151
|
Shelden MC, Howitt SM, Kaiser BN, Tyerman SD. Identification and functional characterisation of aquaporins in the grapevine, Vitis vinifera. FUNCTIONAL PLANT BIOLOGY : FPB 2010; 36:1065-1078. [PMID: 32688718 DOI: 10.1071/fp09117] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 07/28/2009] [Indexed: 05/10/2023]
Abstract
Plant aquaporins belong to a large superfamily of conserved proteins called the major intrinsic proteins (MIPs). There is limited information about the diversity of MIPs in grapevine, and their water transport capacity. The aim of the present study was to identify MIPs from grapevine and functionally characterise water transport of a subset of MIPs. Candidate genes were identified, by screening a Vitis vinifera L. (cv. Cabernet Sauvignon) cDNA library with gene specific probes, for aquaporin cDNAs encoding members of the plasma membrane intrinsic protein (PIP) and tonoplast intrinsic protein (TIP) subfamilies. The screen resulted in the identification of 11 full-length and two partial length aquaporin cDNAs. VvTIP2;1 isoforms had different 3' UTRs, immediately upstream of the poly(A) tail, suggesting the presence of multiple cleavage sites for polyadenylation. Using published genome sequences of grapevine, we conducted a phylogenetic analysis of the MIPs with previously characterised MIPs from Arabidopsis. We identified 23 full-length MIP genes from the V. vinifera genome sequence of a near homozygous line (PN40024) that cluster into the four main subfamilies (and subgroups within) identified in other species. However, based on the identification of PIP2 genes in Cabernet Sauvignon that were not present in the PN40024 genome, there are likely to be more than 23 MIP genes in other heterozygous grapevine cultivars. Water transport capacity was determined for several PIPs and TIPs, by expression in Xenopus oocytes. Only VvPIP2 and VvTIP proteins function as water channels with the exception of VvPIP2;5. VvPIP2;5 differs from the water conducting VvPIP2;1 by the substitution of two highly conserved amino acids in Loop B (G97S, G100W), which was shown by homology modelling to likely form a hydrophobic block of the water pore.
Collapse
Affiliation(s)
- Megan C Shelden
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Susan M Howitt
- Biochemistry and Molecular Biology, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Brent N Kaiser
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Stephen D Tyerman
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| |
Collapse
|
152
|
Grimsrud PA, den Os D, Wenger CD, Swaney DL, Schwartz D, Sussman MR, Ané JM, Coon JJ. Large-scale phosphoprotein analysis in Medicago truncatula roots provides insight into in vivo kinase activity in legumes. PLANT PHYSIOLOGY 2010; 152:19-28. [PMID: 19923235 PMCID: PMC2799343 DOI: 10.1104/pp.109.149625] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 11/11/2009] [Indexed: 05/20/2023]
Abstract
Nitrogen fixation in legumes requires the development of root organs called nodules and their infection by symbiotic rhizobia. Over the last decade, Medicago truncatula has emerged as a major model plant for the analysis of plant-microbe symbioses and for addressing questions pertaining to legume biology. While the initiation of symbiosis and the development of nitrogen-fixing root nodules depend on the activation of a protein phosphorylation-mediated signal transduction cascade in response to symbiotic signals produced by the rhizobia, few sites of in vivo phosphorylation have previously been identified in M. truncatula. We have characterized sites of phosphorylation on proteins from M. truncatula roots, from both whole cell lysates and membrane-enriched fractions, using immobilized metal affinity chromatography and tandem mass spectrometry. Here, we report 3,457 unique phosphopeptides spanning 3,404 nonredundant sites of in vivo phosphorylation on 829 proteins in M. truncatula Jemalong A17 roots, identified using the complementary tandem mass spectrometry fragmentation methods electron transfer dissociation and collision-activated dissociation. With this being, to our knowledge, the first large-scale plant phosphoproteomic study to utilize electron transfer dissociation, analysis of the identified phosphorylation sites revealed phosphorylation motifs not previously observed in plants. Furthermore, several of the phosphorylation motifs, including LxKxxs and RxxSxxxs, have yet to be reported as kinase specificities for in vivo substrates in any species, to our knowledge. Multiple sites of phosphorylation were identified on several key proteins involved in initiating rhizobial symbiosis, including SICKLE, NUCLEOPORIN133, and INTERACTING PROTEIN OF DMI3. Finally, we used these data to create an open-access online database for M. truncatula phosphoproteomic data.
Collapse
|
153
|
Gupta AB, Sankararamakrishnan R. Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC PLANT BIOLOGY 2009; 9:134. [PMID: 19930558 PMCID: PMC2789079 DOI: 10.1186/1471-2229-9-134] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 11/20/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Members of major intrinsic proteins (MIPs) include water-conducting aquaporins and glycerol-transporting aquaglyceroporins. MIPs play important role in plant-water relations. The model plants Arabidopsis thaliana, rice and maize contain more than 30 MIPs and based on phylogenetic analysis they can be divided into at least four subfamilies. Populus trichocarpa is a model tree species and provides an opportunity to investigate several tree-specific traits. In this study, we have investigated Populus MIPs (PtMIPs) and compared them with their counterparts in Arabidopsis, rice and maize. RESULTS Fifty five full-length MIPs have been identified in Populus genome. Phylogenetic analysis reveals that Populus has a fifth uncharacterized subfamily (XIPs). Three-dimensional models of all 55 PtMIPs were constructed using homology modeling technique. Aromatic/arginine (ar/R) selectivity filters, characteristics of loops responsible for solute selectivity (loop C) and gating (loop D) and group conservation of small and weakly polar interfacial residues have been analyzed. Majority of the non-XIP PtMIPs are similar to those in Arabidopsis, rice and maize. Additional XIPs were identified from database search and 35 XIP sequences from dicots, fungi, moss and protozoa were analyzed. Ar/R selectivity filters of dicots XIPs are more hydrophobic compared to fungi and moss XIPs and hence they are likely to transport hydrophobic solutes. Loop C is longer in one of the subgroups of dicot XIPs and most probably has a significant role in solute selectivity. Loop D in dicot XIPs has higher number of basic residues. Intron loss is observed on two occasions: once between two subfamilies of eudicots and monocot and in the second instance, when dicot and moss XIPs diverged from fungi. Expression analysis of Populus MIPs indicates that Populus XIPs don't show any tissue-specific transcript abundance. CONCLUSION Due to whole genome duplication, Populus has the largest number of MIPs identified in any single species. Non-XIP MIPs are similar in all four plant species considered in this study. Small and weakly polar residues at the helix-helix interface are group conserved presumably to maintain the hourglass fold of MIP channels. Substitutions in ar/R selectivity filter, insertion/deletion in loop C, increasing basic nature of loop D and loss of introns are some of the events occurred during the evolution of dicot XIPs.
Collapse
Affiliation(s)
- Anjali Bansal Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | |
Collapse
|
154
|
Hsu JL, Wang LY, Wang SY, Lin CH, Ho KC, Shi FK, Chang IF. Functional phosphoproteomic profiling of phosphorylation sites in membrane fractions of salt-stressed Arabidopsis thaliana. Proteome Sci 2009; 7:42. [PMID: 19900291 PMCID: PMC2778640 DOI: 10.1186/1477-5956-7-42] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 11/10/2009] [Indexed: 12/13/2022] Open
Abstract
Background Under conditions of salt stress, plants respond by initiating phosphorylation cascades. Many key phosphorylation events occur at the membrane. However, to date only limited sites have been identified that are phosphorylated in response to salt stress in plants. Results Membrane fractions from three-day and 200 mM salt-treated Arabidopsis suspension plants were isolated, followed by protease shaving and enrichment using Zirconium ion-charged magnetic beads, and tandem mass spectrometry analyses. From this isolation, 18 phosphorylation sites from 15 Arabidopsis proteins were identified. A unique phosphorylation site in 14-3-3-interacting protein AHA1 was predominately identified in 200 mM salt-treated plants. We also identified some phosphorylation sites in aquaporins. A doubly phosphorylated peptide of PIP2;1 as well as a phosphopeptide containing a single phosphorylation site (Ser-283) and a phosphopeptide containing another site (Ser-286) of aquaporin PIP2;4 were identified respectively. These two sites appeared to be novel of which were not reported before. In addition, quantitative analyses of protein phosphorylation with either label-free or stable-isotope labeling were also employed in this study. The results indicated that level of phosphopeptides on five membrane proteins such as AHA1, STP1, Patellin-2, probable inactive receptor kinase (At3g02880), and probable purine permease 18 showed at least two-fold increase in comparison to control in response to 200 mM salt-stress. Conclusion In this study, we successfully identified novel salt stress-responsive protein phosphorylation sites from membrane isolates of abiotic-stressed plants by membrane shaving followed by Zr4+-IMAC enrichment. The identified phosphorylation sites can be important in the salt stress response in plants.
Collapse
Affiliation(s)
- Jue-Liang Hsu
- Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
155
|
Wudick MM, Luu DT, Maurel C. A look inside: localization patterns and functions of intracellular plant aquaporins. THE NEW PHYTOLOGIST 2009; 184:289-302. [PMID: 19674338 DOI: 10.1111/j.1469-8137.2009.02985.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Aquaporins form a superfamily of intrinsic channel proteins in the plasma and intracellular membranes of plant cells. While a lot of research effort has substantiated the importance of plasma membrane aquaporins for the regulation of plant water homeostasis, comparably little is known about the function of intracellular aquaporins. Yet, various low-molecular-weight compounds, in addition to water, were recently shown to permeate some of these aquaporins. In this review, we examine the diversity of transport properties and localization patterns of intracellular aquaporins. The discussed profiles include, for example, water and ammonia transport across the tonoplast or CO2 transport through the chloroplast envelope. Furthermore, we try to assess to what extent the diverse aquaporin distribution patterns, in relation to the high degree of compartmentation of plant cells, can be linked to a wide range of cellular functions.
Collapse
Affiliation(s)
- Michael M Wudick
- Biochimie et physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| | - Doan-Trung Luu
- Biochimie et physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| | - Christophe Maurel
- Biochimie et physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| |
Collapse
|
156
|
Moshelion M, Hachez C, Ye Q, Cavez D, Bajji M, Jung R, Chaumont F. Membrane water permeability and aquaporin expression increase during growth of maize suspension cultured cells. PLANT, CELL & ENVIRONMENT 2009; 32:1334-45. [PMID: 19453479 DOI: 10.1111/j.1365-3040.2009.02001.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aquaporins (AQPs) are water channels that allow cells to rapidly alter their membrane water permeability. A convenient model for studying AQP expression and activity regulation is Black Mexican Sweet (BMS) maize cultured cells. In an attempt to correlate membrane osmotic water permeability coefficient (P(f)) with AQP gene expression, we first examined the expression pattern of 33 AQP genes using macro-array hybridization. We detected the expression of 18 different isoforms representing the four AQP subfamilies, i.e. eight plasma membrane (PIP), five tonoplast (TIP), three small basic (SIP) and two NOD26-like (NIP) AQPs. While the expression of most of these genes was constant throughout all growth phases, mRNA levels of ZmPIP1;3, ZmPIP2;1, ZmPIP2;2, ZmPIP2;4 and ZmPIP2;6 increased significantly during the logarithmic growth phase and the beginning of the stationary phase. The use of specific anti-ZmPIP antisera showed that the protein expression pattern correlated well with mRNA levels. Cell pressure probe and protoplast swelling measurements were then performed to determine the P(f). Interestingly, we found that the P(f) were significantly increased at the end of the logarithmic growth phase and during the steady-state phase compared to the lag phase, demonstrating a positive correlation between AQP abundance in the plasma membrane and the cell P(f).
Collapse
Affiliation(s)
- Menachem Moshelion
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | |
Collapse
|
157
|
Cavez D, Hachez C, Chaumont F. Maize black Mexican sweet suspension cultured cells are a convenient tool for studying aquaporin activity and regulation. PLANT SIGNALING & BEHAVIOR 2009; 4:890-2. [PMID: 19847101 PMCID: PMC2802797 DOI: 10.4161/psb.4.9.9484] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 07/08/2009] [Indexed: 05/25/2023]
Abstract
Aquaporins (AQPs) are channel proteins that facilitate and regulate the permeation of water across biological membranes. Black Mexican sweet suspension cultured cells are a convenient model for studying the regulation of maize AQP expression and activity. Among other advantages, a single cell system allows the contribution of plasma membrane AQPs (PIPs, plasma membrane intrinsic proteins) to the membrane water permeability coefficient (P(f)) to be determined using biophysical measurement methods, such as the cell pressure probe or protoplast swelling assay. We generated a transgenic cell culture line expressing a tagged version of ZmPIP2;6 and used this material to demonstrate that the ZmPIP2;6 and ZmPIP2;1 isoforms physically interact. This kind of interaction could be an additional mechanism for regulating membrane water permeability by acting on the activity and/or trafficking of PIP hetero-oligomers.
Collapse
Affiliation(s)
- Damien Cavez
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
158
|
Kersten B, Agrawal GK, Durek P, Neigenfind J, Schulze W, Walther D, Rakwal R. Plant phosphoproteomics: an update. Proteomics 2009; 9:964-88. [PMID: 19212952 DOI: 10.1002/pmic.200800548] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phosphoproteomics involves identification of phosphoproteins, precise mapping, and quantification of phosphorylation sites, and eventually, revealing their biological function. In plants, several systematic phosphoproteomic analyses have recently been performed to optimize in vitro and in vivo technologies to reveal components of the phosphoproteome. The discovery of novel substrates for specific protein kinases is also an important issue. Development of a new tool has enabled rapid identification of potential kinase substrates such as kinase assays using plant protein microarrays. Progress has also been made in quantitative and dynamic analysis of mapped phosphorylation sites. Increased quantity of experimentally verified phosphorylation sites in plants has prompted the creation of dedicated web-resources for plant-specific phosphoproteomics data. This resulted in development of computational prediction methods yielding significantly improved sensitivity and specificity for the detection of phosphorylation sites in plants when compared to methods trained on less plant-specific data. In this review, we present an update on phosphoproteomic studies in plants and summarize the recent progress in the computational prediction of plant phosphorylation sites. The application of the experimental and computed results in understanding the phosphoproteomic networks of cellular and metabolic processes in plants is discussed. This is a continuation of our comprehensive review series on plant phosphoproteomics.
Collapse
Affiliation(s)
- Birgit Kersten
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | | | | | | | | | |
Collapse
|
159
|
Taleisnik E, Rodríguez AA, Bustos D, Erdei L, Ortega L, Senn ME. Leaf expansion in grasses under salt stress. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1123-40. [PMID: 19467732 DOI: 10.1016/j.jplph.2009.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 03/29/2009] [Accepted: 03/29/2009] [Indexed: 05/18/2023]
Abstract
Restriction of leaf growth is among the earliest visible effects of many stress conditions, including salinity. Because leaves determine radiation interception and are the main photosynthetic organs, salinity effects on leaf expansion and function are directly related to yield constraints under saline conditions. The expanding zone of leaf blades spans from the meristem to the region in which cells reach their final length. Kinematic methods are used to describe cell division and cell expansion activities. Analyses of this type have indicated that the reduction in leaf expansion by salinity may be exerted through effects on both cell division and expansion. In turn, the components of vacuole-driven cell expansion may be differentially affected by salinity, and examination of salinity effects on osmotic and mechanical constraints to cell expansion have gradually led to the identification of the gene products involved in such control. The study of how reactive oxygen species affect cell expansion is an emerging topic in the study of salinity's regulation of leaf growth.
Collapse
Affiliation(s)
- Edith Taleisnik
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina), Argentina.
| | | | | | | | | | | |
Collapse
|
160
|
Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1213-28. [DOI: 10.1016/j.bbamem.2009.03.009] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 03/09/2009] [Accepted: 03/11/2009] [Indexed: 01/09/2023]
|
161
|
Endler A, Reiland S, Gerrits B, Schmidt UG, Baginsky S, Martinoia E. In vivo phosphorylation sites of barley tonoplast proteins identified by a phosphoproteomic approach. Proteomics 2009; 9:310-21. [DOI: 10.1002/pmic.200800323] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
162
|
Zelazny E, Miecielica U, Borst JW, Hemminga MA, Chaumont F. An N-terminal diacidic motif is required for the trafficking of maize aquaporins ZmPIP2;4 and ZmPIP2;5 to the plasma membrane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:346-55. [PMID: 18808456 DOI: 10.1111/j.1365-313x.2008.03691.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Maize plasma membrane aquaporins (ZmPIPs, where PIP is the plasma membrane intrinsic protein) fall into two groups, ZmPIP1s and ZmPIP2s, which, when expressed alone in mesophyll protoplasts, are found in different subcellular locations. Whereas ZmPIP1s are retained in the endoplasmic reticulum (ER), ZmPIP2s are found in the plasma membrane (PM). We previously showed that, when co-expressed with ZmPIP2s, ZmPIP1s are relocalized to the PM, and that this relocalization results from the formation of hetero-oligomers between ZmPIP1s and ZmPIP2s. To determine the domains responsible for the ER retention and PM localization, respectively, of ZmPIP1s and ZmPIP2s, truncated and mutated ZmPIPs were generated, together with chimeric proteins created by swapping the N- or C-terminal regions of ZmPIP2s and ZmPIP1s. These mutated proteins were fused to the mYFP and/or mCFP, and the fusion proteins were expressed in maize mesophyll protoplasts, and were then localized by microscopy. This allowed us to identify a diacidic motif, DIE (Asp-Ile-Glu), at position 4-6 of the N-terminus of ZmPIP2;5, that is essential for ER export. This motif was conserved and functional in ZmPIP2;4, but was absent in ZmPIP2;1. In addition, we showed that the N-terminus of ZmPIP2;5 was not sufficient to cause the export of ZmPIP1;2 from the ER. A study of ZmPIP1;2 mutants suggested that the N- and C-termini of this protein are probably not involved in ER retention. Together, these results show that the trafficking of maize PM aquaporins is differentially regulated depending on the isoform, and involves a specific signal and mechanism.
Collapse
Affiliation(s)
- Enric Zelazny
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 5-15, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
163
|
Wang S, Yang S, Yin Y, Guo X, Wang S, Hao D. An in silico strategy identified the target gene candidates regulated by dehydration responsive element binding proteins (DREBs) in Arabidopsis genome. PLANT MOLECULAR BIOLOGY 2009; 69:167-78. [PMID: 18931920 DOI: 10.1007/s11103-008-9414-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 10/01/2008] [Indexed: 05/23/2023]
Abstract
Identification of downstream target genes of stress-relating transcription factors (TFs) is desirable in understanding cellular responses to various environmental stimuli. However, this has long been a difficult work for both experimental and computational practices. In this research, we presented a novel computational strategy which combined the analysis of the transcription factor binding site (TFBS) contexts and machine learning approach. Using this strategy, we conducted a genome-wide investigation into novel direct target genes of dehydration responsive element binding proteins (DREBs), the members of AP2-EREBPs transcription factor super family which is reported to be responsive to various abiotic stresses in Arabidopsis. The genome-wide searching yielded in total 474 target gene candidates. With reference to the microarray data for abiotic stresses-inducible gene expression profile, 268 target gene candidates out of the total 474 genes predicted, were induced during the 24-h exposure to abiotic stresses. This takes about 57% of total predicted targets. Furthermore, GO annotations revealed that these target genes are likely involved in protein amino acid phosphorylation, protein binding and Endomembrane sorting system. The results suggested that the predicted target gene candidates were adequate to meet the essential biological principle of stress-resistance in plants.
Collapse
Affiliation(s)
- Shichen Wang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | | | | | | | | | | |
Collapse
|
164
|
Abstract
Progress in the structure determination of AQPs has led to a deep understanding of water and solute permeation by these small integral membrane proteins. The atomic structures now available have allowed the water permeation and exclusion of protons to be monitored by molecular dynamics simulations, and have provided a framework for assessing the water and solute permeation in great detail by site-directed mutations. In spite of this, further structural and molecular dynamics analyses are required to elucidate the basis for regulation as well as for gas permeation, processes that are still to be deciphered.
Collapse
Affiliation(s)
- Thomas Walz
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
165
|
Boursiac Y, Prak S, Boudet J, Postaire O, Luu DT, Tournaire-Roux C, Santoni V, Maurel C. The response of Arabidopsis root water transport to a challenging environment implicates reactive oxygen species- and phosphorylation-dependent internalization of aquaporins. PLANT SIGNALING & BEHAVIOR 2008; 3:1096-8. [PMID: 19704504 PMCID: PMC2634465 DOI: 10.4161/psb.3.12.7002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 09/16/2008] [Indexed: 05/19/2023]
Abstract
Aquaporins, which facilitate the diffusion of water across biological membranes, are key molecules for the regulation of water transport at the cell and organ levels. We recently reported that hydrogen peroxide (H(2)O(2)) acts as an intermediate in the regulation of Arabidopsis root water transport and aquaporins in response to NaCl and salicylic acid (SA).1 Its action involves signaling pathways and an internalization of aquaporins from the cell surface. The present addendum connects these findings to another recent work which describes multiple phosphorylations in the C-terminus of aquaporins expressed in the Arabidopsis root plasma membrane.2 A novel role for phosphorylation in the process of salt-induced relocalization of AtPIP2;1, one of the most abundant root aquaporins, was unraveled. Altogether, the data delineate reactive oxygen species (ROS)-dependent signaling mechanisms which, in response to a variety of abiotic and biotic stresses, can trigger phosphorylation-dependent PIP aquaporin intracellular trafficking and root water transport downregulation.
Collapse
Affiliation(s)
- Yann Boursiac
- Biochimie et Physiologie Moléculaire des Plantes; Institut de Biologie Intégrative des Plantes; UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2; Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Boursiac Y, Boudet J, Postaire O, Luu DT, Tournaire-Roux C, Maurel C. Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:207-218. [PMID: 18573191 DOI: 10.1111/j.1365-313x.2008.03594.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The water uptake capacity of plant roots (i.e. their hydraulic conductivity, Lp(r)) is determined in large part by aquaporins of the plasma membrane intrinsic protein (PIP) subfamily. In the present work, we investigated two stimuli, salicylic acid (SA) and salt, because of their ability to induce an accumulation of reactive oxygen species (ROS) and an inhibition of Lp(r) concomitantly in the roots of Arabidopsis plants. The inhibition of Lp(r) by SA was partially counteracted by preventing the accumulation of hydrogen peroxide (H(2)O(2)) with exogenous catalase. In addition, exogenous H(2)O(2) was able to reduce Lp(r) by up to 90% in <15 min. Based on the lack of effects of H(2)O(2) on the activity of individual aquaporins in Xenopus oocytes, and on a pharmacological dissection of the action of H(2)O(2) on Lp(r), we propose that ROS do not gate Arabidopsis root aquaporins through a direct oxidative mechanism, but rather act through cell signalling mechanisms. Expression in transgenic roots of PIP-GFP fusions and immunogold labelling indicated that external H(2)O(2) enhanced, in <15 min, the accumulation of PIPs in intracellular structures tentatively identified as vesicles and small vacuoles. Exposure of roots to SA or salt also induced an intracellular accumulation of the PIP-GFP fusion proteins, and these effects were fully counteracted by co-treatment with exogenous catalase. In conclusion, the present work identifies SA as a novel regulator of aquaporins, and delineates an ROS-dependent signalling pathway in the roots of Arabidopsis. Several abiotic and biotic stress-related stimuli potentially share this path, which involves an H(2)O(2)-induced internalization of PIPs, to downregulate root water transport.
Collapse
Affiliation(s)
- Yann Boursiac
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | - Julie Boudet
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | - Olivier Postaire
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | - Doan-Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | - Colette Tournaire-Roux
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| |
Collapse
|
167
|
Van Wilder V, Miecielica U, Degand H, Derua R, Waelkens E, Chaumont F. Maize Plasma Membrane Aquaporins Belonging to the PIP1 and PIP2 Subgroups are in vivo Phosphorylated. ACTA ACUST UNITED AC 2008; 49:1364-77. [DOI: 10.1093/pcp/pcn112] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|