151
|
Abstract
In the developing brain, dendrite branches and dendritic spines form and turn over dynamically. By contrast, most dendrite arbors and dendritic spines in the adult brain are stable for months, years and possibly even decades. Emerging evidence reveals that dendritic spine and dendrite arbor stability have crucial roles in the correct functioning of the adult brain and that loss of stability is associated with psychiatric disorders and neurodegenerative diseases. Recent findings have provided insights into the molecular mechanisms that underlie long-term dendrite stabilization, how these mechanisms differ from those used to mediate structural plasticity and how they are disrupted in disease.
Collapse
|
152
|
Kawashita E, Kanno Y, Asayama H, Okada K, Ueshima S, Matsuo O, Matsuno H. Involvement of α2-antiplasmin in dendritic growth of hippocampal neurons. J Neurochem 2013; 126:58-69. [PMID: 23646899 DOI: 10.1111/jnc.12281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 01/25/2023]
Abstract
The α2-Antiplasmin (α2AP) protein is known as a principal physiological inhibitor of plasmin, but we previously demonstrated that it acts as a regulatory factor for cellular functions independent of plasmin. α2AP is highly expressed in the hippocampus, suggesting a potential role for α2AP in hippocampal neuronal functions. However, the role for α2AP was unclear. This study is the first to investigate the involvement of α2AP in the dendritic growth of hippocampal neurons. The expression of microtubule-associated protein 2, which contributes to neurite initiation and neuronal growth, was lower in the neurons from α2AP⁻/⁻ mice than in the neurons from α2AP⁺/⁺ mice. Exogenous treatment with α2AP enhanced the microtubule-associated protein 2 expression, dendritic growth and filopodia formation in the neurons. This study also elucidated the mechanism underlying the α2AP-induced dendritic growth. Aprotinin, another plasmin inhibitor, had little effect on the dendritic growth of neurons, and α2AP induced its expression in the neurons from plaminogen⁻/⁻ mice. The activation of p38 MAPK was involved in the α2AP-induced dendritic growth. Therefore, our findings suggest that α2AP induces dendritic growth in hippocampal neurons through p38 MAPK activation, independent of plasmin, providing new insights into the role of α2AP in the CNS.
Collapse
Affiliation(s)
- Eri Kawashita
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
153
|
Brewster AL, Lugo JN, Patil VV, Lee WL, Qian Y, Vanegas F, Anderson AE. Rapamycin reverses status epilepticus-induced memory deficits and dendritic damage. PLoS One 2013; 8:e57808. [PMID: 23536771 PMCID: PMC3594232 DOI: 10.1371/journal.pone.0057808] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/26/2013] [Indexed: 12/27/2022] Open
Abstract
Cognitive impairments are prominent sequelae of prolonged continuous seizures (status epilepticus; SE) in humans and animal models. While often associated with dendritic injury, the underlying mechanisms remain elusive. The mammalian target of rapamycin complex 1 (mTORC1) pathway is hyperactivated following SE. This pathway modulates learning and memory and is associated with regulation of neuronal, dendritic, and glial properties. Thus, in the present study we tested the hypothesis that SE-induced mTORC1 hyperactivation is a candidate mechanism underlying cognitive deficits and dendritic pathology seen following SE. We examined the effects of rapamycin, an mTORC1 inhibitor, on the early hippocampal-dependent spatial learning and memory deficits associated with an episode of pilocarpine-induced SE. Rapamycin-treated SE rats performed significantly better than the vehicle-treated rats in two spatial memory tasks, the Morris water maze and the novel object recognition test. At the molecular level, we found that the SE-induced increase in mTORC1 signaling was localized in neurons and microglia. Rapamycin decreased the SE-induced mTOR activation and attenuated microgliosis which was mostly localized within the CA1 area. These findings paralleled a reversal of the SE-induced decreases in dendritic Map2 and ion channels levels as well as improved dendritic branching and spine density in area CA1 following rapamycin treatment. Taken together, these findings suggest that mTORC1 hyperactivity contributes to early hippocampal-dependent spatial learning and memory deficits and dendritic dysregulation associated with SE.
Collapse
Affiliation(s)
- Amy L. Brewster
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joaquin N. Lugo
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vinit V. Patil
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wai L. Lee
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yan Qian
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fabiola Vanegas
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anne E. Anderson
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital and Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
154
|
Needleman DJ, Ojeda-Lopez MA, Raviv U, Miller HP, Li Y, Song C, Feinstein SC, Wilson L, Choi MC, Safinya CR. Ion specific effects in bundling and depolymerization of taxol-stabilized microtubules. Faraday Discuss 2013; 166:31-45. [PMID: 24611267 PMCID: PMC3955895 DOI: 10.1039/c3fd00063j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Microtubules (MTs) are nanometer scale hollow cylindrical biological polyelectrolytes. They are assembled from alpha/beta-tubulin dimers, which stack to form protofilaments (PFs) with lateral interactions between PFs resulting in the curved MT. In cells, MTs and their assemblies are critical components in a range of functions from providing tracks for the transport of cargo to forming the spindle structure during mitosis. Previous studies have, shown that while cations with valence equal to or larger than 3+ tend to assemble tight 3D bundles of taxol-stabilized MTs, certain divalent cations induce relatively loose 2D bundles of different symmetry (D. J. Needleman et al., Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 16099). Similarly, divalent cations form 2D bundles of DNA adsorbed on cationic membranes (I. Koltover et al., Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 14046). The bundling behavior for these biological polyelectrolyte systems is qualitatively in agreement with current theory. Here, we present results which show that, unlike the case for DNA adsorbed on cationic membranes, bundling of taxol-stabilized MTs occurs only for certain divalent cations above a critical ion concentration (e.g. Ca2+, Sr2+, Ba2+). Instead, many divalent cations pre-empt the bundling transition and depolymerize taxol-stabilized MTs at a lower counterion concentration. Although previous cryogenic TEM has shown that, in the absence of taxol, Ca2+ depolymerizes MTs assembling in buffers containing GTP (guanosine triphosphate), our finding is surprising given the know stabilizing effects of taxol on GDP (guanosine diphosphate)-MTs. The ion concentration required for MT depolymerization decreases with increasing atomic number for the divalents Mg2+, Mn2+, Co2+, and Zn2+. GdCl3 (3+) is found to be extremely efficient at MT depolymerization requiring ion concentrations of about 1 mM, while oligolysine(2+), is observed not to depolymerize MTs at concentrations as high as 144 mM. The surprising MT depolymerization results are discussed in the context of divalents either disrupting lateral interactions between PFs (which are strengthened for taxol containing beta-tubulin) or interfering with taxol's ability to induce flexibility at the interface between two tubulin dimers in the same PF (which has been recently suggested as a mechanism by which taxol stabilizes MTs post-hydrolysis with the induced flexibility counteracting the kink between GDP-tublin dimers in a PF).
Collapse
Affiliation(s)
- Daniel J. Needleman
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, University of California, Santa Barbara, CA 93106, USA. ; Fax +1 805 893 8797; Tel +1 805 893 8635
| | - Miguel A. Ojeda-Lopez
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, University of California, Santa Barbara, CA 93106, USA. ; Fax +1 805 893 8797; Tel +1 805 893 8635
| | - Uri Raviv
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, University of California, Santa Barbara, CA 93106, USA. ; Fax +1 805 893 8797; Tel +1 805 893 8635
| | - Herbert P. Miller
- Molecular, Cellular, & Developmental Biology Department & Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
| | - Chaeyeon Song
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Stuart C. Feinstein
- Molecular, Cellular, & Developmental Biology Department & Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Leslie Wilson
- Molecular, Cellular, & Developmental Biology Department & Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Myung Chul Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Cyrus R. Safinya
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, University of California, Santa Barbara, CA 93106, USA. ; Fax +1 805 893 8797; Tel +1 805 893 8635
| |
Collapse
|
155
|
Villasana LE, Rosenthal RA, Doctrow SR, Pfankuch T, Zuloaga DG, Garfinkel AM, Raber J. Effects of alpha-lipoic acid on associative and spatial memory of sham-irradiated and 56Fe-irradiated C57BL/6J male mice. Pharmacol Biochem Behav 2012; 103:487-93. [PMID: 23051895 DOI: 10.1016/j.pbb.2012.09.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/22/2012] [Accepted: 09/29/2012] [Indexed: 02/01/2023]
Abstract
Cranial irradiation with (56)Fe, a form of space radiation, causes hippocampus-dependent cognitive changes. (56)Fe irradiation also increases reactive oxygen species (ROS) levels, which may contribute to these changes. Therefore, we investigated the effects of the antioxidant alpha lipoic acid (ALA) on cognition following sham-irradiation and irradiation. Male mice were irradiated (brain only) with (56)Fe (3 Gy) or sham-irradiated at 6-9 months of age. Half of the mice remained fed a regular chow and the other half of the mice were fed a caloric-matched diet containing ALA starting two-weeks prior to irradiation and throughout cognitive testing. Following cognitive testing, levels of 3-nitrotyrosine (3NT), a marker of oxidative protein stress, and levels of microtubule-associated protein (MAP-2), a dendritic protein important for cognition, were assessed using immunohistochemistry and confocal microscopy. ALA prevented radiation-induced impairments in spatial memory retention in the hippocampal and cortical dependent water maze probe trials following reversal learning. However, in sham-irradiated mice, ALA treatment impaired cortical-dependent novel object recognition and amygdala-dependent cued fear conditioning. There was a trend towards lower 3NT levels in irradiated mice receiving a diet containing ALA than irradiated mice receiving a regular diet. In the hippocampal dentate gyrus of mice on regular diet, irradiated mice had higher levels of MAP-2 immunoreactivity than sham-irradiated mice. Thus, ALA might have differential effects on the brain under normal physiological conditions and those involving environmental challenges such as cranial irradiation.
Collapse
Affiliation(s)
- Laura E Villasana
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
156
|
Mo J, Choi S, Ahn PG, Sun W, Lee HW, Kim H. PDZ-scaffold protein, Tamalin promotes dendritic outgrowth and arborization in rat hippocampal neuron. Biochem Biophys Res Commun 2012; 422:250-5. [PMID: 22569042 DOI: 10.1016/j.bbrc.2012.04.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 02/02/2023]
Abstract
Tamalin is a scaffold protein known to regulate membrane trafficking through its interaction with cytohesin-2/ARNO, guanine nucleotide exchange factor (GEF) on ADP-ribosylation factor (Arf) 1/6, and induces actin reorganization. However, the neuronal function of Tamalin is not well understood. Here, we report that Tamalin participates in neurite development through the association with exchange factor for Arf6 (EFA6A)/Arf6 signaling. In immature hippocampal neuron, Tamalin knockdown markedly reduced the dendritic outgrowth, the number of dendritic tips and the levels of filamentous actin (F-actin) and microtubule-associated protein 2 (MAP2) in dendrites. In addition, Tamalin colocalized with EFA6A and Arf6 in the dendritic shaft. Tamalin knockdown reduced the number, size, and intensity of endogenous EFA6A cluster, whereas overexpression of Tamalin showed opposite effects compared with those of knockdown. These results suggest that Tamalin is responsible for neuronal dendritic development via regulation of EFA6A/Arf6-mediated cytoskeleton dynamics.
Collapse
Affiliation(s)
- Jiwon Mo
- Department of Anatomy and Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, 126-1, 5-Ka, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Republic of Korea
| | | | | | | | | | | |
Collapse
|
157
|
Poplawski GHD, Tranziska AK, Leshchyns'ka I, Meier ID, Streichert T, Sytnyk V, Schachner M. L1CAM increases MAP2 expression via the MAPK pathway to promote neurite outgrowth. Mol Cell Neurosci 2012; 50:169-78. [PMID: 22503709 DOI: 10.1016/j.mcn.2012.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 02/21/2012] [Accepted: 03/29/2012] [Indexed: 11/30/2022] Open
Abstract
The neural cell adhesion molecule L1 (L1CAM) promotes neurite outgrowth via mechanisms that are not completely understood, but are known to involve the cytoskeleton. Here, we show that L1 binds directly to the microtubule associated protein 2c (MAP2c). This isoform of MAP2 is predominantly expressed in developing neurons. We found that the mRNA and protein levels of MAP2c, but not of MAP2a/b, are reduced in brains of young adult L1-deficient transgenic mice. We show via ELISA, that MAP2c, but not MAP2a/b, binds directly to the intracellular domain of L1. Remarkably, all these MAP2 isoforms co-immunoprecipitate with L1, suggesting that MAP2a/b associates with L1 via intermediate binding partners. The expression levels of MAP2a/b/c correlate with those of L1 in different brain regions of early postnatal mice, while expression levels of heat shock cognate protein 70 (Hsc70) or actin do not. L1 enhances the expression of MAP2a/b/c in cultured hippocampal neurons depending on activation of the mitogen-activated protein kinase (MAPK) pathway. Deficiency in both L1 and MAP2a/b/c expression results in reduced neurite outgrowth in vitro. We propose that the L1-triggered increase in MAP2a/b/c expression is required to promote neurite outgrowth.
Collapse
Affiliation(s)
- Gunnar Heiko Dirk Poplawski
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
158
|
VanGuilder HD, Bixler GV, Sonntag WE, Freeman WM. Hippocampal expression of myelin-associated inhibitors is induced with age-related cognitive decline and correlates with deficits of spatial learning and memory. J Neurochem 2012; 121:77-98. [PMID: 22269040 PMCID: PMC3341628 DOI: 10.1111/j.1471-4159.2012.07671.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Impairment of cognitive functions including hippocampus-dependent spatial learning and memory affects nearly half of the aged population. Age-related cognitive decline is associated with synaptic dysfunction that occurs in the absence of neuronal cell loss, suggesting that impaired neuronal signaling and plasticity may underlie age-related deficits of cognitive function. Expression of myelin-associated inhibitors (MAIs) of synaptic plasticity, including the ligands myelin-associated glycoprotein, neurite outgrowth inhibitor A, and oligodendrocyte myelin glycoprotein, and their common receptor, Nogo-66 receptor, was examined in hippocampal synaptosomes and Cornu ammonis area (CA)1, CA3 and dentate gyrus subregions derived from adult (12-13 months) and aged (26-28 months) Fischer 344 × Brown Norway rats. Rats were behaviorally phenotyped by Morris water maze testing and classified as aged cognitively intact (n = 7-8) or aged cognitively impaired (n = 7-10) relative to adults (n = 5-7). MAI protein expression was induced in cognitively impaired, but not cognitively intact, aged rats and correlated with cognitive performance in individual rats. Immunohistochemical experiments demonstrated that up-regulation of MAIs occurs, in part, in hippocampal neuronal axons and somata. While a number of pathways and processes are altered with brain aging, we report a coordinated induction of myelin-associated inhibitors of functional and structural plasticity only in cognitively impaired aged rats. Induction of MAIs may decrease stimulus-induced synaptic strengthening and structural remodeling, ultimately impairing synaptic mechanisms of spatial learning and memory and resulting in cognitive decline.
Collapse
Affiliation(s)
- Heather D. VanGuilder
- Department of Pharmacology, R130, Hershey Center for Applied Research, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033 USA
| | - Georgina V. Bixler
- Department of Pharmacology, R130, Hershey Center for Applied Research, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033 USA
| | - William E. Sonntag
- Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Science Center, 975 NE 10th Street, BRC-1303, Oklahoma City OK 73104 USA
| | - Willard M. Freeman
- Department of Pharmacology, R130, Hershey Center for Applied Research, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033 USA
| |
Collapse
|
159
|
Haley GE, Eghlidi DH, Kohama SG, Urbanski HF, Raber J. Association of microtubule associated protein-2, synaptophysin, and apolipoprotein E mRNA and protein levels with cognition and anxiety levels in aged female rhesus macaques. Behav Brain Res 2012; 232:1-6. [PMID: 22475553 DOI: 10.1016/j.bbr.2012.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/16/2012] [Accepted: 03/20/2012] [Indexed: 02/06/2023]
Abstract
The dendritic protein microtubule associated protein 2 (MAP-2), the presynaptic marker synaptophysin (SYN), and apolipoprotein E (APOE), a protein which plays a role in lipid transport and metabolism and affects synaptic activity show changes with age. We analyzed post-mortem tissue from aged female rhesus macaques cognitively tested in a spatial maze and classified as good spatial performers (GSP) or poor spatial performers (PSP) and behaviorally tested in a playroom and classified as bold or reserved animals. MAP2, SYN, and APOE mRNA and protein levels in the prefrontal cortex (PFC), hippocampus, and amygdala, were assessed using qRT-PCR and western blot. In the amygdala, bold monkeys had higher levels of MAP2 and SYN mRNA than reserved monkeys. MAP2 mRNA correlated positively with amygdala size on the right, left, and combined left and right sides, while SYN mRNA levels correlated positively with the size of the right amygdala. In the hippocampus, SYN and APOE protein levels were higher in GSP than PSP animals. Thus, in aged nonhuman primates, classification of measures of anxiety is associated with differences in selected mRNA, but not protein, levels. In contrast, classification of cognitive performance is associated with differences in selected protein, but not mRNA, levels.
Collapse
Affiliation(s)
- Gwendolen E Haley
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
160
|
Lee D, Lee HW, Hong S, Choi BI, Kim HW, Han SB, Kim IH, Bae JY, Bae YC, Rhyu IJ, Sun W, Kim H. Inositol 1,4,5-trisphosphate 3-kinase A is a novel microtubule-associated protein: PKA-dependent phosphoregulation of microtubule binding affinity. J Biol Chem 2012; 287:15981-95. [PMID: 22389500 DOI: 10.1074/jbc.m112.344101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Inositol 1,4,5-trisphosphate 3-kinase A (IP(3)K-A) is a brain specific and F-actin-binding protein. We recently demonstrated that IP(3)K-A modulates a structural reorganization of dendritic spines through F-actin remodeling, which is required for synaptic plasticity and memory formation in brain. However, detailed functions of IP(3)K-A and its regulatory mechanisms involved in the neuronal cytoskeletal dynamics still remain unknown. In the present study, we identified tubulin as a candidate of IP(3)K-A-binding protein through proteomic screening. By various in vitro and in vivo approaches, we demonstrated that IP(3)K-A was a novel microtubule-associated protein (MAP), and the N terminus of IP(3)K-A was a critical region for direct binding to tubulin in dendritic shaft of hippocampal neurons. Moreover, PKA phosphorylated Ser-119 within IP(3)K-A, leading to a significant reduction of microtubule binding affinity. These results suggest that PKA-dependent phosphorylation and microtubule binding of IP(3)K-A are involved in its regulatory mechanism for activity-dependent neuronal events such as local calcium signaling and its synaptic targeting.
Collapse
Affiliation(s)
- Dongmin Lee
- Department of Anatomy, College of Medicine, Korea University, Brain Korea 21, Seoul 136-705, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Microtubule-Associated Proteins as Indicators of Differentiation and the Functional State of Nerve Cells. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11055-012-9556-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
162
|
Human Tau may Modify Glucocorticoids-Mediated Regulation of cAMP-dependent Kinase and Phosphorylated cAMP Response Element Binding Protein. Neurochem Res 2012; 37:935-47. [DOI: 10.1007/s11064-011-0686-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/14/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
|
163
|
Nørregaard A, Jensen SS, Kolenda J, Aaberg-Jessen C, Christensen KG, Jensen PH, Schrøder HD, Kristensen BW. Effects of Chemotherapeutics on Organotypic Corticostriatal Slice Cultures Identified by A Panel of Fluorescent and Immunohistochemical Markers. Neurotox Res 2011; 22:43-58. [DOI: 10.1007/s12640-011-9300-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 11/29/2022]
|
164
|
Abstract
α-Synuclein (α-Syn) is a key protein that accumulates as hyperphosphorylated aggregates in pathologic hallmark features of Parkinson's disease (PD) and other neurodegenerative disorders. Phosphorylation of this protein at serine 129 is believed to promote its aggregation and neurotoxicity, suggesting that this post-translational modification could be a therapeutic target. Here, we demonstrate that phosphoprotein phosphatase 2A (PP2A) dephosphorylates α-Syn at serine 129 and that this activity is greatly enhanced by carboxyl methylation of the catalytic C subunit of PP2A. α-Syn-transgenic mice raised on a diet supplemented with eicosanoyl-5-hydroxytryptamide, an agent that enhances PP2A methylation, dramatically reduced both α-Syn phosphorylation at Serine 129 and α-Syn aggregation in the brain. These biochemical changes were associated with enhanced neuronal activity, increased dendritic arborizations, and reduced astroglial and microglial activation, as well as improved motor performance. These findings support the notion that serine 129 phosphorylation of α-Syn is of pathogenetic significance and that promoting PP2A activity is a viable disease-modifying therapeutic strategy for α-synucleinopathies such as PD.
Collapse
|
165
|
Sato M, Saegusa K, Sato K, Hara T, Harada A, Sato K. Caenorhabditis elegans SNAP-29 is required for organellar integrity of the endomembrane system and general exocytosis in intestinal epithelial cells. Mol Biol Cell 2011; 22:2579-2587. [PMID: 21613542 PMCID: PMC3135482 DOI: 10.1091/mbc.e11-04-0279] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 02/04/2023] Open
Abstract
It is generally accepted that soluble N-ethylmaleimide-sensitive factor attachment protein receptors mediate the docking and fusion of transport intermediates with target membranes. Our research identifies Caenorhabditis elegans homologue of synaptosomal-associated protein 29 (SNAP-29) as an essential regulator of membrane trafficking in polarized intestinal cells of living animals. We show that a depletion of SNAP-29 blocks yolk secretion and targeting of apical and basolateral plasma membrane proteins in the intestinal cells and results in a strong accumulation of small cargo-containing vesicles. The loss of SNAP-29 also blocks the transport of yolk receptor RME-2 to the plasma membrane in nonpolarized oocytes, indicating that its function is required in various cell types. SNAP-29 is essential for embryogenesis, animal growth, and viability. Functional fluorescent protein-tagged SNAP-29 mainly localizes to the plasma membrane and the late Golgi, although it also partially colocalizes with endosomal proteins. The loss of SNAP-29 leads to the vesiculation/fragmentation of the Golgi and endosomes, suggesting that SNAP-29 is involved in multiple transport pathways between the exocytic and endocytic organelles. These observations also suggest that organelles comprising the endomembrane system are highly dynamic structures based on the balance between membrane budding and fusion and that SNAP-29-mediated fusion is required to maintain proper organellar morphology and functions.
Collapse
Affiliation(s)
- Miyuki Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Keiko Saegusa
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Katsuya Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Taichi Hara
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| |
Collapse
|
166
|
Garred MM, Wang MM, Guo X, Harrington CA, Lein PJ. Transcriptional responses of cultured rat sympathetic neurons during BMP-7-induced dendritic growth. PLoS One 2011; 6:e21754. [PMID: 21765909 PMCID: PMC3135585 DOI: 10.1371/journal.pone.0021754] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/06/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Dendrites are the primary site of synapse formation in the vertebrate nervous system; however, relatively little is known about the molecular mechanisms that regulate the initial formation of primary dendrites. Embryonic rat sympathetic neurons cultured under defined conditions extend a single functional axon, but fail to form dendrites. Addition of bone morphogenetic proteins (BMPs) triggers these neurons to extend multiple dendrites without altering axonal growth or cell survival. We used this culture system to examine differential gene expression patterns in naïve vs. BMP-treated sympathetic neurons in order to identify candidate genes involved in regulation of primary dendritogenesis. METHODOLOGY/PRINCIPAL FINDINGS To determine the critical transcriptional window during BMP-induced dendritic growth, morphometric analysis of microtubule-associated protein (MAP-2)-immunopositive processes was used to quantify dendritic growth in cultures exposed to the transcription inhibitor actinomycin-D added at varying times after addition of BMP-7. BMP-7-induced dendritic growth was blocked when transcription was inhibited within the first 24 hr after adding exogenous BMP-7. Thus, total RNA was isolated from sympathetic neurons exposed to three different experimental conditions: (1) no BMP-7 treatment; (2) treatment with BMP-7 for 6 hr; and (3) treatment with BMP-7 for 24 hr. Affymetrix oligonucleotide microarrays were used to identify differential gene expression under these three culture conditions. BMP-7 significantly regulated 56 unique genes at 6 hr and 185 unique genes at 24 hr. Bioinformatic analyses implicate both established and novel genes and signaling pathways in primary dendritogenesis. CONCLUSIONS/SIGNIFICANCE This study provides a unique dataset that will be useful in generating testable hypotheses regarding transcriptional control of the initial stages of dendritic growth. Since BMPs selectively promote dendritic growth in central neurons as well, these findings may be generally applicable to dendritic growth in other neuronal cell types.
Collapse
Affiliation(s)
- Michelle M. Garred
- Gene Microarray Shared Resource, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael M. Wang
- Departments of Neurology and Molecular & Integrative Physiology, University of Michigan, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States of America
| | - Xin Guo
- Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Christina A. Harrington
- Gene Microarray Shared Resource, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
167
|
VanGuilder HD, Farley JA, Yan H, Van Kirk CA, Mitschelen M, Sonntag WE, Freeman WM. Hippocampal dysregulation of synaptic plasticity-associated proteins with age-related cognitive decline. Neurobiol Dis 2011; 43:201-12. [PMID: 21440628 PMCID: PMC3096728 DOI: 10.1016/j.nbd.2011.03.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/18/2011] [Indexed: 12/16/2022] Open
Abstract
Age-related cognitive decline occurs without frank neurodegeneration and is the most common cause of memory impairment in aging individuals. With increasing longevity, cognitive deficits, especially in hippocampus-dependent memory processes, are increasing in prevalence. Nevertheless, the neurobiological basis of age-related cognitive decline remains unknown. While concerted efforts have led to the identification of neurobiological changes with aging, few age-related alterations have been definitively correlated to behavioral measures of cognitive decline. In this work, adult (12 months) and aged (28 months) rats were categorized by Morris water maze performance as Adult cognitively Intact, Aged cognitively Intact or Aged cognitively Impaired, and protein expression was examined in hippocampal synaptosome preparations. Previously described differences in synaptic expression of neurotransmission-associated proteins (Dnm1, Hpca, Stx1, Syn1, Syn2, Syp, SNAP25, VAMP2 and 14-3-3 eta, gamma, and zeta) were confirmed between Adult and Aged rats, with no further dysregulation associated with cognitive impairment. Proteins related to synaptic structural stability (MAP2, drebrin, Nogo-A) and activity-dependent signaling (PSD-95, 14-3-3θ, CaMKIIα) were up- and down-regulated, respectively, with cognitive impairment but were not altered with increasing age. Localization of MAP2, PSD-95, and CaMKIIα demonstrated protein expression alterations throughout the hippocampus. The altered expression of activity- and structural stability-associated proteins suggests that impaired synaptic plasticity is a distinct phenomenon that occurs with age-related cognitive decline, and demonstrates that cognitive decline is not simply an exacerbation of the aging phenotype.
Collapse
Affiliation(s)
- Heather D. VanGuilder
- Penn State College of Medicine, Department of Pharmacology, Hershey Center for Applied Research, 500 University Drive, Hershey, PA, 17033, USA
| | - Julie A. Farley
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10 Street, BRC-1303, Oklahoma City, OK, 73104, USA
| | - Han Yan
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10 Street, BRC-1303, Oklahoma City, OK, 73104, USA
| | - Colleen A. Van Kirk
- Penn State College of Medicine, Department of Pharmacology, Hershey Center for Applied Research, 500 University Drive, Hershey, PA, 17033, USA
| | - Matthew Mitschelen
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10 Street, BRC-1303, Oklahoma City, OK, 73104, USA
| | - William E. Sonntag
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10 Street, BRC-1303, Oklahoma City, OK, 73104, USA
| | - Willard M. Freeman
- Penn State College of Medicine, Department of Pharmacology, Hershey Center for Applied Research, 500 University Drive, Hershey, PA, 17033, USA
| |
Collapse
|
168
|
Short- and long-term treatment with estradiol or progesterone modifies the expression of GFAP, MAP2 and Tau in prefrontal cortex and hippocampus. Life Sci 2011; 89:123-8. [PMID: 21683086 DOI: 10.1016/j.lfs.2011.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 03/16/2011] [Accepted: 05/25/2011] [Indexed: 11/21/2022]
Abstract
AIMS We analyzed the effects of the short- and long-term administration of estradiol (E2) or progesterone (P4) after ovariectomy on the expression of MAP2, Tau and GFAP in prefrontal cortex and hippocampus. MAIN METHODS Sprague Dawley rats were ovariectomized and immediately treated with E2 or P4 for 2 or 18 weeks. At the end of treatments, hippocampus and prefrontal cortex were excised, proteins were extracted and MAP2, Tau and GFAP were analyzed by Western blot. KEY FINDINGS MAP2 and Tau content was not modified by E2 in the prefrontal cortex. On the contrary, P4 decreased MAP2 content after a short-term treatment, while it increased that of MAP2 and TAU in this brain region after a long-term treatment. E2 increased MAP2 content in hippocampus. In this region, short-term administration of P4 increased that of MAP2. GFAP content was diminished after a long-term administration of P4 in hippocampus. SIGNIFICANCE Current data emphasize the importance of short- and long-term sex steroid treatment on neuronal and glial cytoskeletal proteins expression.
Collapse
|
169
|
Villasana LE, Benice TS, Raber J. Long-Term Effects of 56Fe Irradiation on Spatial Memory of Mice: Role of Sex and Apolipoprotein E Isoform. Int J Radiat Oncol Biol Phys 2011; 80:567-73. [DOI: 10.1016/j.ijrobp.2010.12.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/09/2010] [Accepted: 12/15/2010] [Indexed: 12/15/2022]
|
170
|
Caracciolo L, Barbon A, Palumbo S, Mora C, Toscano CD, Bosetti F, Barlati S. Altered mRNA editing and expression of ionotropic glutamate receptors after kainic acid exposure in cyclooxygenase-2 deficient mice. PLoS One 2011; 6:e19398. [PMID: 21589914 PMCID: PMC3093380 DOI: 10.1371/journal.pone.0019398] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 04/04/2011] [Indexed: 12/31/2022] Open
Abstract
Kainic acid (KA) binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-2(-/-)) mice are more vulnerable to KA-induced excitotoxicity. Here, we investigated whether the increased susceptibility of COX-2(-/-) mice to KA is associated with altered mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in vehicle-injected COX-2(-/-) mice compared to wild type (WT) mice in hippocampus and cortex, whereas gene expression of NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the hippocampus, with a significant effect in COX-2(-/-) mice. Furthermore, we analyzed RNA editing levels and found that the level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-2(-/-) compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-2(-/-) mice. Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR subunits after KA, as observed in COX-2(-/-) mice. After KA exposure, COX-2(-/-) mice showed increased mRNA expression of markers of inflammation and oxidative stress, such as cytokines (TNF-α, IL-1β and IL-6), inducible nitric oxide synthase (iNOS), microglia (CD11b) and astrocyte (GFAP). Thus, COX-2 gene deletion can exacerbate the inflammatory response to KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may contribute to the increased vulnerability of COX-2(-/-) mice to KA. The overstimulation of glutamate receptors as a consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the glutamatergic system.
Collapse
Affiliation(s)
- Luca Caracciolo
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnologies and National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Alessandro Barbon
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnologies and National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Sara Palumbo
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Cristina Mora
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnologies and National Institute of Neuroscience, University of Brescia, Brescia, Italy
| | - Christopher D. Toscano
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Francesca Bosetti
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Sergio Barlati
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnologies and National Institute of Neuroscience, University of Brescia, Brescia, Italy
| |
Collapse
|
171
|
|
172
|
Song Z, He CD, Sun C, Xu Y, Jin X, Zhang Y, Xiao T, Wang Y, Lu P, Jiang Y, Wei H, Chen HD. Increased expression of MAP2 inhibits melanoma cell proliferation, invasion and tumor growth in vitro and in vivo. Exp Dermatol 2011; 19:958-64. [PMID: 20100193 DOI: 10.1111/j.1600-0625.2009.01020.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Malignant melanoma (MM) is characterized by aggressive metastasis and high mortality rate. Microtubule-associated proteins 2 (MAP2) is expressed abundantly in majority of melanocytic nevi and primary melanomas, but absent in metastatic melanomas. To determine whether MAP2 correlates with tumor progression of MM, we investigated the effects of MAP2 inhibition on the biological behaviour of metastatic melanoma in vitro and in vivo. Our results demonstrated that adenovirus-mediated MAP2 induced apoptotic cell death and cell cycle arrest in metastatic human and mouse melanoma cell lines in vitro, and substantially inhibited the growth of melanomas in nude mice in vivo. In addition, intracellular expression of MAP2 was found to induce the morphologic alteration, suppress the migration and invasion and affect the assembly, stabilization and bundling of microtubules in melanoma cells. This is the first study that MAP2 expression significantly inhibits the growth of MM in vivo. Our results suggest that MAP2 may serve as a promising molecular target for therapy and chemoprevention of MM in humans.
Collapse
Affiliation(s)
- Zhiqi Song
- Department of Dermatology, No. 1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Ministry of Health (China Medical University), Shenyang, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Gutierrez H, Davies AM. Regulation of neural process growth, elaboration and structural plasticity by NF-κB. Trends Neurosci 2011; 34:316-25. [PMID: 21459462 PMCID: PMC3115056 DOI: 10.1016/j.tins.2011.03.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 02/23/2011] [Accepted: 03/01/2011] [Indexed: 11/12/2022]
Abstract
The nuclear factor-kappa B (NF-κB) family of transcription factors has recently emerged as a major regulator of the growth and elaboration of neural processes. NF-κB signaling has been implicated in controlling axon initiation, elongation, guidance and branching and in regulating dendrite arbor size and complexity during development and dendritic spine density in the adult. NF-κB is activated by a variety of extracellular signals, and either promotes or inhibits growth depending on the phosphorylation status of the p65 NF-κB subunit. These novel roles for NF-κB, together with recent evidence implicating NF-κB in the regulation of neurogenesis in the embryo and adult, have important implications for neural development and for learning and memory in the mature nervous system.
Collapse
Affiliation(s)
- Humberto Gutierrez
- Cardiff School of Biosciences, University of Cardiff, Biomedical Sciences Building 3, Cardiff CF10 3AT, UK
| | | |
Collapse
|
174
|
Dayger C, Villasana L, Pfankuch T, Davis M, Raber J. Effects of the SARM ACP-105 on rotorod performance and cued fear conditioning in sham-irradiated and irradiated female mice. Brain Res 2011; 1381:134-40. [PMID: 21219889 PMCID: PMC3048897 DOI: 10.1016/j.brainres.2010.12.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/29/2010] [Accepted: 12/30/2010] [Indexed: 12/11/2022]
Abstract
Female mice are more susceptible to radiation-induced cognitive changes than male mice. Previously, we showed that, in female mice, androgens antagonize age-related cognitive decline in aged wild-type mice and androgens and selective androgen receptor modulators (SARMs) antagonize cognitive changes induced by human apolipoprotein E4, a risk factor for developing age-related cognitive decline. In this study, the potential effects of the SARM ACP-105 were assessed in female mice that were either sham-irradiated or irradiated with ¹³⁷Cesium at a dose of 10Gy. Behavioral testing started 2 weeks following irradiation. Irradiation impaired sensorimotor function in vehicle-treated mice but not in ACP-105-treated mice. Irradiation impaired cued fear conditioning and ACP-105 enhanced fear conditioning in sham-irradiated and irradiated mice. When immunoreactivity for microtubule-associated protein 2 was assessed in the cortex of sham-irradiated mice, there was a brain area × ACP-105 interaction. While ACP-105 reduced MAP-2 immunoreactivity in the sensorimotor cortex, there was a trend towards increased MAP-2 immunoreactivity in the enthorhinal cortex. No effect on MAP-2 immunoreactivity was seen in the irradiated cortex or sham-irradiated or irradiated hippocampus. Thus, there are relatively early radiation-induced behavioral changes in female mice and reduced MAP-2 levels in the sensorimotor cortex following ACP-105 treatment might contribute to enhanced rotorod performance.
Collapse
Affiliation(s)
- Catherine Dayger
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Laura Villasana
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Timothy Pfankuch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Matthew Davis
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
- Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239
- Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
175
|
Roet KCD, Bossers K, Franssen EHP, Ruitenberg MJ, Verhaagen J. A meta-analysis of microarray-based gene expression studies of olfactory bulb-derived olfactory ensheathing cells. Exp Neurol 2011; 229:10-45. [PMID: 21396936 DOI: 10.1016/j.expneurol.2011.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/28/2010] [Accepted: 03/02/2011] [Indexed: 12/23/2022]
Abstract
Genome wide transcriptional profiling and large scale proteomics have emerged as two powerful methods to dissect the molecular properties of specific neural tissues or cell types on a global scale. Several genome-wide transcriptional profiling and proteomics studies have been published on cultured olfactory ensheathing cells (OEC). In this article we present a meta-analysis of all five published and publicly available micro-array gene expression datasets of cultured early-passage-OB-OEC with other cell types (Schwann cells, late-passage-OB-OEC, mucosa-OEC, an OEC cell line, and acutely dissected OEC). The aim of this meta-analysis is to identify genes and molecular pathways that are found in multiple instead of one isolated study. 454 Genes were detected in at least three out of five microarray datasets. In this "Top-list", genes involved in the biological processes "growth of neurites", "blood vessel development", "migration of cells" and "immune response" were strongly overrepresented. By applying network analysis tools, molecular networks were constructed and Hub-genes were identified that may function as key genes in the above mentioned interrelated processes. We also identified 7 genes (ENTPD2, MATN2, CTSC, PTHLH, GLRX1, COL27A1 and ID2) with uniformly higher or lower expression in early-passage-OB-OEC in all five microarray comparisons. These genes have diverse but intriguing roles in neuroprotection, neurite extension and/or tissue repair. Our meta-analysis provides novel insights into the molecular basis of OB-OEC-mediated neural repair and can serve as a repository for investigators interested in the molecular biology of OEC. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Kasper C D Roet
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
176
|
Cytoprotective effects of growth factors: BDNF more potent than GDNF in an organotypic culture model of Parkinson's disease. Brain Res 2011; 1378:105-18. [DOI: 10.1016/j.brainres.2010.12.090] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 12/29/2010] [Indexed: 01/19/2023]
|
177
|
Localized bimodal response of neurite extensions and structural proteins in dorsal-root ganglion neurons with controlled polydimethylsiloxane substrate stiffness. J Biomech 2011; 44:856-62. [DOI: 10.1016/j.jbiomech.2010.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 12/08/2010] [Accepted: 12/08/2010] [Indexed: 12/17/2022]
|
178
|
Ly T, Gupta N, Weinreb RN, Kaufman PL, Yücel YH. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vision Res 2011; 51:243-50. [PMID: 20692280 PMCID: PMC3125971 DOI: 10.1016/j.visres.2010.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/02/2010] [Indexed: 02/06/2023]
Abstract
Neural degeneration in glaucoma involves retinal ganglion cells and neurons of their major target, the lateral geniculate nucleus (LGN). Dendrites of relay LGN neurons projecting to the visual cortex were studied by immunocytochemical and quantitative Sholl analysis in combination with confocal microscopy and 3D-morphometry. In non-human adult primate glaucoma, relay LGN neurons showed reduced dendrite complexity and length, and these changes were modified by NMDA receptor blockade. Dendrite plasticity of LGN relay neurons in adult primate glaucoma has implications for potential disease modification by treatment interventions.
Collapse
Affiliation(s)
- Tina Ly
- Ophthalmology & Vision Sciences, Laboratory Medicine & Pathobiology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Neeru Gupta
- Ophthalmology & Vision Sciences, Laboratory Medicine & Pathobiology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
- Glaucoma & Nerve Protection Unit, St. Michael’s Hospital, Toronto, Ontario, Canada
- Keenan Research Centre at the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Robert N. Weinreb
- Hamilton Glaucoma Center, University of California, San Diego, California, United States
| | - Paul L. Kaufman
- Department of Ophthalmology and Vision Sciences, University of Wisconsin, Madison, Wisconsin, United States
| | - Yeni H. Yücel
- Ophthalmology & Vision Sciences, Laboratory Medicine & Pathobiology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre at the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
179
|
Ribic A, Flügge G, Schlumbohm C, Mätz-Rensing K, Walter L, Fuchs E. Activity-dependent regulation of MHC class I expression in the developing primary visual cortex of the common marmoset monkey. Behav Brain Funct 2011; 7:1. [PMID: 21205317 PMCID: PMC3023691 DOI: 10.1186/1744-9081-7-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/04/2011] [Indexed: 01/31/2023] Open
Abstract
Background Several recent studies have highlighted the important role of immunity-related molecules in synaptic plasticity processes in the developing and adult mammalian brains. It has been suggested that neuronal MHCI (major histocompatibility complex class I) genes play a role in the refinement and pruning of synapses in the developing visual system. As a fast evolutionary rate may generate distinct properties of molecules in different mammalian species, we studied the expression of MHCI molecules in a nonhuman primate, the common marmoset monkey (Callithrix jacchus). Methods and results Analysis of expression levels of MHCI molecules in the developing visual cortex of the common marmoset monkeys revealed a distinct spatio-temporal pattern. High levels of expression were detected very early in postnatal development, at a stage when synaptogenesis takes place and ocular dominance columns are formed. To determine whether the expression of MHCI molecules is regulated by retinal activity, animals were subjected to monocular enucleation. Levels of MHCI heavy chain subunit transcripts in the visual cortex were found to be elevated in response to monocular enucleation. Furthermore, MHCI heavy chain immunoreactivity revealed a banded pattern in layer IV of the visual cortex in enucleated animals, which was not observed in control animals. This pattern of immunoreactivity indicated that higher expression levels were associated with retinal activity coming from the intact eye. Conclusions These data demonstrate that, in the nonhuman primate brain, expression of MHCI molecules is regulated by neuronal activity. Moreover, this study extends previous findings by suggesting a role for neuronal MHCI molecules during synaptogenesis in the visual cortex.
Collapse
Affiliation(s)
- Adema Ribic
- German Primate Center/Leibniz Institute for Primate Research, Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
180
|
Molecular function of microtubule-associated protein 2 for filial imprinting in domestic chicks (Gallus gallus domesticus). Neurosci Res 2011; 69:32-40. [DOI: 10.1016/j.neures.2010.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/10/2010] [Accepted: 09/14/2010] [Indexed: 01/15/2023]
|
181
|
Hirokawa N. From electron microscopy to molecular cell biology, molecular genetics and structural biology: intracellular transport and kinesin superfamily proteins, KIFs: genes, structure, dynamics and functions. Microscopy (Oxf) 2011; 60 Suppl 1:S63-S92. [PMID: 21844601 DOI: 10.1093/jmicro/dfr051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Cells transport and sort various proteins and lipids following synthesis as distinct types of membranous organelles and protein complexes to the correct destination at appropriate velocities. This intracellular transport is fundamental for cell morphogenesis, survival and functioning not only in highly polarized neurons but also in all types of cells in general. By developing quick-freeze electron microscopy (EM), new filamentous structures associated with cytoskeletons are uncovered. The characterization of chemical structures and functions of these new filamentous structures led us to discover kinesin superfamily molecular motors, KIFs. In this review, I discuss the identification of these new structures and characterization of their functions using molecular cell biology and molecular genetics. KIFs not only play significant roles by transporting various cargoes along microtubule rails, but also play unexpected fundamental roles on various important physiological processes such as learning and memory, brain wiring, development of central nervous system and peripheral nervous system, activity-dependent neuronal survival, development of early embryo, left-right determination of our body and tumourigenesis. Furthermore, by combining single-molecule biophysics with structural biology such as cryo-electrom microscopy and X-ray crystallography, atomic structures of KIF1A motor protein of almost all states during ATP hydrolysis have been determined and a common mechanism of motility has been proposed. Thus, this type of studies could be a good example of really integrative multidisciplinary life science in the twenty-first century.
Collapse
Affiliation(s)
- Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, 7-3-1, Bunkyo-ku, Tokyo, Japan 113-0033.
| |
Collapse
|
182
|
Erlbruch A, Hung CW, Seidler J, Borrmann K, Gesellchen F, König N, Kübler D, Herberg FW, Lehmann WD, Bossemeyer D. Uncoupling of bait-protein expression from the prey protein environment adds versatility for cell and tissue interaction proteomics and reveals a complex of CARP-1 and the PKA Cbeta1 subunit. Proteomics 2010; 10:2890-900. [PMID: 20564261 DOI: 10.1002/pmic.200900593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An expression-uncoupled tandem affinity purification assay is introduced which differs from the standard TAP assay by uncoupling the expression of the TAP-bait protein from the target cells. Here, the TAP-tagged bait protein is expressed in Escherichia coli and purified. The two concatenated purification steps of the classical TAP are performed after addition of the purified bait to brain tissue homogenates, cell and nuclear extracts. Without prior genetic manipulation of the target, upscaling, free choice of cell compartments and avoidance of expression triggered heat shock responses could be achieved in one go. By the strategy of separating bait expression from the prey protein environment numerous established, mostly tissue-specific binding partners of the protein kinase A catalytic subunit Cbeta1 were identified, including interactions in binary, ternary and quaternary complexes. In addition, the previously unknown small molecule inhibitor-dependent interaction of Cbeta1 with the cell cycle and apoptosis regulatory protein-1 was verified. The uncoupled tandem affinity purification procedure presented here expands the application range of the in vivo TAP assay and may serve as a simple strategy for identifying cell- and tissue-specific protein complexes.
Collapse
Affiliation(s)
- Andrea Erlbruch
- Structural Biochemistry, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Hamodeh S, Eicke D, Napper R, Harvey R, Sultan F. Population based quantification of dendrites: evidence for the lack of microtubule-associate protein 2a,b in Purkinje cell spiny dendrites. Neuroscience 2010; 170:1004-14. [DOI: 10.1016/j.neuroscience.2010.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/04/2010] [Accepted: 08/11/2010] [Indexed: 01/14/2023]
|
184
|
Kapitein LC, Hoogenraad CC. Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol Cell Neurosci 2010; 46:9-20. [PMID: 20817096 DOI: 10.1016/j.mcn.2010.08.015] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 08/25/2010] [Indexed: 01/01/2023] Open
Abstract
To establish and maintain their polarized morphology, neurons employ active transport driven by cytoskeletal motor proteins to sort cargo between axons and dendrites. These motors can move in a specific direction over either microtubules (kinesins, dynein) or actin filaments (myosins). The basic traffic rules governing polarized transport on the neuronal cytoskeleton have long remained unclear, but recent work has revealed several fundamental sorting principles based on differences in the cytoskeletal organization in axons versus dendrites. We will highlight the basic characteristics of the neuronal cytoskeleton and review existing evidence for microtubule and actin based traffic rules in polarized neuronal transport. We will propose a model in which polarized sorting of cargo is established by recruiting or activating the proper subset of motor proteins, which are subsequently guided to specific directions by the polarized organization of the neuronal cytoskeleton.
Collapse
Affiliation(s)
- Lukas C Kapitein
- Department of Neuroscience, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands
| | | |
Collapse
|
185
|
Haley GE, Kohama SG, Urbanski HF, Raber J. Age-related decreases in SYN levels associated with increases in MAP-2, apoE, and GFAP levels in the rhesus macaque prefrontal cortex and hippocampus. AGE (DORDRECHT, NETHERLANDS) 2010; 32:283-296. [PMID: 20640549 PMCID: PMC2926858 DOI: 10.1007/s11357-010-9137-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 02/16/2010] [Indexed: 05/29/2023]
Abstract
Loss of synaptic integrity in the hippocampus and prefrontal cortex (PFC) may play an integral role in age-related cognitive decline. Previously, we showed age-related increases in the dendritic marker microtubule associated protein 2 (MAP-2) and the synaptic marker synaptophysin (SYN) in mice. Similarly, apolipoprotein E (apoE), involved in lipid transport and metabolism, and glial fibrillary acidic protein (GFAP), a glia specific marker, increase with age in rodents. In this study, we assessed whether these four proteins show similar age-related changes in a nonhuman primate, the rhesus macaque. Free-floating sections from the PFC and hippocampus from adult, middle-aged, and aged rhesus macaques were immunohistochemically labeled for MAP-2, SYN, apoE, and GFAP. Protein levels were measured as area occupied by fluorescence using confocal microscopy as well as by Western blot. In the PFC and hippocampus of adult and middle-aged animals, the levels of SYN, apoE, and GFAP immunoreactivity were comparable but there was a trend towards higher MAP-2 levels in middle-aged than adult animals. There was significantly less SYN and more MAP-2, apoE, and GFAP immunoreactivity in the PFC and hippocampus of aged animals compared to adult or middle-aged animals. Thus, the age-related changes in MAP-2, apoE, and GFAP levels were similar to those previously observed in rodents. On the other hand, the age-related changes in SYN levels were not, but were similar to those previously observed in the aging human brain. Taken together, these data emphasize the value of the rhesus macaque as a pragmatic translational model for human brain aging.
Collapse
Affiliation(s)
- Gwendolen E. Haley
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
- Division of Neuroscience, ONPRC, Oregon Health and Science University, Beaverton, OR 97006 USA
| | - Steven G. Kohama
- Division of Neuroscience, ONPRC, Oregon Health and Science University, Beaverton, OR 97006 USA
| | - Henryk F. Urbanski
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
- Division of Neuroscience, ONPRC, Oregon Health and Science University, Beaverton, OR 97006 USA
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239 USA
- Division of Neuroscience, ONPRC, Oregon Health and Science University, Beaverton, OR 97006 USA
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239 USA
- 3181 SW Sam Jackson Pkwy, Mail Code L-470, Portland, OR 97239 USA
| |
Collapse
|
186
|
Villasana L, Pfankuch T, Raber J. Isoform-dependent effects of apoE on doublecortin-positive cells and microtubule-associated protein 2 immunoreactivity following (137)Cs irradiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:421-426. [PMID: 20458592 DOI: 10.1007/s00411-010-0290-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 04/19/2010] [Indexed: 05/29/2023]
Abstract
Previously we found apoE isoform-dependent effects of (137)Cs irradiation on cognitive function of female mice 3 months following irradiation. Alterations in the number of immature neurons and in the levels of the dendritic marker microtubule-associated protein 2 (MAP-2) might contribute to the cognitive changes following irradiation. Therefore, in the present study we determined if, following (137)Cs irradiation, there are apoE isoform-dependent effects on loss of doublecortin-positive neuroprogenitor cells or MAP-2 immumonoreactivity. In the dentate gyrus, CA1 and CA3 regions of the hippocampus, enthorhinal and sensorimotor cortex, and central and basolateral nuclei of the amygdala of apoE3 female mice, MAP-2 immunoreactivity increased 3 months following (137)Cs irradiation. In addition, at 8 h following irradiation, the number of doublecortin-positive cells was higher in apoE3 than apoE2 or apoE4 mice. Together, these data indicate that brains of apoE3 mice respond differently to (137)Cs irradiation than those of apoE2 or apoE4 mice.
Collapse
Affiliation(s)
- Laura Villasana
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
187
|
Thanseem I, Nakamura K, Miyachi T, Toyota T, Yamada S, Tsujii M, Tsuchiya KJ, Anitha A, Iwayama Y, Yamada K, Hattori E, Matsuzaki H, Matsumoto K, Iwata Y, Suzuki K, Suda S, Kawai M, Sugihara GI, Takebayashi K, Takei N, Ichikawa H, Sugiyama T, Yoshikawa T, Mori N. Further evidence for the role of MET in autism susceptibility. Neurosci Res 2010; 68:137-41. [PMID: 20615438 DOI: 10.1016/j.neures.2010.06.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/28/2010] [Accepted: 06/29/2010] [Indexed: 12/23/2022]
Abstract
MET receptor tyrosine kinase (MET)-mediated signaling has been implicated in multiple aspects of neocortical and cerebellar neuronal growth and maturation. A promoter functional SNP (rs1858830) that disrupts the transcription of MET has been reported to be strongly associated with autism spectrum disorders (ASD) in the Caucasian population. Here, we performed a trio association study of MET with ASD in Japanese subjects (n=126 trios). Based on the HapMap data on the Japanese population, 15 SNPs were chosen for the association study. One SNP located in intron 1, rs38841, showed a nominal association with autism (p=0.044; OR=1.61) when analyzed using the transmission disequilibrium test. To the best of our knowledge, this is the first replication study of the association of MET with autism, in any non-Caucasian population. Association of rs38841 with autism was further confirmed in 252 Caucasian trios from AGRE (p=0.0006). An interesting observation is that all three SNPs of MET (rs1858830, rs38845 and rs38841) shown to be associated with autism in three independent studies including the present one, are located towards the 5'end of the gene at a span of 9.4 kb. Our results provide further evidence for a possible role of MET in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Ismail Thanseem
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Moreira EG, Yu X, Robinson JF, Griffith W, Hong SW, Beyer RP, Bammler TK, Faustman EM. Toxicogenomic profiling in maternal and fetal rodent brains following gestational exposure to chlorpyrifos. Toxicol Appl Pharmacol 2010; 245:310-25. [PMID: 20350560 PMCID: PMC2881838 DOI: 10.1016/j.taap.2010.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/16/2010] [Accepted: 03/20/2010] [Indexed: 11/17/2022]
Abstract
Considering the wide variety of effects that have been reported to occur in the developmental neurotoxicity of chlorpyrifos (CP) and the lack of consensus on their dependence of brain acetylcholinesterase (AChE) activity inhibition, we applied microarray technology to explore dose-dependent alterations in transcriptional response in the fetal and maternal C57BL/6 mouse brain after daily gestational exposure (days 6 to 17) to CP (2, 4, 10, 12 or 15 mg/kg, sc). We identified significantly altered genes across doses and assessed for overrepresentation of Gene Ontology (GO) biological processes and KEGG pathways. We further clustered genes based on their expression profiles across doses and repeated the GO/pathways analysis for each cluster. The dose-effect relationship of CP on gene expression, both at the gene and pathway levels was non-monotonic and not necessarily related to brain AChE inhibition. The largest impact was observed in the 10mg/kg dose group which was also the LOAEL for brain AChE inhibition. In the maternal brain, lower doses (4 mg/kg) influenced GO categories and pathways such as cell adhesion, behavior, lipid metabolism, long-term potentiation, nervous system development, neurogenesis, synaptic transmission. In the fetal brain, lower doses (2 and/or 4 mg/kg) significantly altered cell division, translation, transmission of nerve impulse, chromatin modification, long-term potentiation. In addition, some genes involved in nervous system development and signaling were shown to be specifically influenced by these lower CP doses. Our approach was sensitive and reflected the diversity of responses known to be disrupted by CP and highlighted possible additional consequences of CP neurotoxicity, such as disturbance of the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Estefania G Moreira
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Friedrich MW, Aramuni G, Mank M, Mackinnon JAG, Griesbeck O. Imaging CREB activation in living cells. J Biol Chem 2010; 285:23285-95. [PMID: 20484048 DOI: 10.1074/jbc.m110.124545] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Ca(2+)- and cAMP-responsive element-binding protein (CREB) and the related ATF-1 and CREM are stimulus-inducible transcription factors that link certain forms of cellular activity to changes in gene expression. They are attributed to complex integrative activation characteristics, but current biochemical technology does not allow dynamic imaging of CREB activation in single cells. Using fluorescence resonance energy transfer between mutants of green fluorescent protein we here develop a signal-optimized genetically encoded indicator that enables imaging activation of CREB due to phosphorylation of the critical serine 133. The indicator of CREB activation due to phosphorylation (ICAP) was used to investigate the role of the scaffold and anchoring protein AKAP79/150 in regulating signal pathways converging on CREB. We show that disruption of AKAP79/150-mediated protein kinase A anchoring or knock-down of AKAP150 dramatically reduces the ability of protein kinase A to activate CREB. In contrast, AKAP79/150 regulation of CREB via L-type channels may only have minor importance. ICAP allows dynamic and reversible imaging in living cells and may become useful in studying molecular components and cell-type specificity of activity-dependent gene expression.
Collapse
Affiliation(s)
- Michael W Friedrich
- Max-Planck-Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
190
|
Mechanisms of protein kinase A anchoring. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:235-330. [PMID: 20801421 DOI: 10.1016/s1937-6448(10)83005-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP), which is produced by adenylyl cyclases following stimulation of G-protein-coupled receptors, exerts its effect mainly through the cAMP-dependent serine/threonine protein kinase A (PKA). Due to the ubiquitous nature of the cAMP/PKA system, PKA signaling pathways underlie strict spatial and temporal control to achieve specificity. A-kinase anchoring proteins (AKAPs) bind to the regulatory subunit dimer of the tetrameric PKA holoenzyme and thereby target PKA to defined cellular compartments in the vicinity of its substrates. AKAPs promote the termination of cAMP signals by recruiting phosphodiesterases and protein phosphatases, and the integration of signaling pathways by binding additional signaling proteins. AKAPs are a heterogeneous family of proteins that only display similarity within their PKA-binding domains, amphipathic helixes docking into a hydrophobic groove formed by the PKA regulatory subunit dimer. This review summarizes the current state of information on compartmentalized cAMP/PKA signaling with a major focus on structural aspects, evolution, diversity, and (patho)physiological functions of AKAPs and intends to outline newly emerging directions of the field, such as the elucidation of AKAP mutations and alterations of AKAP expression in human diseases, and the validation of AKAP-dependent protein-protein interactions as new drug targets. In addition, alternative PKA anchoring mechanisms employed by noncanonical AKAPs and PKA catalytic subunit-interacting proteins are illustrated.
Collapse
|
191
|
KIF26A is an unconventional kinesin and regulates GDNF-Ret signaling in enteric neuronal development. Cell 2009; 139:802-13. [PMID: 19914172 DOI: 10.1016/j.cell.2009.10.023] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 04/06/2009] [Accepted: 09/11/2009] [Indexed: 11/24/2022]
Abstract
The kinesin superfamily proteins (KIFs) are motor proteins that transport organelles and protein complexes in a microtubule- and ATP-dependent manner. We identified KIF26A as a new member of the murine KIFs. KIF26A is a rather atypical member as it lacks ATPase activity. Mice with a homozygous deletion of Kif26a developed a megacolon with enteric nerve hyperplasia. Kif26a-/- enteric neurons showed hypersensitivity for GDNF-Ret signaling, and we find that KIF26A suppressed GDNF-Ret signaling by direct binding and inhibition of Grb2, an essential component of GDNF/Akt/ERK signaling. We therefore propose that the unconventional kinesin KIF26A plays a key role in enteric nervous system development by repressing a cell growth signaling pathway.
Collapse
|
192
|
Transgenic expression of Glud1 (glutamate dehydrogenase 1) in neurons: in vivo model of enhanced glutamate release, altered synaptic plasticity, and selective neuronal vulnerability. J Neurosci 2009; 29:13929-44. [PMID: 19890003 DOI: 10.1523/jneurosci.4413-09.2009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effects of lifelong, moderate excess release of glutamate (Glu) in the CNS have not been previously characterized. We created a transgenic (Tg) mouse model of lifelong excess synaptic Glu release in the CNS by introducing the gene for glutamate dehydrogenase 1 (Glud1) under the control of the neuron-specific enolase promoter. Glud1 is, potentially, an important enzyme in the pathway of Glu synthesis in nerve terminals. Increased levels of GLUD protein and activity in CNS neurons of hemizygous Tg mice were associated with increases in the in vivo release of Glu after neuronal depolarization in striatum and in the frequency and amplitude of miniature EPSCs in the CA1 region of the hippocampus. Despite overexpression of Glud1 in all neurons of the CNS, the Tg mice suffered neuronal losses in select brain regions (e.g., the CA1 but not the CA3 region). In vulnerable regions, Tg mice had decreases in MAP2A labeling of dendrites and in synaptophysin labeling of presynaptic terminals; the decreases in neuronal numbers and dendrite and presynaptic terminal labeling increased with advancing age. In addition, the Tg mice exhibited decreases in long-term potentiation of synaptic activity and in spine density in dendrites of CA1 neurons. Behaviorally, the Tg mice were significantly more resistant than wild-type mice to induction and duration of anesthesia produced by anesthetics that suppress Glu neurotransmission. The Glud1 mouse might be a useful model for the effects of lifelong excess synaptic Glu release on CNS neurons and for age-associated neurodegenerative processes.
Collapse
|
193
|
Neurons of the dopaminergic/calcitonin gene-related peptide A11 cell group modulate neuronal firing in the trigeminocervical complex: an electrophysiological and immunohistochemical study. J Neurosci 2009; 29:12532-41. [PMID: 19812328 DOI: 10.1523/jneurosci.2887-09.2009] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Activation of spinal trigeminal afferents innervating the cranial vasculature is likely to play a role in migraine, although some parts of the clinical presentation may have a dopaminergic basis. The A11 nucleus, located in the posterior hypothalamus, provides the only known source of descending dopaminergic innervation for the spinal gray matter. Extracellular recordings were made in the trigeminocervical complex (TCC) in response to electrical stimulation of the dura mater. Receptive fields were characterized by mechanical noxious and innocuous stimulation of the ipsilateral ophthalmic dermatome. Stimulation of the A11 significantly inhibited peri-middle meningeal artery dural and noxious pinch evoked firing of neurons in the TCC. This inhibition was reversed by the D(2) receptor antagonist eticlopride. Lesioning of the A11 significantly facilitated dural and noxious pinch and innocuous brush evoked firing from the TCC. In previous work using immunohistofluorescence, it was shown that D(1) and D(2) receptors were found in the rat TCC, and here we report, in addition, that D(4) and D(5) dopamine receptors are also present, whereas D(3) receptors are not. No dopamine receptors were present in the A11 nucleus itself. However, the A11 does contain dopamine and calcitonin gene-related peptide (CGRP) and, by this combination, is distinct from the neighboring CGRPergic subparafascicular nucleus. Exploration of dopaminergic influences and mechanisms in migraine may open up an almost untapped opportunity to pursue potential new therapeutic options for the disorder.
Collapse
|
194
|
Abstract
This review summarizes some of the topics discussed at the 28th Annual Symposium of the Society of Toxicologic Pathology. The symposium was held in Washington, DC, in 2009 and dealt with unintended adverse events associated with cranial irradiation as part of cancer therapy. We will discuss the importance of considering genetic susceptibility and sex differences in susceptibility to develop these adverse events. Further, we will discuss potential mechanisms contributing to these events, including alterations in neurogenesis and increased oxidative stress following irradiation and potential alterations in synaptic and dendritic markers.
Collapse
Affiliation(s)
- Jacob Raber
- Departments of Behavioral Neuroscience and of Neurology,
and Division of Neuroscience, ONPRC, Oregon Health and Science University,
Portland, Oregon, USA,
| |
Collapse
|
195
|
Maddodi N, Bhat KMR, Devi S, Zhang SC, Setaluri V. Oncogenic BRAFV600E induces expression of neuronal differentiation marker MAP2 in melanoma cells by promoter demethylation and down-regulation of transcription repressor HES1. J Biol Chem 2009; 285:242-54. [PMID: 19880519 DOI: 10.1074/jbc.m109.068668] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
MAP2 is a neuron-specific microtubule-associated protein that binds and stabilizes dendritic microtubules. Previously, we showed that MAP2 expression is (a) activated in cutaneous primary melanoma and (b) inversely associated with melanoma tumor progression. We also showed that ectopic expression of MAP2 in metastatic melanoma cells inhibits cell growth by inducing mitotic spindle defects and apoptosis. However, molecular mechanisms of regulation of MAP2 gene expression in melanoma are not understood. Here, we show that in melanoma cells MAP2 expression is induced by the demethylating agent 5-aza-2'-cytidine, and MAP2 promoter is progressively methylated during melanoma progression, indicating that epigenetic mechanisms are involved in silencing of MAP2 in melanoma. In support of this, methylation of MAP2 promoter DNA in vitro inhibits its activity. Because MAP2 promoter activity levels in melanoma cell lines also correlated with activating mutation in BRAF, a gene that is highly expressed in neurons, we hypothesized that BRAF signaling is involved in MAP2 expression. We show that hyperactivation of BRAF-MEK signaling activates MAP2 expression in melanoma cells by two independent mechanisms, promoter demethylation or down-regulation of neuronal transcription repressor HES1. Our data suggest that BRAF oncogene levels can regulate melanoma neuronal differentiation and tumor progression.
Collapse
Affiliation(s)
- Nityanand Maddodi
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
196
|
Huang YS, Cheng SN, Chueh SH, Tsai YL, Liou NH, Guo YW, Liao MH, Shen LH, Chen CC, Liu JC, Ma KH. Effects of interleukin-15 on neuronal differentiation of neural stem cells. Brain Res 2009; 1304:38-48. [PMID: 19747902 DOI: 10.1016/j.brainres.2009.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 08/28/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
Abstract
Interleukin-15 (IL-15) signaling has pleiotropic actions in many cell types during development and has been best studied in cells of immune system lineage, where IL-15 stimulates proliferation of cytotoxic T cells and induces maturation of natural killer cells. A few reports have indicated that IL-15 and the IL-15 receptor are expressed in central nervous system tissues and neuronal cell lines. Because this aspect of IL-15 action is poorly studied, we used cultured rat neural stem cells (NSCs) to study IL-15 signal transduction and activity. Primary cultures of rat NSCs in culture will form neurospheres and will differentiate into neuron, astrocyte, and oligodendrocyte progenitors under permissive conditions. We found by immunofluorescence that the IL-15Ralpha subunit of the IL-15 receptor was expressed in NSCs and differentiating neurons, but not astrocyte or oligodendrocyte progenitors. We also showed that IL-15 treatment reduced MAP-2 protein levels in neurons and could reduce neurite outgrowth in differentiating neurons but did not affect NSC proliferation, and cell proportions and viability of the corresponding lineage cells. In the presence of a STAT3 inhibitor, Stattic, IL-15 no longer reduced MAP-2 protein levels. IL-15 treatment caused STAT3 phosphorylation. Furthermore, using anti-IL-15Ralpha antibody to block IL-15 signaling completely inhibited IL-15-induced phosphorylation of STAT3 and prevented IL-15 from decreasing neurite outgrowth. In conclusion, IL-15 may influence neural cell differentiation through a signal transduction pathway involving IL-15Ralpha and STAT3. This signal transduction modifies MAP-2 protein levels and, consequently, the differentiation of neurons from NSCs, as evidenced by reduced neurite outgrowth.
Collapse
Affiliation(s)
- Yuahn-Sieh Huang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
The microtubule network and neuronal morphogenesis: Dynamic and coordinated orchestration through multiple players. Mol Cell Neurosci 2009; 43:15-32. [PMID: 19660553 DOI: 10.1016/j.mcn.2009.07.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 07/27/2009] [Indexed: 11/24/2022] Open
Abstract
Nervous system function and plasticity rely on the complex architecture of neuronal networks elaborated during development, when neurons acquire their specific and complex shape. During neuronal morphogenesis, the formation and outgrowth of functionally and structurally distinct axons and dendrites require a coordinated and dynamic reorganization of the microtubule cytoskeleton involving numerous regulators. While most of these factors act directly on microtubules to stabilize them or promote their assembly, depolymerization or fragmentation, others are now emerging as essential regulators of neuronal differentiation by controlling tubulin availability and modulating microtubule dynamics. In this review, we recapitulate how the microtubule network is actively regulated during the successive phases of neuronal morphogenesis, and what are the specific roles of the various microtubule-regulating proteins in that process. We then describe the specific signaling pathways and inter-regulations that coordinate the different activities of these proteins to sustain neuronal development in response to environmental cues.
Collapse
|
198
|
Kuo TY, Hong CJ, Hsueh YP. Bcl11A/CTIP1 regulates expression of DCC and MAP1b in control of axon branching and dendrite outgrowth. Mol Cell Neurosci 2009; 42:195-207. [PMID: 19616629 DOI: 10.1016/j.mcn.2009.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/27/2009] [Accepted: 07/03/2009] [Indexed: 12/14/2022] Open
Abstract
The extension of axon branches is important for target innervation but how axon branching is regulated is currently not well understood. Here, we report that Bcl11A/CTIP1/Evi9, a zinc finger transcription factor, downregulates axon branching. Knockdown of Bcl11A induced axon branching and multi-axon formation, as well as dendrite outgrowth. Due to alternative splicing, a single Bcl11A gene encodes two protein products, Bcl11A-L and -S. Bcl11A-L was found to be the main Bcl11A player in regulation of neurite arborization; Bcl11A-S is an antagonist of Bcl11A-L. Time-lapse study further suggests that Bcl11A-L knockdown enhances axon dynamics and increases the duration of axon outgrowth. Finally, the expression of DCC and MAP1b, two molecules involved in direction and branching of axon outgrowth, is controlled by Bcl11A-L. DCC overexpression rescues the phenotype induced by Bcl11A-L knockdown. In conclusion, this report provides the first evidence that Bcl11A is important for neurite arborization.
Collapse
Affiliation(s)
- Ting-Yu Kuo
- Graduate Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221, Taiwan
| | | | | |
Collapse
|
199
|
Zhong H, Sia GM, Sato TR, Gray NW, Mao T, Khuchua Z, Huganir RL, Svoboda K. Subcellular dynamics of type II PKA in neurons. Neuron 2009; 62:363-74. [PMID: 19447092 PMCID: PMC2702487 DOI: 10.1016/j.neuron.2009.03.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 11/12/2008] [Accepted: 03/18/2009] [Indexed: 02/05/2023]
Abstract
Protein kinase A (PKA) plays multiple roles in neurons. The localization and specificity of PKA are largely controlled by A-kinase anchoring proteins (AKAPs). However, the dynamics of PKA in neurons and the roles of specific AKAPs are poorly understood. We imaged the distribution of type II PKA in hippocampal and cortical layer 2/3 pyramidal neurons in vitro and in vivo. PKA was concentrated in dendritic shafts compared to the soma, axons, and dendritic spines. This spatial distribution was imposed by the microtubule-binding protein MAP2, indicating that MAP2 is the dominant AKAP in neurons. Following cAMP elevation, catalytic subunits dissociated from the MAP2-tethered regulatory subunits and rapidly became enriched in nearby spines. The spatial gradient of type II PKA between dendritic shafts and spines was critical for the regulation of synaptic strength and long-term potentiation. Therefore, the localization and activity-dependent translocation of type II PKA are important determinants of PKA function.
Collapse
Affiliation(s)
- Haining Zhong
- Howard Hughes Medical Institute Janelia Farm Research Campus, Ashburn, VA 20147, USA.
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 2009; 10:319-32. [PMID: 19377501 DOI: 10.1038/nrn2631] [Citation(s) in RCA: 790] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the past decade enormous advances have been made in our understanding of the basic molecular machinery that is involved in the development of neuronal polarity. Far from being mere structural elements, microtubules are emerging as key determinants of neuronal polarity. Here we review the current understanding of the regulation of microtubule assembly, organization and dynamics in axons and dendrites. These studies provide new insight into microtubules' function in neuronal development and their potential contribution to plasticity.
Collapse
|