Biol Chem 2012; 287:15409-17. [PMID: 22411993 DOI: 10.1074/jbc.m111.333948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Factor (F)VIII can be activated to FVIIIa by FXa following cleavages at Arg(372), Arg(740), and Arg(1689). FXa also cleaves FVIII/FVIIIa at Arg(336) and Arg(562) resulting in inactivation of the cofactor. These inactivating cleavages occur on a slower time scale than the activating ones. We assessed the contributions to cleavage rate and cofactor function of residues flanking Arg(336), the primary site yielding FVIII(a) inactivation, following replacement of these residues with those flanking the faster-reacting Arg(740) and Arg(372) sites and the slower-reacting Arg(562) site. Replacing P4-P3' residues flanking Arg(336) with those from Arg(372) or Arg(740) resulted in ∼4-6-fold increases in rates of FXa-catalyzed inactivation of FVIIIa, which paralleled the rates of proteolysis at Arg(336). Examination of partial sequence replacements showed a predominant contribution of prime residues flanking the scissile bonds to the enhanced rates. Conversely, replacement of this sequence with residues flanking the slow-reacting Arg(562) site yielded inactivation and cleavage rates that were ∼40% that of the WT values. The capacity for FXa to activate FVIII variants where cleavage at Arg(336) was accelerated due to flanking sequence replacement showed marked reductions in peak activity, whereas reducing the cleavage rate at this site enhanced peak activity. Furthermore, plasma-based thrombin generation assays employing the variants revealed significant reductions in multiple parameter values with acceleration of Arg(336) cleavage suggesting increased down-regulation of FXase. Overall, these results are consistent with a model of competition for activating and inactivating cleavages catalyzed by FXa that is modulated in large part by sequences flanking the scissile bonds.
Collapse
Affiliation(s)
- Jennifer P DeAngelis
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | | | |
Collapse
|
157
|
Abstract
During thrombotic or hemostatic episodes, platelets bind collagen and release ADP and thromboxane A(2), recruiting additional platelets to a growing deposit that distorts the flow field. Prediction of clotting function under hemodynamic conditions for a patient's platelet phenotype remains a challenge. A platelet signaling phenotype was obtained for 3 healthy donors using pairwise agonist scanning, in which calcium dye-loaded platelets were exposed to pairwise combinations of ADP, U46619, and convulxin to activate the P2Y(1)/P2Y(12), TP, and GPVI receptors, respectively, with and without the prostacyclin receptor agonist iloprost. A neural network model was trained on each donor's pairwise agonist scanning experiment and then embedded into a multiscale Monte Carlo simulation of donor-specific platelet deposition under flow. The simulations were compared directly with microfluidic experiments of whole blood flowing over collagen at 200 and 1000/s wall shear rate. The simulations predicted the ranked order of drug sensitivity for indomethacin, aspirin, MRS-2179 (a P2Y(1) inhibitor), and iloprost. Consistent with measurement and simulation, one donor displayed larger clots and another presented with indomethacin resistance (revealing a novel heterozygote TP-V241G mutation). In silico representations of a subject's platelet phenotype allowed prediction of blood function under flow, essential for identifying patient-specific risks, drug responses, and novel genotypes.
Collapse
|
158
|
Flamm MH, Diamond SL. Multiscale systems biology and physics of thrombosis under flow. Ann Biomed Eng 2012; 40:2355-64. [PMID: 22460075 DOI: 10.1007/s10439-012-0557-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/21/2012] [Indexed: 01/29/2023]
Abstract
Blood clotting under hemodynamic conditions involves numerous multiscale interactions from the molecular scale to macroscopic vessel and systemic circulation scales. Transmission of shear forces to platelet receptors such as GPIbα, P-selectin, α(2)β(1), and α(2b)β(3) controls adhesion dynamics. These forces also drive membrane tether formation, cellular deformation, and mechanosignaling in blood cells. Blood flow results in red blood cell (RBC) drift towards the center of the vessel along with a near-wall plasma layer enriched with platelets. RBC motions also dramatically enhance platelet dispersion. Trajectories of individual platelets near a thrombotic deposit dictate capture-activation-arrest dynamics as these newly arriving platelets are exposed to chemical gradients of ADP, thromboxane, and thrombin within a micron-scale boundary layer formed around the deposit. If shear forces are sufficiently elevated (>50 dyne/cm(2)), the largest polymers of von Willebrand Factor may elongate with concomitant shear-induced platelet activation. Finally, thrombin generation enhances platelet recruitment and clot strength via fibrin polymerization. By combination of coarse-graining, continuum, and stochastic algorithms, the numerical simulation of the growth rate, composition, and occlusive/embolic potential of a thrombus now spans multiscale phenomena. These simulations accommodate particular flow geometries, blood phenotype, pharmacological regimen, and reactive surfaces to help predict disease risk or response to therapy.
Collapse
Affiliation(s)
- Mathew H Flamm
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, 1024 Vagelos Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
159
|
Mitrophanov AY, Rosendaal FR, Reifman J. Computational analysis of intersubject variability and thrombin generation in dilutional coagulopathy. Transfusion 2012; 52:2475-86. [PMID: 22429019 DOI: 10.1111/j.1537-2995.2012.03610.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Blood dilution is a frequent complication of massive transfusion during trauma and surgery. This article investigates the quantitative effects of blood plasma dilution on thrombin generation in the context of intersubject variability. STUDY DESIGN AND METHODS A thoroughly validated computational model was used to simulate thrombin generation curves for 472 healthy subjects in the Leiden Thrombophilia Study. Individual thrombin curves were calculated for undiluted blood and for different dilution scenarios. For every such curve, five standard quantitative parameters of thrombin generation were calculated and analyzed. RESULTS Thrombin generation parameters in diluted blood plasma displayed significant intersubject variability (with a coefficient of variation up to approx. 28%). Nevertheless, dilutional effects in the majority (or all) of the subjects in the study group were characterized by persistent patterns. In particular, the largest dilution-induced change typically occurred in the maximum slope (MS) of the thrombin curve, followed by a change in thrombin peak height (PH), whereas the smallest change often occurred in the area under the curve. The identified patterns demonstrated considerable robustness to variations in dilution scenario and tissue factor concentration. CONCLUSION Dilutional effects on thrombin generation in a human population can be predicted from trends identified for the "average" subject and then refined by performing an analysis of actual subjects in the study group. The MS and PH are dilution indicators that are both sensitive and reliable across a large subject group and could potentially be used as disease markers in the diagnosis of coagulopathic conditions.
Collapse
Affiliation(s)
- Alexander Y Mitrophanov
- DoD Biotechnology High-Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Ft Detrick, Maryland 21702, USA.
| | | | | |
Collapse
|
160
|
Tissue factor and glycoprotein C on herpes simplex virus type 1 are protease-activated receptor 2 cofactors that enhance infection. Blood 2012; 119:3638-45. [PMID: 22374699 DOI: 10.1182/blood-2011-08-376814] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The coagulation system provides physiologic host defense, but it can also be exploited by pathogens for infection. On the HSV1 surface, host-cell-derived tissue factor (TF) and virus-encoded glycoprotein C (gC) can stimulate protease activated receptor 1 (PAR1)-enhanced infection by triggering thrombin production. Using novel engineered HSV1 variants deficient in either TF and/or gC, in the present study, we show that activated coagulation factors X (FXa) or VII (FVIIa) directly affect HSV1 infection of human umbilical vein endothelial cells in a manner that is dependent on viral TF and gC. The combination of FXa and FVIIa maximally enhanced infection for TF(+)/gC(+) HSV1 and receptor desensitization and Ab inhibition demonstrated that both proteases act on PAR2. Inhibitory TF Abs showed that the required TF source was viral. Individually, TF or gC partly enhanced the effect of FXa, but not FVIIa, revealing gC as a novel PAR2 cofactor for FVIIa. In sharp contrast, thrombin enhanced infection via PAR1 independently of viral TF and gC. Thrombin combined with FXa/FVIIa enhanced infection, suggesting that PAR1 and PAR2 are independently involved in virus propagation. These results show that HSV1 surface cofactors promote cellular PAR2-mediated infection, indicating a novel mode by which pathogens exploit the initiation phase of the host hemostatic system.
Collapse
|
161
|
Danforth CM, Orfeo T, Everse SJ, Mann KG, Brummel-Ziedins KE. Defining the boundaries of normal thrombin generation: investigations into hemostasis. PLoS One 2012; 7:e30385. [PMID: 22319567 PMCID: PMC3271084 DOI: 10.1371/journal.pone.0030385] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/15/2011] [Indexed: 11/18/2022] Open
Abstract
In terms of its soluble precursors, the coagulation proteome varies quantitatively among apparently healthy individuals. The significance of this variability remains obscure, in part because it is the backdrop against which the hemostatic consequences of more dramatic composition differences are studied. In this study we have defined the consequences of normal range variation of components of the coagulation proteome by using a mechanism-based computational approach that translates coagulation factor concentration data into a representation of an individual's thrombin generation potential. A novel graphical method is used to integrate standard measures that characterize thrombin generation in both empirical and computational models (e.g max rate, max level, total thrombin, time to 2 nM thrombin ("clot time")) to visualize how normal range variation in coagulation factors results in unique thrombin generation phenotypes. Unique ensembles of the 8 coagulation factors encompassing the limits of normal range variation were used as initial conditions for the computational modeling, each ensemble representing "an individual" in a theoretical healthy population. These "individuals" with unremarkable proteome composition was then compared to actual normal and "abnormal" individuals, i.e. factor ensembles measured in apparently healthy individuals, actual coagulopathic individuals or artificially constructed factor ensembles representing individuals with specific factor deficiencies. A sensitivity analysis was performed to rank either individual factors or all possible pairs of factors in terms of their contribution to the overall distribution of thrombin generation phenotypes. Key findings of these analyses include: normal range variation of coagulation factors yields thrombin generation phenotypes indistinguishable from individuals with some, but not all, coagulopathies examined; coordinate variation of certain pairs of factors within their normal ranges disproportionately results in extreme thrombin generation phenotypes, implying that measurement of a smaller set of factors may be sufficient to identify individuals with aberrant thrombin generation potential despite normal coagulation proteome composition.
Collapse
Affiliation(s)
- Christopher M. Danforth
- Department of Mathematics and Statistics, Center for Complex Systems, Vermont Advanced Computing Center, University of Vermont, Burlington, Vermont, United States of America
| | - Thomas Orfeo
- Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Stephen J. Everse
- Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Kenneth G. Mann
- Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Kathleen E. Brummel-Ziedins
- Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| |
Collapse
|
162
|
Xu Z, Kim O, Kamocka M, Rosen ED, Alber M. Multiscale models of thrombogenesis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:237-46. [PMID: 22246734 DOI: 10.1002/wsbm.1160] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To restrict the loss of blood follow from the rupture of blood vessels, the human body rapidly forms a clot consisting of platelets and fibrin. However, to prevent pathological clotting within vessels as a result of vessel damage, the response must be regulated. Clots forming within vessels (thrombi) can restrict the flow of blood causing damage to tissues in the flow field. Additionally, fragments dissociating from the primary thrombus (emboli) may lodge and clog vessels in the brain (causing ischemic stroke) or lungs (resulting in pulmonary embolism). Pathologies related to the obstruction of blood flow through the vasculature are the major cause of mortality in the United States. Venous thromboembolic disease alone accounts for 900,000 hospitalizations and 300,000 deaths per year and the incidence will increase as the population ages (Wakefield et al. J Vasc Surg 2009, 49:1620-1623). Thus, understanding the interplay between the many processes involved in thrombus development is of significant biomedical value. In this article, we first review computational models of important subprocesses of hemostasis/thrombosis including coagulation reactions, platelet activation, and fibrin assembly, respectively. We then describe several multiscale models integrating these subprocesses to simulate temporal and spatial development of thrombi. The development of validated computational models and predictive simulations will enable one to explore how the variation of multiple hemostatic factors affects thrombotic risk providing an important new tool for thrombosis research.
Collapse
Affiliation(s)
- Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | | | | | | | | |
Collapse
|
163
|
Kluft C, Burggraaf J. Introduction to haemostasis from a pharmacodynamic perspective. Br J Clin Pharmacol 2012; 72:538-46. [PMID: 21342216 DOI: 10.1111/j.1365-2125.2011.03946.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Biochemical characterization of the haemostatic system has advanced significantly in the past decades. Sub-systems, such as coagulation, fibrinolysis, blood cells and platelets and the vessel wall have been studied by specialists, mostly separately and independently. The time has come to integrate the approaches, and, in particular, to develop tests to document the state of the whole system and to have available adequate pharmacodynamic tests to evaluate treatments. Many examples are available to show that traditional general methods of clotting and lysis do not provide the information that is desired. The present tendency is to use specific methods for specific factors or effects which are very limited in pharmacological information. There is also increasing awareness of the occurrence of rather broad interindividual variability in the haemostatic system. This suggests that individually tailored treatments are required. This is the more relevant since haemostasis is a balance and treatment should be positioned between efficacy and safety. The conclusion is reached that there is a need for integrated or global methods or sets of methods that reflect the complexity and individual status appropriately and allow the practitioner to judge the effects of interventions and their individual aspects.
Collapse
Affiliation(s)
- Cornelis Kluft
- Centre of Human Drug Research, Zernikedreef 10, 2333 CL, Leiden, The Netherlands.
| | | |
Collapse
|
164
|
Factor Xa generation by computational modeling: an additional discriminator to thrombin generation evaluation. PLoS One 2012; 7:e29178. [PMID: 22247769 PMCID: PMC3256151 DOI: 10.1371/journal.pone.0029178] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/22/2011] [Indexed: 01/23/2023] Open
Abstract
Factor (f)Xa is a critical enzyme in blood coagulation that is responsible for the initiation and propagation of thrombin generation. Previously we have shown that analysis of computationally generated thrombin profiles is a tool to investigate hemostasis in various populations. In this study, we evaluate the potential of computationally derived time courses of fXa generation as another approach for investigating thrombotic risk. Utilizing the case (n = 473) and control (n = 426) population from the Leiden Thrombophilia Study and each individual's plasma protein factor composition for fII, fV, fVII, fVIII, fIX, fX, antithrombin and tissue factor pathway inhibitor, tissue factor-initiated total active fXa generation was assessed using a mathematical model. FXa generation was evaluated by the area under the curve (AUC), the maximum rate (MaxR) and level (MaxL) and the time to reach these, TMaxR and TMaxL, respectively. FXa generation was analyzed in the entire populations and in defined subgroups (by sex, age, body mass index, oral contraceptive use). The maximum rates and levels of fXa generation occur over a 10- to 12- fold range in both cases and controls. This variation is larger than that observed with thrombin (3–6 fold) in the same population. The greatest risk association was obtained using either MaxR or MaxL of fXa generation; with an ∼2.2 fold increased risk for individuals exceeding the 90th percentile. This risk was similar to that of thrombin generation(MaxR OR 2.6). Grouping defined by oral contraceptive (OC) use in the control population showed the biggest differences in fXa generation; a >60% increase in the MaxR upon OC use. FXa generation can distinguish between a subset of individuals characterized by overlapping thrombin generation profiles. Analysis of fXa generation is a phenotypic characteristic which may prove to be a more sensitive discriminator than thrombin generation among all individuals.
Collapse
|
165
|
Abstract
BACKGROUND Coagulopathic bleeding is a leading cause of in-hospital death after injury. A recently proposed transfusion strategy calls for early and aggressive frozen plasma transfusion to bleeding trauma patients, thus addressing trauma-associated coagulopathy (TAC) by transfusing clotting factors (CFs). This strategy may dramatically improve survival of bleeding trauma patients. However, other studies suggest that early TAC occurs by protein C activation and is independent of CF deficiency. This study investigated whether CF deficiency is associated with early TAC. METHODS This is a prospective observational cohort study of severely traumatized patients (Injury Severity Score ≥ 16) admitted shortly after injury, receiving minimal fluids and no prehospital blood. Blood was assayed for CF levels, thromboelastography, and routine coagulation tests. Critical CF deficiency was defined as ≤ 30% activity of any CF. RESULTS Of 110 patients, 22 (20%) had critical CF deficiency: critically low factor V level was evident in all these patients. International normalized ratio, activated prothrombin time, and, thromboelastography were abnormal in 32%, 36%, and 35%, respectively, of patients with any critically low CF. Patients with critical CF deficiency suffered more severe injuries, were more acidotic, received more blood transfusions, and showed a trend toward higher mortality (32% vs. 18%, p = 0.23). Computational modeling showed coagulopathic patients had pronounced delays and quantitative deficits in generating thrombin. CONCLUSIONS Twenty percent of all severely injured patients had critical CF deficiency on admission, particularly of factor V. The observed factor V deficit aligns with current understanding of the mechanisms underlying early TAC. Critical deficiency of factor V impairs thrombin generation and profoundly affects hemostasis.
Collapse
|
166
|
Thromboelastography: New concepts in haemostasis physiology and correlation with trauma associated coagulopathy☆. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2012. [DOI: 10.1097/01819236-201240030-00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
167
|
Fasano A, Santos RF, Sequeira A. Blood coagulation: A puzzle for biologists, a maze for mathematicians. MS&A 2012. [DOI: 10.1007/978-88-470-1935-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
168
|
Wolberg AS, Aleman MM, Leiderman K, Machlus KR. Procoagulant activity in hemostasis and thrombosis: Virchow's triad revisited. Anesth Analg 2011; 114:275-85. [PMID: 22104070 DOI: 10.1213/ane.0b013e31823a088c] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Virchow's triad is traditionally invoked to explain pathophysiologic mechanisms leading to thrombosis, alleging concerted roles for abnormalities in blood composition, vessel wall components, and blood flow in the development of arterial and venous thrombosis. Given the tissue-specific bleeding observed in hemophilia patients, it may be instructive to consider the principles of Virchow's triad when investigating mechanisms operant in hemostatic disorders as well. Blood composition (the function of circulating blood cells and plasma proteins) is the most well studied component of the triad. For example, increased levels of plasma procoagulant proteins such as prothrombin and fibrinogen are established risk factors for thrombosis, whereas deficiencies in plasma factors VIII and IX result in bleeding (hemophilia A and B, respectively). Vessel wall (cellular) components contribute adhesion molecules that recruit circulating leukocytes and platelets to sites of vascular damage, tissue factor, which provides a procoagulant signal of vascular breach, and a surface upon which coagulation complexes are assembled. Blood flow is often characterized by 2 key variables: shear rate and shear stress. Shear rate affects several aspects of coagulation, including transport rates of platelets and plasma proteins to and from the injury site, platelet activation, and the kinetics of fibrin monomer formation and polymerization. Shear stress modulates adhesion rates of platelets and expression of adhesion molecules and procoagulant activity on endothelial cells lining the blood vessels. That no one abnormality in any component of Virchow's triad fully predicts coagulopathy a priori suggests coagulopathies are complex, multifactorial, and interactive. In this review, we focus on contributions of blood composition, vascular cells, and blood flow to hemostasis and thrombosis, and suggest that cross-talk among the 3 components of Virchow's triad is necessary for hemostasis and determines propensity for thrombosis or bleeding. Investigative models that permit interplay among these components are necessary to understand the operant pathophysiology, and effectively treat and prevent thrombotic and bleeding disorders.
Collapse
Affiliation(s)
- Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
| | | | | | | |
Collapse
|
169
|
Orfeo T, Gissel M, Butenas S, Undas A, Brummel-Ziedins KE, Mann KG. Anticoagulants and the propagation phase of thrombin generation. PLoS One 2011; 6:e27852. [PMID: 22125631 PMCID: PMC3220702 DOI: 10.1371/journal.pone.0027852] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/26/2011] [Indexed: 11/19/2022] Open
Abstract
The view that clot time-based assays do not provide a sufficient assessment of an individual's hemostatic competence, especially in the context of anticoagulant therapy, has provoked a search for new metrics, with significant focus directed at techniques that define the propagation phase of thrombin generation. Here we use our deterministic mathematical model of tissue-factor initiated thrombin generation in combination with reconstructions using purified protein components to characterize how the interplay between anticoagulant mechanisms and variable composition of the coagulation proteome result in differential regulation of the propagation phase of thrombin generation. Thrombin parameters were extracted from computationally derived thrombin generation profiles generated using coagulation proteome factor data from warfarin-treated individuals (N = 54) and matching groups of control individuals (N = 37). A computational clot time prolongation value (cINR) was devised that correlated with their actual International Normalized Ratio (INR) values, with differences between individual INR and cINR values shown to derive from the insensitivity of the INR to tissue factor pathway inhibitor (TFPI). The analysis suggests that normal range variation in TFPI levels could be an important contributor to the failure of the INR to adequately reflect the anticoagulated state in some individuals. Warfarin-induced changes in thrombin propagation phase parameters were then compared to those induced by unfractionated heparin, fondaparinux, rivaroxaban, and a reversible thrombin inhibitor. Anticoagulants were assessed at concentrations yielding equivalent cINR values, with each anticoagulant evaluated using 32 unique coagulation proteome compositions. The analyses showed that no anticoagulant recapitulated all features of warfarin propagation phase dynamics; differences in propagation phase effects suggest that anticoagulants that selectively target fXa or thrombin may provoke fewer bleeding episodes. More generally, the study shows that computational modeling of the response of core elements of the coagulation proteome to a physiologically relevant tissue factor stimulus may improve the monitoring of a broad range of anticoagulants.
Collapse
Affiliation(s)
- Thomas Orfeo
- Department of Biochemistry, University of Vermont, Colchester, Vermont, United States of America
| | - Matthew Gissel
- Department of Biochemistry, University of Vermont, Colchester, Vermont, United States of America
| | - Saulius Butenas
- Department of Biochemistry, University of Vermont, Colchester, Vermont, United States of America
| | - Anetta Undas
- Institute of Cardiology, Jagiellonian University School of Medicine, Krakow, Poland
| | | | - Kenneth G. Mann
- Department of Biochemistry, University of Vermont, Colchester, Vermont, United States of America
- Johnson & Johnson, Pharmaceutical Research and Development, Raritan, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
170
|
Abstract
For many years, programmed cell death, known as apoptosis, was attributed exclusively to nucleated cells. Currently, however, apoptosis is also well-documented in anucleate platelets. This review describes extrinsic and intrinsic pathways of apoptosis in nucleated cells and in platelets, platelet apoptosis induced by multiple chemical stimuli and shear stresses, markers of platelet apoptosis, mitochodrial control of platelet apoptosis, and apoptosis mediated by platelet surface receptors PAR-1, GPIIbIIIa and GPIbα. In addition, this review presents data on platelet apoptosis provoked by aging of platelets in vitro during platelet storage, platelet apoptosis in pathological settings in humans and animal models, and inhibition of platelet apoptosis by cyclosporin A, intravenous immunoglobulin and GPIIbIIIa antagonist drugs.
Collapse
Affiliation(s)
- Valery Leytin
- Division of Transfusion Medicine, Department of Laboratory Medicine, The Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|
171
|
Brummel-Ziedins KE, Whelihan MF, Rivard GE, Butenas S. Activated protein C inhibitor for correction of thrombin generation in hemophilia A blood and plasma1. J Thromb Haemost 2011; 9:2262-7. [PMID: 21920012 DOI: 10.1111/j.1538-7836.2011.04504.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Replacement therapy for hemophilic patient treatment is costly, because of the high price of pharmacologic products, and is not affordable for the majority of patients in developing countries. OBJECTIVE To generate and evaluate low molecular weight agents that could be useful for hemophilia treatment. METHODS Potential agents were generated by synthesizing specific inhibitors [6-(Lys-Lys-Thr-[homo]Arg)amino-2-(Lys[carbobenzoxy]-Lys[carbobenzoxy]-O-benzyl)naphthalenesulfonamide] (PNASN-1)] for activated protein C (APC) and tested in plasma and fresh blood from hemophilia A patients. RESULTS In the activated partial thromboplastin time-based APC resistance assay, PNASN-1 partially neutralized the effect of APC. In calibrated automated thrombography, PNASN-1 neutralized the effect of APC on thrombin generation in normal and congenital factor VIII-deficient plasma (FVIII:C < 1%). The addition of PNASN-1 to tissue factor-triggered (5 pm) contact pathway-inhibited fresh blood from 15 hemophilia A patients with various degrees of FVIII deficiency (FVIII:C < 1-51%) increased the maximum level of thrombin generated from 78 to 162 nm, which approached that observed in blood from a healthy individual (201 nm). PNASN-1 also caused a 47% increase in clot weight in hemophilia A blood. CONCLUSIONS Specific APC inhibitors compensate to a significant extent for FVIII deficiency, and could be used for hemophilia treatment.
Collapse
|
172
|
Abstract
The complex of the serine protease factor IX (FIX) and its cofactor, factor VIII (FVIII), is crucial for propagation of the intrinsic coagulation cascade. Absence of either factor leads to hemophilia, a disabling disorder marked by excessive hemorrhage after minor trauma. FVIII is the more commonly affected protein, either by X-chromosomal gene mutations or in autoimmune-mediated acquired hemophilia. Whereas substitution of FVIII is the mainstay of hemophilia A therapy, treatment of patients with inhibitory Abs remains challenging. In the present study, we report the development of FIX variants that can propagate the intrinsic coagulation cascade in the absence of FVIII. FIX variants were expressed in FVIII-knockout (FVIII-KO) mice using a nonviral gene-transfer system. Expression of the variants shortened clotting times, reduced blood loss after tail-clip assay, and reinstalled clot formation, as tested by in vivo imaging of laser-induced vessel injury. In addition, we confirmed the therapeutic efficacy of FIX variants in mice with inhibitory Abs against FVIII. Further, mice tolerant to wild-type human FIX did not develop immune responses against the protein variants. Our results therefore indicate the feasibility of using variants of FIX to bypass FVIII as a novel treatment approach in hemophilia with and without neutralizing FVIII Abs.
Collapse
|
173
|
Engelke H, Lippok S, Dorn I, Netz RR, Rädler JO. FVIII Binding to PS Membranes Differs in the Activated and Non-Activated Form and Can Be Shielded by Annexin A5. J Phys Chem B 2011; 115:12963-70. [DOI: 10.1021/jp2048579] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Hanna Engelke
- Center for NanoScience (CeNS) and Fakultät für Physik, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, D-80539 München, Germany
| | - Svenja Lippok
- Center for NanoScience (CeNS) and Fakultät für Physik, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, D-80539 München, Germany
| | - Ingmar Dorn
- Bayer Technology Services GmbH, 51368 Leverkusen, Germany
| | | | - Joachim O. Rädler
- Center for NanoScience (CeNS) and Fakultät für Physik, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, D-80539 München, Germany
| |
Collapse
|
174
|
Corlan AD, Ross J. Canalization effect in the coagulation cascade and the interindividual variability of oral anticoagulant response. A simulation study. Theor Biol Med Model 2011; 8:37. [PMID: 22082142 PMCID: PMC3215663 DOI: 10.1186/1742-4682-8-37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 10/12/2011] [Indexed: 12/01/2022] Open
Abstract
Background Increasing the predictability and reducing the rate of side effects of oral anticoagulant treatment (OAT) requires further clarification of the cause of about 50% of the interindividual variability of OAT response that is currently unaccounted for. We explore numerically the hypothesis that the effect of the interindividual expression variability of coagulation proteins, which does not usually result in a variability of the coagulation times in untreated subjects, is unmasked by OAT. Results We developed a stochastic variant of the Hockin-Mann model of the tissue factor coagulation pathway, using literature data for the variability of coagulation protein levels in the blood of normal subjects. We simulated in vitro coagulation and estimated the Prothrombin Time and the INR across a model population. In a model of untreated subjects a "canalization effect" can be observed in that a coefficient of variation of up to 33% of each protein level results in a simulated INR of 1 with a clinically irrelevant dispersion of 0.12. When the mean and the standard deviation of vitamin-K dependent protein levels were reduced by 80%, corresponding to the usual Warfarin treatment intensity, the simulated INR was 2.98 ± 0.48, a clinically relevant dispersion, corresponding to a reduction of the canalization effect. Then we combined the Hockin-Mann stochastic model with our previously published model of population response to Warfarin, that takes into account the genetical and the phenotypical variability of Warfarin pharmacokinetics and pharmacodynamics. We used the combined model to evaluate the coagulation protein variability effect on the variability of the Warfarin dose required to reach an INR target of 2.5. The dose variance when removing the coagulation protein variability was 30% lower. The dose was mostly related to the pretreatment levels of factors VII, X, and the tissue factor pathway inhibitor (TFPI). Conclusions It may be worth exploring in experimental studies whether the pretreatment levels of coagulation proteins, in particular VII, X and TFPI, are predictors of the individual warfarin dose, even though, maybe due to a canalization-type effect, their effect on the INR variance in untreated subjects appears low.
Collapse
Affiliation(s)
- Alexandru D Corlan
- University Emergency Hospital, 169 Spl Independentei, Bucharest, Romania
| | | |
Collapse
|
175
|
Mitrophanov AY, Reifman J. Kinetic modeling sheds light on the mode of action of recombinant factor VIIa on thrombin generation. Thromb Res 2011; 128:381-90. [DOI: 10.1016/j.thromres.2011.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 05/05/2011] [Accepted: 05/10/2011] [Indexed: 11/29/2022]
|
176
|
Affiliation(s)
- Kenneth G Mann
- Department of Biochemistry, Colchester Research Facility Room 235, University of Vermont, Colchester, VT 05446, USA.
| |
Collapse
|
177
|
Gissel M, Whelihan MF, Ferris LA, Mann KG, Rivard GE, Brummel-Ziedins KE. The influence of prophylactic factor VIII in severe haemophilia A. Haemophilia 2011; 18:193-9. [PMID: 21899664 DOI: 10.1111/j.1365-2516.2011.02638.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Haemophilia A individuals displaying a similar genetic defect have heterogeneous clinical phenotypes. Our objective was to evaluate the underlying effect of exogenous factor (f)VIII on tissue factor (Tf)-initiated blood coagulation in severe haemophilia utilizing both empirical and computational models. We investigated twenty-five clinically severe haemophilia A patients. All individuals were on fVIII prophylaxis and had not received fVIII from 0.25 to 4 days prior to phlebotomy. Coagulation was initiated by the addition of Tf to contact-pathway inhibited whole blood ± an anti-fVIII antibody. Aliquots were quenched over 20 min and analyzed for thrombin generation and fibrin formation. Coagulation factor levels were obtained and used to computationally predict thrombin generation with fVIII set to either zero or its value at the time of the draw. As a result of prophylactic fVIII, at the time of the blood draw, the individuals had fVIII levels that ranged from <1% to 22%. Thrombin generation (maximum level and rate) in both empirical and computational systems increased as the level of fVIII increased. FXIII activation rates also increased as the fVIII level increased. Upon suppression of fVIII, thrombin generation became comparable in both systems. Plasma composition analysis showed a negative correlation between bleeding history and computational thrombin generation in the absence of fVIII. Residual prophylactic fVIII directly causes an increase in thrombin generation and fibrin cross-linking in individuals with clinically severe haemophilia A. The combination of each individual's coagulation factors (outside of fVIII) determine each individual's baseline thrombin potential and may affect bleeding risk.
Collapse
Affiliation(s)
- M Gissel
- Department of Biochemistry, University of Vermont, Colchester, VT, USA
| | | | | | | | | | | |
Collapse
|
178
|
Wesley MC, Yuki K, Daaboul DG, DiNardo JA. Blood Utilization in Neonates and Infants Undergoing Cardiac Surgery Requiring Cardiopulmonary Bypass. World J Pediatr Congenit Heart Surg 2011; 2:382-92. [DOI: 10.1177/2150135111403779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neonates and infants undergoing cardiac surgery with cardiopulmonary bypass are exposed to multiple blood products from different donors. The volume of the bypass circuit is often as large as the patient’s total blood volume and asanguineous bypass primes are unusual. As a result, blood products are required for the cardiopulmonary bypass prime and are often used to treat the postbypass dilutional coagulopathy. We review clot formation and strength, cardiopulmonary bypass prime considerations, assessment of postbypass coagulopathy, component therapy use, ultrafiltration techniques, and use of antifibrinolytic medications. A combined approach including techniques to minimize the prime volume, utilization of ultrafiltration, administration of antifibrinolytics during surgery, and the proper treatment of the dilutional coagulopathy can limit the transfusion requirements.
Collapse
Affiliation(s)
- Mark C. Wesley
- Department of Anesthesiology, Perioperative and Pain Medicine, Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Koichi Yuki
- Department of Anesthesiology, Perioperative and Pain Medicine, Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Dima G. Daaboul
- Department of Anesthesiology, Perioperative and Pain Medicine, Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - James A. DiNardo
- Department of Anesthesiology, Perioperative and Pain Medicine, Children’s Hospital Boston, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
179
|
Haynes LM, Dubief YC, Orfeo T, Mann KG. Dilutional control of prothrombin activation at physiologically relevant shear rates. Biophys J 2011; 100:765-773. [PMID: 21281592 DOI: 10.1016/j.bpj.2010.12.3720] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022] Open
Abstract
The generation of proteolyzed prothrombin species by preassembled prothrombinase in phospholipid-coated glass capillaries was studied at physiologic shear rates (100-1000 s(-1)). The concentration of active thrombin species (α-thrombin and meizothrombin) reaches a steady state, which varies inversely with shear rate. When corrected for shear rate, steady-state levels of active thrombin species exhibit no variation and a Michaelis-Menten analysis reveals that chemistry of this reaction is invariant between open and closed systems; collectively, these data imply that variations with shear rate arise from dilutional effects. Significantly, the major products observed include nonreactive species arising from the loss of prothrombin's phospholipid binding domain (des F1 species). A numerical model developed to investigate the spatial and temporal distribution of active thrombin species within the capillary reasonably approximates the observed output of total thrombin species at different shears; it also predicts concentrations of active thrombin species in the wall region sufficient to account for observed levels of des FI species. The predominant feedback formation of nonreactive species and high levels of the primarily anticoagulant intermediate meizothrombin (∼40% of total active thrombin species) may provide a mechanism to prevent thrombus propagation downstream of a site of thrombosis or hemorrhage.
Collapse
Affiliation(s)
- Laura M Haynes
- Department of Biochemistry, University of Vermont, College of Medicine, Colchester, Vermont
| | - Yves C Dubief
- Mechanical Engineering Department, University of Vermont, College of Engineering and Mathematical Sciences, Burlington, Vermont
| | - Thomas Orfeo
- Department of Biochemistry, University of Vermont, College of Medicine, Colchester, Vermont
| | - Kenneth G Mann
- Department of Biochemistry, University of Vermont, College of Medicine, Colchester, Vermont.
| |
Collapse
|
180
|
Coagulation parameters in patients receiving dabigatran etexilate or rivaroxaban: Two observational studies in patients undergoing total hip or total knee replacement. Thromb Res 2011; 127:457-65. [DOI: 10.1016/j.thromres.2011.01.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/24/2010] [Accepted: 01/03/2011] [Indexed: 11/24/2022]
|
181
|
Burghaus R, Coboeken K, Gaub T, Kuepfer L, Sensse A, Siegmund HU, Weiss W, Mueck W, Lippert J. Evaluation of the efficacy and safety of rivaroxaban using a computer model for blood coagulation. PLoS One 2011; 6:e17626. [PMID: 21526168 PMCID: PMC3081290 DOI: 10.1371/journal.pone.0017626] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/03/2011] [Indexed: 01/21/2023] Open
Abstract
Rivaroxaban is an oral, direct Factor Xa inhibitor approved in the European Union
and several other countries for the prevention of venous thromboembolism in
adult patients undergoing elective hip or knee replacement surgery and is in
advanced clinical development for the treatment of thromboembolic disorders. Its
mechanism of action is antithrombin independent and differs from that of other
anticoagulants, such as warfarin (a vitamin K antagonist), enoxaparin (an
indirect thrombin/Factor Xa inhibitor) and dabigatran (a direct thrombin
inhibitor). A blood coagulation computer model has been developed, based on
several published models and preclinical and clinical data. Unlike previous
models, the current model takes into account both the intrinsic and extrinsic
pathways of the coagulation cascade, and possesses some unique features,
including a blood flow component and a portfolio of drug action mechanisms. This
study aimed to use the model to compare the mechanism of action of rivaroxaban
with that of warfarin, and to evaluate the efficacy and safety of different
rivaroxaban doses with other anticoagulants included in the model. Rather than
reproducing known standard clinical measurements, such as the prothrombin time
and activated partial thromboplastin time clotting tests, the anticoagulant
benchmarking was based on a simulation of physiologically plausible clotting
scenarios. Compared with warfarin, rivaroxaban showed a favourable sensitivity
for tissue factor concentration inducing clotting, and a steep
concentration–effect relationship, rapidly flattening towards higher
inhibitor concentrations, both suggesting a broad therapeutic window. The
predicted dosing window is highly accordant with the final dose recommendation
based upon extensive clinical studies.
Collapse
Affiliation(s)
| | | | - Thomas Gaub
- Bayer Technology Services GmbH, Leverkusen,
Germany
| | - Lars Kuepfer
- Bayer Technology Services GmbH, Leverkusen,
Germany
| | | | | | | | | | - Joerg Lippert
- Bayer Technology Services GmbH, Leverkusen,
Germany
- * E-mail:
| |
Collapse
|
182
|
Xu Z, Kamocka M, Alber M, Rosen ED. Computational approaches to studying thrombus development. Arterioscler Thromb Vasc Biol 2011; 31:500-5. [PMID: 21325672 DOI: 10.1161/atvbaha.110.213397] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In addition to descriptive biological models, many computational models have been developed for hemostasis/thrombosis that provide quantitative characterization of thrombus development. Simulations using computational models that have been developed for coagulation reactions, platelet activation, and fibrinogen assembly have been shown to be in close agreement with experimental data. Models of processes involved in hemostasis/thrombosis are being integrated to simulate the development of the thrombus simultaneously in time and space. Further development of computational approaches can provide quantitative insights leading to predictions that are not obvious from qualitative biological models.
Collapse
Affiliation(s)
- Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
183
|
Complex assemblies of factors IX and X regulate the initiation, maintenance, and shutdown of blood coagulation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:51-103. [PMID: 21238934 DOI: 10.1016/b978-0-12-385504-6.00002-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Blood hemostasis is accomplished by a complex network of (anti-)coagulatory and fibrinolytic processes. These physiological processes are implemented by the assembly of multiprotein complexes involving both humoral and cellular components. Coagulation factor X, and particularly, factor IX, exemplify the dramatic enhancement that is obtained by the synergistic interaction of cell surface, inorganic and protein cofactors, protease, and substrate. With a focus on structure-function relationship, we review the current knowledge of activity modulation principles in the coagulation proteases factors IX and X and indicate future challenges for hemostasis research. This chapter is organized by describing the principles of hierarchical activation of blood coagulation proteases, including endogenous and exogenous protease activators, cofactor binding, substrate specificities, and protein inhibitors. We conclude by outlining pharmaceutical opportunities for unmet needs in hemophilia and thrombosis.
Collapse
|
184
|
Chatterjee MS, Denney WS, Jing H, Diamond SL. Systems biology of coagulation initiation: kinetics of thrombin generation in resting and activated human blood. PLoS Comput Biol 2010; 6. [PMID: 20941387 PMCID: PMC2947981 DOI: 10.1371/journal.pcbi.1000950] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/03/2010] [Indexed: 01/28/2023] Open
Abstract
Blood function defines bleeding and clotting risks and dictates approaches for clinical intervention. Independent of adding exogenous tissue factor (TF), human blood treated in vitro with corn trypsin inhibitor (CTI, to block Factor XIIa) will generate thrombin after an initiation time (Ti) of 1 to 2 hours (depending on donor), while activation of platelets with the GPVI-activator convulxin reduces Ti to ∼20 minutes. Since current kinetic models fail to generate thrombin in the absence of added TF, we implemented a Platelet-Plasma ODE model accounting for: the Hockin-Mann protease reaction network, thrombin-dependent display of platelet phosphatidylserine, VIIa function on activated platelets, XIIa and XIa generation and function, competitive thrombin substrates (fluorogenic detector and fibrinogen), and thrombin consumption during fibrin polymerization. The kinetic model consisting of 76 ordinary differential equations (76 species, 57 reactions, 105 kinetic parameters) predicted the clotting of resting and convulxin-activated human blood as well as predicted Ti of human blood under 50 different initial conditions that titrated increasing levels of TF, Xa, Va, XIa, IXa, and VIIa. Experiments with combined anti-XI and anti-XII antibodies prevented thrombin production, demonstrating that a leak of XIIa past saturating amounts of CTI (and not “blood-borne TF” alone) was responsible for in vitro initiation without added TF. Clotting was not blocked by antibodies used individually against TF, VII/VIIa, P-selectin, GPIb, protein disulfide isomerase, cathepsin G, nor blocked by the ribosome inhibitor puromycin, the Clk1 kinase inhibitor Tg003, or inhibited VIIa (VIIai). This is the first model to predict the observed behavior of CTI-treated human blood, either resting or stimulated with platelet activators. CTI-treated human blood will clot in vitro due to the combined activity of XIIa and XIa, a process enhanced by platelet activators and which proceeds in the absence of any evidence for kinetically significant blood borne tissue factor. Clotting of blood involves a series of reactions wherein at each step an inactive zymogen is converted to an active enzyme by the product of the previous step, sometimes in plasma and usually on efficient catalytic surfaces provided by the activating platelet. The protein Tissue Factor (TF) initiates this cascade when blood vessels are disrupted, but how this cascade is triggered in the absence of exogenous TF remains the subject of much debate. First, we validated a high throughput experimental system that allowed the noninvasive quantification of thrombin generation dynamics. Next, we showed that “contact activation,” despite use of the best available inhibitor (CTI) to prevent it, builds up enough autocatalytic strength to trigger coagulation without exogenous TF, particularly upon activated platelets. Further, we build an ODE based model to predict the stability of blood resulting from multiple perturbations with active enzymes at various physiologically realizable concentrations. Unlike existing models, we consider the dynamics of platelet activation on reaction rates due to phosphatiylserine exposure. The “Platelet-Plasma” model lays the groundwork for integration of coagulation reaction kinetics and donor specific descriptions of platelet function.
Collapse
Affiliation(s)
- Manash S. Chatterjee
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania. Philadelphia, Pennslyvania, United States of America
| | - William S. Denney
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania. Philadelphia, Pennslyvania, United States of America
| | - Huiyan Jing
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania. Philadelphia, Pennslyvania, United States of America
| | - Scott L. Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania. Philadelphia, Pennslyvania, United States of America
- * E-mail:
| |
Collapse
|
185
|
Abstract
We have adapted the corn-trypsin inhibitor whole-blood model to include EA.hy926 as an endothelium surrogate to evaluate the vascular modulation of blood coagulation initiated by relipidated recombinant tissue factor (rTf) and a cellular Tf surrogate, lipopolysaccharide (LPS)-stimulated THP1 cells (LPS-THP-1). Compared with bare tubes, EA.hy926 with rTf decreased the rate of thrombin formation, ITS accumulation, and the production of fibrinopeptide A. These phenomena occurred with increased rates of factor Va (fVa) inactivation by cleavages at R(506) and R(306). Thus, EA.hy926 provides thrombin-dependent protein C activation and APC fVa inactivation. Comparisons of rTf with LPS-THP-1 showed that the latter gave reduced rates for TAT formation but equivalent fibrinopeptide A, and fV activation/inactivation. In the presence of EA.hy926, the reverse was obtained; with the surrogate endothelium and LPS-THP-1 the rates of TAT generation, fibrinopeptide release, and fV activation were almost doubled, whereas cleavage at R(306) was equivalent. These observations suggest cooperativity between the 2 cell surrogates. These data suggest that the use of these 2 cell lines provides a reproducible quasi-endothelial quasi-inflammatory cytokine-stimulated monocyte system that provides a method to evaluate the variations in blood phenotype against the background of stable inflammatory cell activator and a stable vascular endothelial surrogate.
Collapse
|
186
|
Luan D, Szlam F, Tanaka KA, Barie PS, Varner JD. Ensembles of uncertain mathematical models can identify network response to therapeutic interventions. MOLECULAR BIOSYSTEMS 2010; 6:2272-86. [PMID: 20844798 DOI: 10.1039/b920693k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The role of mechanistic modeling and systems biology in molecular medicine remains unclear. In this study, we explored whether uncertain models could be used to understand how a network responds to a therapeutic intervention. As a proof of concept, we modeled and analyzed the response of the human coagulation cascade to recombinant factor VIIa (rFVIIa) and prothrombin (fII) addition in normal and hemophilic plasma. An ensemble of parametrically uncertain human coagulation models was developed (N = 437). Each model described the time evolution of 193 proteins and protein complexes interconnected by 301 interactions under quiescent flow. The 467 unknown model parameters were estimated, using multiobjective optimization, from published in vitro coagulation studies. The model ensemble was validated using published in vitro thrombin measurements and thrombin measurements taken from coronary artery disease patients. Sensitivity analysis was then used to rank-order the importance of model parameters as a function of experimental or physiological conditions. A novel strategy for the systematic comparison of ranks identified a family of fX/FXa and fII/FIIa interactions that became more sensitive with decreasing fVIII/fIX. The fragility of these interactions was preserved following the addition of exogenous rFVIIa and fII. This suggested that exogenous rFVIIa did not alter the qualitative operation of the cascade. Rather, exogenous rFVIIa and fII took advantage of existing fluid and interfacial fX/FXa and fII/FIIa sensitivity to restore normal coagulation in low fVIII/fIX conditions. The proposed rFVIIa mechanism of action was consistent with experimental literature not used in model training. Thus, we demonstrated that an ensemble of uncertain models could unravel key facets of the mechanism of action of a focused intervention. Whereas the current study was limited to coagulation, perhaps the general strategy used could be extended to other molecular networks relevant to human health.
Collapse
Affiliation(s)
- Deyan Luan
- School of Chemical and Biomolecular Engineering, Cornell University, 244 Olin Hall, Ithaca NY 14853, USA
| | | | | | | | | |
Collapse
|
187
|
Plasma factor and inhibitor composition contributes to thrombin generation dynamics in patients with acute or previous cerebrovascular events. Thromb Res 2010; 126:262-9. [PMID: 20709367 DOI: 10.1016/j.thromres.2010.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/29/2010] [Accepted: 07/09/2010] [Indexed: 11/23/2022]
Abstract
INTRODUCTION More than 80% of cerebrovascular events are ischemic and largely thromboembolic by nature. We evaluated whether plasma factor composition and thrombin generation dynamics might be a contributor to the thrombotic phenotype of ischemic cerebrovascular events. MATERIALS AND METHODS We studied (1) 100 patients with acute ischemic stroke (n=50) or transient ischemic attack (TIA) (n=50) within the first 24 hours from symptom onset, and (2) 100 individuals 1 to 4 years following ischemic stroke (n=50) or TIA (n=50). The tissue factor pathway to thrombin generation was simulated with a mathematical model using plasma levels of clotting factors (F)II, V, VII, VIII, IX, X, antithrombin and free tissue factor pathway inhibitor (TFPI). RESULTS The plasma levels of free TFPI, FII, FVIII, and FX were higher, while antithrombin was lower, in the acute patients compared to the previous event group (all p≤0.02). Thrombin generation during acute events was enhanced, with an 11% faster maximum rate, a 15% higher maximum level and a 26% larger total production (all p<0.01). The increased thrombin generation in acute patients was determined by higher FII and lower antithrombin, while increased free TFPI mediated this effect. When the groups are classified by etiology, all stroke sub-types except cardioembolic have increased TFPI and decreased AT and total thrombin produced. CONCLUSION Augmented thrombin generation in acute stroke/TIA is to some extent determined by altered plasma levels of coagulation factors.
Collapse
|
188
|
A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade. Biophys J 2010; 98:1723-32. [PMID: 20441735 DOI: 10.1016/j.bpj.2009.12.4331] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 12/15/2009] [Accepted: 12/28/2009] [Indexed: 11/22/2022] Open
Abstract
A combination of the extended multiscale model, new image processing algorithms, and biological experiments is used for studying the role of Factor VII (FVII) in venous thrombus formation. A detailed submodel of the tissue factor pathway of blood coagulation is introduced within the framework of the multiscale model to provide a detailed description of coagulation cascade. Surface reactions of the extrinsic coagulation pathway on membranes of platelets are studied under different flow conditions. It is shown that low levels of FVII in blood result in a significant delay in thrombin production, demonstrating that FVII plays an active role in promoting thrombus development at an early stage.
Collapse
|
189
|
Abstract
The proverb that probably best exemplifies my career in research is attributable to Yogi Berra (http://www.yogiberra.com/), ie, “when you come to a fork in the road … take it.” My career is a consequence of chance interactions with great mentors and talented students and the opportunities provided by a succession of ground-breaking improvements in technology.
Collapse
|
190
|
Abstract
SUMMARY BACKGROUND In the extrinsic pathway, the essential procofactors factor (F) V and FVIII are activated to FVa and FVIIIa by thrombin. In the contact pathway and its clinical diagnostic test, the activated partial thromboplastin time (APTT) assay, the sources of procofactor activation are unknown. In the APTT assay, FXII is activated on a negatively charged surface and proceeds to activate FXI, which activates FIX upon the addition of Ca(2+). FIXa feeds thrombin generation through activation of FX. FIXa is an extremely poor catalyst in the absence of its FVIIIa cofactor, which, in the intrinsic FXase complex, increases FXa generation by approximately 10(7). One potential APTT procofactor activator in this setting is FXIa. OBJECTIVE To test the hypothesis that FXIa can activate FVIII and FV. METHODS Recombinant FVIII and plasma FV were treated with FXIa, and the activities and integrities of each procofactor were measured using commercial clotting assays and sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). RESULTS Kinetic analyses of FXIa-catalyzed activation and inactivation of FV and FVIII are reported, and the the timing and sites of cleavage are defined. CONCLUSIONS FXIa activates both procofactors at plasma protein concentrations, and computational modeling suggests that procofactor activation during the preincubation phase of the APTT assay is critical to the performance of the assay. As the APTT assay is the primary tool for the diagnosis and management of hemophilias A and B, as well as in the determination of FVIII inhibitors, these findings have potential implications in the clinical setting.
Collapse
Affiliation(s)
- M F Whelihan
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA
| | | | | | | |
Collapse
|
191
|
Undas A, Gissel M, Kwasny-Krochin B, Gluszko P, Mann KG, Brummel-Ziedins KE. Thrombin generation in rheumatoid arthritis: dependence on plasma factor composition. Thromb Haemost 2010; 104:224-30. [PMID: 20593110 DOI: 10.1160/th10-02-0091] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 03/12/2010] [Indexed: 11/05/2022]
Abstract
Growing evidence indicates that rheumatoid arthritis (RA) is associated with an increased risk for thromboembolic cardiovascular events. We investigated thrombin generation profiles in RA patients and their dependence on plasma factor/inhibitor composition. Plasma factor (F) compositions (II, V, VII, VIII, IX, X), antithrombin and free tissue factor pathway inhibitor (TFPI) from 46 consecutive RA patients with no cardiovascular events (39 female, 7 male, aged 57 [range, 23-75] years; DAS28 [Disease Activity Score] 5.2 +/- 1.1) were compared with those obtained in age- and sex-matched apparently healthy controls. Using each individual's plasma coagulation protein composition, tissue factor-initiated thrombin generation was assessed both computationally and empirically. RA patients had higher fibrinogen (4.18 [IQR 1.09] vs. 2.56 [0.41] g/l, p<0.0001), FVIII (226 +/- 40 vs. 113 +/- 15%, p<0.001), PC (107 [16] vs. 100 [14]%, p<0.001), and free TFPI levels (22.3 [2.2] vs. 14.7 [2.1] ng/ml, p<0.001). DAS28, but not age, RA duration, or C-reactive protein, was associated with FV, FVIII, FIX, FX, antithrombin, and free TFPI (r from 0.27 to 0.48, p<0.05). Intergroup comparison of computational thrombin generation profiles showed that in RA patients, maximum thrombin levels (p=0.01) and the rate of thrombin formation (p<0.0001) were higher, whereas the initiation phase of thrombin generation (p<0.0001) and the time to maximum thrombin levels (p<0.0001) were longer. Empirical reconstructions of the populations reproduced the thrombin generation profiles generated by the computational model. Simulations of thrombin formation suggest that blood plasma composition, i.e. a marked increase in FVIII, somewhat counterbalanced by free TFPI, contributes to the prothrombotic phenotype in RA patients.
Collapse
Affiliation(s)
- Anetta Undas
- Institute of Cardiology, Jagiellonian University School of Medicine, Krakow, Poland
| | | | | | | | | | | |
Collapse
|
192
|
Leiderman K, Fogelson AL. Grow with the flow: a spatial-temporal model of platelet deposition and blood coagulation under flow. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2010; 28:47-84. [PMID: 20439306 DOI: 10.1093/imammb/dqq005] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The body's response to vascular injury involves two intertwined processes: platelet aggregation and coagulation. Platelet aggregation is a predominantly physical process, whereby platelets clump together, and coagulation is a cascade of biochemical enzyme reactions. Thrombin, the major product of coagulation, directly couples the biochemical system to platelet aggregation by activating platelets and by cleaving fibrinogen into fibrin monomers that polymerize to form a mesh that stabilizes platelet aggregates. Together, the fibrin mesh and the platelet aggregates comprise a thrombus that can grow to occlusive diameters. Transport of coagulation proteins and platelets to and from an injury is controlled largely by the dynamics of the blood flow. To explore how blood flow affects the growth of thrombi and how the growing masses, in turn, feed back and affect the flow, we have developed the first spatial-temporal mathematical model of platelet aggregation and blood coagulation under flow that includes detailed descriptions of coagulation biochemistry, chemical activation and deposition of blood platelets, as well as the two-way interaction between the fluid dynamics and the growing platelet mass. We present this model and use it to explain what underlies the threshold behaviour of the coagulation system's production of thrombin and to show how wall shear rate and near-wall enhanced platelet concentrations affect the development of growing thrombi. By accounting for the porous nature of the thrombus, we also demonstrate how advective and diffusive transport to and within the thrombus affects its growth at different stages and spatial locations.
Collapse
Affiliation(s)
- Karin Leiderman
- Department of Mathematics, University of Utah, 155 South 1400 East, Room 233, Salt Lake City, UT 84112-0090, USA.
| | | |
Collapse
|
193
|
Gershom ES, Sutherland MR, Lollar P, Pryzdial ELG. Involvement of the contact phase and intrinsic pathway in herpes simplex virus-initiated plasma coagulation. J Thromb Haemost 2010; 8:1037-43. [PMID: 20128864 DOI: 10.1111/j.1538-7836.2010.03789.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
SUMMARY BACKGROUND A hemostatic response to vascular injury is initiated by the extrinsic pathway of coagulation and amplified by the intrinsic pathway. We previously reported that purified herpes simplex virus type-1 (HSV1) has constitutive extrinsic pathway tissue factor (TF) and anionic phospholipid on its surface derived from the host cell, and can consequently bypass strict cellular control of coagulation. OBJECTIVE The current work addresses the hypothesis that HSV1-induced plasma coagulation also involves intrinsic pathway, factor VIII (FVIII), and upstream contact activation pathway, factor XII (FXII). RESULTS HSV1-initiated clotting was accelerated when purified FVIII was added to FVIII-deficient plasma and in normal plasma attenuated by an inhibitory anti-FVIII antibody (Ab). High HSV1 concentrations predictably reduced the effect of FVIII due to the availability of excess viral TF. To further define TF-independent clotting mechanisms initiated by HSV1, the extrinsic pathway was disabled using factor VII-deficient plasma. The intrinsic pathway is triggered by activation of FXII associated with surface-bound kallikrein, which subsequently activates factor XI. Here we found that an inhibitor of activated FXII, corn trypsin inhibitor, and anti-FXII, anti-kallikrein and anti-FXI Abs inhibited HSV1-initiated clotting. HSV1-enhanced activation of purified FXII was confirmed by Western blot, but required prekallikrein. CONCLUSION The current work shows that HSV1 can trigger and amplify coagulation through the contact phase and intrinsic pathway, and suggests an additional mechanism that may contribute to vascular pathology.
Collapse
Affiliation(s)
- E S Gershom
- Department of Pathology and Laboratory Medicine, Centre for Blood Research, University of British Columbia, British Columbia, Canada
| | | | | | | |
Collapse
|
194
|
Mathematical modeling of thrombus growth in mesenteric vessels. Math Biosci 2010; 224:29-34. [PMID: 20043925 DOI: 10.1016/j.mbs.2009.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 06/05/2009] [Accepted: 12/22/2009] [Indexed: 11/22/2022]
Abstract
Richardson's phenomenological mathematical model of the thrombi growth in microvessels is extended to describe the realistic features of the phenomenon. The main directions of the generalization of Richardson's model are: (1) the dependence of platelet activation time on the distance from the injured vessel wall; (2) the non-homogeneity of the platelet distribution in blood flow in the vicinity of the vessel wall; (3) the adequate choice of the phenomenological function describing the dependence of blood velocity on the thrombus size. The generalization of the model corresponds to the main experimental results and theoretical considerations concerning thrombus formation obtained in recent years. The extended model permits to achieve qualitative agreement between model and experimental data.
Collapse
|
195
|
Shworak NW, Kobayashi T, de Agostini A, Smits NC. Anticoagulant heparan sulfate to not clot--or not? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:153-78. [PMID: 20807645 DOI: 10.1016/s1877-1173(10)93008-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Vascular endothelial cells (ECs) produce anticoagulant heparan sulfate (HSAT+)-a small subpopulation of heparan sulfate (HS) containing a specific pentasaccharide motif with high affinity for plasma antithrombin (AT). This pentasaccharide is responsible for the anticoagulant action of therapeutic heparin, which dramatically catalyzes AT neutralization of coagulation proteases. Consequently, HSAT+ has been designated as "anticoagulant HS," and has long been thought to convey antithrombotic properties to the blood vessel wall. The Hs3st1 gene encodes HS 3-O-sulfotransferase-1, whose rate limiting action regulates EC production of HSAT+. To elucidate the biologic role of HSAT+, we generated Hs3st1-/- knock-out mice that have undetectable EC HSAT+. Despite long held historic expectations, hemostasis was unaffected in Hs3st1-/- mice. In light of this surprising finding, herein we evaluate historic, biochemical, kinetic, physiologic, and molecular genetic studies of AT, heparin, and HSAT+. We find that a hemostatic role for HSAT+ cannot presently be excluded; however, HSAT+ may well not be essential for AT's anticoagulant function. Specifically, in the absence of glycosaminoglycans, physiologic levels of AT can neutralize coagulation proteases at a sufficiently high throughput to account for most of AT's anticoagulant function. Moreover, at the vessel wall surface, glycosaminoglycans distinct from HSAT+ may be the predominant catalysts of AT's anticoagulant activity. We then explore the possibility that HSAT+ regulates a less well known function of AT, anti-inflammatory activity. We find that Hs3st1-/- mice exhibit a strong proinflammatory phenotype that is unresponsive to AT's anti-inflammatory activity. We conclude that the predominant function of HSAT+ is to mediate AT's anti-inflammatory activity.
Collapse
Affiliation(s)
- Nicholas W Shworak
- Department of Medicine, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | | | | |
Collapse
|
196
|
Shen F, Pompano RR, Kastrup CJ, Ismagilov RF. Confinement regulates complex biochemical networks: initiation of blood clotting by "diffusion acting". Biophys J 2009; 97:2137-45. [PMID: 19843446 PMCID: PMC2764071 DOI: 10.1016/j.bpj.2009.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 07/16/2009] [Accepted: 08/03/2009] [Indexed: 11/28/2022] Open
Abstract
This study shows that environmental confinement strongly affects the activation of nonlinear reaction networks, such as blood coagulation (clotting), by small quantities of activators. Blood coagulation is sensitive to the local concentration of soluble activators, initiating only when the activators surpass a threshold concentration, and therefore is regulated by mass transport phenomena such as flow and diffusion. Here, diffusion was limited by decreasing the size of microfluidic chambers, and it was found that microparticles carrying either the classical stimulus, tissue factor, or a bacterial stimulus, Bacillus cereus, initiated coagulation of human platelet-poor plasma only when confined. A simple analytical argument and numerical model were used to describe the mechanism for this phenomenon: confinement causes diffusible activators to accumulate locally and surpass the threshold concentration. To interpret the results, a dimensionless confinement number, Cn, was used to describe whether a stimulus was confined, and a Damköhler number, Da(2), was used to describe whether a subthreshold stimulus could initiate coagulation. In the context of initiation of coagulation by bacteria, this mechanism can be thought of as "diffusion acting", which is distinct from "diffusion sensing". The ability of confinement and diffusion acting to change the outcome of coagulation suggests that confinement should also regulate other biological "on" and "off" processes that are controlled by thresholds.
Collapse
Affiliation(s)
| | | | | | - Rustem F. Ismagilov
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois
| |
Collapse
|
197
|
Differential contributions of Glu96, Asp102 and Asp111 to coagulation Factor V/Va metal ion binding and subunit stability. Biochem J 2009; 422:257-64. [DOI: 10.1042/bj20090405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Blood coagulation FV (Factor V) is activated by thrombin-mediated excision of the B domain, resulting in a non-covalent heterodimer, FVa (activated FV). Previous studies implicated Glu96, Asp102 and Asp111 in the essential Ca2+-dependent FVa subunit interaction. In the present study, FV E96A, D102A and D111A were purified and evaluated for function, subunit dissociation and metal ion binding. Chromogenic and clotting assays in the presence of procoagulant vesicles showed that each variant was inhibited (∼20–40%). D111A was further inhibited (>90%) after cleavage by thrombin. Comparable function was observed on activated platelets. D111A inhibition correlated to spontaneous subunit dissociation and severely impaired Ca2+ binding. The Cu2+ interaction was also inhibited, suggesting interdependent Ca2+ and Cu2+ binding to FV. The parental FV (FV-810; wild-type human FV missing residues 811–1491) used here is fully active without proteolysis because the B domain is truncated. Therefore, a FVa-like functional configuration exists for intact D111A independent of normal metal ion interactions. Unlike D111A, the thrombin-mediated FVa derived from E96A and D102A had only moderately enhanced subunit dissociation upon chelation and had normal metal ion binding. For FV-810-, E96A- and D102A-derived FVa, loss of function after chelation significantly preceded subunit dissociation. This study defines the highly conserved segment spanning Glu96–Asp111 in FV as multifunctional. Of the three amino acids evaluated, Asp111 is essential and probably functions through direct and indirect effects on Ca2+ and Cu2+ interactions. Glu96 and Asp102 individually influence FV/FVa by more subtle effects, possibly at the metal ion-dependent subunit interface.
Collapse
|
198
|
Abstract
Systems biology seeks to provide a quantitative framework to understand blood as a reactive biological fluid whose function is dictated by prevailing haemodynamics, vessel wall characteristics, platelet metabolism, numerous coagulation factors in plasma, and small molecules released during thrombosis. The hierarchical nature of thrombosis requires analysis of adhesive bond dynamics of activated platelets captured from a flow field to a growing thrombus boundary along with the simultaneous assembly of the coagulation pathway. Several kinetic models of protease cascades have been developed. A full bottom-up model of platelet intracellular metabolism is now available to simulate the metabolism of resting platelets and platelets exposed to activators. Monte Carlo algorithms can finally accommodate platelet reaction, dispersion, and convection for full simulation of platelet deposition and clotting under flow. For clinical applications, the systems biology prediction of patient-specific pharmacological response requires the final assembly of platelet intracellular metabolism models with coagulation protease network models.
Collapse
Affiliation(s)
- S L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
199
|
Brummel-Ziedins KE, Orfeo T, Rosendaal FR, Undas A, Rivard GE, Butenas S, Mann KG. Empirical and theoretical phenotypic discrimination. J Thromb Haemost 2009; 7 Suppl 1:181-6. [PMID: 19630796 PMCID: PMC3395063 DOI: 10.1111/j.1538-7836.2009.03426.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed an integrated approach that combines empirical and computational methodologies to define an individual's thrombin phenotype. We have evaluated the process of thrombin generation in healthy individuals and individuals with defined pathologies in order to develop general criteria relevant to assess an individual's propensity for hemorrhage or thrombosis. Three complementary hypotheses have emerged from our work: (i) compensation by the ensemble of other coagulation proteins in individuals with specific factor deficiencies can 'normalize' an individual's thrombin generation process and represents a rationale for their unexpected phenotype; (ii) individuals with clinically unremarkable factor levels may present thrombin generation profiles typical of individuals with hemostatic complications; and (iii) in some hemostatic disorders a specific pattern of expression of a small ensemble of coagulation factors may be sufficient to explain the overall phenotype.
Collapse
Affiliation(s)
- K E Brummel-Ziedins
- Department of Biochemistry, University of Vermont, Colchester, VT 05446, USA.
| | | | | | | | | | | | | |
Collapse
|
200
|
Brummel-Ziedins KE, Whelihan MF, Gissel M, Mann KG, Rivard GE. Thrombin generation and bleeding in haemophilia A. Haemophilia 2009; 15:1118-25. [PMID: 19563500 DOI: 10.1111/j.1365-2516.2009.01994.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Haemophilia A displays phenotypic heterogeneity with respect to clinical severity. The aim of this study was to determine if tissue factor (TF)-initiated thrombin generation profiles in whole blood in the presence of corn trypsin inhibitor (CTI) are predictive of bleeding risk in haemophilia A. We studied factor(F) VIII deficient individuals (11 mild, 4 moderate and 12 severe) with a well-characterized 5-year bleeding history that included haemarthrosis, soft tissue haematoma and annual FVIII concentrate usage. This clinical information was used to generate a bleeding score. The bleeding scores (range 0-32) were separated into three groups (bleeding score groupings: 0, 0 and < or = 9.6, >9.6), with the higher bleeding tendency having a higher score. Whole blood collected by phlebotomy and contact pathway suppressed by 100 microg mL(-1) CTI was stimulated to react by the addition of 5 pM TF. Reactions were quenched at 20 min by inhibitors. Thrombin generation, determined by enzyme-linked immunosorbent assay for thrombin-antithrombin was evaluated in terms of clot time (CT), maximum level (MaxL) and maximum rate (MaxR) and compared to the bleeding score. Data are shown as the mean+/-SD. MaxL was significantly different (P < 0.001) between the groups: 504 +/- 114, 315 +/- 117 and 194 +/- 91 nM; with higher thrombin concentrations in the groups with lower bleeding scores. MaxR was higher in the groups with a lower bleeding score; 97 +/- 51, 86 +/- 60 and 39 +/- 16 nM min(-1) (P = 0.09). No significant difference was detected in CT among the groups, 5.6 +/- 1.3, 4.7 +/- 0.7 and 5.6 +/- 1.3 min. Our empirical study in CTI-inhibited whole blood shows that the MaxL of thrombin generation appears to correlate with the bleeding phenotype of haemophilia A.
Collapse
Affiliation(s)
- K E Brummel-Ziedins
- Department of Biochemistry, University of Vermont, College of Medicine, Colchester, VT 05446, USA.
| | | | | | | | | |
Collapse
|