151
|
Intracellular neutralization of shiga toxin 2 by an a subunit-specific human monoclonal antibody. Infect Immun 2008; 76:1931-9. [PMID: 18285498 DOI: 10.1128/iai.01282-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of children with Shiga toxin (Stx)-producing Escherichia coli (STEC) is the leading cause of hemolytic-uremic syndrome (HUS). Stx2, one of two toxins liberated by the bacteria, is directly linked with HUS. We have previously shown that Stx2-specific human monoclonal antibodies (HuMAbs) protect mice and piglets from fatal systemic complications of Stx2. The present study investigates the mechanisms by which our most efficacious A- and B-subunit-specific HuMAbs neutralize the cytotoxic effects of Stx2 in vitro. Whereas the B-subunit-specific HuMAb 5H8 blocked binding of Stx2 to its receptor on the cell surface, the A-subunit-specific HuMAb 5C12 did not interfere with the toxin-receptor binding. Further investigations revealed that 5C12 did not block endocytosis of Stx2 by HeLa cells as both Stx2 and 5C12 colocalized with early endosomes. However, 5C12 blocked the retrograde transport of the toxin into the Golgi and the endoplasmic reticulum, preventing the toxin from entering the cytosol where the toxin exerts its cytotoxic effect. The endocytosed 5C12/Stx2 complexes appear to be rapidly transported to the plasma membrane and/or to the slow recycling perinuclear compartments, followed by their slow recycling to the plasma membrane, and release into the extracellular environment.
Collapse
|
152
|
van Meel E, Klumperman J. Imaging and imagination: understanding the endo-lysosomal system. Histochem Cell Biol 2008; 129:253-66. [PMID: 18274773 PMCID: PMC2248605 DOI: 10.1007/s00418-008-0384-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2008] [Indexed: 01/08/2023]
Abstract
Lysosomes are specialized compartments for the degradation of endocytosed and intracellular material and essential regulators of cellular homeostasis. The importance of lysosomes is illustrated by the rapidly growing number of human disorders related to a defect in lysosomal functioning. Here, we review current insights in the mechanisms of lysosome biogenesis and protein sorting within the endo-lysosomal system. We present increasing evidence for the existence of parallel pathways for the delivery of newly synthesized lysosomal proteins directly from the trans-Golgi network (TGN) to the endo-lysosomal system. These pathways are either dependent or independent of mannose 6-phosphate receptors and likely involve multiple exits for lysosomal proteins from the TGN. In addition, we discuss the different endosomal intermediates and subdomains that are involved in sorting of endocytosed cargo. Throughout our review, we highlight some examples in the literature showing how imaging, especially electron microscopy, has made major contributions to our understanding of the endo-lysosomal system today.
Collapse
Affiliation(s)
- Eline van Meel
- Cell Microscopy Center, Department of Cell Biology, University Medical Center Utrecht, AZU G02.525, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Judith Klumperman
- Cell Microscopy Center, Department of Cell Biology, University Medical Center Utrecht, AZU G02.525, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| |
Collapse
|
153
|
McKenzie J, Johannes L, Taguchi T, Sheff D. Passage through the Golgi is necessary for Shiga toxin B subunit to reach the endoplasmic reticulum. FEBS J 2008; 276:1581-95. [PMID: 19220458 DOI: 10.1111/j.1742-4658.2009.06890.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Both Shiga holotoxin and the isolated B subunit, navigate a retrograde pathway from the plasma membrane to the endoplasmic reticulum (ER) of mammalian cells to deliver catalytic A subunits into the cytosol. This route passes through early/recycling endosomes and then through the Golgi. Although passage through the endosomes takes only 30 min, passage through the Golgi is much slower, taking hours. This suggests that Golgi passage is a key step in retrograde traffic. However, there is no empirical data demonstrating that Golgi passage is required for the toxins to enter the ER. In fact, an alternate pathway bypassing the Golgi is utilized by SV40 virus. Here we find that blocking Shiga toxin B access to the entire Golgi with AlF(4)(-) treatment, temperature block or subcellular surgery prevented Shiga toxin B from reaching the ER. This suggests that there is no direct endosome to ER route available for retrograde traffic. Curiously, when Shiga toxin B was trapped in endosomes, it entered the cytosol directly from the endosomal compartment. Our results suggest that trafficking through the Golgi apparatus is required for Shiga toxin B to reach the ER and that diversion into the Golgi may prevent toxin escape from endosomes into the cytosol.
Collapse
Affiliation(s)
- Jenna McKenzie
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-2600, USA
| | | | | | | |
Collapse
|
154
|
Amessou M, Carrez D, Patin D, Sarr M, Grierson DS, Croisy A, Tedesco AC, Maillard P, Johannes L. Retrograde delivery of photosensitizer (TPPp-O-beta-GluOH)3 selectively potentiates its photodynamic activity. Bioconjug Chem 2008; 19:532-8. [PMID: 18205329 DOI: 10.1021/bc7003999] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photodynamic therapy involves administration of a photosensitizing drug and its subsequent activation by visible light of the appropriate wavelength. Several approaches to increasing the specificity of photosensitizers for cancerous tissues and, in particular, through their conjugation to ligands that are directed against tumor-associated antigens have been investigated. Here, we have studied the delivery of the photocytotoxic porphyrin compound TPP(p-O-beta-D-GluOH)3 into tumor cells that overexpress the glycosphingolipid Gb3, using the Gb3-binding nontoxic B-subunit of Shiga toxin (STxB) as a vector. To allow for site-directed chemical coupling, an STxB variant carrying a free sulfhydryl moiety at its C-terminal end has been used. Binding affinity, cellular uptake, singlet oxygen quantum yield, and phototoxicity of the conjugate have been examined. Despite some effect of coupling on both the photophysical properties of TPP(p-O-beta-D-GluOH)3 and the affinity of STxB for its receptor, the conjugate exhibited a higher photocytotoxic activity than the photosensitizer alone and was exquisitely selective for Gb3-expressing tumor cells. Furthermore, our data strongly suggest that STxB-mediated retrograde delivery of the photosensitizer to the biosynthetic/secretory pathway is critical for optimal cytotoxic activity. In conclusion, a strong rationale for using retrograde delivery tools such as STxB in combination with photosensitizing agents for the photodynamic therapy of tumors is presented.
Collapse
Affiliation(s)
- Mohamed Amessou
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Pina DG, Stechmann B, Shnyrov VL, Cabanié L, Haicheur N, Tartour E, Johannes L. Correlation between Shiga toxin B-subunit stability and antigen crosspresentation: A mutational analysis. FEBS Lett 2007; 582:185-9. [DOI: 10.1016/j.febslet.2007.11.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 12/23/2022]
|
156
|
Mari M, Bujny MV, Zeuschner D, Geerts WJC, Griffith J, Petersen CM, Cullen PJ, Klumperman J, Geuze HJ. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors. Traffic 2007; 9:380-93. [PMID: 18088323 DOI: 10.1111/j.1600-0854.2007.00686.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mannose-6-phosphate receptors (MPRs) transport lysosomal hydrolases from the trans Golgi network (TGN) to endosomes. Recently, the multi-ligand receptor sortilin has also been implicated in this transport, but the transport carriers involved herein have not been identified. By quantitative immuno-electron microscopy, we localized endogenous sortilin of HepG2 cells predominantly to the TGN and endosomes. In the TGN, sortilin colocalized with MPRs in the same clathrin-coated vesicles. In endosomes, sortilin and MPRs concentrated in sorting nexin 1 (SNX1)-positive buds and vesicles. SNX1 depletion by small interfering RNA resulted in decreased pools of sortilin in the TGN and an increase in lysosomal degradation. These data indicate that sortilin and MPRs recycle to the TGN in SNX1-dependent carriers, which we named endosome-to-TGN transport carriers (ETCs). Notably, ETCs emerge from early endosomes (EE), lack recycling plasma membrane proteins and by three-dimensional electron tomography exhibit unique structural features. Hence, ETCs are distinct from hitherto described EE-derived membranes involved in recycling. Our data emphasize an important role of EEs in recycling to the TGN and indicate that different, specialized exit events occur on the same EE vacuole.
Collapse
Affiliation(s)
- Muriel Mari
- Cell Microscopy Center, Department of Cell Biology, Institute of Biomembranes, University Medical Centre (UMC) Utrecht, AZU Rm G02.525, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Emerging aspects of membrane traffic in neuronal dendrite growth. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:169-76. [PMID: 18155172 DOI: 10.1016/j.bbamcr.2007.11.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 11/05/2007] [Accepted: 11/20/2007] [Indexed: 12/30/2022]
Abstract
Polarized growth of the neuron would logically require some form of membrane traffic to the tip of the growth cone, regulated in conjunction with other trafficking processes that are common to both neuronal and non-neuronal cells. Unlike axons, dendrites are endowed with membranous organelles of the exocytic pathway extending from the cell soma, including both rough and smooth endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC). Dendrites also have satellite Golgi-like cisternal stacks known as Golgi outposts that have no membranous connections with the somatic Golgi. Golgi outposts presumably serve both general and specific local trafficking needs, and could mediate membrane traffic required for polarized dendritic growth during neuronal differentiation. Recent findings suggest that dendritic growth, but apparently not axonal growth, relies very much on classical exocytic traffic, and is affected by defects in components of both the early and late secretory pathways. Within dendrites, localized processes of recycling endosome-based exocytosis regulate the growth of dendritic spines and postsynaptic compartments. Emerging membrane traffic processes and components that contribute specifically to dendritic growth are discussed.
Collapse
|
158
|
Wälchli S, Skånland SS, Gregers TF, Lauvrak SU, Torgersen ML, Ying M, Kuroda S, Maturana A, Sandvig K. The Mitogen-activated protein kinase p38 links Shiga Toxin-dependent signaling and trafficking. Mol Biol Cell 2007; 19:95-104. [PMID: 17959827 DOI: 10.1091/mbc.e07-06-0565] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Shiga toxin (Stx) binds to the cell, and it is transported via endosomes and the Golgi apparatus to the endoplasmic reticulum and cytosol, where it exerts its toxic effect. We have recently shown that Stx activates the tyrosine kinase Syk, which in turn induces clathrin phosphorylation and up-regulates Stx uptake. Here, we show that toxin-induced signaling can also regulate another step in intracellular Stx transport. We demonstrate that transport of Stx to the Golgi apparatus is dependent on the mitogen-activated protein kinase p38. Treatment of cells with chemical inhibitors or small interfering RNA targeting p38 inhibited Stx transport to the Golgi and reduced Stx toxicity. This p38 dependence is specific to Stx, because transport of the related toxin ricin was not affected by p38 inhibition. Stx rapidly activated p38, and recruited it to early endosomes in a Ca(2+)-dependent manner. Furthermore, agonist-induced oscillations in cytosolic Ca(2+) levels were inhibited upon Stx stimulation, possibly reflecting Stx-dependent local alterations in cytosolic Ca(2+) levels. Intracellular transport of Stx is Ca(2+) dependent, and we provide evidence that Stx activates a signaling cascade involving cross talk between Ca(2+) and p38, to regulate its trafficking to the Golgi apparatus.
Collapse
Affiliation(s)
- Sébastien Wälchli
- Department of Biochemistry and Centre for Cancer Biomedicine, Institute for Cancer Research, The Norwegian Radium Hospital, University of Oslo, Montebello, N-0310 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Popoff V, Mardones GA, Tenza D, Rojas R, Lamaze C, Bonifacino JS, Raposo G, Johannes L. The retromer complex and clathrin define an early endosomal retrograde exit site. J Cell Sci 2007; 120:2022-31. [PMID: 17550971 DOI: 10.1242/jcs.003020] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous studies have indicated a role for clathrin, the clathrin adaptors AP1 and epsinR, and the retromer complex in retrograde sorting from early/recycling endosomes to the trans Golgi network (TGN). However, it has remained unclear whether these protein machineries function on the same or parallel pathways. We show here that clathrin and the retromer subunit Vps26 colocalize at the ultrastructural level on early/recycling endosomes containing Shiga toxin B-subunit, a well-studied retrograde transport cargo. As previously described for clathrin, we find that interfering with Vps26 expression inhibits retrograde transport of the Shiga toxin B-subunit to the TGN. Under these conditions, endosomal tubules that take the Shiga toxin B-subunit out of transferrin-containing early/recycling endosomes appear to be stabilized. This situation differs from that previously described for low-temperature incubation and clathrin-depletion conditions under which Shiga toxin B-subunit labeling was found to overlap with that of the transferrin receptor. In addition, we find that the Shiga toxin B-subunit and the transferrin receptor accumulate close to multivesicular endosomes in clathrin-depleted cells, suggesting that clathrin initiates retrograde sorting on vacuolar early endosomes, and that retromer is then required to process retrograde tubules. Our findings thus establish a role for the retromer complex in retrograde transport of the B-subunit of Shiga toxin, and strongly suggest that clathrin and retromer function in consecutive retrograde sorting steps on early endosomes.
Collapse
Affiliation(s)
- Vincent Popoff
- Laboratoire Trafic et Signalisation, UMR144 Curie/CNRS, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Bujny MV, Popoff V, Johannes L, Cullen PJ. The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans Golgi network. J Cell Sci 2007; 120:2010-21. [PMID: 17550970 DOI: 10.1242/jcs.003111] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mammalian retromer complex is a multi-protein complex that regulates retrograde transport of the cation-independent mannose 6-phosphate receptor (CI-MPR) from early endosomes to the trans Golgi network (TGN). It consists of two subcomplexes: a membrane-bound coat comprising sorting nexin-1 (SNX1) and possibly sorting nexin-2 (SNX2), and a cargo-selective subcomplex, composed of VPS26, VPS29 and VPS35. In addition to the retromer, a variety of other protein complexes has been suggested to regulate endosome-to-TGN transport of not only the CI-MPR but a wide range of other cargo proteins. Here, we have examined the role of SNX1 and SNX2 in endosomal sorting of Shiga and cholera toxins, two toxins that undergo endosome-to-TGN transport en route to their cellular targets located within the cytosol. By using small interfering RNA (siRNA)-mediated silencing combined with single-cell fluorescent-toxin-uptake assays and well-established biochemical assays to analyze toxin delivery to the TGN, we have established that suppression of SNX1 leads to a significant reduction in the efficiency of endosome-to-TGN transport of the Shiga toxin B-subunit. Furthermore, we show that for the B subunit of cholera toxin, retrograde endosome-to-TGN transport is less reliant upon SNX1. Overall, our data establish a role for SNX1 in the endosome-to-TGN transport of Shiga toxin and are indicative for a fundamental difference between endosomal sorting of Shiga and cholera toxins into endosome-to-TGN retrograde transport pathways.
Collapse
Affiliation(s)
- Miriam V Bujny
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
161
|
Fan TC, Chang HT, Chen IW, Wang HY, Chang MDT. A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic 2007; 8:1778-1795. [PMID: 17944807 DOI: 10.1111/j.1600-0854.2007.00650.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eosinophil cationic protein (ECP), a human RNAseA superfamily member, highly implicated in asthma pathology, is toxic to bronchial epithelial cells following its endocytosis. The mechanism by which ECP is internalized into cells is poorly understood. In this study, we show that cell surface-bound heparan sulfate proteoglycans serve as the major receptor for ECP internalization. Removal of cell surface heparan sulfate by heparinases or reducing glycan sulfation by chlorate markedly decreased ECP binding to human bronchial epithelial Beas-2B cells. In addition, ECP uptake and associated cytotoxicity were reduced in glycosaminoglycan-defective cells compared with their wild-type counterparts. Furthermore, pharmacological treatment combined with siRNA knockdown identified a clathrin- and caveolin-independent endocytic pathway as the major route for ECP internalization. This pathway is regulated by Rac1 and ADP-ribosylating factor 6 GTPases. It requires cholesterol, actin cytoskeleton rearrangement and phosphatidylinositol-3-kinase activities, and is compatible with the characteristics of raft-dependent macropinocytosis. Thus, our results define the early events of ECP internalization and may have implications for novel therapeutic design for ECP-associated diseases.
Collapse
Affiliation(s)
- Tan-Chi Fan
- Department of Life Science, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan 30013, China
| | | | | | | | | |
Collapse
|
162
|
Lieu ZZ, Derby MC, Teasdale RD, Hart C, Gunn P, Gleeson PA. The golgin GCC88 is required for efficient retrograde transport of cargo from the early endosomes to the trans-Golgi network. Mol Biol Cell 2007; 18:4979-91. [PMID: 17914056 PMCID: PMC2096601 DOI: 10.1091/mbc.e07-06-0622] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Retrograde transport pathways from early/recycling endosomes to the trans-Golgi network (TGN) are poorly defined. We have investigated the role of TGN golgins in retrograde trafficking. Of the four TGN golgins, p230/golgin-245, golgin-97, GCC185, and GCC88, we show that GCC88 defines a retrograde transport pathway from early endosomes to the TGN. Depletion of GCC88 in HeLa cells by interference RNA resulted in a block in plasma membrane-TGN recycling of two cargo proteins, TGN38 and a CD8 mannose-6-phosphate receptor cytoplasmic tail fusion protein. In GCC88-depleted cells, cargo recycling was blocked in the early endosome. Depletion of GCC88 dramatically altered the TGN localization of the t-SNARE syntaxin 6, a syntaxin required for endosome to TGN transport. Furthermore, the transport block in GCC88-depleted cells was rescued by syntaxin 6 overexpression. Internalized Shiga toxin was efficiently transported from endosomes to the Golgi of GCC88-depleted cells, indicating that Shiga toxin and TGN38 are internalized by distinct retrograde transport pathways. These findings have identified an essential role for GCC88 in the localization of TGN fusion machinery for transport from early endosomes to the TGN, and they have allowed the identification of a retrograde pathway which differentially selects TGN38 and mannose-6-phosphate receptor from Shiga toxin.
Collapse
Affiliation(s)
- Zi Zhao Lieu
- *The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia; and
| | - Merran C. Derby
- *The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia; and
| | - Rohan D. Teasdale
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Charles Hart
- *The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia; and
| | - Priscilla Gunn
- *The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia; and
| | - Paul A. Gleeson
- *The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia; and
| |
Collapse
|
163
|
Braun V, Deschamps C, Raposo G, Benaroch P, Benmerah A, Chavrier P, Niedergang F. AP-1 and ARF1 control endosomal dynamics at sites of FcR mediated phagocytosis. Mol Biol Cell 2007; 18:4921-31. [PMID: 17914058 PMCID: PMC2096587 DOI: 10.1091/mbc.e07-04-0392] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phagocytosis, the mechanism of ingestion of large material and microorganisms, relies on actin polymerization and on the focal delivery of intracellular endocytic compartments. The molecular mechanisms involved in the formation and delivery of the endocytic vesicles that are recruited at sites of phagocytosis are not well characterized. Here we show that adaptor protein (AP)-1 but not AP-2 clathrin adaptor complexes are recruited early below the sites of particle attachment and are required for efficient receptor-mediated phagocytosis in murine macrophages. Clathrin, however, is not recruited with the AP complexes. We further show that the recruitment of AP-1-positive structures at sites of phagocytosis is regulated by the GTP-binding protein ARF1 but is not sensitive to brefeldin A. Furthermore, AP-1 depletion leads to increased surface levels of TNF-alpha, a cargo known to traffic through the endosomes to the plasma membrane upon stimulation of the macrophages. Together, our results support a clathrin-independent role for AP complexes in endosomal dynamics in macrophages by retaining some cargo proteins, a process important for membrane remodeling during phagocytosis.
Collapse
Affiliation(s)
- Virginie Braun
- *Institut Curie, Centre de Recherche, Paris, F-75248 France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris, F-75248 France
| | - Chantal Deschamps
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 8104), F-75014 Paris, France
- Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; and
| | - Graça Raposo
- *Institut Curie, Centre de Recherche, Paris, F-75248 France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris, F-75248 France
| | - Philippe Benaroch
- *Institut Curie, Centre de Recherche, Paris, F-75248 France
- Institut National de la Santé et de la Recherche Médicale U653, F-75248 Paris, France
| | - Alexandre Benmerah
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 8104), F-75014 Paris, France
- Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; and
| | - Philippe Chavrier
- *Institut Curie, Centre de Recherche, Paris, F-75248 France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris, F-75248 France
| | - Florence Niedergang
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (Unité Mixte de Recherche 8104), F-75014 Paris, France
- Institut National de la Santé et de la Recherche Médicale, U567, F-75014 Paris, France; and
| |
Collapse
|
164
|
Yamane J, Kubo A, Nakayama K, Yuba-Kubo A, Katsuno T, Tsukita S, Tsukita S. Functional involvement of TMF/ARA160 in Rab6-dependent retrograde membrane traffic. Exp Cell Res 2007; 313:3472-85. [PMID: 17698061 DOI: 10.1016/j.yexcr.2007.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 07/10/2007] [Accepted: 07/10/2007] [Indexed: 12/28/2022]
Abstract
The small GTPase Rab6 regulates retrograde membrane traffic from endosomes to the Golgi apparatus and from the Golgi to the endoplasmic reticulum (ER). We examined the role of a Rab6-binding protein, TMF/ARA160 (TATA element modulatory factor/androgen receptor-coactivator of 160 kDa), in this process. High-resolution immunofluorescence imaging revealed that TMF signal surrounded Rab6-positive Golgi structures and immunoelectron microscopy revealed that TMF is concentrated at the budding structures localized at the tips of cisternae. The knockdown of either TMF or Rab6 by RNA interference blocked retrograde transport of endocytosed Shiga toxin from early/recycling endosomes to the trans-Golgi network, causing missorting of the toxin to late endosomes/lysosomes. However, the TMF knockdown caused Rab6-dependent displacement of N-acetylgalactosaminyltransferase-2 (GalNAc-T2), but not beta1,4-galactosyltransferase (GalT), from the Golgi. Analyses using chimeric proteins, in which the cytoplasmic regions of GalNAc-T2 and GalT were exchanged, revealed that the cytoplasmic region of GalNAc-T2 plays a crucial role in its TMF-dependent Golgi retention. These observations suggest critical roles for TMF in two Rab6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER.
Collapse
Affiliation(s)
- Junko Yamane
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
165
|
Miserey-Lenkei S, Waharte F, Boulet A, Cuif MH, Tenza D, El Marjou A, Raposo G, Salamero J, Héliot L, Goud B, Monier S. Rab6-interacting protein 1 links Rab6 and Rab11 function. Traffic 2007; 8:1385-403. [PMID: 17725553 DOI: 10.1111/j.1600-0854.2007.00612.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rab11 and Rab6 guanosine triphosphatases are associated with membranes of the recycling endosomes (REs) and Golgi complex, respectively. Evidence indicates that they sequentially regulate a retrograde transport pathway between these two compartments, suggesting the existence of proteins that must co-ordinate their functions. Here, we report the characterization of two isoforms of a protein, Rab6-interacting protein 1 (R6IP1), originally identified as a Rab6-binding protein. R6IP1 also binds to Rab11A in its GTP-bound conformation. In interphase cells, R6IP1 is targeted to the Golgi in a Rab6-dependent manner but can associate with Rab11-positive compartments when the level of Rab11A is increased within the cells. Fluorescence resonance energy transfer analysis using fluorescence lifetime imaging shows that the overexpression of R6IP1 promotes an interaction between Rab11A and Rab6 in living cells. Accordingly, the REs marked by Rab11 and transferrin receptor are depleted from the cell periphery and accumulate in the pericentriolar area. However, endosomal and Golgi membranes do not appear to fuse with each other. We also show that R6IP1 function is required during metaphase and cytokinesis, two mitotic steps in which a role of Rab6 and Rab11 has been previously documented. We propose that R6IP1 may couple Rab6 and Rab11 function throughout the cell cycle.
Collapse
|
166
|
Abstract
Pseudomonas aeruginosa ExoS is a bifunctional type III cytotoxin that disrupts Ras- and Rho-signaling pathways in mammalian cells. A hydrophobic region (residues 51-77, termed the membrane localization domain) targets ExoS to the plasma membrane (PM) and late endosomes of host cells. In the current study, metabolic inhibitors and dominant-negative proteins that disrupt known vesicle-trafficking pathways were used to define the intracellular trafficking of ExoS. Release of ExoS from PM was independent of dynamin and ADP ribosylation factor 6 but inhibited by methyl-beta-cyclodextrin, a cholesterol-depleting reagent, and perinuclear localization of ExoS was disrupted by nocodazole. p50 dynamitin, a dynein inhibitor partially disrupted perinuclear localization of ExoS. Methyl-beta-cyclodextrin and nocodazole inhibited the ability of type-III-delivered ExoS to ADP-ribosylated Golgi/endoplasmic reticulum-resident Ras. Methyl-beta-cyclodextrin also relocated ExoS from the perinuclear region to the PM, indicating that ExoS can cycle through anterograde as well as through retrograde trafficking pathways. These findings show that ExoS endocytosis is cholesterol dependent, and it utilizes host microtubules, for intracellular trafficking. Understanding how type III cytotoxins enter and traffic within mammalian cells may identify new targets for therapeutic intervention of gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Qing Deng
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
167
|
Tarragó-Trani MT, Storrie B. Alternate routes for drug delivery to the cell interior: pathways to the Golgi apparatus and endoplasmic reticulum. Adv Drug Deliv Rev 2007; 59:782-97. [PMID: 17669543 PMCID: PMC2134838 DOI: 10.1016/j.addr.2007.06.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 06/12/2007] [Indexed: 11/29/2022]
Abstract
The targeted delivery of drugs to the cell interior can be accomplished by taking advantage of the various receptor-mediated endocytic pathways operating in a particular cell. Among these pathways, the retrograde trafficking pathway from endosomes to the Golgi apparatus, and endoplasmic reticulum is of special importance since it provides a route to deliver drugs bypassing the acid pH, hydrolytic environment of the lysosome. The existence of pathways for drug or antigen delivery to the endoplasmic reticulum and Golgi apparatus has been to a large extent an outcome of research on the trafficking of A/B type-bacterial or plant toxins such as Shiga toxin within the cell. The targeting properties of these toxins reside in their B subunit. In this article we present an overview of the multiplicity of pathways to deliver drugs intracellularly. We highlight the retrograde trafficking pathway illustrated by Shiga toxin and Shiga-like toxin, and the potential role of the B subunit of these toxins as carriers of drugs, antigens and imaging agents.
Collapse
Affiliation(s)
- Maria Teresa Tarragó-Trani
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|
168
|
D'Angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A, Godi A, West G, Bielawski J, Chuang CC, van der Spoel AC, Platt FM, Hannun YA, Polishchuk R, Mattjus P, De Matteis MA. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 2007; 449:62-7. [PMID: 17687330 DOI: 10.1038/nature06097] [Citation(s) in RCA: 485] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 07/20/2007] [Indexed: 11/08/2022]
Abstract
The molecular machinery responsible for the generation of transport carriers moving from the Golgi complex to the plasma membrane relies on a tight interplay between proteins and lipids. Among the lipid-binding proteins of this machinery, we previously identified the four-phosphate adaptor protein FAPP2, the pleckstrin homology domain of which binds phosphatidylinositol 4-phosphate and the small GTPase ARF1. FAPP2 also possesses a glycolipid-transfer-protein homology domain. Here we show that human FAPP2 is a glucosylceramide-transfer protein that has a pivotal role in the synthesis of complex glycosphingolipids, key structural and signalling components of the plasma membrane. The requirement for FAPP2 makes the whole glycosphingolipid synthetic pathway sensitive to regulation by phosphatidylinositol 4-phosphate and ARF1. Thus, by coupling the synthesis of glycosphingolipids with their export to the cell surface, FAPP2 emerges as crucial in determining the lipid identity and composition of the plasma membrane.
Collapse
Affiliation(s)
- Giovanni D'Angelo
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Bachert C, Fimmel C, Linstedt AD. Endosomal trafficking and proprotein convertase cleavage of cis Golgi protein GP73 produces marker for hepatocellular carcinoma. Traffic 2007; 8:1415-23. [PMID: 17662025 DOI: 10.1111/j.1600-0854.2007.00621.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Serum GP73 levels are significantly increased in patients with hepatocellular carcinoma (HCC), potentially providing a marker for early detection. However, GP73 is an integral membrane protein localized to the cis Golgi and is not known to be secreted. Based on its presence in sera, we sought to determine whether GP73 might normally be released from cells and to elucidate the mechanism of this release. Indeed, a soluble form of GP73 was released from cultured cells and compared with the Golgi-localized full-length protein, the molecular weight was slightly reduced, suggesting that cleavage releases the GP73 ectodomain. Sequence analysis revealed a proprotein convertase (PC) consensus site, and, indeed, the ubiquitous PC furin was capable of cleaving purified GP73. Further, alanine substitutions in the PC site blocked both the in vitro and the in vivo cleavage of GP73. Using a cleavage-specific antibody, cleaved GP73 was found in the trans Golgi network and endosomes, suggesting that GP73 cleavage occurs as GP73 cycles distal to the early Golgi. We conclude that the endosomal trafficking of GP73 allows for PC-mediated cleavage, resulting in GP73 secretion, and provides a molecular mechanism for its presence as a serum biomarker for HCC.
Collapse
Affiliation(s)
- Collin Bachert
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
170
|
Abstract
Neurons are highly polarized cells with axonal and somatodendritic membrane surfaces that spatially separate signal-sending from signal-receiving membrane domains. As found in many other cell types, different populations of endosomes are involved in the sorting of synaptic and other membrane cargo in neurons. The exact source of the membrane for neurite extension and process remodelling during neuronal differentiation has remained uncertain, and we do not know exactly how polarized sorting of neuronal membrane proteins is achieved. In the present article, we will provide a brief overview of endosomes and their putative or proven functions in fibroblasts, epithelial cells and neurons. On the basis of insights from non-neuronal cell types and recent studies on the function of recycling endosomes during synaptic plasticity-induced membrane remodelling, we postulate a speculative model regarding the role of recycling endosomes in neuronal differentiation.
Collapse
Affiliation(s)
- Michael R Schmidt
- Institute of Chemistry and Biochemistry, Department of Membrane Biochemistry, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
171
|
Misaki R, Nakagawa T, Fukuda M, Taniguchi N, Taguchi T. Spatial segregation of degradation- and recycling-trafficking pathways in COS-1 cells. Biochem Biophys Res Commun 2007; 360:580-5. [PMID: 17606221 DOI: 10.1016/j.bbrc.2007.06.101] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 06/14/2007] [Indexed: 11/20/2022]
Abstract
After endocytosis, most membrane proteins and lipids return to the plasma membrane (recycling pathway), but some membrane components are delivered to lysosomes (degradation pathway). These two pathways diverge in early endosomes. The recycling pathway involves recycling endosomes and the degradation pathway incorporates late endosomes and lysosomes. In many cell lines, these organelles often are located in the perinuclear region where they visually intermix. The present study, by tracking specific ligands (epidermal growth factor and transferrin) and expression of Rab proteins (Rab5, Rab7, and Rab11), demonstrated that, in COS-1 cells, the two pathways were spatially segregated. Recycling endosomes were mostly confined within the ring-shaped structure of the Golgi complex ("the Golgi ring"), whereas late endosomes and lysosomes were excluded from inside the Golgi ring. Thus, the unique organization of endocytic organelles in COS-1 cells can be utilized to visualize endocytic trafficking pathways in detail.
Collapse
Affiliation(s)
- Ryo Misaki
- Department of Biochemistry, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
172
|
Fuchs E, Haas AK, Spooner RA, Yoshimura SI, Lord JM, Barr FA. Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways. ACTA ACUST UNITED AC 2007; 177:1133-43. [PMID: 17562788 PMCID: PMC2064371 DOI: 10.1083/jcb.200612068] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rab family guanosine triphosphatases (GTPases) together with their regulators define specific pathways of membrane traffic within eukaryotic cells. In this study, we have investigated which Rab GTPase-activating proteins (GAPs) can interfere with the trafficking of Shiga toxin from the cell surface to the Golgi apparatus and studied transport of the epidermal growth factor (EGF) from the cell surface to endosomes. This screen identifies 6 (EVI5, RN-tre/USP6NL, TBC1D10A–C, and TBC1D17) of 39 predicted human Rab GAPs as specific regulators of Shiga toxin but not EGF uptake. We show that Rab43 is the target of RN-tre and is required for Shiga toxin uptake. In contrast, RabGAP-5, a Rab5 GAP, was unique among the GAPs tested and reduced the uptake of EGF but not Shiga toxin. These results suggest that Shiga toxin trafficking to the Golgi is a multistep process controlled by several Rab GAPs and their target Rabs and that this process is discrete from ligand-induced EGF receptor trafficking.
Collapse
Affiliation(s)
- Evelyn Fuchs
- Department of Cell Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | | | | | | | | | | |
Collapse
|
173
|
Abstract
We have investigated whether Ca(2+)-binding proteins, which have been implicated in the control of neurons and neuroendocrine secretion, play a role in controlling mast cell function. These studies have identified synaptotagmins (Syts) II, III, and IX as well as neuronal Ca(2+) sensor 1 (NCS-1) as important regulators of mast cell function. Strikingly, we find that these Ca(2+)-binding proteins contribute to mast cell function by regulating specific endocytic pathways. Syt II, the most abundant Syt homologue in mast cells, resides in an amine-free lysosomal compartment. Studying the function of Syt II-knocked down rat basophilic leukemia cells has shown a dual function of this homologue. Syt II is required for the downregulation of protein kinase Calpha, but it negatively regulates lysosomal exocytosis. Syt III, the next most abundant homologue, localizes to early endosomes and is required for the formation of the endocytic recycling compartment (ERC). Syt IX and NCS-1 localize to the ERC and regulate ERC export, NCS-1 by activating phosphatidylinositol 4-kinase beta. Finally, we show that recycling through the ERC is needed for secretory granule protein sorting as well as for the activation of the mitogen-activated protein kinases, extracellular signal-regulated kinase 1 and 2. Accordingly, NCS-1 stimulates Fc epsilon RI-triggered exocytosis and release of arachidonic acid metabolites.
Collapse
Affiliation(s)
- Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
174
|
Torgersen ML, Wälchli S, Grimmer S, Skånland SS, Sandvig K. Protein Kinase Cδ Is Activated by Shiga Toxin and Regulates Its Transport. J Biol Chem 2007; 282:16317-28. [PMID: 17403690 DOI: 10.1074/jbc.m610886200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein kinase C (PKC) isozymes regulate different vesicular trafficking steps in the recycling or degradative pathways. However, a possible role of these kinases in the retrograde pathway from endosomes to the Golgi complex has previously not been investigated. We report here the involvement of a specific PKC isozyme, PKCdelta, in the intracellular transport of the glycolipid-binding Shiga toxin (Stx), which utilizes the retrograde pathway to intoxicate cells. Upon binding to cells, Stx was shown to specifically activate PKCdelta and not PKCalpha. The involvement of PKCdelta and PKCalpha in the retrograde transport of Stx was then monitored biochemically and by immunofluorescence after inhibition or depletion of the isozymes. PKCdelta, but not PKCalpha, was shown to selectively regulate the endosome-to-Golgi transport of StxB. Upon inhibition or knockdown of PKCdelta, StxB molecules colocalized less with giantin and more with EEA1, indicating that the molecules were accumulated in endosomes, unable to reach the Golgi complex. The inhibition of Golgi transport of Stx was reflected by a strong reduction in the toxic effect, demonstrating that transport of Stx to the cytosol is dependent on PKCdelta activity. These results are in agreement with our previous data, which show that Stx is able to stimulate its own transport.
Collapse
Affiliation(s)
- Maria L Torgersen
- Institute for Cancer Research, Faculty Division, The Norwegian Radium Hospital, University of Oslo, Montebello, 0310 Oslo, Norway
| | | | | | | | | |
Collapse
|
175
|
Csaba Z, Lelouvier B, Viollet C, El Ghouzzi V, Toyama K, Videau C, Bernard V, Dournaud P. Activated somatostatin type 2 receptors traffic in vivo in central neurons from dendrites to the trans Golgi before recycling. Traffic 2007; 8:820-34. [PMID: 17521381 DOI: 10.1111/j.1600-0854.2007.00580.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Understanding the trafficking of G-protein-coupled receptors (GPCRs) is of particular importance, especially when modifications of the neurochemic environment occur as in pathological or therapeutic circumstances. In the central nervous system, although some GPCRs were reported to internalize in vivo, little is known about their trafficking downstream of the endocytic event. To address this issue, distribution and expression pattern of the major somatostatin receptor subtype, the somatostatin type 2 (sst2), was monitored in the hippocampus using immunofluorescence, autoradiographic and immunogold experiments from 10 minutes to 7 days after in vivo injection of the receptor agonist octreotide. We then analyzed whether postendocytic trafficking of the receptor was dependent upon integrity of the microtubule network using colchicine-injected animals. Together, our results suggest that upon agonist stimulation, dendritic receptors are retrogradely transported through a microtubule-dependent mechanism to a trans Golgi domain enriched in the t-SNARE syntaxin 6 and trans Golgi network 38 proteins, before recycling. Because we show that the exit rate from the trans Golgi apparatus back to the plasma membrane (hours) is slower than the entry rate (minutes), the neuronal postendocytic trafficking of sst2 receptor is likely to have functional consequences in several neurological diseases in which an increase in somatostatin release occurs.
Collapse
Affiliation(s)
- Zsolt Csaba
- Neuroendocrine Research Laboratory, Department of Human Morphology and Developmental Biology, Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Derby MC, Lieu ZZ, Brown D, Stow JL, Goud B, Gleeson PA. The trans-Golgi Network Golgin, GCC185, is Required for Endosome-to-Golgi Transport and Maintenance of Golgi Structure. Traffic 2007; 8:758-73. [PMID: 17488291 DOI: 10.1111/j.1600-0854.2007.00563.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Four mammalian golgins are specifically targeted to the trans-Golgi network (TGN) membranes via their C-terminal GRIP domains. The TGN golgins, p230/golgin-245 and golgin-97, are recruited via the GTPase Arl1, whereas the TGN golgin GCC185 is recruited independently of Arl1. Here we show that GCC185 is localized to a region of the TGN distinct from Arl1 and plays an essential role in maintaining the organization of the Golgi apparatus. Using both small interfering RNA (siRNA) and microRNA (miRNA), we show that depletion of GCC185 in HeLa cells frequently resulted in fragmentation of the Golgi apparatus. Golgi apparatus fragments were dispersed throughout the cytoplasm and contained both cis and trans markers. Trafficking of anterograde and retrograde cargo was analysed over an extended period following GCC185 depletion. Early effects of GCC185 depletion included a perturbation in the distribution of the mannose-6-phosphate receptor and a block in shiga toxin trafficking to the Golgi apparatus, which occurred in parallel with the fragmentation of the Golgi ribbon. Internalized shiga toxin accumulated in Rab11-positive endosomes, indicating GCC185 is essential for transport between the recycling endosome and the TGN. In contrast, the plasma membrane-TGN recycling protein TGN38 was efficiently transported into GCC185-depleted Golgi apparatus fragments throughout a 96-h period, and anterograde transport of E-cadherin was functional until a late stage of GCC185 depletion. This study demonstrated (i) a more effective long-term depletion of GCC185 using miRNA than siRNA and (ii) a dual role for the GCC185 golgin in the regulation of endosome-to-TGN membrane transport and in the organization of the Golgi apparatus.
Collapse
Affiliation(s)
- Merran C Derby
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia, and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
177
|
Amessou M, Fradagrada A, Falguières T, Lord JM, Smith DC, Roberts LM, Lamaze C, Johannes L. Syntaxin 16 and syntaxin 5 are required for efficient retrograde transport of several exogenous and endogenous cargo proteins. J Cell Sci 2007; 120:1457-68. [PMID: 17389686 PMCID: PMC1863825 DOI: 10.1242/jcs.03436] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Retrograde transport allows proteins and lipids to leave the endocytic pathway to reach other intracellular compartments, such as trans-Golgi network (TGN)/Golgi membranes, the endoplasmic reticulum and, in some instances, the cytosol. Here, we have used RNA interference against the SNARE proteins syntaxin 5 and syntaxin 16, combined with recently developed quantitative trafficking assays, morphological approaches and cell intoxication analysis to show that these SNARE proteins are not only required for efficient retrograde transport of Shiga toxin, but also for that of an endogenous cargo protein - the mannose 6-phosphate receptor - and for the productive trafficking into cells of cholera toxin and ricin. We have found that the function of syntaxin 16 was specifically required for, and restricted to, the retrograde pathway. Strikingly, syntaxin 5 RNA interference protected cells particularly strongly against Shiga toxin. Since our trafficking analysis showed that apart from inhibiting retrograde endosome-to-TGN transport, the silencing of syntaxin 5 had no additional effect on Shiga toxin endocytosis or trafficking from TGN/Golgi membranes to the endoplasmic reticulum, we hypothesize that syntaxin 5 also has trafficking-independent functions. In summary, our data demonstrate that several cellular and exogenous cargo proteins use elements of the same SNARE machinery for efficient retrograde transport between early/recycling endosomes and TGN/Golgi membranes.
Collapse
Affiliation(s)
- Mohamed Amessou
- Traffic and Signaling Laboratory, UMR144Curie/CNRS, Institut Curie, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| | - Alexandre Fradagrada
- Traffic and Signaling Laboratory, UMR144Curie/CNRS, Institut Curie, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| | - Thomas Falguières
- Traffic and Signaling Laboratory, UMR144Curie/CNRS, Institut Curie, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| | - J. Michael Lord
- Molecular Cell Biology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Daniel C. Smith
- Molecular Cell Biology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Lynne M. Roberts
- Molecular Cell Biology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Christophe Lamaze
- Traffic and Signaling Laboratory, UMR144Curie/CNRS, Institut Curie, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| | - Ludger Johannes
- Traffic and Signaling Laboratory, UMR144Curie/CNRS, Institut Curie, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| |
Collapse
|
178
|
Li X, Kaloyanova D, van Eijk M, Eerland R, van der Goot G, Oorschot V, Klumperman J, Lottspeich F, Starkuviene V, Wieland FT, Helms JB. Involvement of a Golgi-resident GPI-anchored protein in maintenance of the Golgi structure. Mol Biol Cell 2007; 18:1261-71. [PMID: 17251550 PMCID: PMC1838991 DOI: 10.1091/mbc.e06-03-0236] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 12/22/2006] [Accepted: 01/12/2007] [Indexed: 01/08/2023] Open
Abstract
The Golgi apparatus consists of a series of flattened cisternal membranes that are aligned in parallel to form stacks. Cytosolic-oriented Golgi-associated proteins have been identified that may coordinate or maintain the Golgi architecture. Here, we describe a novel GPI-anchored protein, Golgi-resident GPI-anchored protein (GREG) that has a brefeldin A-sensitive Golgi localization. GREG resides in the Golgi lumen as a cis-oriented homodimer, due to strong interactions between coiled-coil regions in the C termini. Dimerization of GREG as well as its Golgi localization depends on a unique tandem repeat sequence within the coiled-coil region. RNA-mediated interference of GREG expression or expression of GREG mutants reveals an essential role for GREG in maintenance of the Golgi integrity. Under these conditions, secretion of the vesicular stomatitis virus glycoprotein protein as a marker for protein transport along the secretory pathway is inhibited, suggesting a loss of Golgi function as well. These results imply the involvement of a luminal protein in Golgi structure and function.
Collapse
Affiliation(s)
- Xueyi Li
- *Biochemie-Zentrum Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Dora Kaloyanova
- Department of Biochemistry and Cell Biology and Institute of Biomembranes, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Martin van Eijk
- Department of Biochemistry and Cell Biology and Institute of Biomembranes, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Ruud Eerland
- Department of Biochemistry and Cell Biology and Institute of Biomembranes, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Gisou van der Goot
- Institut des Maladies Infectieuses, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Viola Oorschot
- Department of Cell Biology, University Medical Center and Institute for Biomembranes, 3584 CX Utrecht, The Netherlands
| | - Judith Klumperman
- Department of Cell Biology, University Medical Center and Institute for Biomembranes, 3584 CX Utrecht, The Netherlands
| | | | - Vytaute Starkuviene
- Cell Biology and Biophysics Programme, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Felix T. Wieland
- *Biochemie-Zentrum Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - J. Bernd Helms
- Department of Biochemistry and Cell Biology and Institute of Biomembranes, Utrecht University, 3508 TD Utrecht, The Netherlands
- *Biochemie-Zentrum Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
179
|
Kurmanova A, Llorente A, Polesskaya A, Garred O, Olsnes S, Kozlov J, Sandvig K. Structural requirements for furin-induced cleavage and activation of Shiga toxin. Biochem Biophys Res Commun 2007; 357:144-9. [PMID: 17407762 DOI: 10.1016/j.bbrc.2007.03.110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 03/17/2007] [Indexed: 11/17/2022]
Abstract
Shiga toxin has a protease-sensitive site in the disulfide loop region of the A-chain. Cleavage of this site by furin is essential for rapid intoxication of cells by Shiga toxin. We have here investigated whether in addition to the Arg-X-X-Arg sequence, there are other structural requirements in the disulfide loop region for furin cleavage. A toxin mutant (Shiga-2D toxin) still containing the consensus motif for cleavage by furin, but lacking ten amino acids in the disulfide loop, was generated. Trypsin was able to cleave Shiga-2D toxin in vitro, demonstrating that the protease-sensitive region is intact. However, Shiga-2D toxin was not efficiently cleaved by furin either in vitro or in vivo. Furthermore, unless it was precleaved with trypsin, Shiga-2D toxin was much less toxic than wild type Shiga toxin in LoVo cells expressing functional furin. In contrast, LoVo/neo cells lacking functional furin were unable to activate both wild type Shiga toxin and Shiga-2D toxin. In conclusion, an extended loop structure is required for furin-induced cleavage of Shiga toxin.
Collapse
Affiliation(s)
- Alma Kurmanova
- W.A. Engelhardt Institute for Molecular Biology, The Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
180
|
Rodríguez M, Torrent G, Bosch M, Rayne F, Dubremetz JF, Ribó M, Benito A, Vilanova M, Beaumelle B. Intracellular pathway of Onconase that enables its delivery to the cytosol. J Cell Sci 2007; 120:1405-11. [PMID: 17374640 DOI: 10.1242/jcs.03427] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Onconase is an RNase with a very specific property because it is selectively toxic to transformed cells. This toxin is thought to recognize cell surface receptors, and the protection conferred by metabolic poisons against Onconase toxicity indicated that this RNase relies on endocytic uptake to kill cells. Nevertheless, its internalization pathway has yet to be unraveled. We show here that Onconase enters cells using AP-2/clathrin-mediated endocytosis. It is then routed, together with transferrin, to the receptor recycling compartment. Increasing the Onconase concentration in this structure using tetanus toxin light chain expression enhanced Onconase toxicity, indicating that recycling endosomes are a key compartment for Onconase cytosolic delivery. This intracellular destination is specific to Onconase because other (and much less toxic) RNases follow the default pathway to late endosomes/lysosomes. Drugs neutralizing endosomal pH increased Onconase translocation efficiency from purified endosomes during cell-free translocation assays by preventing Onconase dissociation from its receptor at endosomal pH. Consistently, endosome neutralization enhanced Onconase toxicity up to 100-fold. Onconase translocation also required cytosolic ATP hydrolysis. This toxin therefore shows an unusual entry process that relies on clathrin-dependent endocytic uptake and then neutralization of low endosomal pH for efficient translocation from the endosomal lumen to the cytosol.
Collapse
Affiliation(s)
- Montserrat Rodríguez
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Universitat de Girona, Campus de Montilivi s/n E-17071 Girona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Tran THT, Zeng Q, Hong W. VAMP4 cycles from the cell surface to the trans-Golgi network via sorting and recycling endosomes. J Cell Sci 2007; 120:1028-41. [PMID: 17327277 DOI: 10.1242/jcs.03387] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
VAMP4 is enriched in the trans-Golgi network (TGN) and functions in traffic from the early and recycling endosomes to the TGN, but its trafficking itinerary is unknown. Cells stably expressing TGN-enriched VAMP4 C-terminally-tagged with EGFP (VAMP4-EGFP) are able to internalize and transport EGFP antibody efficiently to the TGN, suggesting that VAMP4-EGFP cycles between the cell surface and the TGN. The N-terminal extension of VAMP4 endows a chimeric VAMP5 with the ability to cycle from the surface to the TGN. Detailed time-course analysis of EGFP antibody transport to the TGN as well as pharmacological and thermal perturbation experiments suggest that VAMP4-EGFP is endocytosed by clathrin-dependent pathways and is delivered to the sorting and then recycling endosomes. This is followed by a direct transport to the TGN, without going through the late endosome. The di-Leu motif of the TGN-targeting signal is important for internalization, whereas the acidic cluster is crucial for efficient delivery of internalized antibody from the endosome to the TGN. These results suggest that the TGN-targeting signal of VAMP4 mediates the efficient recycling of VAMP4 from the cell surface to the TGN via the sorting and recycling endosomes, thus conferring steady-state enrichment of VAMP4 at the TGN.
Collapse
Affiliation(s)
- Ton Hoai Thi Tran
- Institute of Molecular and Cell Biology, Proteos Building, 61 Biopolis Drive, 138673 Singapore
| | | | | |
Collapse
|
182
|
Zhang Y, Deng Q, Barbieri JT. Intracellular localization of type III-delivered Pseudomonas ExoS with endosome vesicles. J Biol Chem 2007; 282:13022-32. [PMID: 17311921 DOI: 10.1074/jbc.m606305200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ExoS (453 amino acids) is a bi-functional type III cytotoxin produced by Pseudomonas aeruginosa. Residues 96-219 include the Rho GTPase-activating protein (RhoGAP) domain, and residues 234-453 include the 14-3-3-dependent ADP-ribosyltransferase domain. Earlier studies also identified an N-terminal domain (termed the membrane localization domain) that comprises residues 51-77 and includes a novel leucine-rich motif that targets ExoS to the perinuclear region of cultured cells. There is limited information on how ExoS or other type III cytotoxins enter and target intracellular host proteins. Type III-delivered ExoS localized to both plasma membrane and perinuclear region, whereas ExoS(DeltaMLD) was localized to the cytosol. Plasma membrane localization of ExoS was transient and had a half-life of approximately 20 min. Type III-delivered ExoS co-immunoprecipitated 14-3-3 proteins and Rab9, Rab6, and Rab5. Immunofluorescence experiments showed that ExoS colocalized with Rab9, Rab6, and Rab5. Fluorescent energy transfer was detected between ExoS and 14-3-3 proteins but not between ExoS and Rabs proteins. Together, these results indicate that type III-delivered ExoS localizes on the host endosomes and utilizes multiple pathways to traffic from the plasma membrane to the perinuclear region of intoxicated host cells.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
183
|
Lodhi IJ, Chiang SH, Chang L, Vollenweider D, Watson RT, Inoue M, Pessin JE, Saltiel AR. Gapex-5, a Rab31 guanine nucleotide exchange factor that regulates Glut4 trafficking in adipocytes. Cell Metab 2007; 5:59-72. [PMID: 17189207 PMCID: PMC1779820 DOI: 10.1016/j.cmet.2006.12.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 10/27/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
Abstract
Insulin stimulates glucose uptake by promoting translocation of the Glut4 glucose transporter from intracellular storage compartments to the plasma membrane. In the absence of insulin, Glut4 is retained intracellularly; the mechanism underlying this process remains uncertain. Using the TC10-interacting protein CIP4 as bait in a yeast two-hybrid screen, we cloned a RasGAP and VPS9 domain-containing protein, Gapex-5/RME-6. The VPS9 domain is a guanine nucleotide exchange factor for Rab31, a Rab5 subfamily GTPase implicated in trans-Golgi network (TGN)-to-endosome trafficking. Overexpression of Rab31 blocks insulin-stimulated Glut4 translocation, whereas knockdown of Rab31 potentiates insulin-stimulated Glut4 translocation and glucose uptake. Gapex-5 is predominantly cytosolic in untreated cells; its overexpression promotes intracellular retention of Glut4 in adipocytes. Insulin recruits the CIP4/Gapex-5 complex to the plasma membrane, thus reducing Rab31 activity and permitting Glut4 vesicles to translocate to the cell surface, where Glut4 docks and fuses to transport glucose into the cell.
Collapse
Affiliation(s)
- Irfan J. Lodhi
- Life Sciences Institute
- Cellular and Molecular Biology Program University of Michigan Ann Arbor, MI 48109
| | | | | | - Daniel Vollenweider
- Department of Pharmacological Sciences Stony Brook University Stony Brook, NY 11794
| | - Robert T. Watson
- Department of Pharmacological Sciences Stony Brook University Stony Brook, NY 11794
| | | | - Jeffrey E. Pessin
- Department of Pharmacological Sciences Stony Brook University Stony Brook, NY 11794
| | - Alan R. Saltiel
- Life Sciences Institute
- Departments of Internal Medicine and Molecular and Integrative Physiology
- Cellular and Molecular Biology Program University of Michigan Ann Arbor, MI 48109
- *Corresponding author: Alan R. Saltiel Life Sciences Institute University of Michigan 210 Washtenaw Ave. Ann Arbor, MI 48109
| |
Collapse
|
184
|
Suzuki T, Matsuzaki T, Hagiwara H, Aoki T, Tajika-Takahashi Y, Takata K. Apical localization of sodium-dependent glucose transporter SGLT1 is maintained by cholesterol and microtubules. Acta Histochem Cytochem 2006; 39:155-61. [PMID: 17327902 PMCID: PMC1779948 DOI: 10.1267/ahc.06024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 10/23/2006] [Indexed: 01/10/2023] Open
Abstract
A GFP-labeled sodium-dependent glucose transporter SGLT1 (SGLT-GFP) was transfected into MDCK cells. SGLT-GFP was localized at the apical membrane in confluent cells. When cellular cholesterol was depleted by methyl-β-cyclodextrin (MβCD) treatment, the localization of SGLT-GFP gradually switched from apical to whole plasma membrane. Time-lapse microscopy revealed that the effect of MβCD appeared within 30 min, and that the transition of SGLT-GFP to the whole plasma membrane was completed within 2 hr after the administration. Immunofluorescence microscopy revealed that the tight junction framework remained steady during this process. The effect of MβCD on SGLT-GFP localization was counterbalanced by the addition of cholesterol into the culture medium. Disruption of microtubules by colcemid also perturbed SGLT-GFP localization. SGLT-GFP localized to the whole plasma membrane by colcemid treatment, and apical localization was restored within 1 hr after removal of colcemid. Inhibition of protein synthesis by cycloheximide had no effect on the transition of SGLT-GFP induced by the MβCD or colcemid. These results indicated that the apical localization of SGLT-GFP is maintained by cellular cholesterol and microtubules, possibly with an apical recycling machinery.
Collapse
Affiliation(s)
- Takeshi Suzuki
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371–8511, Japan
- Correspondence to: Takeshi Suzuki, Ph.D., Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Showa-machi 3–39–22, Maebashi, Gunma 371–8511, Japan. E-mail:
| | - Toshiyuki Matsuzaki
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371–8511, Japan
| | - Haruo Hagiwara
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371–8511, Japan
| | - Takeo Aoki
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371–8511, Japan
| | - Yukiko Tajika-Takahashi
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371–8511, Japan
| | - Kuniaki Takata
- Department of Anatomy and Cell Biology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371–8511, Japan
| |
Collapse
|
185
|
Pina DG, Johannes L, Castanho MARB. Shiga toxin B-subunit sequential binding to its natural receptor in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:628-36. [PMID: 17258170 DOI: 10.1016/j.bbamem.2006.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 11/13/2006] [Accepted: 12/05/2006] [Indexed: 11/30/2022]
Abstract
Shiga toxin B-subunit (STxB), a protein involved in the cell-binding and intracellular trafficking of Shiga holotoxin, binds to a specific glycolipid, the globotriaosyl ceramide (Gb(3)). Tryptophan residues of STxB, located at the protein-membrane interface, allow one to study its interaction with model membranes by means of spectroscopic methods with no need for chemical derivatisation with a fluorophore. The protein emits maximally around 346 nm and a blue shift of about 8 nm, as well as the occurrence of changes in the emission fluorescence intensity spectra, is indicative of insertion and partition into the membrane. However, the interaction seems to take place without pentamer dissociation. Acrylamide quenching experiments confirm tryptophan residues become less exposed to solvent when in the presence of vesicles, and the use of lipophilic probes suggests that they are located in a shallow position near the water/membrane interface. Fluorescence intensity and lifetime measurements upon STxB titration with Gb(3)-containing vesicles suggest a complex STxB/Gb(3) docking mechanism involving static quenching in the later stages. Based on our observations, a model of the protein-membrane interaction is proposed and the STxB membrane partition and binding constants were calculated.
Collapse
Affiliation(s)
- David G Pina
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande C8, 1749-016 Lisboa, Portugal.
| | | | | |
Collapse
|
186
|
Haberman Y, Ziv I, Gorzalczany Y, Hirschberg K, Mittleman L, Fukuda M, Sagi-Eisenberg R. Synaptotagmin (Syt) IX is an essential determinant for protein sorting to secretory granules in mast cells. Blood 2006; 109:3385-92. [PMID: 17164344 DOI: 10.1182/blood-2006-07-033126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The secretory granules (SGs) of secretory cells of the hematopoietic lineage, such as the mast cells, are lysosome-related organelles whose membrane proteins travel through the plasma membrane and the endocytic system. Therefore, a mechanism must exist to prevent proteins destined to recycling or to the trans-Golgi network (TGN) from reaching the SGs. We now show that synaptotagmin (Syt) IX, a Syt homologue that is required for recycling from the endocytic recycling compartment (ERC) in rat basophilic leukemia (RBL-2H3) cultured mast cells, is involved in segregating recycling proteins from the SGs. By using as a marker the recycling protein TGN38, which cycles between the TGN, plasma membrane, and the ERC, we show that knock-down of Syt IX results in mistargeting of HA-tagged TGN38 to the SGs. We further demonstrate that Syt IX binds directly the small GTPase ARF1 and associates with the clathrin adaptor complex AP-1. These results therefore implicate Syt IX as an essential factor for the correct sorting of SGs proteins. Moreover, they place Syt IX as part of the machinery that is involved in the formation of transport carriers that mediate SGs protein sorting.
Collapse
Affiliation(s)
- Yael Haberman
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
187
|
Warnier M, Römer W, Geelen J, Lesieur J, Amessou M, van den Heuvel L, Monnens L, Johannes L. Trafficking of Shiga toxin/Shiga-like toxin-1 in human glomerular microvascular endothelial cells and human mesangial cells. Kidney Int 2006; 70:2085-91. [PMID: 17063173 DOI: 10.1038/sj.ki.5001989] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study has determined the intracellular transport route of Shiga-like toxin (Stx) and the highly related Shiga toxin in human glomerular microvascular endothelial cells (GMVECs) and mesangial cells. In addition, the effect of tumor necrosis factor-alpha (TNF-alpha), which contributes to the pathogenesis of hemolytic-uremic syndrome, was evaluated more profound. Establishing the transport route will provide better understanding of the cytotoxic effect of Stx on renal cells. For our studies, we used receptor-binding B-subunit (StxB), which is identical between Shiga toxin and Stx-1. The transport route of StxB was studied by immunofluorescence microscopy and biochemical assays that allow quantitative analysis of retrograde transport from plasma membrane to Golgi apparatus and endoplasmic reticulum (ER). In both cell types, StxB was detergent-resistant membrane associated and followed the retrograde route. TNF-alpha upregulated Gb3 expression in mesangial cells and GMVECs, without affecting the efficiency of StxB transport to the ER. In conclusion, our study shows that in human GMVECs and mesangial cells, StxB follows the retrograde route to the Golgi apparatus and the ER. TNF-alpha treatment increases the amount of cell-associated StxB, but not retrograde transport as such, making it likely that the strong TNF-alpha-induced sensitization of mesangial cells and GMVECs for the toxic action of Stx is not due to a direct effect on the intracellular trafficking of the toxin.
Collapse
Affiliation(s)
- M Warnier
- Department of Pediatric Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Falguières T, Römer W, Amessou M, Afonso C, Wolf C, Tabet JC, Lamaze C, Johannes L. Functionally different pools of Shiga toxin receptor, globotriaosyl ceramide, in HeLa cells. FEBS J 2006; 273:5205-18. [PMID: 17059464 DOI: 10.1111/j.1742-4658.2006.05516.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many studies have investigated the intracellular trafficking of Shiga toxin, but very little is known about the underlying dynamics of its cellular receptor, the glycosphingolipid globotriaosyl ceramide. In this study, we show that globotriaosyl ceramide is required not only for Shiga toxin binding to cells, but also for its intracellular trafficking. Shiga toxin induces globotriaosyl ceramide recruitment to detergent-resistant membranes, and subsequent internalization of the lipid. The globotriaosyl ceramide pool at the plasma membrane is then replenished from internal stores. Whereas endocytosis is not affected in the recovery condition, retrograde transport of Shiga toxin to the Golgi apparatus and the endoplasmic reticulum is strongly inhibited. This effect is specific, as cholera toxin trafficking on GM(1) and protein biosynthesis are not impaired. The differential behavior of both toxins is also paralleled by the selective loss of Shiga toxin association with detergent-resistant membranes in the recovery condition, and comparison of the molecular species composition of plasma membrane globotriaosyl ceramide indicates subtle changes in favor of unsaturated fatty acids. In conclusion, this study demonstrates the dynamic behavior of globotriaosyl ceramide at the plasma membrane and suggests that globotriaosyl ceramide-specific determinants, possibly its molecular species composition, are selectively required for efficient retrograde sorting on endosomes, but not for endocytosis.
Collapse
Affiliation(s)
- Thomas Falguières
- Laboratoire Trafic et Signalisation, Unité Mixte de Recherche 144, Institut Curie/CNRS, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Bonifacino JS, Rojas R. Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol 2006; 7:568-79. [PMID: 16936697 DOI: 10.1038/nrm1985] [Citation(s) in RCA: 489] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A subset of intracellular transmembrane proteins such as acid-hydrolase receptors, processing peptidases and SNAREs, as well as extracellular protein toxins such as Shiga toxin and ricin, undergoes 'retrograde' transport from endosomes to the trans-Golgi network. Here, we discuss recent studies that have begun to unravel the molecular machinery that is involved in this process. We also propose a central role for a 'tubular endosomal network' in sorting to recycling pathways that lead not only to the trans-Golgi network but also to different plasma-membrane domains and to specialized storage vesicles.
Collapse
Affiliation(s)
- Juan S Bonifacino
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
190
|
Janssen KP, Vignjevic D, Boisgard R, Falguières T, Bousquet G, Decaudin D, Dollé F, Louvard D, Tavitian B, Robine S, Johannes L. In vivo tumor targeting using a novel intestinal pathogen-based delivery approach. Cancer Res 2006; 66:7230-6. [PMID: 16849571 DOI: 10.1158/0008-5472.can-06-0631] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Efficient methods for tumor targeting are eagerly awaited and must satisfy several challenges: molecular specificity, transport through physiologic barriers, and capacity to withstand extracellular or intracellular degradation and inactivation by the immune system. Through interaction with its hosts, the intestinal pathogen-produced Shiga toxin has evolved molecular properties that are of interest in this context. Its nontoxic B-subunit binds to the cellular toxin receptor, glycosphingolipid Gb3, which is highly expressed on human cancers and has recently been reported to be involved in the formation of metastasis in colorectal cancers. Its function as a target for cancer therapy has already been addressed in xenograft experiments. We here show that after oral or i.v. injections in mice, the B-subunit targets spontaneous digestive Gb3-expressing adenocarcinomas. The nontumoral mucosa is devoid of labeling, with the exception of rare enteroendocrine and CD11b-positive cells. As opposed to other delivery tools that are often degraded or recycled on cancer cells, the B-subunit stably associates with these cells due to its trafficking via the retrograde transport route. This can be exploited for the in vivo delivery of contrast agents to tumors, as exemplified using fibered confocal fluorescence endoscopy and positron emission tomography (PET) imaging. In conclusion, the data presented in this manuscript lay the groundwork for a novel delivery technology that, in addition to its use for molecular imaging applications such as noninvasive PET, could also be exploited for targeted tumor therapies.
Collapse
Affiliation(s)
- Klaus-Peter Janssen
- UMR144 Curie/Centre National de la Recherche Scientifique, Institut Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Pina DG, Gómez J, England P, Craescu CT, Johannes L, Shnyrov VL. Characterization of the non-native trifluoroethanol-induced intermediate conformational state of the Shiga toxin B-subunit. Biochimie 2006; 88:1199-207. [PMID: 16697101 DOI: 10.1016/j.biochi.2006.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 03/27/2006] [Indexed: 11/21/2022]
Abstract
The effect of increasing concentrations of 2,2,2-trifluoroethanol (TFE) on the conformational stability of the Shiga toxin B-subunit (STxB), a bacterial homopentameric protein involved in cell-surface binding and intracellular transport, has been studied by far-, near-UV circular dichroism (CD), intrinsic fluorescence, analytical ultracentrifugation, and differential scanning calorimetry (DSC) under equilibrium conditions. Our data show that the native structure of STxB is highly perturbed by the presence of TFE. In fact, at concentrations of TFE above 20% (v/v), the native pentameric conformation of the protein is cooperatively transformed into a helix-rich monomeric and partially folded conformational state with no significant tertiary structure. Additionally, no cooperative transition was detected upon a further increase in the TFE concentration (above 40% (v/v)). The thermal stability of STxB was investigated at several different TFE concentrations using DSC and CD spectroscopy. Thermal transitions at TFE concentrations of up to 20% (v/v) were successfully fitted to the two-state folding/unfolding coupled to oligomerization model consistent with the transition between a pentameric folded conformation to a monomeric state of the protein, which the presence of TFE stabilizes as a partially folded conformation.
Collapse
Affiliation(s)
- David G Pina
- Laboratoire trafic et signalisation, UMR 144 CNRS, Institut Curie, 75248 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
192
|
Reig N, van der Goot FG. About lipids and toxins. FEBS Lett 2006; 580:5572-9. [PMID: 16962591 DOI: 10.1016/j.febslet.2006.08.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/08/2006] [Accepted: 08/09/2006] [Indexed: 11/25/2022]
Abstract
Many mono or multicellular organisms secrete soluble proteins, referred to as protein toxins, which alter the behavior of foreign, or target cells, possibly leading to their death. These toxins affect either the cell membrane by forming pores or modifying lipids, or some intracellular target. To reach this target, they must cross one of the cellular membranes, generally that of an intracellular organelle. As described in this minireview, lipids play crucial roles in the intoxication process of most if not all toxins, by allowing/promoting binding, endocytosis, trafficking and/or translocation into the cytoplasm.
Collapse
Affiliation(s)
- Núria Reig
- Ecole Polytechnique de Lausanne, Institute of Global Health, 1015 Lausanne, Switzerland
| | | |
Collapse
|
193
|
Düwel M, Ungewickell EJ. Clathrin-dependent association of CVAK104 with endosomes and the trans-Golgi network. Mol Biol Cell 2006; 17:4513-25. [PMID: 16914521 PMCID: PMC1635376 DOI: 10.1091/mbc.e06-05-0390] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
CVAK104 is a novel coated vesicle-associated protein with a serine/threonine kinase homology domain that was recently shown to phosphorylate the beta2-subunit of the adaptor protein (AP) complex AP2 in vitro. Here, we demonstrate that a C-terminal segment of CVAK104 interacts with the N-terminal domain of clathrin and with the alpha-appendage of AP2. CVAK104 localizes predominantly to the perinuclear region of HeLa and COS-7 cells, but it is also present on peripheral vesicular structures that are accessible to endocytosed transferrin. The distribution of CVAK104 overlaps extensively with that of AP1, AP3, the mannose 6-phosphate receptor, and clathrin but not at all with its putative phosphorylation target AP2. RNA interference-mediated clathrin knockdown reduced the membrane association of CVAK104. Recruitment of CVAK104 to perinuclear membranes of permeabilized cells is enhanced by guanosine 5'-O-(3-thio)triphosphate, and brefeldin A redistributes CVAK104 in cells. Both observations suggest a direct or indirect requirement for GTP-binding proteins in the membrane association of CVAK104. Live-cell imaging showed colocalization of green fluorescent protein-CVAK104 with endocytosed transferrin and with red fluorescent protein-clathrin on rapidly moving endosomes. Like AP1-depleted COS-7 cells, CVAK104-depleted cells missort the lysosomal hydrolase cathepsin D. Together, our data suggest a function for CVAK104 in clathrin-dependent pathways between the trans-Golgi network and the endosomal system.
Collapse
Affiliation(s)
- Michael Düwel
- Department of Cell Biology, Center of Anatomy, Hannover Medical School, D-30625 Hannover, Germany
| | - Ernst J. Ungewickell
- Department of Cell Biology, Center of Anatomy, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
194
|
Hehnly H, Sheff D, Stamnes M. Shiga toxin facilitates its retrograde transport by modifying microtubule dynamics. Mol Biol Cell 2006; 17:4379-89. [PMID: 16885418 PMCID: PMC1635369 DOI: 10.1091/mbc.e06-04-0310] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The bacterial exotoxin Shiga toxin is endocytosed by mammalian host cells and transported retrogradely through the secretory pathway before entering the cytosol. Shiga toxin also increases the levels of microfilaments and microtubules (MTs) upon binding to the cell surface. The purpose for this alteration in cytoskeletal dynamics is unknown. We have investigated whether Shiga toxin-induced changes in MT levels facilitate its intracellular transport. We have tested the effects of the Shiga toxin B subunit (STB) on MT-dependent and -independent transport steps. STB increases the rate of MT-dependent Golgi stack repositioning after nocodazole treatment. It also enhances the MT-dependent accumulation of transferrin in a perinuclear recycling compartment. By contrast, the rate of MT-independent transferrin recycling is not significantly different when STB is present. We found that STB normally requires MTs and dynein for its retrograde transport to the juxtanuclear Golgi complex and that STB increases MT assembly. Furthermore, we find that MT polymerization is limiting for STB transport in cells. These results show that STB-induced changes in cytoskeletal dynamics influence intracellular transport. We conclude that the increased rate of MT assembly upon Shiga toxin binding facilitates the retrograde transport of the toxin through the secretory pathway.
Collapse
Affiliation(s)
| | - David Sheff
- Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | | |
Collapse
|
195
|
Tarragó-Trani MT, Jiang S, Harich KC, Storrie B. Shiga-like toxin subunit B (SLTB)-enhanced delivery of chlorin e6 (Ce6) improves cell killing. Photochem Photobiol 2006; 82:527-37. [PMID: 16613509 DOI: 10.1562/2005-06-20-ra-583] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We used Shiga-like toxin B subunit (SLTB) to deliver the photosensitizer, chlorin e6 (Ce6), to Vero cells expressing the Gb3 receptor. Our aim was to provide an example of carrier-enhanced photodynamic cell killing with which to start a systematic consideration of photosensitizer delivery at the subcellular level. SLTB, in contrast to many other potential protein carriers, is delivered intracellularly to the Golgi apparatus and endoplasmic reticulum (ER). Ce6 was chosen both for its phototoxic properties and its potential for covalent conjugation with SLTB. Ce6-SLTB after cleanup contained < or =10% noncovalently bound Ce6. The noncovalent binding of porphyrins and chlorins to protein conjugates has been well documented, and hence the effective cleanup procedure is a significant accomplishment. We demonstrate that Ce6-SLTB enhances delivery of Ce6 to target cells as compared to free Ce6. In Vero cells, Ce6-SLTB was over an order of magnitude more photodynamically toxic than free Ce6. Moreover, we show that in the case of Ce6-SLTB, photosensitizer accumulation is in a combination of subcellular sites including mitochondria, Golgi apparatus, ER and plasma membrane. The occurrence in nature of diverse B subunit binding sites and the possibilities of varied intracellular delivery make optimized use of B subunit carriers attractive.
Collapse
|
196
|
Kapp-Barnea Y, Ninio-Many L, Hirschberg K, Fukuda M, Jeromin A, Sagi-Eisenberg R. Neuronal calcium sensor-1 and phosphatidylinositol 4-kinase beta stimulate extracellular signal-regulated kinase 1/2 signaling by accelerating recycling through the endocytic recycling compartment. Mol Biol Cell 2006; 17:4130-41. [PMID: 16837555 PMCID: PMC1593177 DOI: 10.1091/mbc.e05-11-1014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We demonstrate that recycling through the endocytic recycling compartment (ERC) is an essential step in Fc epsilonRI-induced activation of extracellular signal-regulated kinase (ERK)1/2. We show that ERK1/2 acquires perinuclear localization and colocalizes with Rab 11 and internalized transferrin in Fc epsilonRI-activated cells. Moreover, a close correlation exists between the amount of ERC-localized ERK1/2 and the amount of phospho-ERK1/2 that resides in the nucleus. We further show that by activating phosphatidylinositol 4-kinase beta (PI4Kbeta) and increasing the cellular level of phosphatidylinositol(4) phosphate, neuronal calcium sensor-1 (NCS-1), a calmodulin-related protein, stimulates recycling and thereby enhances Fc epsilonRI-triggered activation and nuclear translocation of ERK1/2. Conversely, NCS-1 short hairpin RNA, a kinase dead (KD) mutant of PI4Kbeta (KD-PI4Kbeta), the pleckstrin homology (PH) domain of FAPP1 as well as RNA interference of synaptotagmin IX or monensin, which inhibit export from the ERC, abrogate Fc epsilonRI-induced activation of ERK1/2. Consistently, NCS-1 also enhances, whereas both KD-PI4Kbeta and FAPP1-PH domain inhibit, Fc epsilonRI-induced release of arachidonic acid/metabolites, a downstream target of ERK1/2 in mast cells. Together, our results demonstrate a novel role for NCS-1 and PI4Kbeta in regulating ERK1/2 signaling and inflammatory reactions in mast cells. Our results further identify the ERC as a crucial determinant in controlling ERK1/2 signaling.
Collapse
Affiliation(s)
| | | | - Koret Hirschberg
- Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan; and
| | - Andreas Jeromin
- Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712
| | | |
Collapse
|
197
|
|
198
|
Abstract
Signal transduction down the Ras/MAPK pathway, including that critical to T cell activation, proliferation, and differentiation, has been generally considered to occur at the plasma membrane. It is now clear that the plasma membrane does not represent the only platform for Ras/MAPK signaling. Moreover, the plasma membrane itself is no longer considered a uniform structure but rather a patchwork of microdomains that can compartmentalize signaling. Signaling on internal membranes was first recognized on endosomes. Genetically encoded fluorescent probes for signaling events such as GTP/GDP exchange on Ras have revealed signaling on a variety of intracellular membranes, including the Golgi apparatus. In fibroblasts, Ras is activated on the plasma membrane and Golgi with distinct kinetics. The pathway by which Golgi-associated Ras becomes activated involves PLCgamma and RasGRP1 and may also require retrograde trafficking of Ras from the plasma membrane to the Golgi as a consequence of depalmitoylation. Thus, the Ras/MAPK pathway represents a clear example of compartmentalized signaling.
Collapse
Affiliation(s)
- Adam Mor
- Department of Medicine, New York University Medical Center, New York, NY 10016-6402, USA.
| | | |
Collapse
|
199
|
Utskarpen A, Slagsvold HH, Iversen TG, Wälchli S, Sandvig K. Transport of Ricin from Endosomes to the Golgi Apparatus is Regulated by Rab6A and Rab6A′. Traffic 2006; 7:663-72. [PMID: 16683916 DOI: 10.1111/j.1600-0854.2006.00418.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ricin is transported from early endosomes and/or the recycling compartment to the trans-Golgi network (TGN) and subsequently to the endoplasmic recticulum (ER) before it enters the cytosol and intoxicates cells. We have investigated the role of the Rab6 isoforms in retrograde transport of ricin using both oligo- and vector-based RNAi assays. Ricin transport to the TGN was inhibited by the depletion of Rab6A when the Rab6A messenger RNA (mRNA) levels were reduced by more than 40% and less than 75%. However, when Rab6A mRNA was reduced by more than 75% and Rab6A' mRNA was simultaneously up-regulated, the inhibition of ricin sulfation was abolished, indicating that the up-regulation of Rab6A' may compensate for the loss of Rab6A function. In addition, we found that a near complete depletion of Rab6A' gave approximately 40% reduction in ricin sulfation. The up-regulation of Rab6A mRNA levels did not seem to compensate for the loss of Rab6A' function. The depletion of both Rab6A and Rab6A' gave a stronger inhibition of ricin sulfation than what was observed knocking down the two isoforms separately. In conclusion, both Rab6A and Rab6A' seem to be involved in the transport of ricin from endosomes to the Golgi apparatus.
Collapse
Affiliation(s)
- Audrun Utskarpen
- Department of Biochemistry, Institute for Cancer Research, Faculty Division The Norwegian Radium Hospital, University of Oslo, Montebello, 0310 Oslo, Norway
| | | | | | | | | |
Collapse
|
200
|
Spooner RA, Smith DC, Easton AJ, Roberts LM, Lord JM. Retrograde transport pathways utilised by viruses and protein toxins. Virol J 2006; 3:26. [PMID: 16603059 PMCID: PMC1524934 DOI: 10.1186/1743-422x-3-26] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 04/07/2006] [Indexed: 11/15/2022] Open
Abstract
A model has been presented for retrograde transport of certain toxins and viruses from the cell surface to the ER that suggests an obligatory interaction with a glycolipid receptor at the cell surface. Here we review studies on the ER trafficking cholera toxin, Shiga and Shiga-like toxins, Pseudomonas exotoxin A and ricin, and compare the retrograde routes followed by these protein toxins to those of the ER trafficking SV40 and polyoma viruses. We conclude that there is in fact no obligatory requirement for a glycolipid receptor, nor even with a protein receptor in a lipid-rich environment. Emerging data suggests instead that there is no common pathway utilised for retrograde transport by all of these pathogens, the choice of route being determined by the particular receptor utilised.
Collapse
Affiliation(s)
- Robert A Spooner
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Daniel C Smith
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Andrew J Easton
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Lynne M Roberts
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - J Michael Lord
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|