151
|
Schulte G. International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev 2011; 62:632-67. [PMID: 21079039 DOI: 10.1124/pr.110.002931] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The receptor class Frizzled, which has recently been categorized as a separate group of G protein-coupled receptors by the International Union of Basic and Clinical Pharmacology, consists of 10 Frizzleds (FZD(1-10)) and Smoothened (SMO). The FZDs are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, whereas SMO is indirectly activated by the Hedgehog (HH) family of proteins acting on the transmembrane protein Patched (PTCH). Recent years have seen major advances in our knowledge about these seven-transmembrane-spanning proteins, including: receptor function, molecular mechanisms of signal transduction, and the receptor's role in embryonic patterning, physiology, cancer, and other diseases. Despite intense efforts, many question marks and challenges remain in mapping receptor-ligand interaction, signaling routes, mechanisms of specificity and how these molecular details underlie disease and also the receptor's important role in physiology. This review therefore focuses on the molecular aspects of WNT/FZD and HH/SMO signaling discussing receptor structure, mechanisms of signal transduction, accessory proteins, receptor dynamics, and the possibility of targeting these signaling pathways pharmacologically.
Collapse
Affiliation(s)
- Gunnar Schulte
- Section of Receptor Biology & Signaling, Dept. of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
152
|
Franchini M, Montagnana M. Low-density lipoprotein receptor-related protein 1: new functions for an old molecule. Clin Chem Lab Med 2011; 49:967-70. [PMID: 21391865 DOI: 10.1515/cclm.2011.154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional cell surface receptor member of the low-density lipoprotein (LDL)-receptor family. As LRP1 plays an important role in endocytosis and regulation of signalling pathways, it is implicated in a number of physiologic processes, including the regulation of lipid metabolism, the proliferation of vascular smooth muscle cells and in neuro-development. More recently, LRP1 has been implicated in the catabolism of factor VIII and regulation of its plasma concentrations. The pathophysiology of the role of LRP1 in hemostasis will be summarized in this review.
Collapse
Affiliation(s)
- Massimo Franchini
- Servizio di Immunoematologia e Medicina Trasfusionale, Dipartimento di Patologia e Medicina di Laboratorio, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | | |
Collapse
|
153
|
Veth KN, Willer JR, Collery RF, Gray MP, Willer GB, Wagner DS, Mullins MC, Udvadia AJ, Smith RS, John SWM, Gregg RG, Link BA. Mutations in zebrafish lrp2 result in adult-onset ocular pathogenesis that models myopia and other risk factors for glaucoma. PLoS Genet 2011; 7:e1001310. [PMID: 21379331 PMCID: PMC3040661 DOI: 10.1371/journal.pgen.1001310] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 01/13/2011] [Indexed: 11/18/2022] Open
Abstract
The glaucomas comprise a genetically complex group of retinal neuropathies that typically occur late in life and are characterized by progressive pathology of the optic nerve head and degeneration of retinal ganglion cells. In addition to age and family history, other significant risk factors for glaucoma include elevated intraocular pressure (IOP) and myopia. The complexity of glaucoma has made it difficult to model in animals, but also challenging to identify responsible genes. We have used zebrafish to identify a genetically complex, recessive mutant that shows risk factors for glaucoma including adult onset severe myopia, elevated IOP, and progressive retinal ganglion cell pathology. Positional cloning and analysis of a non-complementing allele indicated that non-sense mutations in low density lipoprotein receptor-related protein 2 (lrp2) underlie the mutant phenotype. Lrp2, previously named Megalin, functions as an endocytic receptor for a wide-variety of bioactive molecules including Sonic hedgehog, Bone morphogenic protein 4, retinol-binding protein, vitamin D-binding protein, and apolipoprotein E, among others. Detailed phenotype analyses indicated that as lrp2 mutant fish age, many individuals—but not all—develop high IOP and severe myopia with obviously enlarged eye globes. This results in retinal stretch and prolonged stress to retinal ganglion cells, which ultimately show signs of pathogenesis. Our studies implicate altered Lrp2-mediated homeostasis as important for myopia and other risk factors for glaucoma in humans and establish a new genetic model for further study of phenotypes associated with this disease. Complex genetic inheritance, including variable penetrance and severity, underlies many common eye diseases. In this study, we present analysis of a zebrafish mutant, bugeye, which shows complex inheritance of multiple ocular phenotypes that are known risk factors for glaucoma, including high myopia, elevated intraocular pressure, and up-regulation of stress-response genes in retinal ganglion cells. Molecular genetic analysis revealed that mutations in low density lipoprotein receptor-related protein 2 (lrp2) underlie the mutant phenotypes. Lrp2 is a large transmembrane protein expressed in epithelia of the eye. It facilitates transport and clearance of multiple secreted bioactive factors through receptor-mediated endocytosis. Glaucoma, a progressive blinding disorder, usually presents in adulthood and is characterized by optic nerve damage followed by ganglion cell death. In bugeye/lrp2 mutants, ganglion cell death was significantly elevated, but surprisingly moderate, and therefore they do not model this endpoint of glaucoma. As such, bugeye/lrp2 mutants should be considered valuable as a genetic model (A) for buphthalmia, myopia, and regulated eye growth; (B) for identifying genes and pathways that modify the observed ocular phenotypes; and (C) for studying the initiation of retinal ganglion cell pathology in the context of high myopia and elevated intraocular pressure.
Collapse
Affiliation(s)
- Kerry N. Veth
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jason R. Willer
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Ross F. Collery
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Matthew P. Gray
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Gregory B. Willer
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Daniel S. Wagner
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Mary C. Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, United States of America
| | - Ava J. Udvadia
- Department of Biological Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Richard S. Smith
- Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Simon W. M. John
- Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Ronald G. Gregg
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Brian A. Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
154
|
Prazeres H, Torres J, Rodrigues F, Pinto M, Pastoriza MC, Gomes D, Cameselle-Teijeiro J, Vidal A, Martins TC, Sobrinho-Simões M, Soares P. Chromosomal, epigenetic and microRNA-mediated inactivation of LRP1B, a modulator of the extracellular environment of thyroid cancer cells. Oncogene 2010; 30:1302-17. [PMID: 21057533 DOI: 10.1038/onc.2010.512] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The low-density lipoprotein receptor-related protein (LRP1B), encoding an endocytic LDL-family receptor, is among the 10 most significantly deleted genes across 3312 human cancer specimens. However, currently the apparently crucial role of this lipoprotein receptor in carcinogenesis is not clear. Here we show that LRP1B inactivation (by chromosomal, epigenetic and microRNA (miR)-mediated mechanisms) results in changes to the tumor environment that confer cancer cells an increased growth and invasive capacity. LRP1B displays frequent DNA copy number loss and CpG island methylation, resulting in mRNA underexpression. By using CpG island reporters methylated in vitro, we found that DNA methylation disrupts a functional binding site for the histone-acetyltransferase p300 located at intron 1. We identified and validated an miR targeting LRP1B (miR-548a-5p), which is overexpressed in cancer cell lines as a result of 8q22 DNA gains. Restoration of LRP1B impaired in vitro and in vivo tumor growth, inhibited cell invasion and led to a reduction of matrix metalloproteinase 2 in the extracellular medium. We emphasized the role of an endocytic receptor acting as a tumor suppressor by modulating the extracellular environment composition in a way that constrains the invasive behavior of the cancer cells.
Collapse
Affiliation(s)
- H Prazeres
- Department of Cancer Biology, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Lighthouse JK, Zhang L, Hsieh JC, Rosenquist T, Holdener BC. MESD is essential for apical localization of megalin/LRP2 in the visceral endoderm. Dev Dyn 2010; 240:577-88. [PMID: 21337463 DOI: 10.1002/dvdy.22477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2010] [Indexed: 01/22/2023] Open
Abstract
Deletion of the Mesd gene region blocks gastrulation and mesoderm differentiation in mice. MESD is a chaperone for the Wnt co-receptors: low-density lipoprotein receptor-related protein (LRP) 5 and 6 (LRP5/6). We hypothesized that loss of Wnt signaling is responsible for the polarity defects observed in Mesd-deficient embryos. However, because the Mesd-deficient embryo is considerably smaller than Lrp5/6 or Wnt3 mutants, we predicted that MESD function extends more broadly to the LRP family of receptors. Consistent with this prediction, we demonstrated that MESD function in vitro was essential for maturation of the β-propeller/EGF domain common to LRPs. To begin to understand the role of MESD in LRP maturation in vivo, we generated a targeted Mesd knockout and verified that loss of Mesd blocks WNT signaling in vivo. Mesd mutants continue to express the pluripotency markers Oct4, Nanog, and Sox2, suggesting that Wnt signaling is essential for differentiation of the epiblast. Moreover, we demonstrated that MESD was essential for the apical localization of the related LRP2 (Megalin/MEG) in the visceral endoderm, resulting in impaired endocytic function. Combined, our results provide evidence that MESD functions as a general LRP chaperone and suggest that the Mesd phenotype results from both signaling and endocytic defects resulting from misfolding of multiple LRP receptors.
Collapse
|
156
|
Gaultier A, Simon G, Niessen S, Dix M, Takimoto S, Cravatt BF, Gonias SL. LDL receptor-related protein 1 regulates the abundance of diverse cell-signaling proteins in the plasma membrane proteome. J Proteome Res 2010; 9:6689-95. [PMID: 20919742 DOI: 10.1021/pr1008288] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
LDL receptor-related protein 1 (LRP1) is an endocytic receptor, reported to regulate the abundance of other receptors in the plasma membrane, including uPAR and tissue factor. The goal of this study was to identify novel plasma membrane proteins, involved in cell-signaling, that are regulated by LRP1. Membrane protein ectodomains were prepared from RAW 264.7 cells in which LRP1 was silenced and control cells using protease K. Peptides were identified by LC-MS/MS. By analysis of spectral counts, 31 transmembrane and secreted proteins were regulated in abundance at least 2-fold when LRP1 was silenced. Validation studies confirmed that semaphorin4D (Sema4D), plexin domain-containing protein-1 (Plxdc1), and neuropilin-1 were more abundant in the membranes of LRP1 gene-silenced cells. Regulation of Plxdc1 by LRP1 was confirmed in CHO cells, as a second model system. Plxdc1 coimmunoprecipitated with LRP1 from extracts of RAW 264.7 cells and mouse liver. Although Sema4D did not coimmunoprecipitate with LRP1, the cell-surface level of Sema4D was increased by RAP, which binds to LRP1 and inhibits binding of other ligands. These studies identify Plxdc1, Sema4D, and neuropilin-1 as novel LRP1-regulated cell-signaling proteins. Overall, LRP1 emerges as a generalized regulator of the plasma membrane proteome.
Collapse
Affiliation(s)
- Alban Gaultier
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, California 92093, United States
| | | | | | | | | | | | | |
Collapse
|
157
|
Manso Y, Serra M, Comes G, Giralt M, Carrasco J, Cols N, Vasák M, González-Duarte P, Hidalgo J. The comparison of mouse full metallothionein-1 versus alpha and beta domains and metallothionein-1-to-3 mutation following traumatic brain injury reveals different biological motifs. J Neurosci Res 2010; 88:1708-18. [PMID: 20127815 DOI: 10.1002/jnr.22342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Traumatic injury to the brain is one of the leading causes of injury-related death or disability, but current therapies are limited. Previously it has been shown that the antioxidant proteins metallothioneins (MTs) are potent neuroprotective factors in animal models of brain injury. The exogenous administration of MTs causes effects consistent with the roles proposed from studies in knock-out mice. We herewith report the results comparing full mouse MT-1 with the independent alpha and beta domains, alone or together, in a cryoinjury model. The lesion of the cortex caused the mice to perform worse in the horizontal ladder beam and the rota-rod tests; all the proteins showed a modest effect in the former test, while only full MT-1 improved the performance of animals in the rota-rod, and the alpha domain showed a rather detrimental effect. Gene expression analysis by RNA protection assay demonstrated that all proteins may alter the expression of host-response genes such as GFAP, Mac1 and ICAM, in some cases being the beta domain more effective than the alpha domain or even the full MT-1. A MT-1-to-MT-3 mutation blunted some but not all the effects caused by the normal MT-1, and in some cases increased its potency. Thus, splitting the two MT-1 domains do not seem to eliminate all MT functions but certainly modifies them, and different motifs seem to be present in the protein underlying such functions.
Collapse
Affiliation(s)
- Yasmina Manso
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Animal Physiology Unit, Faculty of Biosciences, Autonomous University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Gorovoy M, Gaultier A, Campana WM, Firestein GS, Gonias SL. Inflammatory mediators promote production of shed LRP1/CD91, which regulates cell signaling and cytokine expression by macrophages. J Leukoc Biol 2010; 88:769-78. [PMID: 20610799 DOI: 10.1189/jlb.0410220] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
LRP1 is a type-1 transmembrane receptor that mediates the endocytosis of diverse ligands. LRP1 β-chain proteolysis results in release of sLRP1 that is present in human plasma. In this study, we show that LPS and IFN-γ induce shedding of LRP1 from RAW 264.7 cells and BMMs in vitro. ADAM17 was principally responsible for the increase in LRP1 shedding. sLRP1 was also increased in vivo in mouse plasma following injection of LPS and in plasma from human patients with RA or SLE. sLRP1, which was purified from human plasma, and full-length LRP1, purified from mouse liver, activated cell signaling when added to cultures of RAW 264.7 cells and BMMs. Robust activation of p38 MAPK and JNK was observed. The IKK-NF-κB pathway was transiently activated. Proteins that bind to the ligand-binding clusters in LRP1 failed to inhibit sLRP1-initiated cell signaling, however an antibody that targets the sLRP1 N terminus was effective. sLRP1 induced expression of regulatory cytokines by RAW 264.7 cells, including TNF-α, MCP-1/CCL2, and IL-10. These results demonstrate that sLRP1 is generated in inflammation and may regulate inflammation by its effects on macrophage physiology.
Collapse
Affiliation(s)
- Matvey Gorovoy
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
159
|
de Groot PG, Derksen RHWM, Urbanus RT. The role of LRP8 (ApoER2') in the pathophysiology of the antiphospholipid syndrome. Lupus 2010; 19:389-93. [PMID: 20353975 DOI: 10.1177/0961203309360542] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
One of the greatest enigmas in thrombosis research is the observation that one can diagnose a person with a thrombotic risk with a prolongation of the clotting time. Our textbooks have taught us that prolongation of clotting correlates with a tendency to bleed. To confuse our textbook knowledge further, the same patients often have a prolonged bleeding time, a diagnostic test to detect a dysfunction in primary haemostasis. In this paper we critically review the literature that tries to explain the contradiction that exists between in-vitro diagnostic tests and the observed clinical manifestations and discuss our current opinion on how antiphospholipid antibodies can disturb the haemostatic balance.
Collapse
Affiliation(s)
- P G de Groot
- Department of Clinical Chemistry and Haematology, University Medical Center, Utrecht, The Netherlands.
| | | | | |
Collapse
|
160
|
Pangilinan F, Mitchell A, VanderMeer J, Molloy AM, Troendle J, Conley M, Kirke PN, Sutton M, Sequeira JM, Quadros EV, Scott JM, Mills JL, Brody LC. Transcobalamin II receptor polymorphisms are associated with increased risk for neural tube defects. J Med Genet 2010; 47:677-85. [PMID: 20577008 DOI: 10.1136/jmg.2009.073775] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Women who have low cobalamin (vitamin B(12)) levels are at increased risk for having children with neural tube defects (NTDs). The transcobalamin II receptor (TCblR) mediates uptake of cobalamin into cells. Inherited variants in the TCblR gene as NTD risk factors were evaluated. METHODS Case-control and family-based tests of association were used to screen common variation in TCblR as genetic risk factors for NTDs in a large Irish group. A confirmatory group of NTD triads was used to test positive findings. RESULTS 2 tightly linked variants associated with NTDs in a recessive model were found: TCblR rs2336573 (G220R; p(corr)=0.0080, corrected for multiple hypothesis testing) and TCblR rs9426 (p(corr)=0.0279). These variants were also associated with NTDs in a family-based test before multiple test correction (log-linear analysis of a recessive model: rs2336573 (G220R; RR=6.59, p=0.0037) and rs9426 (RR=6.71, p=0.0035)). A copy number variant distal to TCblR and two previously unreported exonic insertion-deletion polymorphisms were described. CONCLUSIONS TCblR rs2336573 (G220R) and TCblR rs9426 represent a significant risk factor in NTD cases in the Irish population. The homozygous risk genotype was not detected in nearly 1000 controls, indicating that this NTD risk factor may be of low frequency and high penetrance. 9 other variants are in perfect linkage disequilibrium with the associated single nucleotide polymorphisms. Additional work is required to identify the disease-causing variant. Our data suggest that variation in TCblR plays a role in NTD risk and that these variants may modulate cobalamin metabolism.
Collapse
Affiliation(s)
- F Pangilinan
- Molecular Pathogenesis Section, Genome Technology Branch, National Human Genome Research Institute, 50 South Drive, Bethesda, MD 20892-8004, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Abstract
Heme, the functional group of hemoglobin, myoglobin, and other hemoproteins, is a highly toxic substance when it appears in the extracellular milieu. To circumvent potential harmful effects of heme from hemoproteins released during physiological or pathological cell damage (such as hemolysis and rhabdomyolysis), specific high capacity scavenging systems have evolved in the mammalian organism. Two major systems, which essentially function in a similar way by means of a circulating latent plasma carrier protein that upon ligand binding is recognized by a receptor, are represented by a) the hemoglobin-binding haptoglobin and the receptor CD163, and b) the heme-binding hemopexin and the receptor low density lipoprotein receptor-related protein/CD91. Apart from the disclosure of the molecular basis for these important heme scavenging systems by identifying the functional link between the carrier proteins and the respective receptors, research over the last decade has shown how these systems, and the metabolic pathways they represent, closely relate to inflammation and other biological events.
Collapse
|
162
|
|
163
|
Foley EM, Esko JD. Hepatic heparan sulfate proteoglycans and endocytic clearance of triglyceride-rich lipoproteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:213-33. [PMID: 20807647 DOI: 10.1016/s1877-1173(10)93010-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hypertriglyceridemia, characterized by the accumulation of triglyceride-rich lipoproteins in the blood, affects 10-20% of the population in western countries and increases the risk of atherosclerosis, coronary artery disease, and pancreatitis. The etiology of hypertriglyceridemia is complex, and much interest exists in identifying and characterizing the biological and environmental factors that affect the synthesis and turnover of plasma triglycerides. Genetic studies in mice have recently identified that heparan sulfate proteoglycans are a class of receptors that mediate the clearance of triglyceride-rich lipoproteins in the liver. Heparan sulfate proteoglycans are expressed by endothelial cells that line the hepatic sinusoids and the underlying hepatocytes, and are present in the perisinusoidal space (space of Disse). This chapter discusses the dependence of lipoprotein binding on heparan sulfate structure and the identification of hepatocyte syndecan-1 as the primary proteoglycan that mediates triglyceride-rich lipoprotein clearance.
Collapse
Affiliation(s)
- Erin M Foley
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
164
|
Peptides modeled after the α-domain of metallothionein induce neurite outgrowth and promote survival of cerebellar granule neurons. Eur J Cell Biol 2009; 88:433-43. [DOI: 10.1016/j.ejcb.2009.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/25/2009] [Accepted: 04/02/2009] [Indexed: 01/15/2023] Open
|
165
|
Identification of the proteome of the midgut of silkworm, Bombyx mori L., by multidimensional liquid chromatography (MDLC) LTQ-Orbitrap MS. Biosci Rep 2009; 29:363-73. [PMID: 19007334 DOI: 10.1042/bsr20080144] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The midgut is the digestive apparatus of the silkworm and its proteome was studied by using nano-LC (liquid chromatography) electrospray ionization MS/MS (tandem MS). MS data were analysed by using X!Tandem searching software using different parameters and validated by using the Poisson model. A total of 90 proteins were identified and 79 proteins were described for the first time. Among the new proteins, (i) 22 proteins were closely related to the digestive function of the midgut, including 11 proteins of digestive enzymes secreted by the epithelium, eight proteins of intestine wall muscle and mechanical digestion and three proteins of peritrophic membrane that could prevent the epithelium from being mechanically rubbed; (ii) 44 proteins were involved in metabolism of substance and energy; and (iii) 11 proteins were associated with signal transduction, substance transport and cell skeleton.
Collapse
|
166
|
Platelet factor 4 regulates megakaryopoiesis through low-density lipoprotein receptor-related protein 1 (LRP1) on megakaryocytes. Blood 2009; 114:2290-8. [PMID: 19605848 DOI: 10.1182/blood-2009-04-216473] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Platelet factor 4 (PF4) is a negative regulator of megakaryopoiesis, but its mechanism of action had not been addressed. Low-density lipoprotein (LDL) receptor-related protein-1 (LRP1) has been shown to mediate endothelial cell responses to PF4 and so we tested this receptor's importance in PF4's role in megakaryopoiesis. We found that LRP1 is absent from megakaryocyte-erythrocyte progenitor cells, is maximally present on large, polyploidy megakaryocytes, and near absent on platelets. Blocking LRP1 with either receptor-associated protein (RAP), an antagonist of LDL family member receptors, or specific anti-LRP1 antibodies reversed the inhibition of megakaryocyte colony growth by PF4. In addition, using shRNA to reduce LRP1 expression was able to restore megakaryocyte colony formation in bone marrow isolated from human PF4-overexpressing mice (hPF4(High)). Further, shRNA knockdown of LRP1 expression was able to limit the effects of PF4 on megakaryopoiesis. Finally, infusion of RAP into hPF4(High) mice was able to increase baseline platelet counts without affecting other lineages, suggesting that this mechanism is important in vivo. These studies extend our understanding of PF4's negative paracrine effect in megakaryopoiesis and its potential clinical implications as well as provide insights into the biology of LRP1, which is transiently expressed during megakaryopoiesis.
Collapse
|
167
|
Rousset X, Vaisman B, Amar M, Sethi AA, Remaley AT. Lecithin: cholesterol acyltransferase--from biochemistry to role in cardiovascular disease. Curr Opin Endocrinol Diabetes Obes 2009; 16:163-71. [PMID: 19306528 PMCID: PMC2910390 DOI: 10.1097/med.0b013e328329233b] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW We discuss the latest findings on the biochemistry of lecithin : cholesterol acyltransferase (LCAT), the effect of LCAT on atherosclerosis, clinical features of LCAT deficiency, and the impact of LCAT on cardiovascular disease from human studies. RECENT FINDINGS Although there has been much recent progress in the biochemistry of LCAT and its effect on high-density lipoprotein metabolism, its role in the pathogenesis of atherosclerosis is still not fully understood. Studies from various animal models have revealed a complex interaction between LCAT and atherosclerosis that may be modified by diet and by other proteins that modify lipoproteins. Furthermore, the ability of LCAT to lower apoB appears to be the best way to predict its effect on atherosclerosis in animal models. Recent studies on patients with LCAT deficiency have shown a modest but significant increase in incidence of cardiovascular disease consistent with a beneficial effect of LCAT on atherosclerosis. The role of LCAT in the general population, however, has not revealed a consistent association with cardiovascular disease. SUMMARY Recent research findings from animal and human studies have revealed a potential beneficial role of LCAT in reducing atherosclerosis but additional studies are necessary to better establish the linkage between LCAT and cardiovascular disease.
Collapse
Affiliation(s)
- Xavier Rousset
- National Institutes of Health, National Heart, Lung and Blood Institute, Pulmonary and Vascular Medicine Branch, Lipoprotein Metabolism Section, Bethesda, MD. 20814
| | - Boris Vaisman
- National Institutes of Health, National Heart, Lung and Blood Institute, Pulmonary and Vascular Medicine Branch, Lipoprotein Metabolism Section, Bethesda, MD. 20814
| | - Marcelo Amar
- National Institutes of Health, National Heart, Lung and Blood Institute, Pulmonary and Vascular Medicine Branch, Lipoprotein Metabolism Section, Bethesda, MD. 20814
| | - Amar A. Sethi
- National Institutes of Health, National Heart, Lung and Blood Institute, Pulmonary and Vascular Medicine Branch, Lipoprotein Metabolism Section, Bethesda, MD. 20814
| | - Alan T. Remaley
- National Institutes of Health, National Heart, Lung and Blood Institute, Pulmonary and Vascular Medicine Branch, Lipoprotein Metabolism Section, Bethesda, MD. 20814
- To whom correspondence should be addressed: National Institutes of Health, National Heart, Lung and Blood Institute, Pulmonary and Vascular Medicine Branch, Lipoprotein Metabolism Section, 10 Center Dr. Bldg. 10/2C-433, Bethesda, MD. 20814, , 301-402-9796
| |
Collapse
|
168
|
Rainwater DL, Cox LA, Rogers J, VandeBerg JL, Mahaney MC. Localization of multiple pleiotropic genes for lipoprotein metabolism in baboons. J Lipid Res 2009; 50:1420-8. [PMID: 19270339 DOI: 10.1194/jlr.m800583-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We employed a novel approach to identify the key loci that harbor genes influencing lipoprotein metabolism in approximately 2,000 pedigreed baboons fed various diets differing in levels of fat and cholesterol. In this study, 126 overlapping traits related to both LDL and HDL metabolism were normalized and subjected to genome-wide linkage screening. As was expected, the traits were highly, but not completely, correlated. We exploited the information in these correlated traits by focusing on those genomic regions harboring quantitative trait loci (QTL) for multiple traits, reasoning that the more influential genes would impact a larger number of traits. This study identified five major QTL clusters (each with at least two significant logarithm of the odds scores >4.7), two of which had not been previously reported in baboons. One of these mapped to the baboon ortholog of human chromosome 1p32-p34 and influenced concentrations of LDL-cholesterol on Basal and high-fat, low-cholesterol diets. The other novel QTL cluster mapped to the baboon ortholog of human chromosome 12q13.13-q14.1 and influenced LDL size properties on high-fat, low-cholesterol and high-fat, high-cholesterol, but not Basal, diets. Confirming the value of this approach, three of the QTL clusters replicated published linkage findings for the same or similar traits.
Collapse
Affiliation(s)
- David L Rainwater
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78245, USA.
| | | | | | | | | |
Collapse
|
169
|
Abstract
Antiphospholipid (aPL) antibodies are clinically important acquired risk factors for thrombosis and pregnancy loss and are thought to have a direct prothrombotic effect in vivo. Data suggest that a major mechanism by which aPL antibodies contribute to thrombophilia is the upregulation of tissue factor (TF) (CD142) on blood cells and vascular endothelium. TF is the physiological trigger of normal blood coagulation and thrombosis in many hypercoagulable conditions. This article reviews the physiology of TF, the molecular regulation of TF expression and the effects of aPL antibodies on intravascular TF regulation and expression. Inhibition of TF and the pathways by which aPL antibodies induce TF expression are potentially attractive therapeutic targets in the antiphospholipid syndrome.
Collapse
Affiliation(s)
- A V Kinev
- Department of Medicine and Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7280, USA
| | | |
Collapse
|
170
|
Human immunodeficiency virus protein Tat induces synapse loss via a reversible process that is distinct from cell death. J Neurosci 2009; 28:12604-13. [PMID: 19036954 DOI: 10.1523/jneurosci.2958-08.2008] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human immunodeficiency virus (HIV)-1 infection of the CNS produces changes in dendritic morphology that correlate with cognitive decline in patients with HIV-1 associated dementia (HAD). Here, we investigated the effects of HIV-1 transactivator of transcription (Tat), a protein released by virus-infected cells, on synapses between hippocampal neurons using an imaging-based assay that quantified clusters of the scaffolding protein postsynaptic density 95 fused to green fluorescent protein (PSD95-GFP). Tat (24 h) decreased the number of PSD95-GFP puncta by 50 +/- 7%. The decrease was concentration-dependent (EC(50) = 6 +/- 2 ng/ml) and preceded cell death. Tat acted via the low-density lipoprotein receptor-related protein (LRP) because the specific LRP blocker, receptor associated protein (RAP), prevented the Tat-induced decrease in the number of PSD95-GFP puncta. Ca(2+) influx through the NMDA receptor was necessary for Tat-induced synapse loss. Expression of an ubiquitin ligase inhibitor protected synapses, implicating the ubiquitin-proteasome pathway. In contrast to synapse loss, Tat induced cell death (48 h) required activation of nitric oxide synthase. The ubiquitin ligase-inhibitor nutlin-3 prevented synapse loss but not cell death induced by Tat. Thus, the pathways diverged, consistent with the hypothesis that synapse loss is a mechanism to reduce excess excitatory input rather than a symptom of the neuron's demise. Furthermore, application of RAP to cultures treated with Tat for 16 h reversed synapse loss. These results suggest that the impaired network function and decreased neuronal survival produced by Tat involve distinct mechanisms and that pharmacologic targets, such as LRP, might prove useful in restoring function in HAD patients.
Collapse
|
171
|
Abstract
Cerebral amyloid angiopathy (CAA), which causes intracerebral hemorrhage in the elderly population, is a major hallmark of Alzheimer’s disease. In CAA, amyloid-β (Aβ) deposition is mainly detected in the cortex and leptomeningeal arteries along the interstitial fluid drainage pathway. Failure to eliminate Aβ leads to accumulation of Aβ in the perivascular region and CAA. Several clearance routes of Aβ have been described, including elimination along the perivascular interstitial fluid drainage pathway, elimination through the blood–brain barrier and uptake and degradation by glia and neurons. All of these routes express the low-density lipoprotein receptor-related protein (LRP)1, which plays a critical role in Aβ clearance. Consequently, an impairment of Aβ clearance through LRP1 likely contributes to CAA pathogenesis. This review summarizes what is known about LRP1 and CAA as well as providing insights into the possible roles of LRP1 in Aβ clearance.
Collapse
Affiliation(s)
- Takahisa Kanekiyo
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8208, St Louis, MO 63110, USA
| | - Guojun Bu
- Departments of Pediatrics & Cell Biology & Physiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8208, St Louis, MO 63110, USA
| |
Collapse
|
172
|
Ohazama A, Johnson EB, Ota MS, Choi HJ, Porntaveetus T, Oommen S, Itoh N, Eto K, Gritli-Linde A, Herz J, Sharpe PT. Lrp4 modulates extracellular integration of cell signaling pathways in development. PLoS One 2008; 3:e4092. [PMID: 19116665 PMCID: PMC2605561 DOI: 10.1371/journal.pone.0004092] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 11/21/2008] [Indexed: 11/18/2022] Open
Abstract
The extent to which cell signaling is integrated outside the cell is not currently appreciated. We show that a member of the low-density receptor-related protein family, Lrp4 modulates and integrates Bmp and canonical Wnt signalling during tooth morphogenesis by binding the secreted Bmp antagonist protein Wise. Mouse mutants of Lrp4 and Wise exhibit identical tooth phenotypes that include supernumerary incisors and molars, and fused molars. We propose that the Lrp4/Wise interaction acts as an extracellular integrator of epithelial-mesenchymal cell signaling. Wise, secreted from mesenchyme cells binds to BMP's and also to Lrp4 that is expressed on epithelial cells. This binding then results in the modulation of Wnt activity in the epithelial cells. Thus in this context Wise acts as an extracellular signaling molecule linking two signaling pathways. We further show that a downstream mediator of this integration is the Shh signaling pathway.
Collapse
Affiliation(s)
- Atsushi Ohazama
- Department of Craniofacial Development, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
| | - Eric B. Johnson
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Masato S. Ota
- Section of Molecular Craniofacial Embryology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hong J. Choi
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Thantrira Porntaveetus
- Department of Craniofacial Development, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
| | - Shelly Oommen
- Department of Craniofacial Development, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
| | - Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Kazuhiro Eto
- Section of Molecular Craniofacial Embryology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amel Gritli-Linde
- Department of Oral Biochemistry, Sahlgrenska Academy at Goteborg University, Goteborg, Sweden
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Paul T. Sharpe
- Department of Craniofacial Development, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
173
|
HIV replication enhances production of free fatty acids, low density lipoproteins and many key proteins involved in lipid metabolism: a proteomics study. PLoS One 2008; 3:e3003. [PMID: 18714345 PMCID: PMC2500163 DOI: 10.1371/journal.pone.0003003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 07/22/2008] [Indexed: 12/30/2022] Open
Abstract
Background HIV-infected patients develop multiple metabolic abnormalities including insulin resistance, lipodystrophy and dyslipidemia. Although progression of these disorders has been associated with the use of various protease inhibitors and other antiretroviral drugs, HIV-infected individuals who have not received these treatments also develop lipid abnormalities albeit to a lesser extent. How HIV alters lipid metabolism in an infected cell and what molecular changes are affected through protein interaction pathways are not well-understood. Results Since many genetic, epigenetic, dietary and other factors influence lipid metabolism in vivo, we have chosen to study genome-wide changes in the proteomes of a human T-cell line before and after HIV infection in order to circumvent computational problems associated with multiple variables. Four separate experiments were conducted including one that compared 14 different time points over a period of >3 months. By subtractive analyses of protein profiles overtime, several hundred differentially expressed proteins were identified in HIV-infected cells by mass spectrometry and each protein was scrutinized for its biological functions by using various bioinformatics programs. Herein, we report 18 HIV-modulated proteins and their interaction pathways that enhance fatty acid synthesis, increase low density lipoproteins (triglycerides), dysregulate lipid transport, oxidize lipids, and alter cellular lipid metabolism. Conclusions We conclude that HIV replication alone (i.e. without any influence of antiviral drugs, or other human genetic factors), can induce novel cellular enzymes and proteins that are significantly associated with biologically relevant processes involved in lipid synthesis, transport and metabolism (p = <0.0002–0.01). Translational and clinical studies on the newly discovered proteins may now shed light on how some of these proteins may be useful for early diagnosis of individuals who might be at high risk for developing lipid-related disorders. The target proteins could then be used for future studies in the development of inhibitors for preventing lipid-metabolic anomalies. This is the first direct evidence that HIV-modulates production of proteins that are significantly involved in disrupting the normal lipid-metabolic pathways.
Collapse
|
174
|
Beel AJ, Mobley CK, Kim HJ, Tian F, Hadziselimovic A, Jap B, Prestegard JH, Sanders CR. Structural studies of the transmembrane C-terminal domain of the amyloid precursor protein (APP): does APP function as a cholesterol sensor? Biochemistry 2008; 47:9428-46. [PMID: 18702528 DOI: 10.1021/bi800993c] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The amyloid precursor protein (APP) is subject to alternative pathways of proteolytic processing, leading either to production of the amyloid-beta (Abeta) peptides or to non-amyloidogenic fragments. Here, we report the first structural study of C99, the 99-residue transmembrane C-terminal domain of APP liberated by beta-secretase cleavage. We also show that cholesterol, an agent that promotes the amyloidogenic pathway, specifically binds to this protein. C99 was purified into model membranes where it was observed to homodimerize. NMR data show that the transmembrane domain of C99 is an alpha-helix that is flanked on both sides by mostly disordered extramembrane domains, with two exceptions. First, there is a short extracellular surface-associated helix located just after the site of alpha-secretase cleavage that helps to organize the connecting loop to the transmembrane domain, which is known to be essential for Abeta production. Second, there is a surface-associated helix located at the cytosolic C-terminus, adjacent to the YENPTY motif that plays critical roles in APP trafficking and protein-protein interactions. Cholesterol was seen to participate in saturable interactions with C99 that are centered at the critical loop connecting the extracellular helix to the transmembrane domain. Binding of cholesterol to C99 and, most likely, to APP may be critical for the trafficking of these proteins to cholesterol-rich membrane domains, which leads to cleavage by beta- and gamma-secretase and resulting amyloid-beta production. It is proposed that APP may serve as a cellular cholesterol sensor that is linked to mechanisms for suppressing cellular cholesterol uptake.
Collapse
Affiliation(s)
- Andrew J Beel
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232-8725, USA
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Bento-Abreu A, Velasco A, Polo-Hernndez E, Prez-Reyes PL, Tabernero A, Medina JM. Megalin is a receptor for albumin in astrocytes and is required for the synthesis of the neurotrophic factor oleic acid. J Neurochem 2008; 106:1149-59. [DOI: 10.1111/j.1471-4159.2008.05462.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
176
|
Binding of alpha2ML1 to the low density lipoprotein receptor-related protein 1 (LRP1) reveals a new role for LRP1 in the human epidermis. PLoS One 2008; 3:e2729. [PMID: 18648652 PMCID: PMC2453322 DOI: 10.1371/journal.pone.0002729] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 06/24/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The multifunctional receptor LRP1 has been shown to bind and internalize a large number of protein ligands with biological importance such as the pan-protease inhibitor alpha2-macroglobulin (alpha2M). We recently identified Alpha2ML1, a new member of the alpha2M gene family, expressed in epidermis. alpha2ML1 might contribute to the regulation of desquamation through its inhibitory activity towards proteases of the chymotrypsin family, notably KLK7. The expression of LRP1 in epidermis as well as its ability to internalize alpha2ML1 was investigated. METHODS AND PRINCIPAL FINDINGS In human epidermis, LRP1 is mainly expressed within the granular layer of the epidermis, which gathers the most differentiated keratinocytes, as shown by immunohistochemistry and immunofluorescence using two different antibodies. By using various experimental approaches, we show that the receptor binding domain of alpha2ML1 (RBDl) is specifically internalized into the macrophage-like cell line RAW and colocalizes with LRP1 upon internalization. Coimmunoprecipitation assays demonstrate that RBDl binds LRP1 at the cell surface. Addition of RAP, a universal inhibitor of ligand binding to LRP1, prevents RBDl binding at the cell surface as well as internalization into RAW cells. Silencing Lrp1 expression with specific siRNA strongly reduces RBDl internalization. CONCLUSIONS AND SIGNIFICANCE Keratinocytes of the upper differentiated layers of epidermis express LRP1 as well as alpha2ML1. Our study also reveals that alpha2ML1 is a new ligand for LRP1. Our findings are consistent with endocytosis by LRP1 of complexes formed between alpha2ML1 and proteases. LRP1 may thus control desquamation by regulating the biodisponibility of extracellular proteases.
Collapse
|
177
|
Boucher R, Larkin H, Brodeur J, Gagnon H, Thériault C, Lavoie C. Intracellular trafficking of LRP9 is dependent on two acidic cluster/dileucine motifs. Histochem Cell Biol 2008; 130:315-27. [PMID: 18461348 DOI: 10.1007/s00418-008-0436-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2008] [Indexed: 01/09/2023]
Abstract
LDL receptor-related protein 9 (LRP9) is a distant member of the low-density lipoprotein receptor (LDLR) superfamily. To date, there are no reports on the cellular distribution of LRP9 or the signals responsible for its localization. Here, we investigated the intracellular localization and trafficking of LRP9. Using confocal microscopy, we demonstrated that LRP9 was not present at the plasma membrane but co-localized with various markers of the trans-Golgi network (TGN) and endosomes. This co-localization was dependent on the presence of two acidic cluster/dileucine (DXXLL) motifs in the cytoplasmic tail of LRP9, which interact with GGA proteins, clathrin adaptors involved in transport between the TGN and endosomes. LRP9 is the first example of a transmembrane protein with an internal GGA-binding sequence in addition to the usual C-terminal motif. An inactivating mutation (LL --> AA) in both DXXLL motifs, which completely inhibited the interaction of LRP9 with GGA proteins, led to an intracellular redistribution of LRP9 from the TGN to early endosomes and the cell surface, indicating that the two DXXLL motifs are essential sorting determinants of LRP9. In conclusion, our results suggest that LRP9 cycles between the TGN, endosomes and the plasma membrane through a GGA dependent-trafficking mechanism.
Collapse
Affiliation(s)
- Rémi Boucher
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001-12e Avenue Nord, Sherbrooke, QC, Canada, J1H 5N4
| | | | | | | | | | | |
Collapse
|
178
|
Fliniaux I, Mikkola ML, Lefebvre S, Thesleff I. Identification of dkk4 as a target of Eda-A1/Edar pathway reveals an unexpected role of ectodysplasin as inhibitor of Wnt signalling in ectodermal placodes. Dev Biol 2008; 320:60-71. [PMID: 18508042 DOI: 10.1016/j.ydbio.2008.04.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 03/26/2008] [Accepted: 04/14/2008] [Indexed: 12/23/2022]
Abstract
The development of epithelial appendages, including hairs, glands and teeth starts from ectodermal placodes, and is regulated by interplay of stimulatory and inhibitory signals. Ectodysplasin-A1 (Eda-A1) and Wnts are high in hierarchy of placode activators. To identify direct targets of ectodysplasin pathway, we performed microarray profiling of genes differentially regulated by short exposure to recombinant Eda-A1 in embryonic eda(-/-) skin explants. Surprisingly, there were only two genes with obvious involvement in Wnt pathway: dkk4 (most highly induced gene in the screen), and lrp4. Both genes colocalized with Eda-A1 receptor Edar in placodes of ectodermal organs. They were upregulated upon Edar activation while several other Wnt associated genes previously suggested as Edar targets were unaffected. However, low dkk4 and lrp4 expression was retained in the absence of NF-kappaB signalling in eda(-/-) hair placodes. We provide evidence that this expression was dependent on Wnt activity present prior to Eda-A1/Edar signalling. Dkk4 was recently suggested as a key Wnt antagonist regulating lateral inhibition essential for correct patterning of hair follicles. Several pieces of evidence suggest Lrp4 as a Wnt inhibitor, as well. The finding that Eda-A1 induces placode inhibitors was unexpected, and underlines the importance of delicate fine-tuning of signalling during placode formation.
Collapse
Affiliation(s)
- Ingrid Fliniaux
- Institute of Biotechnology, Developmental Biology Program, University of Helsinki, 00014, Helsinki, Finland
| | | | | | | |
Collapse
|
179
|
Bouchard BA, Meisler NT, Nesheim ME, Liu CX, Strickland DK, Tracy PB. A unique function for LRP-1: a component of a two-receptor system mediating specific endocytosis of plasma-derived factor V by megakaryocytes. J Thromb Haemost 2008; 6:638-44. [PMID: 18194421 DOI: 10.1111/j.1538-7836.2008.02894.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Factor V is endocytosed by megakaryocytes from plasma via a specific, receptor-mediated, clathrin-dependent mechanism to form the unique platelet-derived FV pool. OBJECTIVE The role of low-density lipoprotein (LDL) receptor-related protein-1 (LRP-1), or a related family member, in FV endocytosis by megakaryocytes was examined because of its known interactions with other proteins involved in hemostasis. METHODS LRP-1 expression by megakaryocytes and its functional role in FV endocytosis was confirmed using reverse transcription polymerase chain reaction (RT-PCR) and specific antibodies. FV binding to megakaryocytes was performed under Ca(2+)-free conditions to quantify binding in the absence of endocytosis. RESULTS AND CONCLUSION Cell surface expression of LRP-1 by CD34+ ex vivo-derived megakaryocytes and the megakaryocyte-like cell line CMK was confirmed using anti-LRP-1 antibodies and was consistent with the detection of LRP-1 message in these cells. All cells capable of endocytosing FV expressed LRP-1. Anti-LRP-1 antibodies and receptor-associated protein (RAP), a known antagonist of LDL receptor family members, displaced only 50% of the [(125)I]FV bound to megakaryocytes. FV binding to megakaryocytes showed positive cooperativity (Hill coefficient = 1.92 +/- 0.18) that was substantially reduced in the presence of RAP (1.47 +/- 0.26). As FV endocytosis is specific to this cofactor, a model is hypothesized where FV binding to a specific receptor facilitates binding and endocytosis of a second FV molecule by LRP-1, or a related family member. These combined observations describe a unique role for LRP-1 in endocytosis of a coagulation protein trafficked to alpha-granules and not destined for lysosomal degradation.
Collapse
Affiliation(s)
- B A Bouchard
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA.
| | | | | | | | | | | |
Collapse
|
180
|
Hooijmans CR, Kiliaan AJ. Fatty acids, lipid metabolism and Alzheimer pathology. Eur J Pharmacol 2008; 585:176-96. [PMID: 18378224 DOI: 10.1016/j.ejphar.2007.11.081] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 09/11/2007] [Accepted: 11/15/2007] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease is the most common form of dementia in the elderly. The cause of Alzheimer's disease is still unknown and there is no cure for the disease yet despite 100 years of extensive research. Cardiovascular risk factors such as high serum cholesterol, presence of the Apolipoprotein epsilon4 (APOE epsilon4) allele and hypertension, play important roles in the development of Alzheimer's disease. We postulate that a combination of diet, lifestyle, vascular, genetic, and amyloid related factors, which enhance each other's contribution in the onset and course of Alzheimer's disease, will be more likely the cause of the disease instead of one sole mechanism. The possibility that the risk for Alzheimer's disease can be reduced by diet or lifestyle is of great importance and suggests a preventative treatment in Alzheimer's disease. Because of the great importance of lipid diets and metabolism in preventative treatment against both Alzheimer's disease and cardiovascular disease, long-chain polyunsaturated fatty acids from fish oil, ApoE genotype and cholesterol metabolism in correlation with Alzheimer's disease will be reviewed.
Collapse
Affiliation(s)
- Carlijn R Hooijmans
- Department of Anatomy and Department of Cognitive Neuroscience, Donders Centre for Neuroscience, Radboud University Nijmegen Medical Centre, Room M245/0.24 PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | |
Collapse
|
181
|
Saito A, Iino N, Takeda T, Gejyo F. Role of megalin, a proximal tubular endocytic receptor, in calcium and phosphate homeostasis. Ther Apher Dial 2008; 11 Suppl 1:S23-6. [PMID: 17976080 DOI: 10.1111/j.1744-9987.2007.00514.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Megalin is expressed at the apical membranes of proximal tubule cells, acting as an endocytic receptor for a variety of ligands filtered by glomeruli. Megalin, also known as a Ca(2+)-binding receptor, is thought to be involved in systemic and intrarenal calcium and phosphate homeostasis. The complex of 25(OH)D(3) and vitamin D-binding protein is endocytosed via megalin into proximal tubule cells, leading to the activation of 25(OH)D(3) to 1, 25(OH)D(3) in the cells. Megalin knockout mice revealed impaired osteogenesis due to vitamin D deficiency. Megalin is also involved in the metabolism of parathyroid hormone and the regulation of the sodium phosphate cotransporter NaPi-IIa. Decreased expression of megalin may be associated with the pathogenesis of hyperphosphaturia observed in patients with Dent's disease. Further studies will elucidate more detailed roles of megalin in pathological states and the mechanisms for interacting with other molecules for the endocytic functions.
Collapse
Affiliation(s)
- Akihiko Saito
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan.
| | | | | | | |
Collapse
|
182
|
Jørgensen R, Purdy AE, Fieldhouse RJ, Kimber MS, Bartlett DH, Merrill AR. Cholix toxin, a novel ADP-ribosylating factor from Vibrio cholerae. J Biol Chem 2008; 283:10671-8. [PMID: 18276581 DOI: 10.1074/jbc.m710008200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC(50) = 4.6 +/- 0.4 ng/ml) and crustaceans (Artemia nauplii LD(50) = 10 +/- 2 mug/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-A resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.
Collapse
Affiliation(s)
- René Jørgensen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
183
|
Impact of lipoproteins on the biological activity and disposition of hydrophobic drugs: implications for drug discovery. Nat Rev Drug Discov 2008; 7:84-99. [DOI: 10.1038/nrd2353] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
184
|
Demeule M, Régina A, Ché C, Poirier J, Nguyen T, Gabathuler R, Castaigne JP, Béliveau R. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther 2007; 324:1064-72. [PMID: 18156463 DOI: 10.1124/jpet.107.131318] [Citation(s) in RCA: 320] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
By controlling access to the brain, the blood-brain barrier (BBB) restricts the entry of proteins and potential drugs to cerebral tissues. We demonstrate here the transcytosis ability of aprotinin and peptides derived from Kunitz domains using an in vitro model of the BBB and in situ brain perfusion. Aprotinin transcytosis across bovine brain capillary endothelial cell (BBCEC) monolayers is at least 10-fold greater than that of holo-transferrin. Sucrose permeability was unaffected by high concentrations of aprotinin, indicating that transcytosis of aprotinin was unrelated to changes in the BBCEC monolayer integrity. Alignment of the amino acid sequence of aprotinin with the Kunitz domains of human proteins allowed the identification and design of a family of peptides, named Angiopeps. These peptides, and in particular Angiopep-2, exhibit higher transcytosis capacity and parenchyma accumulation than aprotinin. Overall, these results suggest that these Kunitz-derived peptides could be advantageously used as a new brain delivery system for pharmacological agents that do not readily enter the brain.
Collapse
Affiliation(s)
- Michel Demeule
- Laboratoire de Médecine Moléculaire, Centre d'Hémato-Oncologie, Hôpital Ste-Justine-Université du Québec à Montréal, Montréal, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Ebrahimi M, . NS. Determination of the Amount of Environmental Hormone Contamination in Raw Materials and Products of Bandar-e-Imam Petrochemical Complex. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/jbs.2007.1354.1360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
186
|
Zhao S, Hu X, Park J, Zhu Y, Zhu Q, Li H, Luo C, Han R, Cooper N, Qiu M. Selective expression ofLDLR andVLDLR in myelinating oligodendrocytes. Dev Dyn 2007; 236:2708-12. [PMID: 17685481 DOI: 10.1002/dvdy.21283] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Oligodendrocytes form myelin sheaths around axons in the central nervous system. Although cholesterol is one of the major lipid components in myelin sheath, the source of cholesterol for myelination remains to be defined. In this study, we report that low-density lipoprotein receptor (LDLR) and very low-density lipoprotein receptor (VLDLR) are selectively expressed in mature myelinating oligodendrocytes in the postnatal CNS. Both receptors are specifically expressed in differentiated oligodendrocytes in P7 spinal cord, but progressively down-regulated after P15. In adult animals, only LDLR expression can be detected in a small number of oligodendrocytes throughout the entire spinal cord. In the brain region, LDLR is expressed by the white matter oligodendrocytes of both cerebellum and cerebral cortex, whereas VLDLR has a weak expression in cerebellar oligodendrocytes. Together, our expression studies suggest that cholesterol uptake by LDLR and VLDLR may play an important role in the formation of myelin sheath.
Collapse
Affiliation(s)
- Shufang Zhao
- College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|