151
|
Girardin F, Daali Y, Gex-Fabry M, Rebsamen M, Roux-Lombard P, Cerny A, Bihl F, Binek J, Moradpour D, Negro F, Desmeules J. Liver kidney microsomal type 1 antibodies reduce the CYP2D6 activity in patients with chronic hepatitis C virus infection. J Viral Hepat 2012; 19:568-73. [PMID: 22762141 DOI: 10.1111/j.1365-2893.2011.01578.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver kidney microsomal type 1 (LKM-1) antibodies have been shown to decrease the CYP2D6 activity in vitro and are present in a minority of patients with chronic hepatitis C infection. We investigated whether LKM-1 antibodies might reduce the CYP2D6 activity in vivo. All patients enrolled in the Swiss Hepatitis C Cohort Study and tested for LKM-1 antibodies were assessed (n = 1723): 10 eligible patients were matched with patients without LKM-1 antibodies. Patients were genotyped for CYP2D6 variants to exclude individuals with a poor metabolizer genotype. CYP2D6 activity was measured by a specific substrate using the dextromethorphan/dextrorphan metabolic ratio to classify patients into four activity phenotypes. All patients had a CYP2D6 extensive metabolizer genotype. The observed phenotype was concordant with the CYP2D6 genotype in most LKM-negative patients, whereas only three LKM-1 positive patients had a concordant phenotype (six presented an intermediate and one a poor metabolizer phenotype). The median DEM/DOR ratio was sixfold higher in LKM-1 positive than in LKM-1 negative patients (0.096 vs. 0.016, P = 0.004), indicating that CYP2D6 metabolic function was significantly reduced in the presence of LKM-1 antibodies. In chronic hepatitis C patients with LKM-1 antibodies, the CYP2D6 metabolic activity was on average reduced by 80%. The impact of LKM-1 antibodies on CYP2D6-mediated drug metabolism pathways warrants further translational studies.
Collapse
Affiliation(s)
- F Girardin
- Division of Clinical Pharmacology and Toxicology, University of Geneva, University Hospitals of Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
DeVore NM, Scott EE. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone binding and access channel in human cytochrome P450 2A6 and 2A13 enzymes. J Biol Chem 2012; 287:26576-85. [PMID: 22700965 DOI: 10.1074/jbc.m112.372813] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cytochromes P450 (CYP) from the 2A subfamily are known for their roles in the metabolism of nicotine, the addictive agent in tobacco, and activation of the tobacco procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Although both the hepatic CYP2A6 and respiratory CYP2A13 enzymes metabolize these compounds, CYP2A13 does so with much higher catalytic efficiency, but the structural basis for this has been unclear. X-ray structures of nicotine complexes with CYP2A13 (2.5 Å) and CYP2A6 (2.3 Å) yield a structural rationale for the preferential binding of nicotine to CYP2A13. Additional structures of CYP2A13 with NNK reveal either a single NNK molecule in the active site with orientations corresponding to metabolites known to form DNA adducts and initiate lung cancer (2.35 Å) or with two molecules of NNK bound (2.1 Å): one in the active site and one in a more distal staging site. Finally, in contrast to prior CYP2A structures with enclosed active sites, CYP2A13 conformations were solved that adopt both open and intermediate conformations resulting from an ∼2.5 Å movement of the F to G helices. This channel occurs in the same region where the second, distal NNK molecule is bound, suggesting that the channel may be used for ligand entry and/or exit from the active site. Altogether these structures provide multiple new snapshots of CYP2A13 conformations that assist in understanding the binding and activation of an important human carcinogen, as well as critical comparisons in the binding of nicotine, one of the most widely used and highly addictive drugs in human use.
Collapse
Affiliation(s)
- Natasha M DeVore
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, USA
| | | |
Collapse
|
153
|
Cai H, Jiang J, Yang Q, Chen Q, Deng Y. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49). PLoS One 2012; 7:e38395. [PMID: 22675558 PMCID: PMC3366968 DOI: 10.1371/journal.pone.0038395] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/09/2012] [Indexed: 12/01/2022] Open
Abstract
The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49) was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.
Collapse
Affiliation(s)
- Hua Cai
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Jun Jiang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Qi Yang
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Qingmei Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Yiqun Deng
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
154
|
Su Z, Zhang B, Zhu W, Du Z. In silico and in vivo evaluation of flavonoid extracts on CYP2D6-mediated herb-drug interaction. J Mol Model 2012; 18:4657-63. [DOI: 10.1007/s00894-012-1472-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 05/15/2012] [Indexed: 12/01/2022]
|
155
|
Rydberg P, Olsen L. Predicting drug metabolism by cytochrome P450 2C9: comparison with the 2D6 and 3A4 isoforms. ChemMedChem 2012; 7:1202-9. [PMID: 22593031 DOI: 10.1002/cmdc.201200160] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/23/2012] [Indexed: 11/10/2022]
Abstract
By the use of knowledge gained through modeling of drug metabolism mediated by the cytochrome P450 2D6 and 3A4 isoforms, we constructed a 2D-based model for site-of-metabolism prediction for the cytochrome P450 2C9 isoform. The similarities and differences between the models for the 2C9 and 2D6 isoforms are discussed through structural knowledge from the X-ray crystal structures and trends in experimental data. The final model was validated on an independent test set, resulting in an area under the curve value of 0.92, and a site of metabolism was found among the top two ranked atoms for 77% of the compounds.
Collapse
Affiliation(s)
- Patrik Rydberg
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Denmark.
| | | |
Collapse
|
156
|
Zhou X, Wang Y, Or PMY, Wan DCC, Kwan YW, Yeung JHK. Molecular docking and enzyme kinetic studies of dihydrotanshinone on metabolism of a model CYP2D6 probe substrate in human liver microsomes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:648-657. [PMID: 22541637 DOI: 10.1016/j.phymed.2012.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/09/2011] [Accepted: 01/21/2012] [Indexed: 05/31/2023]
Abstract
The effects of Danshen and its active components (tanshinone I, tanshinone IIA, dihydrotanshinone and cryptotanshinone) on CYP2D6 activity was investigated by measuring the metabolism of a model CYP2D6 probe substrate, dextromethorphan to dextrorphan in human pooled liver microsomes. The ethanolic extract of crude Danshen (6.25-100 μg/ml) decreased dextromethorphan O-demethylation in vitro (IC(50)=23.3 μg/ml) and the water extract of crude Danshen (0.0625-1 mg/ml) showed no inhibition. A commercially available Danshen pill (31.25-500 μg/ml) also decreased CYP2D6 activity (IC(50)=265.8 μg/ml). Among the tanshinones, only dihydrotanshinone significantly inhibited CYP2D6 activity (IC(50)=35.4 μM), compared to quinidine, a specific CYP2D6 inhibitor (IC(50)=0.9 μM). Crytotanshinone, tanshinone I and tanshinone IIA produced weak inhibition, with IC(20) of 40.8 μM, 16.5 μM and 61.4 μM, respectively. Water soluble components such as salvianolic acid B and danshensu did not affect CYP2D6-mediated metabolism. Enzyme kinetics studies showed that inhibition of CYP2D6 activity by the ethanolic extract of crude Danshen and dihydrotanshinone was concentration-dependent, with K(i) values of 4.23 μg/ml and 2.53 μM, respectively, compared to quinidine, K(i)=0.41 μM. Molecular docking study confirmed that dihydrotanshinone and tanshinone I interacted with the Phe120 amino acid residue in the active cavity of CYP2D6 through Pi-Pi interaction, but did not interact with Glu216 and Asp301, the key residues for substrate binding. The logarithm of free binding energy of dihydrotanshinone (-7.6 kcal/mol) to Phe120 was comparable to quinidine (-7.0 kcal/mol) but greater than tanshinone I (-5.4 kcal/mol), indicating dihydrotanshinone has similar affinity to quinidine in binding to the catalytic site on CYP2D6.
Collapse
Affiliation(s)
- Xuelin Zhou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
157
|
Larsen R, Gouveia Z, Soares MP, Gozzelino R. Heme cytotoxicity and the pathogenesis of immune-mediated inflammatory diseases. Front Pharmacol 2012; 3:77. [PMID: 22586395 PMCID: PMC3343703 DOI: 10.3389/fphar.2012.00077] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/11/2012] [Indexed: 01/01/2023] Open
Abstract
Heme, iron (Fe) protoporphyrin IX, functions as a prosthetic group in a range of hemoproteins essential to support life under aerobic conditions. The Fe contained within the prosthetic heme groups of these hemoproteins can catalyze the production of reactive oxygen species. Presumably for this reason, heme must be sequestered within those hemoproteins, thereby shielding the reactivity of its Fe-heme. However, under pathologic conditions associated with oxidative stress, some hemoproteins can release their prosthetic heme groups. While this heme is not necessarily damaging per se, it becomes highly cytotoxic in the presence of a range of inflammatory mediators such as tumor necrosis factor. This can lead to tissue damage and, as such, exacerbate the pathologic outcome of several immune-mediated inflammatory conditions. Presumably, targeting “free heme” may be used as a therapeutic intervention against these diseases.
Collapse
|
158
|
Lahti JL, Tang GW, Capriotti E, Liu T, Altman RB. Bioinformatics and variability in drug response: a protein structural perspective. J R Soc Interface 2012; 9:1409-37. [PMID: 22552919 DOI: 10.1098/rsif.2011.0843] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Marketed drugs frequently perform worse in clinical practice than in the clinical trials on which their approval is based. Many therapeutic compounds are ineffective for a large subpopulation of patients to whom they are prescribed; worse, a significant fraction of patients experience adverse effects more severe than anticipated. The unacceptable risk-benefit profile for many drugs mandates a paradigm shift towards personalized medicine. However, prior to adoption of patient-specific approaches, it is useful to understand the molecular details underlying variable drug response among diverse patient populations. Over the past decade, progress in structural genomics led to an explosion of available three-dimensional structures of drug target proteins while efforts in pharmacogenetics offered insights into polymorphisms correlated with differential therapeutic outcomes. Together these advances provide the opportunity to examine how altered protein structures arising from genetic differences affect protein-drug interactions and, ultimately, drug response. In this review, we first summarize structural characteristics of protein targets and common mechanisms of drug interactions. Next, we describe the impact of coding mutations on protein structures and drug response. Finally, we highlight tools for analysing protein structures and protein-drug interactions and discuss their application for understanding altered drug responses associated with protein structural variants.
Collapse
Affiliation(s)
- Jennifer L Lahti
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | | | | | | |
Collapse
|
159
|
Berka K, Anzenbacherová E, Hendrychová T, Lange R, Mašek V, Anzenbacher P, Otyepka M. Binding of quinidine radically increases the stability and decreases the flexibility of the cytochrome P450 2D6 active site. J Inorg Biochem 2012; 110:46-50. [DOI: 10.1016/j.jinorgbio.2012.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/13/2012] [Accepted: 02/15/2012] [Indexed: 11/25/2022]
|
160
|
Involvement of a natural fusion of a cytochrome P450 and a hydrolase in mycophenolic acid biosynthesis. Appl Environ Microbiol 2012; 78:4908-13. [PMID: 22544261 DOI: 10.1128/aem.07955-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mycophenolic acid (MPA) is a fungal secondary metabolite and the active component in several immunosuppressive pharmaceuticals. The gene cluster coding for the MPA biosynthetic pathway has recently been discovered in Penicillium brevicompactum, demonstrating that the first step is catalyzed by MpaC, a polyketide synthase producing 5-methylorsellinic acid (5-MOA). However, the biochemical role of the enzymes encoded by the remaining genes in the MPA gene cluster is still unknown. Based on bioinformatic analysis of the MPA gene cluster, we hypothesized that the step following 5-MOA production in the pathway is carried out by a natural fusion enzyme MpaDE, consisting of a cytochrome P450 (MpaD) in the N-terminal region and a hydrolase (MpaE) in the C-terminal region. We verified that the fusion gene is indeed expressed in P. brevicompactum by obtaining full-length sequence of the mpaDE cDNA prepared from the extracted RNA. Heterologous coexpression of mpaC and the fusion gene mpaDE in the MPA-nonproducer Aspergillus nidulans resulted in the production of 5,7-dihydroxy-4-methylphthalide (DHMP), the second intermediate in MPA biosynthesis. Analysis of the strain coexpressing mpaC and the mpaD part of mpaDE shows that the P450 catalyzes hydroxylation of 5-MOA to 4,6-dihydroxy-2-(hydroxymethyl)-3-methylbenzoic acid (DHMB). DHMB is then converted to DHMP, and our results suggest that the hydrolase domain aids this second step by acting as a lactone synthase that catalyzes the ring closure. Overall, the chimeric enzyme MpaDE provides insight into the genetic organization of the MPA biosynthesis pathway.
Collapse
|
161
|
Wang A, Savas U, Hsu MH, Stout CD, Johnson EF. Crystal structure of human cytochrome P450 2D6 with prinomastat bound. J Biol Chem 2012; 287:10834-43. [PMID: 22308038 DOI: 10.1074/jbc.m111.307918] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Human cytochrome P450 2D6 contributes to the metabolism of >15% of drugs used in clinical practice. This study determined the structure of P450 2D6 complexed with a substrate and potent inhibitor, prinomastat, to 2.85 Å resolution by x-ray crystallography. Prinomastat binding is well defined by electron density maps with its pyridyl nitrogen bound to the heme iron. The structure of ligand-bound P450 2D6 differs significantly from the ligand-free structure reported for the P450 2D6 Met-374 variant (Protein Data Bank code 2F9Q). Superposition of the structures reveals significant differences for β sheet 1, helices A, F, F', G", G, and H as well as the helix B-C loop. The structure of the ligand complex exhibits a closed active site cavity that conforms closely to the shape of prinomastat. The closure of the open cavity seen for the 2F9Q structure reflects a change in the direction and pitch of helix F and introduction of a turn at Gly-218, which is followed by a well defined helix F' that was not observed in the 2F9Q structure. These differences reflect considerable structural flexibility that is likely to contribute to the catalytic versatility of P450 2D6, and this new structure provides an alternative model for in silico studies of substrate interactions with P450 2D6.
Collapse
Affiliation(s)
- An Wang
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
162
|
Foti RS, Rock DA, Han X, Flowers RA, Wienkers LC, Wahlstrom JL. Ligand-based design of a potent and selective inhibitor of cytochrome P450 2C19. J Med Chem 2012; 55:1205-14. [PMID: 22239545 DOI: 10.1021/jm201346g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A series of omeprazole-based analogues was synthesized and assessed for inhibitory activity against CYP2C19. The data was used to build a CYP2C19 inhibition pharmacophore model for the series. The model was employed to design additional analogues with inhibitory potency against CYP2C19. Upon identifying inhibitors of CYP2C19, ligand-based design shifted to attenuating the rapid clearance observed for many of the inhibitors. While most analogues underwent metabolism on their aliphatic side chain, metabolite identification indicated that for analogues such as compound 30 which contain a heterocycle adjacent to the sulfur moiety, metabolism primarily occurred on the benzimidazole moiety. Compound 30 exhibited improved metabolic stability (Cl(int) = 12.4 mL/min/nmol) and was selective in regard to inhibition of CYP2C19-catalyzed (S)-mephenytoin hydroxylation in human liver microsomes. Finally, representative compounds were docked into a homology model of CYP2C19 in an effort to understand the enzyme-ligand interactions that may lead to favorable inhibition or metabolism properties.
Collapse
Affiliation(s)
- Robert S Foti
- Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington 98119, United States
| | | | | | | | | | | |
Collapse
|
163
|
Dong D, Wu B. Substrate selectivity of drug-metabolizing cytochrome P450s predicted from crystal structures andin silicomodeling. Drug Metab Rev 2012; 44:1-17. [DOI: 10.3109/03602532.2011.645581] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
164
|
Dong D, Wu B, Chow D, Hu M. Substrate selectivity of drug-metabolizing cytochrome P450s predicted from crystal structures and in silico modeling. Drug Metab Rev 2012; 44:192-208. [PMID: 22251142 DOI: 10.3109/03602532.2011.645580] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Enormous efforts toward predicting the metabolic fate of a drug have been driven by the high attrition rate in drug development. To accelerate such efforts, it is critical to elucidate the molecular mechanisms of drug recognition by drug-metabolizing enzymes. Therefore, it is not surprising that an increasing number of crystal structures have been determined (by X-ray crystallography) and numerous insightful in silico (computational) models have been established for the most important metabolic enzymes, cytochrome P450s (CYPs). In this review, we provide a detailed analysis of the available crystal structures for CYPs to reveal the structural features and protein flexibility determining substrate selectivity. The ligand-based in silico models (including pharmacophore and molecular field analysis models) are also discussed, with a focus on their ability to characterize the structural features of the substrates for various CYP isoforms.
Collapse
Affiliation(s)
- Dong Dong
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
165
|
Rydberg P, Olsen L. Ligand-Based Site of Metabolism Prediction for Cytochrome P450 2D6. ACS Med Chem Lett 2012; 3:69-73. [PMID: 24900373 DOI: 10.1021/ml200246f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 11/07/2011] [Indexed: 11/30/2022] Open
Abstract
A ligand-based method based on the SMARTCyp approach that predicts the sites of cytochrome P450 2D6-mediated metabolism of druglike molecules has been developed. The method uses only two descriptors besides the reactivity from SMARTCyp: the distance to a protonated nitrogen atom and the distance to the end of the molecule. Hence, the site of metabolism is predicted directly from the 2D structure of a molecule, without requiring calculation of electronic properties or generation of 3D structures. Testing on an independent test set gives an area under the curve value of 0.94, and a site of metabolism is found among the top two ranked atoms for 91% of the compounds.
Collapse
Affiliation(s)
- Patrik Rydberg
- Biostructural Research, Department
of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| | - Lars Olsen
- Biostructural Research, Department
of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| |
Collapse
|
166
|
Jensen K, Osmani SA, Hamann T, Naur P, Møller BL. Homology modeling of the three membrane proteins of the dhurrin metabolon: catalytic sites, membrane surface association and protein-protein interactions. PHYTOCHEMISTRY 2011; 72:2113-2123. [PMID: 21620426 DOI: 10.1016/j.phytochem.2011.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/29/2011] [Accepted: 05/01/2011] [Indexed: 05/30/2023]
Abstract
Formation of metabolons (macromolecular enzyme complexes) facilitates the channelling of substrates in biosynthetic pathways. Metabolon formation is a dynamic process in which transient structures mediated by weak protein-protein interactions are formed. In Sorghum, the cyanogenic glucoside dhurrin is derived from l-tyrosine in a pathway involving the two cytochromes P450 (CYPs) CYP79A1 and CYP71E1, a glucosyltransferase (UGT85B1), and the redox partner NADPH-dependent cytochrome P450 reductase (CPR). Experimental evidence suggests that the enzymes of this pathway form a metabolon. Homology modeling of the three membrane bound proteins was carried out using the Sybyl software and available relevant crystal structures. Residues involved in tight positioning of the substrates and intermediates in the active sites of CYP79A1 and CYP71E1 were identified. In both CYPs, hydrophobic surface domains close to the N-terminal trans-membrane anchor and between the F' and G helices were identified as involved in membrane anchoring. The proximal surface of both CYPs showed positively charged patches complementary to a negatively charged bulge on CPR carrying the FMN domain. A patch of surface exposed, positively charged amino acid residues positioned on the opposite face of the membrane anchor was identified in CYP71E1 and might be involved in binding UGT85B1 via a hypervariable negatively charged loop in this protein.
Collapse
Affiliation(s)
- Kenneth Jensen
- Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
167
|
YAO YUAN, HAN WEIWEI, ZHOU YIHAN, LI ZESHENG, LI QIANG, ZHONG DAFANG. MOLECULAR DOCKING STUDY OF THE AFFINITY OF CYP2C9 AND CYP2D6 FOR IMRECOXIB. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633607003179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
With the aid of the automatic molecular docking, the affinity of CYP2C9 and CYP2D6 for imrecoxib was studied by InsightII/Affinity program. The results indicate that CYP2C9–imrecoxib complex has higher stability and stronger affinity because CYP2C9 has more favorable interaction energy (-62.72 kcal/mol) and higher Ludi score (610) with imrecoxib than CYP2D6 (-50.22 kcal/mol and 551) and this is consistent with the results of the kinetic experiments by Li et al. By analyzing the theoretical results combined with the experimental ones, we suggest that the affinity difference is caused by the difference of the structure between CYP2C9 and CYP2D6, and the most important residues for enzyme–substrate complexes, such as Phe476, Asn204, Phe100, Leu366 and Arg108 of CYP2C9 and Phe120, Glu216, and Phe483 of CYP2D6 were also identified.
Collapse
Affiliation(s)
- YUAN YAO
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, China
| | - WEI-WEI HAN
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, China
| | - YI-HAN ZHOU
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, China
| | - ZE-SHENG LI
- Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, China
| | - QIANG LI
- Center for Drug Metabolism Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - DA-FANG ZHONG
- Center for Drug Metabolism Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
168
|
Li J, Schneebeli ST, Bylund J, Farid R, Friesner RA. IDSite: An accurate approach to predict P450-mediated drug metabolism. J Chem Theory Comput 2011; 7:3829-3845. [PMID: 22247702 PMCID: PMC3254112 DOI: 10.1021/ct200462q] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accurate prediction of drug metabolism is crucial for drug design. Since a large majority of drugs metabolism involves P450 enzymes, we herein describe a computational approach, IDSite, to predict P450-mediated drug metabolism. To model induced-fit effects, IDSite samples the conformational space with flexible docking in Glide followed by two refinement stages using the Protein Local Optimization Program (PLOP). Sites of metabolism (SOMs) are predicted according to a physical-based score that evaluates the potential of atoms to react with the catalytic iron center. As a preliminary test, we present in this paper the prediction of hydroxylation and O-dealkylation sites mediated by CYP2D6 using two different models: a physical-based simulation model, and a modification of this model in which a small number of parameters are fit to a training set. Without fitting any parameters to experimental data, the Physical IDSite scoring recovers 83% of the experimental observations for 56 compounds with a very low false positive rate. With only 4 fitted parameters, the Fitted IDSite was trained with the subset of 36 compounds and successfully applied to the other 20 compounds, recovering 94% of the experimental observations with high sensitivity and specificity for both sets.
Collapse
Affiliation(s)
- Jianing Li
- Department of Chemistry, Columbia University, New York, NY
| | | | - Joseph Bylund
- Department of Chemistry, Columbia University, New York, NY
| | - Ramy Farid
- Schrödinger, Inc., 120 W. 45 St., New York, NY
| | | |
Collapse
|
169
|
Moroy G, Martiny VY, Vayer P, Villoutreix BO, Miteva MA. Toward in silico structure-based ADMET prediction in drug discovery. Drug Discov Today 2011; 17:44-55. [PMID: 22056716 DOI: 10.1016/j.drudis.2011.10.023] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/07/2011] [Accepted: 10/21/2011] [Indexed: 12/12/2022]
Abstract
Quantitative structure-activity relationship (QSAR) methods and related approaches have been used to investigate the molecular features that influence the absorption, distribution, metabolism, excretion and toxicity (ADMET) of drugs. As the three-dimensional structures of several major ADMET proteins become available, structure-based (docking-scoring) computations can be carried out to complement or to go beyond QSAR studies. Applying docking-scoring methods to ADMET proteins is a challenging process because they usually have a large and flexible binding cavity; however, promising results relating to metabolizing enzymes have been reported. After reviewing current trends in the field we applied structure-based methods in the context of receptor flexibility in a case study involving the phase II metabolizing sulfotransferases. Overall, the explored concepts and results suggested that structure-based ADMET profiling will probably join the mainstream during the coming years.
Collapse
Affiliation(s)
- Gautier Moroy
- Inserm UMR-S 973, Molécules Thérapeutiques In Silico, Université Paris Diderot, Sorbonne Paris Cité, 35 Rue Helene Brion, 75013 Paris, France
| | | | | | | | | |
Collapse
|
170
|
Sun H, Veith H, Xia M, Austin CP, Huang R. Predictive models for cytochrome p450 isozymes based on quantitative high throughput screening data. J Chem Inf Model 2011; 51:2474-81. [PMID: 21905670 PMCID: PMC3200453 DOI: 10.1021/ci200311w] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The human cytochrome P450 (CYP450) isozymes are the most important enzymes in the body to metabolize many endogenous and exogenous substances including environmental toxins and therapeutic drugs. Any unnecessary interactions between a small molecule and CYP450 isozymes may raise a potential to disarm the integrity of the protection. Accurately predicting the potential interactions between a small molecule and CYP450 isozymes is highly desirable for assessing the metabolic stability and toxicity of the molecule. The National Institutes of Health Chemical Genomics Center (NCGC) has screened a collection of over 17,000 compounds against the five major isozymes of CYP450 (1A2, 2C9, 2C19, 2D6, and 3A4) in a quantitative high throughput screening (qHTS) format. In this study, we developed support vector classification (SVC) models for these five isozymes using a set of customized generic atom types. The CYP450 data sets were randomly split into equal-sized training and test sets. The optimized SVC models exhibited high predictive power against the test sets for all five CYP450 isozymes with accuracies of 0.93, 0.89, 0.89, 0.85, and 0.87 for 1A2, 2C9, 2C19, 2D6, and 3A4, respectively, as measured by the area under the receiver operating characteristic (ROC) curves. The important atom types and features extracted from the five models are consistent with the structural preferences for different CYP450 substrates reported in the literature. We also identified novel features with significant discerning power to separate CYP450 actives from inactives. These models can be useful in prioritizing compounds in a drug discovery pipeline or recognizing the toxic potential of environmental chemicals.
Collapse
Affiliation(s)
- Hongmao Sun
- National Institutes of Health (NIH) Chemical Genomics Center, NIH, Bethesda, MD 20892, USA
| | - Henrike Veith
- National Institutes of Health (NIH) Chemical Genomics Center, NIH, Bethesda, MD 20892, USA
| | - Menghang Xia
- National Institutes of Health (NIH) Chemical Genomics Center, NIH, Bethesda, MD 20892, USA
| | - Christopher P. Austin
- National Institutes of Health (NIH) Chemical Genomics Center, NIH, Bethesda, MD 20892, USA
| | - Ruili Huang
- National Institutes of Health (NIH) Chemical Genomics Center, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
171
|
Budriang C, Rongnoparut P, Yuvaniyama J. An expression of an insect membrane-bound cytochrome P450 CYP6AA3 in the Escherichia coli in relation to insecticide resistance in a malarial vector. Pak J Biol Sci 2011; 14:466-75. [PMID: 21936250 DOI: 10.3923/pjbs.2011.466.475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This laboratory investigation was carried out at the Faculty of Sciences, Mahidol University, Thailand during October 2007 to May 2009. The objectives of this study include: the search for heterologous expression of the cytochrome P450 CYP6AA3 enzyme of the Anopheles minimus mosquitoes in relation to Malaria disease and to provide some information on molecular mechanism of insects' pyrethroid resistance. The polymerase chain reaction aided by the Pfu DNA polymerase and some specific generated primers were used to modify the CYP6AA3 gene. The PCR product was ligated with a predigested pET-3a at the NdeI and BamHI restriction sites. The modified CYP6AA3 enzyme was expressed in the Escherichia coli BL21 (DE3) pLysS in order to achieve a high amount of soluble form of its expression. The results showed that the use of the isopropyl-beta-D-thiogalactopyranoside (IPTG) and incubation together with ferric chloride and delta-aminolevulinic acid did not increase any soluble form of the CYP6AA3 enzyme. A significant amount of soluble enzyme was produced upon the replacement of the 30 N-terminal residues with a short peptide where it gave Ldelta30CYP6AA3 protein and after purification process was taken place, it yielded up to 10.64 mg 10 L(-1) or approximately 1 mg L(-1) of the homogenous Ldelta30CYP6AA3. When this purified Ldelta30CYP6AA3 protein was used in a metabolizing process with the cypermethrin, deltamethrin and permethrin substrates, it gave their apparent Km values for cypermethrin and deltamethrin of 12.5 and 23.5 microM, respectively. The heterologous expression carried out with the use of the E. coli gave a high amount of soluble CYP6AA3 enzyme of the An. minimus mosquitoes hence the modified technique being used was successfully achieved.
Collapse
Affiliation(s)
- C Budriang
- Department of Biochemistry and Center for Excellence in Protein Structure and Function, Faculty of Sciences, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | | | | |
Collapse
|
172
|
Shahrokh K, Orendt A, Yost GS, Cheatham TE. Quantum mechanically derived AMBER-compatible heme parameters for various states of the cytochrome P450 catalytic cycle. J Comput Chem 2011; 33:119-33. [PMID: 21997754 DOI: 10.1002/jcc.21922] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/28/2011] [Accepted: 07/30/2011] [Indexed: 01/31/2023]
Abstract
Molecular mechanics (MM) methods are computationally affordable tools for screening chemical libraries of novel compounds for sites of P450 metabolism. One challenge for MM methods has been the absence of a consistent and transferable set of parameters for the heme within the P450 active site. Experimental data indicate that mammalian P450 enzymes vary greatly in the size, architecture, and plasticity of their active sites. Thus, obtaining X-ray-based geometries for the development of accurate MM parameters for the major classes of hepatic P450 remains a daunting task. Our previous work with preliminary gas-phase quantum mechanics (QM)-derived atomic partial charges greatly improved the accuracy of docking studies of raloxifene to CYP3A4. We have therefore developed and tested a consistent set of transferable MM parameters based on gas-phase QM calculations of two model systems of the heme-a truncated (T-HM) and a full (F-HM) for four states of the P450 catalytic cycle. Our results indicate that the use of the atomic partial charges from the F-HM further improves the accuracy of docked predictions for raloxifene to CYP3A4. Different patterns for substrate docking are also observed depending on the choice of heme model and state. Newly parameterized heme models are tested in implicit and explicitly solvated MD simulations in the absence and presence of enzyme structures, for CYP3A4, and appear to be stable on the nanosecond simulation timescale. The new force field for the various heme states may aid the community for simulations of P450 enzymes and other heme-containing enzymes.
Collapse
Affiliation(s)
- Kiumars Shahrokh
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
173
|
VandenBrink BM, Foti RS, Rock DA, Wienkers LC, Wahlstrom JL. Prediction of CYP2D6 drug interactions from in vitro data: evidence for substrate-dependent inhibition. Drug Metab Dispos 2011; 40:47-53. [PMID: 21976621 DOI: 10.1124/dmd.111.041210] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Predicting the magnitude of potential drug-drug interactions is important for underwriting patient safety in the clinical setting. Substrate-dependent inhibition of cytochrome P450 enzymes may confound extrapolation of in vitro results to the in vivo situation. However, the potential for substrate-dependent inhibition with CYP2D6 has not been well characterized. The inhibition profiles of 20 known inhibitors of CYP2D6 were characterized in vitro against four clinically relevant CYP2D6 substrates (desipramine, dextromethorphan, metoprolol, and thioridazine) and bufuralol. Dextromethorphan exhibited the highest sensitivity to in vitro inhibition, whereas metoprolol was the least sensitive. In addition, when metoprolol was the substrate, inhibitors with structurally constrained amino moieties (clozapine, debrisoquine, harmine, quinidine, and yohimbine) exhibited at least a 5-fold decrease in inhibition potency when results were compared with those for dextromethorphan. Atypical inhibition kinetics were observed for these and other inhibitor-substrate pairings. In silico docking studies suggested that interactions with Glu216 and an adjacent hydrophobic binding pocket may influence substrate sensitivity and inhibition potency for CYP2D6. The in vivo sensitivities of the clinically relevant CYP2D6 substrates desipramine, dextromethorphan, and metoprolol were determined on the basis of literature drug-drug interaction (DDI) outcomes. Similar to the in vitro results, dextromethorphan exhibited the highest sensitivity to CYP2D6 inhibition in vivo. Finally, the magnitude of in vivo CYP2D6 DDIs caused by quinidine was predicted using desipramine, dextromethorphan, and metoprolol. Comparisons of the predictions with literature results indicated that the marked decrease in inhibition potency observed for the metoprolol-quinidine interaction in vitro translated to the in vivo situation.
Collapse
Affiliation(s)
- Brooke M VandenBrink
- Pharmacokinetics and Drug Metabolism, Amgen, Inc., 1201 Amgen Court West, Seattle, WA 98119, USA
| | | | | | | | | |
Collapse
|
174
|
Lonsdale R, Oláh J, Mulholland AJ, Harvey JN. Does compound I vary significantly between isoforms of cytochrome P450? J Am Chem Soc 2011; 133:15464-74. [PMID: 21863858 PMCID: PMC3180200 DOI: 10.1021/ja203157u] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Indexed: 11/29/2022]
Abstract
The cytochrome P450 (CYP) enzymes are important in many areas, including pharmaceutical development. Subtle changes in the electronic structure of the active species, Compound I, have been postulated previously to account partly for the experimentally observed differences in reactivity between isoforms. Current predictive models of CYP metabolism typically assume an identical Compound I in all isoforms. Here we present a method to calculate the electronic structure and to estimate the Fe-O bond enthalpy of Compound I, and apply it to several human and bacterial CYP isoforms. Conformational flexibility is accounted for by sampling large numbers of structures from molecular dynamics simulations, which are subsequently optimized with density functional theory (B3LYP) based quantum mechanics/molecular mechanics. The observed differences in Compound I between human isoforms are small: They are generally smaller than the spread of values obtained for the same isoform starting from different initial structures. Hence, it is unlikely that the variation in activity between human isoforms is due to differences in the electronic structure of Compound I. A larger difference in electronic structure is observed between the human isoforms and P450(cam) and may be explained by the slightly different hydrogen-bonding environment surrounding the cysteinyl sulfur. The presence of substrate in the active site of all isoforms studied appears to cause a slight decrease in the Fe-O bond enthalpy, apparently due to displacement of water out of the active site, suggesting that Compound I is less stable in the presence of substrate.
Collapse
Affiliation(s)
- Richard Lonsdale
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | | | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Jeremy N. Harvey
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
175
|
Yang LP, Zhou ZW, Chen XW, Li CG, Sneed KB, Liang J, Zhou SF. Computational andin vitrostudies on the inhibitory effects of herbal compounds on human cytochrome P450 1A2. Xenobiotica 2011; 42:238-55. [DOI: 10.3109/00498254.2011.610833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
176
|
Abstract
Inhibition of enzyme activity at high substrate concentrations, so-called "substrate inhibition," is commonly observed and has been recognized in drug metabolism reactions since the last decade. Although the importance of such "atypical" kinetics in vivo remains poorly understood, a substrate with substrate inhibition kinetics has been shown to unconventionally alter the metabolism of other substrates. In recent years, it is becoming increasingly evident that the mechanisms for substrate inhibition are highly complex, which are possibly contributed by multiple (at least two) binding sites within the enzyme protein, the formation of a ternary dead-end enzyme complex, and/or the ligand-induced changes in enzyme conformation. This review primarily discusses the mechanisms for substrate inhibition displayed by the important drug-metabolizing enzymes, such as cytochrome p450s, UDP-glucuronyltransferases, and sulfotransferases. Kinetic modeling of substrate inhibition in the absence or presence of a modifier is another central issue in this review because of its importance in the determination of kinetic parameters and in vitro/in vivo predictions.
Collapse
Affiliation(s)
- Baojian Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Texas, USA.
| |
Collapse
|
177
|
Yamaori S, Okamoto Y, Yamamoto I, Watanabe K. Cannabidiol, a Major Phytocannabinoid, As a Potent Atypical Inhibitor for CYP2D6. Drug Metab Dispos 2011; 39:2049-56. [DOI: 10.1124/dmd.111.041384] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
178
|
Moors SLC, Vos AM, Cummings MD, Van Vlijmen H, Ceulemans A. Structure-Based Site of Metabolism Prediction for Cytochrome P450 2D6. J Med Chem 2011; 54:6098-105. [DOI: 10.1021/jm2006468] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Samuel L. C. Moors
- Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Ann M. Vos
- Tibotec BVBA, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Maxwell D. Cummings
- Johnson & Johnson Pharmaceutical Research & Development, Welsh and McKean Roads, Springhouse, Pennsylvania 19477, United States
| | | | - Arnout Ceulemans
- Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
179
|
Epitope spreading of the anti-CYP2D6 antibody response in patients with autoimmune hepatitis and in the CYP2D6 mouse model. J Autoimmun 2011; 37:242-53. [PMID: 21795021 DOI: 10.1016/j.jaut.2011.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/17/2011] [Accepted: 06/24/2011] [Indexed: 12/13/2022]
Abstract
Autoimmune hepatitis (AIH) is a serious chronic inflammatory disease of the liver with yet unknown etiology and largely uncertain immunopathology. The hallmark of type 2 AIH is the generation of liver kidney microsomal-1 (LKM-1) autoantibodies, which predominantly react to cytochrome P450 2D6 (CYP2D6). The identification of disease initiating factors has been hampered in the past, since antibody epitope mapping was mostly performed using serum samples collected late during disease resulting in the identification of immunodominant epitopes not necessarily representing those involved in disease initiation. In order to identify possible environmental triggers for AIH, we analyzed for the first time the spreading of the anti-CYP2D6 antibody response over a prolonged period of time in AIH patients and in the CYP2D6 mouse model, in which mice infected with Adenovirus-human CYP2D6 (Ad-h2D6) develop antibodies with a similar specificity than AIH patients. Epitope spreading was analyzed in six AIH-2-patients and in the CYP2D6 mouse model using SPOTs membranes containing peptides covering the entire CYP2D6 protein. Despite of a considerable variation, both mice and AIH patients largely focus their humoral immune response on an immunodominant epitope early after infection (mice) or diagnosis (patients). The CYP2D6 mouse model revealed that epitope spreading is initiated at the immunodominant epitope and later expands to neighboring and remote regions. Sequence homologies to human pathogens have been detected for all identified epitopes. Our study demonstrates that epitope spreading does indeed occur during the pathogenesis of AIH and supports the concept of molecular mimicry as a possible initiating mechanism for AIH.
Collapse
|
180
|
Structural features of cytochromes P450 and ligands that affect drug metabolism as revealed by X-ray crystallography and NMR. Future Med Chem 2011; 2:1451-68. [PMID: 21103389 DOI: 10.4155/fmc.10.229] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cytochromes P450 (P450s) play a major role in the clearance of drugs, toxins, and environmental pollutants. Additionally, metabolism by P450s can result in toxic or carcinogenic products. The metabolism of pharmaceuticals by P450s is a major concern during the design of new drug candidates. Determining the interactions between P450s and compounds of very diverse structures is complicated by the variability in P450-ligand interactions. Understanding the protein structural elements and the chemical attributes of ligands that dictate their orientation in the P450 active site will aid in the development of effective and safe therapeutic agents. The goal of this review is to describe P450-ligand interactions from two perspectives. The first is the various structural elements that microsomal P450s have at their disposal to assume the different conformations observed in X-ray crystal structures. The second is P450-ligand dynamics analyzed by NMR relaxation studies.
Collapse
|
181
|
Danielson ML, Desai PV, Mohutsky MA, Wrighton SA, Lill MA. Potentially increasing the metabolic stability of drug candidates via computational site of metabolism prediction by CYP2C9: The utility of incorporating protein flexibility via an ensemble of structures. Eur J Med Chem 2011; 46:3953-63. [PMID: 21703735 DOI: 10.1016/j.ejmech.2011.05.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/24/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Abstract
Cytochrome P450 enzymes are responsible for metabolizing many endogenous and xenobiotic molecules encountered by the human body. It has been estimated that 75% of all drugs are metabolized by cytochrome P450 enzymes. Thus, predicting a compound's potential sites of metabolism (SOM) is highly advantageous early in the drug development process. We have combined molecular dynamics, AutoDock Vina docking, the neighboring atom type (NAT) reactivity model, and a solvent-accessible surface-area term to form a reactivity-accessibility model capable of predicting SOM for cytochrome P450 2C9 substrates. To investigate the importance of protein flexibility during the ligand-binding process, the results of SOM prediction using a static protein structure for docking were compared to SOM prediction using multiple protein structures in ensemble docking. The results reported here indicate that ensemble docking increases the number of ligands that can be docked in a bioactive conformation (ensemble: 96%, static: 85%) but only leads to a slight improvement (49% vs. 44%) in predicting an experimentally known SOM in the top-1 position for a ligand library of 75 CYP2C9 substrates. Using ensemble docking, the reactivity-accessibility model accurately predicts SOM in the top-1 ranked position for 49% of the ligand library and considering the top-3 predicted sites increases the prediction success rate to approximately 70% of the ligand library. Further classifying the substrate library according to K(m) values leads to an improvement in SOM prediction for substrates with low K(m) values (57% at top-1). While the current predictive power of the reactivity-accessibility model still leaves significant room for improvement, the results illustrate the usefulness of this method to identify key protein-ligand interactions and guide structural modifications of the ligand to increase its metabolic stability.
Collapse
Affiliation(s)
- Matthew L Danielson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
182
|
Li Y, Ren G, Wang YX, Kong WJ, Yang P, Wang YM, Li YH, Yi H, Li ZR, Song DQ, Jiang JD. Bioactivities of berberine metabolites after transformation through CYP450 isoenzymes. J Transl Med 2011; 9:62. [PMID: 21569619 PMCID: PMC3103436 DOI: 10.1186/1479-5876-9-62] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 05/15/2011] [Indexed: 12/02/2022] Open
Abstract
Background Berberine (BBR) is a drug with multiple effects on cellular energy metabolism. The present study explored answers to the question of which CYP450 (Cytochrome P450) isoenzymes execute the phase-I transformation for BBR, and what are the bioactivities of its metabolites on energy pathways. Methods BBR metabolites were detected using LC-MS/MS. Computer-assistant docking technology as well as bioassays with recombinant CYP450s were employed to identify CYP450 isoenzymes responsible for BBR phase-I transformation. Bioactivities of BBR metabolites in liver cells were examined with real time RT-PCR and kinase phosphorylation assay. Results In rat experiments, 4 major metabolites of BBR, berberrubine (M1), thalifendine (M2), demethyleneberberine (M3) and jatrorrhizine (M4) were identified in rat's livers using LC-MS/MS (liquid chromatography-tandem mass spectrometry). In the cell-free transformation reactions, M2 and M3 were detectable after incubating BBR with rCYP450s or human liver microsomes; however, M1 and M4 were below detective level. CYP2D6 and CYP1A2 played a major role in transforming BBR into M2; CYP2D6, CYP1A2 and CYP3A4 were for M3 production. The hepatocyte culture showed that BBR was active in enhancing the expression of insulin receptor (InsR) and low-density-lipoprotein receptor (LDLR) mRNA, as well as in activating AMP-activated protein kinase (AMPK). BBR's metabolites, M1-M4, remained to be active in up-regulating InsR expression with a potency reduced by 50-70%; LDLR mRNA was increased only by M1 or M2 (but not M3 and M4) with an activity level 35% or 26% of that of BBR, respectively. Similarly, AMPK-α phosphorylation was enhanced by M1 and M2 only, with a degree less than that of BBR. Conclusions Four major BBR metabolites (M1-M4) were identified after phase-I transformation in rat liver. Cell-free reactions showed that CYP2D6, CYP1A2 and CYP3A4 seemed to be the dominant CYP450 isoenzymes transforming BBR into its metabolites M2 and M3. BBR's metabolites remained to be active on BBR's targets (InsR, LDLR, and AMPK) but with reduced potency.
Collapse
Affiliation(s)
- Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Ramesh M, Bharatam PV. CYP isoform specificity toward drug metabolism: analysis using common feature hypothesis. J Mol Model 2011; 18:709-20. [DOI: 10.1007/s00894-011-1105-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/20/2011] [Indexed: 02/02/2023]
|
184
|
Leach AG, Kidley NJ. Quantitatively Interpreted Enhanced Inhibition of Cytochrome P450s by Heteroaromatic Rings Containing Nitrogen. J Chem Inf Model 2011; 51:1048-63. [DOI: 10.1021/ci2000506] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew G. Leach
- AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, United Kingdom
| | - Nathan J. Kidley
- AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, United Kingdom
| |
Collapse
|
185
|
Schyman P, Lai W, Chen H, Wang Y, Shaik S. The directive of the protein: how does cytochrome P450 select the mechanism of dopamine formation? J Am Chem Soc 2011; 133:7977-84. [PMID: 21539368 DOI: 10.1021/ja201665x] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dopamine can be generated from tyramine via arene hydroxylation catalyzed by a cytochrome P450 enzyme (CYP2D6). Our quantum mechanical/molecular mechanical (QM/MM) results reveal the decisive impact of the protein in selecting the 'best' reaction mechanism. Instead of the traditional Meisenheimer-complex mechanism, the study reveals a mechanism involving an initial hydrogen atom transfer from the phenolic hydroxyl group of the tyramine to the iron-oxo of the compound I (Cpd I), followed by a ring-π radical rebound that eventually leads to dopamine by keto-enol rearrangement. This mechanism is not viable in the gas phase since the O-H bond activation by Cpd I is endothermic and the process does not form a stable intermediate. By contrast, the in-protein reaction has a low barrier and is exothermic. It is shown that the local electric field of the protein environment serves as a template that stabilizes the intermediate of the H-abstraction step and thereby mediates the catalysis of dopamine formation at a lower energy cost. Furthermore, it is shown that external electric fields can either catalyze or inhibit the process depending on their directionality.
Collapse
Affiliation(s)
- Patric Schyman
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | |
Collapse
|
186
|
Stoll F, Göller AH, Hillisch A. Utility of protein structures in overcoming ADMET-related issues of drug-like compounds. Drug Discov Today 2011; 16:530-8. [PMID: 21554979 DOI: 10.1016/j.drudis.2011.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/01/2011] [Accepted: 04/08/2011] [Indexed: 01/28/2023]
Abstract
The number of solved X-ray structures of proteins relevant for ADMET processes of drug molecules has increased remarkably over recent years. In principle, this development offers the possibility to complement the quantitative structure-property relationship (QSPR)-dominated repertoire of in silico ADMET methods with protein-structure-based approaches. However, the complex nature and the weak nonspecific ligand-binding properties of ADMET proteins take structural biology methods and current docking programs to the limit. In this review we discuss the utility of protein-structure-based design and docking approaches aimed at overcoming issues related to plasma protein binding, active transport via P-glycoprotein, hERG channel mediated cardiotoxicity and cytochrome P450 inhibition, metabolism and induction.
Collapse
Affiliation(s)
- Friederike Stoll
- Bayer HealthCare AG, Global Drug Discovery, Medicinal Chemistry, Wuppertal, Germany.
| | | | | |
Collapse
|
187
|
Larsen AT, May EM, Auclair K. Predictable Stereoselective and Chemoselective Hydroxylations and Epoxidations with P450 3A4. J Am Chem Soc 2011; 133:7853-8. [PMID: 21528858 DOI: 10.1021/ja200551y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Aaron T. Larsen
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| | - Erin M. May
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 2K6
| |
Collapse
|
188
|
Understanding the determinants of selectivity in drug metabolism through modeling of dextromethorphan oxidation by cytochrome P450. Proc Natl Acad Sci U S A 2011; 108:6050-5. [PMID: 21444768 DOI: 10.1073/pnas.1010194108] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cytochrome P450 enzymes play key roles in the metabolism of the majority of drugs. Improved models for prediction of likely metabolites will contribute to drug development. In this work, two possible metabolic routes (aromatic carbon oxidation and O-demethylation) of dextromethorphan are compared using molecular dynamics (MD) simulations and density functional theory (DFT). The DFT results on a small active site model suggest that both reactions might occur competitively. Docking and MD studies of dextromethorphan in the active site of P450 2D6 show that the dextromethorphan is located close to heme oxygen in a geometry apparently consistent with competitive metabolism. In contrast, calculations of the reaction path in a large protein model [using a hybrid quantum mechanical-molecular mechanics (QM/MM) method] show a very strong preference for O-demethylation, in accordance with experimental results. The aromatic carbon oxidation reaction is predicted to have a high activation energy, due to the active site preventing formation of a favorable transition-state structure. Hence, the QM/MM calculations demonstrate a crucial role of many active site residues in determining reactivity of dextromethorphan in P450 2D6. Beyond substrate binding orientation and reactivity of Compound I, successful metabolite predictions must take into account the detailed mechanism of oxidation in the protein. These results demonstrate the potential of QM/MM methods to investigate specificity in drug metabolism.
Collapse
|
189
|
Rossato G, Ernst B, Smiesko M, Spreafico M, Vedani A. Probing small-molecule binding to cytochrome P450 2D6 and 2C9: An in silico protocol for generating toxicity alerts. ChemMedChem 2011; 5:2088-101. [PMID: 21038340 DOI: 10.1002/cmdc.201000358] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Drug metabolism, toxicity, and their interaction profiles are major issues in the drug-discovery and lead-optimization processes. The cytochromes P450 (CYPs) 2D6 and 2C9 are enzymes involved in the oxidative metabolism of a majority of marketed drugs. Therefore, the prediction of the binding affinity towards CYP2D6 and CYP2C9 would be beneficial for identifying cytochrome-mediated adverse effects triggered by drugs or chemicals (e.g., toxic reactions, drug-drug, and food-drug interactions). By identifying the binding mode by using pharmacophore prealignment, automated flexible docking, and by quantifying the binding affinity by multidimensional QSAR (mQSAR), we validated a model family of 56 compounds (46 training, 10 test) and 85 compounds (68 training, 17 test) for CYP2D6 and CYP2C9, respectively. The correlation with the experimental data (cross-validated r²=0.811 for CYP2D6 and 0.687 for CYP2C9) suggests that our approach is suited for predicting the binding affinity of compounds towards CYP2D6 and CYP2C9. The models were challenged by Y-scrambling and by testing an external dataset of binding compounds (15 compounds for CYP2D6 and 40 for CYP2C9). To assess the probability of false-positive predictions, datasets of nonbinders (64 compounds for CYP2D6 and 56 for CYP2C9) were tested by using the same protocol. The two validated mQSAR models were subsequently added to the VirtualToxLab (VTL, http://www.virtualtoxlab.org).
Collapse
Affiliation(s)
- Gianluca Rossato
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Switzerland
| | | | | | | | | |
Collapse
|
190
|
Nagy LD, Mocny CS, Diffenderfer LE, Hsi DJ, Butler BF, Arthur EJ, Fletke KJ, Palamanda JR, Nomeir AA, Furge LL. Substituted imidazole of 5-fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine Inactivates cytochrome P450 2D6 by protein adduction. Drug Metab Dispos 2011; 39:974-83. [PMID: 21422192 DOI: 10.1124/dmd.110.037630] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
5-Fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine (SCH 66712) is a potent mechanism-based inactivator of human cytochrome P450 2D6 that displays type I binding spectra with a K(s) of 0.39 ± 0.10 μM. The partition ratio is ~3, indicating potent inactivation that addition of exogenous nucleophiles does not prevent. Within 15 min of incubation with SCH 66712 and NADPH, ∼90% of CYP2D6 activity is lost with only ~20% loss in ability to bind CO and ~25% loss of native heme over the same time. The stoichiometry of binding to the protein was 1.2:1. SDS-polyacrylamide gel electrophoresis with Western blotting and autoradiography analyses of CYP2D6 after incubations with radiolabeled SCH 66712 further support the presence of a protein adduct. Metabolites of SCH 66712 detected by mass spectrometry indicate that the phenyl group on the imidazole ring of SCH 66712 is one site of oxidation by CYP2D6 and could lead to methylene quinone formation. Three other metabolites were also observed. For understanding the metabolic pathway that leads to CYP2D6 inactivation, metabolism studies with CYP2C9 and CYP2C19 were performed because neither of these enzymes is significantly inhibited by SCH 66712. The metabolites formed by CYP2C9 and CYP2C19 are the same as those seen with CYP2D6, although in different abundance. Modeling studies with CYP2D6 revealed potential roles of various active site residues in the oxidation of SCH 66712 and inactivation of CYP2D6 and showed that the phenyl group of SCH 66712 is positioned at 2.2 Å from the heme iron.
Collapse
Affiliation(s)
- Leslie D Nagy
- Department of Chemistry, Kalamazoo College, 1200 Academy Street, Kalamazoo, MI 49006.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Contreras AV, Monge-Cazares T, Alfaro-Ruiz L, Hernandez-Morales S, Miranda-Ortiz H, Carrillo-Sanchez K, Jimenez-Sanchez G, Silva-Zolezzi I. Resequencing, haplotype construction and identification of novel variants of CYP2D6 in Mexican Mestizos. Pharmacogenomics 2011; 12:745-56. [PMID: 21391885 DOI: 10.2217/pgs.11.8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIM The CYP2D6 enzyme participates in the metabolism of commonly prescribed drugs: antidepressants, antipsychotics and antihypertensives. The CYP2D6 gene shows a high degree of interindividual and interethnic variability that influences its expression and function. Mexican Mestizos are a recently admixed population resulting from the combination of Amerindian, European and, to a lesser extent, African populations. This study aimed to comprehensively characterize the CYP2D6 gene in Mexican Mestizos. MATERIALS & METHODS We performed linkage disequilibrium and network analyses in resequencing data of 96 individuals from two regions within Mexico with a different history of admixture and particular population dynamics, the Northwestern state of Sonora and the Central-Pacific state of Guerrero. RESULTS & CONCLUSION We identified 64 polymorphisms, including 14 novel variants: 13 SNPs and a CYP2D7 exon 2 conversion, that was assigned CYP2D6*82 by the Human Cytochrome P450 (CYP) Allele Nomenclature Committee. Three novel SNPs were predicted to have functional effects. For CYP2D6*82 we hypothesize an Amerindian origin that is supported by its identification in three Mexican Amerindian groups (Mayas, Tepehuanos and Mixtecos). Frequencies of CYP2D6*1, *2, *4, *5, *10, *29, *53, *82 and its duplications were 50.0, 25.5, 14.1, 2.0, 2.6, 1.0, 0.5, 2.1 and 3.6%, respectively. We found significant frequency differences in CYP2D6*1 and *2 between Mexican Mestizos and in CYP2D6*1, *2, *4, *5, *10 and *29 between Mexicans and at least one other population. We observed strong linkage disequilibrium and phylogenetic relationships between haplotypes. To our knowledge, this study is the first comprehensive resequencing analysis of CYP2D6 in Mexicans or any other Latin American population, providing information about genetic diversity relevant in the development of pharmacogenomics in this region.
Collapse
Affiliation(s)
- Alejandra V Contreras
- National Institute of Genomic Medicine (MEXICO), Periférico Sur 4124 Torre Zafiro II Piso 6, Col. Ex-Rancho de Anzaldo, Mexico DF 01900, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Panicco P, Dodhia VR, Fantuzzi A, Gilardi G. Enzyme-based amperometric platform to determine the polymorphic response in drug metabolism by cytochromes P450. Anal Chem 2011; 83:2179-86. [PMID: 21348440 DOI: 10.1021/ac200119b] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
"Personalized medicine" is a new concept in health care, one aspect of which defines the specificity and dosage of drugs according to effectiveness and safety for each patient. Dosage strongly depends from the rate of metabolism which is primarily regulated by the activity of cytochrome P450. In addition to the need for a genetic characterization of the patients, there is also the necessity to determine the drug-clearance properties of the polymorphic P450 enzyme. To address this issue, human P450 2D6 and 2C9 were engineered and covalently linked to an electrode surface allowing fast, accurate, and reliable measurements of the kinetic parameters of these phase-1 drug metabolizing polymorphic enzymes. In particular, the catalytic activity of P450 2C9 on the electrode surface was found to be improved when expressed from a gene-fusion with flavodoxin from Desulfovibrio vulgaris (2C9/FLD). The results are validated using marker drugs for these enzymes, bufuralol for 2D6, and warfarin for 2C9/FLD. The platform is able to measure the same small differences in K(M), and it allows a fast and reproducible mean to generated the product identified by HPLC from which the k(cat) is calculated.
Collapse
Affiliation(s)
- Paola Panicco
- Division of Molecular Biosciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
193
|
Flexibility of human cytochrome P450 enzymes: Molecular dynamics and spectroscopy reveal important function-related variations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:58-68. [DOI: 10.1016/j.bbapap.2010.07.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 07/11/2010] [Accepted: 07/14/2010] [Indexed: 11/18/2022]
|
194
|
Genetic analysis of the rhabdomyolysis-associated genes in forensic autopsy cases of methamphetamine abusers. Leg Med (Tokyo) 2011; 13:7-11. [DOI: 10.1016/j.legalmed.2010.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/15/2010] [Accepted: 08/24/2010] [Indexed: 01/20/2023]
|
195
|
Vasanthanathan P, Lastdrager J, Oostenbrink C, Commandeur JNM, Vermeulen NPE, Jørgensen FS, Olsen L. Identification of CYP1A2 ligands by structure-based and ligand-based virtual screening. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00087j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
196
|
Oezguen N, Kumar S. Analysis of Cytochrome P450 Conserved Sequence Motifs between Helices E and H: Prediction of Critical Motifs and Residues in Enzyme Functions. ACTA ACUST UNITED AC 2011; 2:1000110. [PMID: 25426333 PMCID: PMC4241269 DOI: 10.4172/2157-7609.1000110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rational approaches have been extensively used to investigate the role of active site residues in cytochrome P450 (CYP) functions. However, recent studies using random mutagenesis suggest an important role for non-active site residues in CYP functions. Meta-analysis of the random mutants showed that 75% of the functionally important non-active site residues are present in 20% of the entire protein between helices E and H (E-H) and conserved sequence motif (CSM) between 7 and 11. The CSM approach was developed recently to investigate the functional role of non-active site residues in CYP2B4. Furthermore, we identified and analyzed the CSM in multiple CYP families and subfamilies in the E-H region. Results from CSM analysis showed that CSM 7, 8, 10, and 11 are conserved in CYP1, CYP2, and CYP3 families, while CSM 9 is conserved only in CYP2 family. Analysis of different CYP2 subfamilies showed that CYP2B and CYP2C have similar characteristics in the CSM, while the characteristics of CYP2A and CYP2D subfamilies are different. Finally, we analyzed CSM 7, 8, 10, and 11, which are common in all the CYP families/subfamilies analyzed, in fifteen important drug-metabolizing CYPs. The results showed that while CSM 8 is most conserved among these CYPs, CSM 7, 9, and 10 have significant variations. We suggest that CSM8 has a common role in all the CYPs that have been analyzed, while CSM 7, 10, and 11 may have relatively specific role within the subfamily. We further suggest that these CSM play important role in opening and closing of the substrate access/egress channel by modulating the flexible/plastic region of the protein. Thus, site-directed mutagenesis of these CSM can be used to study structure-function and dynamic/plasticity-function relationships and to design CYP biocatalysts.
Collapse
Affiliation(s)
- Numan Oezguen
- Internal Medicine-Endocrinology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1060, USA
| | - Santosh Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte St., Kansas City, MO, USA
| |
Collapse
|
197
|
Isolation and characterization of the CYP2D6 gene in Felidae with comparison to other mammals. J Mol Evol 2010; 72:222-31. [PMID: 21188366 DOI: 10.1007/s00239-010-9424-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
The highly polymorphic CYP2D6 protein metabolizes about 25% of commonly used drugs and underlies a broad spectrum of drug responses among individuals. In contrast to extensive knowledge on the human CYP2D6 gene, little is known about the gene in non-human mammals. CYP2D6 mRNA from 23 cats (Felidae) spanning seven species were compared to available CYPD6 sequences in ten additional mammals and multiple allelic variants in humans. A relatively high mean dN/dS ratio (0.565) was observed, especially within Felidae. Pairwise dN/dS ratios were non-monotonically distributed with respect to evolutionary distance suggesting either positive selection or retention of slightly deleterious mutations. Positive selection on specific codons, most notably in regions involved in substrate recognition and membrane anchoring is supported and the possible influence of diet on specific amino acid changes in substrate binding sites is discussed.
Collapse
|
198
|
Phylogenetic and Functional Analysis of the Vertebrate Cytochrome P450 2 Family. J Mol Evol 2010; 72:56-71. [DOI: 10.1007/s00239-010-9402-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 10/25/2010] [Indexed: 01/23/2023]
|
199
|
Millo D, Bonifacio A, Moncelli MR, Sergo V, Gooijer C, van der Zwan G. Characterization of hybrid bilayer membranes on silver electrodes as biocompatible SERS substrates to study membrane–protein interactions. Colloids Surf B Biointerfaces 2010; 81:212-6. [DOI: 10.1016/j.colsurfb.2010.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/07/2010] [Accepted: 07/06/2010] [Indexed: 11/24/2022]
|
200
|
Pochapsky TC, Kazanis S, Dang M. Conformational plasticity and structure/function relationships in cytochromes P450. Antioxid Redox Signal 2010; 13:1273-96. [PMID: 20446763 PMCID: PMC2959183 DOI: 10.1089/ars.2010.3109] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cytochrome P450s are a superfamily of enzymes that are found in all kingdoms of living organisms, and typically catalyze the oxidative addition of atomic oxygen to an unactivated C-C or C-H bond. Over 8000 nonredundant sequences of putative and confirmed P450 enzymes have been identified, but three-dimensional structures have been determined for only a small fraction of these. While all P450 enzymes for which structures have been determined share a common global fold, the flexibility and modularity of structure around the active site account for the ability of P450 enzymes to accommodate a vast number of structurally dissimilar substrates and support a wide range of selective oxidations. In this review, known P450 structures are compared, and some structural criteria for prediction of substrate selectivity and reaction type are suggested. The importance of dynamic processes such as redox-dependent and effector-induced conformational changes in determining catalytic competence and regio- and stereoselectivity is discussed, and noncrystallographic methods for characterizing P450 structures and dynamics, in particular, mass spectrometry and nuclear magnetic resonance spectroscopy are reviewed.
Collapse
Affiliation(s)
- Thomas C Pochapsky
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| | | | | |
Collapse
|