151
|
Gosavi P, Houghton FJ, McMillan PJ, Hanssen E, Gleeson PA. The Golgi ribbon in mammalian cells negatively regulates autophagy by modulating mTOR activity. J Cell Sci 2018; 131:jcs.211987. [PMID: 29361552 DOI: 10.1242/jcs.211987] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/20/2017] [Indexed: 12/25/2022] Open
Abstract
In vertebrates, individual Golgi stacks are joined into a compact ribbon structure; however, the relevance of a ribbon structure has been elusive. Here, we exploit the finding that the membrane tether of the trans-Golgi network, GCC88 (encoded by GCC1), regulates the balance between Golgi mini-stacks and the Golgi ribbon. Loss of Golgi ribbons in stable cells overexpressing GCC88 resulted in compromised mechanistic target of rapamycin (mTOR) signaling and a dramatic increase in LC3-II-positive autophagosomes, whereas RNAi-mediated depletion of GCC88 restored the Golgi ribbon and reduced autophagy. mTOR was absent from dispersed Golgi mini-stacks whereas recruitment of mTOR to lysosomes was unaffected. We show that the Golgi ribbon is a site for localization and activation of mTOR, a process dependent on the ribbon structure. We demonstrate a strict temporal sequence of fragmentation of Golgi ribbon, loss of Golgi mTOR and subsequent increased autophagy. Golgi ribbon fragmentation has been reported in various neurodegenerative diseases and we demonstrate the potential relevance of our findings in neuronal cells using a model of neurodegeneration. Overall, this study highlights a role for the Golgi ribbon in pathways central to cellular homeostasis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Prajakta Gosavi
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Fiona J Houghton
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul J McMillan
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Eric Hanssen
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
152
|
Gao Y, Wilson GR, Stephenson SEM, Bozaoglu K, Farrer MJ, Lockhart PJ. The emerging role of Rab GTPases in the pathogenesis of Parkinson's disease. Mov Disord 2018; 33:196-207. [DOI: 10.1002/mds.27270] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Yujing Gao
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Gabrielle R. Wilson
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Sarah E. M. Stephenson
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Kiymet Bozaoglu
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| | - Matthew J. Farrer
- Djavad Mowafaghian Centre for Brain Health, Centre of Applied Neurogenetics, Department of Medical Genetics; University of British Columbia; Vancouver British Columbia Canada
| | - Paul J. Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute; Melbourne Victoria Australia
- Department of Paediatrics; The University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|
153
|
Abstract
The small GTPase Rab7 is the main regulator of membrane trafficking at late endosomes. This small GTPase regulates endosome-to-trans Golgi Network trafficking of sorting receptors, membrane fusion of late endosomes to lysosomes, and autophagosomes to lysosomes during autophagy. Rab7, like all Rab GTPases, binds downstream effectors coordinating several divergent pathways. How cells regulate these interactions and downstream functions is not well understood. Recent evidence suggests that Rab7 function can be modulated by the combination of several post-translational modifications that facilitate interactions with one effector while preventing binding to another one. In this review, we discuss recent data on how phosphorylation, palmitoylation and ubiquitination modulate the ability of this small GTPase to orchestrate membrane trafficking at the late endosomes.
Collapse
Affiliation(s)
- Graziana Modica
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada H7V 1B7
| | - Stephane Lefrancois
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec, Canada H7V 1B7.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7
| |
Collapse
|
154
|
Seaman MNJ. Retromer and Its Role in Regulating Signaling at Endosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:137-149. [PMID: 30097774 DOI: 10.1007/978-3-319-96704-2_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The retromer complex is a key element of the endosomal protein sorting machinery being involved in trafficking of proteins from endosomes to the Golgi and also endosomes to the cell surface. There is now accumulating evidence that retromer also has a prominent role in regulating the activity of many diverse signaling proteins that traffic through endosomes and this activity has profound implications for the functioning of many different cell and tissue types from neuronal cells to cells of the immune system to specialized polarized epithelial cells of the retina. In this review, the protein composition of the retromer complex will be described along with many of the accessory factors that facilitate retromer-mediated endosomal protein sorting to detail how retromer activity contributes to the regulation of several distinct signaling pathways.
Collapse
Affiliation(s)
- Matthew N J Seaman
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Addenbrookes Hospital, Cambridge, CB2 0XY, UK.
| |
Collapse
|
155
|
Cui Y, Yang Z, Teasdale RD. The functional roles of retromer in Parkinson's disease. FEBS Lett 2017; 592:1096-1112. [DOI: 10.1002/1873-3468.12931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Yi Cui
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
| | - Zhe Yang
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
| | - Rohan D. Teasdale
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
| |
Collapse
|
156
|
Seaman MNJ. Retromer and the cation-independent mannose 6-phosphate receptor-Time for a trial separation? Traffic 2017; 19:150-152. [PMID: 29135085 PMCID: PMC5814863 DOI: 10.1111/tra.12542] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 12/25/2022]
Abstract
The retromer cargo-selective complex (CSC) comprising Vps35, Vps29 and Vps26 mediates the endosome-to-Golgi retrieval of the cation-independent mannose 6-phosphate receptor (CIMPR). Or does it? Recently published data have questioned the validity of this long-established theory. Here, the evidence for and against a role for the retromer CSC in CIMPR endosome-to-Golgi retrieval is examined in the light of the new data that the SNX-BAR dimer is actually responsible for CIMPR retrieval.
Collapse
Affiliation(s)
- Matthew N J Seaman
- Cambridge Institute for Medical Research, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
157
|
Bärlocher K, Welin A, Hilbi H. Formation of the Legionella Replicative Compartment at the Crossroads of Retrograde Trafficking. Front Cell Infect Microbiol 2017; 7:482. [PMID: 29226112 PMCID: PMC5706426 DOI: 10.3389/fcimb.2017.00482] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Retrograde trafficking from the endosomal system through the Golgi apparatus back to the endoplasmic reticulum is an essential pathway in eukaryotic cells, serving to maintain organelle identity and to recycle empty cargo receptors delivered by the secretory pathway. Intracellular replication of several bacterial pathogens, including Legionella pneumophila, is restricted by the retrograde trafficking pathway. L. pneumophila employs the Icm/Dot type IV secretion system (T4SS) to form the replication-permissive Legionella-containing vacuole (LCV), which is decorated with multiple components of the retrograde trafficking machinery as well as retrograde cargo receptors. The L. pneumophila effector protein RidL is secreted by the T4SS and interferes with retrograde trafficking. Here, we review recent evidence that the LCV interacts with the retrograde trafficking pathway, discuss the possible sites of action and function of RidL in the retrograde route, and put forth the hypothesis that the LCV is an acceptor compartment of retrograde transport vesicles.
Collapse
Affiliation(s)
- Kevin Bärlocher
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Amanda Welin
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
158
|
Toh WH, Chia PZC, Hossain MI, Gleeson PA. GGA1 regulates signal-dependent sorting of BACE1 to recycling endosomes, which moderates Aβ production. Mol Biol Cell 2017; 29:191-208. [PMID: 29142073 PMCID: PMC5909931 DOI: 10.1091/mbc.e17-05-0270] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/16/2017] [Accepted: 11/08/2017] [Indexed: 11/11/2022] Open
Abstract
The diversion of the membrane-bound β-site amyloid precursor protein-(APP) cleaving enzyme (BACE1) from the endolysosomal pathway to recycling endosomes represents an important transport step in the regulation of amyloid beta (Aβ) production. However, the mechanisms that regulate endosome sorting of BACE1 are poorly understood. Here we assessed the transport of BACE1 from early to recycling endosomes and have identified essential roles for the sorting nexin 4 (SNX4)-mediated, signal-independent pathway and for a novel signal-mediated pathway. The signal-mediated pathway is regulated by the phosphorylation of the DXXLL-motif sequence DISLL in the cytoplasmic tail of BACE1. The phosphomimetic S498D BACE1 mutant was trafficked to recycling endosomes at a faster rate compared with wild-type BACE1 or the nonphosphorylatable S498A mutant. The rapid transit of BACE1 S498D from early endosomes was coupled with reduced levels of amyloid precursor protein processing and Aβ production, compared with the S498A mutant. We show that the adaptor, GGA1, and retromer are essential to mediate rapid trafficking of phosphorylated BACE1 to recycling endosomes. In addition, the BACE1 DISLL motif is phosphorylated and regulates endosomal trafficking, in primary neurons. Therefore, post-translational phosphorylation of DISLL enhances the exit of BACE1 from early endosomes, a pathway mediated by GGA1 and retromer, which is important in regulating Aβ production.
Collapse
Affiliation(s)
- Wei Hong Toh
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Pei Zhi Cheryl Chia
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Mohammed Iqbal Hossain
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A Gleeson
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
159
|
Nikolskaya AN, Arighi CN, Huang H, Barker WC, Wu CH. PIRSF Family Classification System for Protein Functional and Evolutionary Analysis. Evol Bioinform Online 2017. [DOI: 10.1177/117693430600200033] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The PIRSF protein classification system ( http://pir.georgetown.edu/pirsf/ ) reflects evolutionary relationships of full-length proteins and domains. The primary PIRSF classification unit is the homeomorphic family, whose members are both homologous (evolved from a common ancestor) and homeomorphic (sharing full-length sequence similarity and a common domain architecture). PIRSF families are curated systematically based on literature review and integrative sequence and functional analysis, including sequence and structure similarity, domain architecture, functional association, genome context, and phyletic pattern. The results of classification and expert annotation are summarized in PIRSF family reports with graphical viewers for taxonomic distribution, domain architecture, family hierarchy, and multiple alignment and phylogenetic tree. The PIRSF system provides a comprehensive resource for bioinformatics analysis and comparative studies of protein function and evolution. Domain or fold-based searches allow identification of evolutionarily related protein families sharing domains or structural folds. Functional convergence and functional divergence are revealed by the relationships between protein classification and curated family functions. The taxonomic distribution allows the identification of lineage-specific or broadly conserved protein families and can reveal horizontal gene transfer. Here we demonstrate, with illustrative examples, how to use the web-based PIRSF system as a tool for functional and evolutionary studies of protein families.
Collapse
Affiliation(s)
| | - Cecilia N. Arighi
- Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology
| | - Hongzhan Huang
- Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology
| | - Winona C. Barker
- Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology
| | - Cathy H. Wu
- Protein Information Resource, Department of Biochemistry and Molecular & Cellular Biology
| |
Collapse
|
160
|
Simonetti B, Danson CM, Heesom KJ, Cullen PJ. Sequence-dependent cargo recognition by SNX-BARs mediates retromer-independent transport of CI-MPR. J Cell Biol 2017; 216:3695-3712. [PMID: 28935633 PMCID: PMC5674890 DOI: 10.1083/jcb.201703015] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/19/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022] Open
Abstract
Endosomal recycling of transmembrane proteins requires sequence-dependent recognition of motifs present within their intracellular cytosolic domains. In this study, we have reexamined the role of retromer in the sequence-dependent endosome-to-trans-Golgi network (TGN) transport of the cation-independent mannose 6-phosphate receptor (CI-MPR). Although the knockdown or knockout of retromer does not perturb CI-MPR transport, the targeting of the retromer-linked sorting nexin (SNX)-Bin, Amphiphysin, and Rvs (BAR) proteins leads to a pronounced defect in CI-MPR endosome-to-TGN transport. The retromer-linked SNX-BAR proteins comprise heterodimeric combinations of SNX1 or SNX2 with SNX5 or SNX6 and serve to regulate the biogenesis of tubular endosomal sorting profiles. We establish that SNX5 and SNX6 associate with the CI-MPR through recognition of a specific WLM endosome-to-TGN sorting motif. From validating the CI-MPR dependency of SNX1/2-SNX5/6 tubular profile formation, we provide a mechanism for coupling sequence-dependent cargo recognition with the biogenesis of tubular profiles required for endosome-to-TGN transport. Therefore, the data presented in this study reappraise retromer's role in CI-MPR transport.
Collapse
Affiliation(s)
- Boris Simonetti
- School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Chris M Danson
- School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Peter J Cullen
- School of Biochemistry, University of Bristol, Bristol, England, UK
| |
Collapse
|
161
|
Banhart S, Rose L, Aeberhard L, Koch-Edelmann S, Heuer D. Chlamydia trachomatis and its interaction with the cellular retromer. Int J Med Microbiol 2017; 308:197-205. [PMID: 29122514 DOI: 10.1016/j.ijmm.2017.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/16/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022] Open
Abstract
Chlamydia trachomatis is an important human pathogen. This obligate intracellular bacterium grows inside the eukaryotic cell in a membrane-bound compartment, the inclusion. Recent global approaches describe the interactions of C. trachomatis with its host cell and indicate the inclusion is an intracellular trafficking hub embedded into the cellular vesicular trafficking pathways recruiting subunits of the retromer protein complex of the host cell. Here we review these recent developments in deciphering Chlamydia-host cell interactions with emphasis on the role of the retromer complex.
Collapse
Affiliation(s)
- Sebastian Banhart
- Division "Sexually Transmitted Bacterial Infections" (FG 19), Robert Koch Institute, Berlin, Germany
| | - Laura Rose
- Division "Sexually Transmitted Bacterial Infections" (FG 19), Robert Koch Institute, Berlin, Germany
| | - Lukas Aeberhard
- Division "Sexually Transmitted Bacterial Infections" (FG 19), Robert Koch Institute, Berlin, Germany
| | - Sophia Koch-Edelmann
- Division "Sexually Transmitted Bacterial Infections" (FG 19), Robert Koch Institute, Berlin, Germany
| | - Dagmar Heuer
- Division "Sexually Transmitted Bacterial Infections" (FG 19), Robert Koch Institute, Berlin, Germany.
| |
Collapse
|
162
|
Chamberland JP, Ritter B. Retromer revisited: Evolving roles for retromer in endosomal sorting. J Cell Biol 2017; 216:3433-3436. [PMID: 29061649 PMCID: PMC5674901 DOI: 10.1083/jcb.201708111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chamberland and Ritter discuss work from Kvainickas et al. and Simonetti et al. demonstrating a retromer-independent function of SNX-BAR proteins in endosomal recycling. The highly conserved retromer complex has been linked to cargo retrieval from endosomes to the trans-Golgi network. In this issue, Kvainickas et al. (2017. J. Cell Biol.https://doi.org/10.1083/jcb.201702137) and Simonetti et al. (2017. J. Cell Biol.https://doi.org/10.1083/jcb.201703015) fundamentally question the current retromer model and demonstrate that in mammalian cells, the individual retromer subcomplexes have functionally diverged to organize multiple distinct sorting pathways.
Collapse
Affiliation(s)
- John P Chamberland
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Brigitte Ritter
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| |
Collapse
|
163
|
McNally KE, Faulkner R, Steinberg F, Gallon M, Ghai R, Pim D, Langton P, Pearson N, Danson CM, Nägele H, Morris LL, Singla A, Overlee BL, Heesom KJ, Sessions R, Banks L, Collins BM, Berger I, Billadeau DD, Burstein E, Cullen PJ. Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat Cell Biol 2017; 19:1214-1225. [PMID: 28892079 PMCID: PMC5790113 DOI: 10.1038/ncb3610] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/10/2017] [Indexed: 02/08/2023]
Abstract
Following endocytosis into the endosomal network, integral membrane proteins undergo sorting for lysosomal degradation or are retrieved and recycled back to the cell surface. Here we describe the discovery of an ancient and conserved multiprotein complex that orchestrates cargo retrieval and recycling and, importantly, is biochemically and functionally distinct from the established retromer pathway. We have called this complex 'retriever'; it is a heterotrimer composed of DSCR3, C16orf62 and VPS29, and bears striking similarity to retromer. We establish that retriever associates with the cargo adaptor sorting nexin 17 (SNX17) and couples to CCC (CCDC93, CCDC22, COMMD) and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of α5β1 integrin. Through quantitative proteomic analysis, we identify over 120 cell surface proteins, including numerous integrins, signalling receptors and solute transporters, that require SNX17-retriever to maintain their surface levels. Our identification of retriever establishes a major endosomal retrieval and recycling pathway.
Collapse
Affiliation(s)
- Kerrie E McNally
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Rebecca Faulkner
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Florian Steinberg
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, 79104 Freiburg, Germany
| | - Matthew Gallon
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Rajesh Ghai
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David Pim
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | - Paul Langton
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Neil Pearson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Chris M Danson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Heike Nägele
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, 79104 Freiburg, Germany
| | - Lindsey L Morris
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Amika Singla
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Brittany L Overlee
- Department of Biochemistry and Molecular Biology, and Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Richard Sessions
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | - Brett M Collins
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Imre Berger
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Daniel D Billadeau
- Department of Biochemistry and Molecular Biology, and Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ezra Burstein
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
164
|
Kvainickas A, Jimenez-Orgaz A, Nägele H, Hu Z, Dengjel J, Steinberg F. Cargo-selective SNX-BAR proteins mediate retromer trimer independent retrograde transport. J Cell Biol 2017; 216:3677-3693. [PMID: 28935632 PMCID: PMC5674888 DOI: 10.1083/jcb.201702137] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/10/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
Kvainickas et al. show that the retromer cargo CI-MPR does not recycle from endosomes to the trans-Golgi network through interactions with the core retromer trimer. Instead, CI-MPR depends on cargo-selective SNX-BAR proteins, which function independently of the core retromer trimer. The retromer complex, which recycles the cation-independent mannose 6-phosphate receptor (CI-MPR) from endosomes to the trans-Golgi network (TGN), is thought to consist of a cargo-selective VPS26–VPS29–VPS35 trimer and a membrane-deforming subunit of sorting nexin (SNX)–Bin, Amphyphysin, and Rvs (BAR; SNX-BAR) proteins. In this study, we demonstrate that heterodimers of the SNX-BAR proteins, SNX1, SNX2, SNX5, and SNX6, are the cargo-selective elements that mediate the retrograde transport of CI-MPR from endosomes to the TGN independently of the core retromer trimer. Using quantitative proteomics, we also identify the IGF1R, among more potential cargo, as another SNX5 and SNX6 binding receptor that recycles through SNX-BAR heterodimers, but not via the retromer trimer, in a ligand- and activation-dependent manner. Overall, our data redefine the mechanics of retromer-based sorting and call into question whether retromer indeed functions as a complex of SNX-BAR proteins and the VPS26–VPS29–VPS35 trimer.
Collapse
Affiliation(s)
- Arunas Kvainickas
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - Ana Jimenez-Orgaz
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - Heike Nägele
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - Zehan Hu
- Department of Biology, Fribourg University, Fribourg, Switzerland
| | - Jörn Dengjel
- Department of Biology, Fribourg University, Fribourg, Switzerland
| | - Florian Steinberg
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| |
Collapse
|
165
|
Association between PARK16 and Parkinson's disease: A meta-analysis. Neurosci Lett 2017; 657:179-188. [PMID: 28807727 DOI: 10.1016/j.neulet.2017.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 06/21/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022]
Abstract
Recent years, several case-control studies reported that two polymorphisms (rs947211 and 1572913) within the PARK16 locus were associated with the Parkinson's disease (PD). However, the results were still controversial. Herein, we conducted a comprehensive meta-analysis to estimate the associations between two polymorphisms and PD. Seven databases (PubMed, Google Scholar, EMBASE, Web of Science, CNKI (China National Knowledge Infrastructure), VIP and Wanfang) were searched to identify the eligible studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to evaluate the associations of two polymorphisms with PD susceptibility. Totally, 15 studies with 6637 cases and 6774 controls were included in our meta-analysis. The results showed that rs947211 variants were associated with a decreased risk of PD in overall population. Stratified analysis found that rs947211 variants were associated with a significantly decreased risk of PD in Northeast Asian population, but a slightly decreased risk of PD in Southeast Asian and Caucasian population. With regard to rs1572913 polymorphism, the results suggested that rs1572913 variants contribute to decrease the risk of PD. Therefore, our meta-analysis suggested that rs947211 variants (A allele, AG and GG genotypes) may decrease the risk of PD in overall population, particularly in Northeast Asian population; and T allele, TC and TT genotypes of rs1572913 variants contributed to decrease the risk of PD.
Collapse
|
166
|
Jules F, Sauvageau E, Dumaresq-Doiron K, Mazzaferri J, Haug-Kröper M, Fluhrer R, Costantino S, Lefrancois S. CLN5 is cleaved by members of the SPP/SPPL family to produce a mature soluble protein. Exp Cell Res 2017; 357:40-50. [PMID: 28442266 DOI: 10.1016/j.yexcr.2017.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 11/30/2022]
Abstract
The Neuronal ceroid lipofuscinoses (NCLs) are a group of recessive disorders of childhood with overlapping symptoms including vision loss, ataxia, cognitive regression and premature death. 14 different genes have been linked to NCLs (CLN1-CLN14), but the functions of the proteins encoded by the majority of these genes have not been fully elucidated. Mutations in the CLN5 gene are responsible for the Finnish variant late-infantile form of NCL (Finnish vLINCL). CLN5 is translated as a 407 amino acid transmembrane domain containing protein that is heavily glycosylated, and subsequently cleaved into a mature soluble protein. Functionally, CLN5 is implicated in the recruitment of the retromer complex to endosomes, which is required to sort the lysosomal sorting receptors from endosomes to the trans-Golgi network. The mechanism that processes CLN5 into a mature soluble protein is currently not known. Herein, we demonstrate that CLN5 is initially translated as a type II transmembrane protein and subsequently cleaved by SPPL3, a member of the SPP/SPPL intramembrane protease family, into a mature soluble protein consisting of residues 93-407. The remaining N-terminal fragment is then cleaved by SPPL3 and SPPL2b and degraded in the proteasome. This work further characterizes the biology of CLN5 in the hopes of identifying a novel therapeutic strategy for affected children.
Collapse
Affiliation(s)
- Felix Jules
- Centre INRS-Institut Armand-Frappier, INRS, Laval, Canada H7V 1B7
| | | | | | - Javier Mazzaferri
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada H1T 2M4
| | - Martina Haug-Kröper
- Biomedical Center (BMC), Institute for Metabolic Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany
| | - Regina Fluhrer
- Biomedical Center (BMC), Institute for Metabolic Biochemistry, Ludwig-Maximilians University Munich, Munich, Germany; DZNE - German Center for Neurodegenerative Diseases, Munich, Germany
| | - Santiago Costantino
- Département d'Ophtalmologie et Institut de Génie Biomédical, Université de Montréal, Montréal, Canada H3T 1J4; Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada H1T 2M4
| | - Stephane Lefrancois
- Centre INRS-Institut Armand-Frappier, INRS, Laval, Canada H7V 1B7; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada H3A 2B2.
| |
Collapse
|
167
|
McMillan KJ, Korswagen HC, Cullen PJ. The emerging role of retromer in neuroprotection. Curr Opin Cell Biol 2017; 47:72-82. [PMID: 28399507 PMCID: PMC5677836 DOI: 10.1016/j.ceb.2017.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 11/26/2022]
Abstract
Efficient sorting and transportation of integral membrane proteins, such as ion channels, nutrient transporters, signalling receptors, cell-cell and cell-matrix adhesion molecules is essential for the function of cellular organelles and hence organism development and physiology. Retromer is a master controller of integral membrane protein sorting and transport through one of the major sorting station within eukaryotic cells, the endosomal network. Subtle de-regulation of retromer is an emerging theme in the pathoetiology of Parkinson's disease. Here we summarise recent advances in defining the neuroprotective role of retromer and how its de-regulation may contribute to Parkinson's disease by interfering with: lysosomal health and protein degradation, association with accessory proteins including the WASH complex and mitochondrial health.
Collapse
Affiliation(s)
- Kirsty J McMillan
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD, UK
| | - Hendrick C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD, UK.
| |
Collapse
|
168
|
The Retromer Supports AMPA Receptor Trafficking During LTP. Neuron 2017; 94:74-82.e5. [PMID: 28384478 DOI: 10.1016/j.neuron.2017.03.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/24/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
Alterations in the function of the retromer, a multisubunit protein complex that plays a specialized role in endosomal sorting, have been linked to Alzheimer's and Parkinson's diseases, yet little is known about the retromer's role in the mature brain. Using in vivo knockdown of the critical retromer component VPS35, we demonstrate a specific role for this endosomal sorting complex in the trafficking of AMPA receptors during NMDA-receptor-dependent LTP at mature hippocampal synapses. The impairment of LTP due to VPS35 knockdown was mechanistically independent of any role of the retromer in the production of Aβ from APP. Finally, we find surprising differences between Alzheimer's- and Parkinson's-disease-linked VPS35 mutations in supporting this pathway. These findings demonstrate a key role for the retromer in LTP and provide insights into how retromer malfunction in the mature brain may contribute to symptoms of common neurodegenerative diseases. VIDEO ABSTRACT.
Collapse
|
169
|
Abubakar YS, Zheng W, Olsson S, Zhou J. Updated Insight into the Physiological and Pathological Roles of the Retromer Complex. Int J Mol Sci 2017; 18:ijms18081601. [PMID: 28757549 PMCID: PMC5577995 DOI: 10.3390/ijms18081601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022] Open
Abstract
Retromer complexes mediate protein trafficking from the endosomes to the trans-Golgi network (TGN) or through direct recycling to the plasma membrane. In yeast, they consist of a conserved trimer of the cargo selective complex (CSC), Vps26-Vps35-Vps29 and a dimer of sorting nexins (SNXs), Vps5-Vps17. In mammals, the CSC interacts with different kinds of SNX proteins in addition to the mammalian homologues of Vps5 and Vps17, which further diversifies retromer functions. The retromer complex plays important roles in many cellular processes including restriction of invading pathogens. In this review, we summarize some recent developments in our understanding of the physiological and pathological functions of the retromer complex.
Collapse
Affiliation(s)
- Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Zhou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
170
|
Siupka P, Hersom MN, Lykke-Hartmann K, Johnsen KB, Thomsen LB, Andresen TL, Moos T, Abbott NJ, Brodin B, Nielsen MS. Bidirectional apical-basal traffic of the cation-independent mannose-6-phosphate receptor in brain endothelial cells. J Cereb Blood Flow Metab 2017; 37:2598-2613. [PMID: 28337939 PMCID: PMC5531359 DOI: 10.1177/0271678x17700665] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brain capillary endothelium mediates the exchange of nutrients between blood and brain parenchyma. This barrier function of the brain capillaries also limits passage of pharmaceuticals from blood to brain, which hinders treatment of several neurological disorders. Receptor-mediated transport has been suggested as a potential pharmaceutical delivery route across the brain endothelium, e.g. reports have shown that the transferrin receptor (TfR) facilitates transcytosis of TfR antibodies, but it is not known whether this recycling receptor itself traffics from apical to basal membrane in the process. Here, we elucidate the endosomal trafficking of the retrograde transported cation-independent mannose-6-phosphate receptor (MPR300) in primary cultures of brain endothelial cells (BECs) of porcine and bovine origin. Receptor expression and localisation of MPR300 in the endo-lysosomal system and trafficking of internalised receptor are analysed. We also demonstrate that MPR300 can undergo bidirectional apical-basal trafficking in primary BECs in co-culture with astrocytes. This is, to our knowledge, the first detailed study of retrograde transported receptor trafficking in BECs, and the study demonstrates that MPR300 can be transported from the luminal to abluminal membrane and reverse. Such trafficking of MPR300 suggests that retrograde transported receptors in general may provide a mechanism for transport of pharmaceuticals into the brain.
Collapse
Affiliation(s)
- Piotr Siupka
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark.,2 Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Aarhus, Denmark
| | - Maria Ns Hersom
- 2 Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Aarhus, Denmark.,3 Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | - Kasper B Johnsen
- 2 Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Aarhus, Denmark.,4 Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,5 Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Lyngby, Denmark
| | - Louiza B Thomsen
- 2 Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Aarhus, Denmark.,4 Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas L Andresen
- 2 Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Aarhus, Denmark.,5 Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Lyngby, Denmark
| | - Torben Moos
- 2 Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Aarhus, Denmark.,4 Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - N Joan Abbott
- 6 Institute of Pharmaceutical Science, King's College London, London, UK
| | - Birger Brodin
- 2 Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Aarhus, Denmark.,3 Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Morten S Nielsen
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark.,2 Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery, Aarhus, Denmark
| |
Collapse
|
171
|
Sun Q, Yong X, Sun X, Yang F, Dai Z, Gong Y, Zhou L, Zhang X, Niu D, Dai L, Liu JJ, Jia D. Structural and functional insights into sorting nexin 5/6 interaction with bacterial effector IncE. Signal Transduct Target Ther 2017; 2:17030. [PMID: 29263922 PMCID: PMC5661634 DOI: 10.1038/sigtrans.2017.30] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/11/2017] [Accepted: 04/27/2017] [Indexed: 02/05/2023] Open
Abstract
The endosomal trafficking pathways are essential for many cellular activities. They are also important targets by many intracellular pathogens. Key regulators of the endosomal trafficking include the retromer complex and sorting nexins (SNXs). Chlamydia trachomatis effector protein IncE directly targets the retromer components SNX5 and SNX6 and suppresses retromer-mediated transport, but the exact mechanism has remained unclear. We present the crystal structure of the PX domain of SNX5 in complex with IncE, showing that IncE binds to a highly conserved hydrophobic groove of SNX5. The unique helical hairpin of SNX5/6 is essential for binding, explaining the specificity of SNX5/6 for IncE. The SNX5/6–IncE interaction is required for cellular localization of IncE and its inhibitory function. Mechanistically, IncE inhibits the association of CI-MPR cargo with retromer-containing endosomal subdomains. Our study provides new insights into the regulation of retromer-mediated transport and illustrates the intricate competition between host and pathogens in controlling cellular trafficking.
Collapse
Affiliation(s)
- Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xin Yong
- Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaodong Sun
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Fan Yang
- Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhonghua Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yanqiu Gong
- Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Liming Zhou
- Department of Pharmacology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xia Zhang
- Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Dawen Niu
- Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Lunzhi Dai
- Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Da Jia
- Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
172
|
Abstract
Melanoma antigen L2 (MAGEL2 or MAGE-L2) is a member of the MAGE family of ubiquitin ligase regulators. It is maternally imprinted and often paternally deleted or mutated in the related neurodevelopmental syndromes, Prader-Willi Syndrome (PWS) and Schaaf-Yang Syndrome (SHFYNG). MAGEL2 is highly expressed in the hypothalamus and plays an important role in a fundamental cellular process that recycles membrane proteins from endosomes through the retromer sorting pathway. MAGEL2 is part of a multi-subunit protein complex consisting of MAGEL2, the TRIM27 E3 ubiquitin ligase, and the USP7 deubiquitinating enzyme. The MAGEL2-USP7-TRIM27 (or MUST) complex facilitates the retromer recycling pathway through ubiquitination and activation of the WASH actin nucleation promoting factor. This review provides an overview of the MAGE protein family of ubiquitin ligases regulators and details the molecular and cellular role of MAGEL2 in ubiquitination, actin regulation and endosomal sorting processes, as well as MAGEL2 implications in PWS and SHFYNG disorders. The physiological functions of MAGEL2, elucidated through the study of Magel2 knockout mouse models, are also discussed.
Collapse
|
173
|
Kim MJ, Deng HX, Wong YC, Siddique T, Krainc D. The Parkinson's disease-linked protein TMEM230 is required for Rab8a-mediated secretory vesicle trafficking and retromer trafficking. Hum Mol Genet 2017; 26:729-741. [PMID: 28115417 DOI: 10.1093/hmg/ddw413] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/30/2016] [Indexed: 11/14/2022] Open
Abstract
TMEM230 is a newly identified Parkinson's disease (PD) gene encoding a transmembrane protein whose cellular and pathogenic roles remain largely unknown. Here, we demonstrate that loss of TMEM230 disrupts retromer cargo CI-M6PR (cation-independent mannose 6-phosphate receptor) trafficking and autophagic cargo degradation rates. TMEM230 depletion further inhibits extracellular secretion of the autophagic cargo p62 and immature lysosomal hydrolases in Golgi-derived vesicles leading to their intracellular accumulation, and is specifically mediated by loss of the small GTPase Rab8a. Importantly, PD-linked TMEM230 variants also induce retromer mislocalization, defective cargo trafficking, and impaired autophagy. Finally, we show that knockdown of another PD gene, LRRK2, which phosphorylates Rab8a, similarly impairs retromer trafficking, secretory autophagy and Golgi-derived vesicle secretion, thus demonstrating converging roles of two PD genes TMEM230 and LRRK2 on Rab8a function, and suggesting that retromer and secretory dysfunction play an important role in PD pathogenesis.
Collapse
|
174
|
Modica G, Skorobogata O, Sauvageau E, Vissa A, Yip CM, Kim PK, Wurtele H, Lefrancois S. Rab7 palmitoylation is required for efficient endosome-to-TGN trafficking. J Cell Sci 2017; 130:2579-2590. [PMID: 28600323 DOI: 10.1242/jcs.199729] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
Retromer is a multimeric protein complex that mediates endosome-to-trans-Golgi network (TGN) and endosome-to-plasma membrane trafficking of integral membrane proteins. Dysfunction of this complex has been linked to Alzheimer's disease and Parkinson's disease. The recruitment of retromer to endosomes is regulated by Rab7 (also known as RAB7A) to coordinate endosome-to-TGN trafficking of cargo receptor complexes. Rab7 is also required for the degradation of internalized integral membrane proteins, such as the epidermal growth factor receptor (EGFR). We found that Rab7 is palmitoylated and that this modification is not required for membrane anchoring. Palmitoylated Rab7 colocalizes efficiently with and has a higher propensity to interact with retromer than nonpalmitoylatable Rab7. Rescue of Rab7 knockout cells by expressing wild-type Rab7 restores efficient endosome-to-TGN trafficking, while rescue with nonpalmitoylatable Rab7 does not. Interestingly, Rab7 palmitoylation does not appear to be required for the degradation of EGFR or for its interaction with its effector, Rab-interacting lysosomal protein (RILP). Overall, our results indicate that Rab7 palmitoylation is required for the spatiotemporal recruitment of retromer and efficient endosome-to-TGN trafficking of the lysosomal sorting receptors.
Collapse
Affiliation(s)
- Graziana Modica
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Olga Skorobogata
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Etienne Sauvageau
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada
| | - Adriano Vissa
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Biochemistry, University of Toronto, Toronto M5G 1X8, Canada.,Institute of Biomaterials & Biomedical Engineering and Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Christopher M Yip
- Department of Biochemistry, University of Toronto, Toronto M5G 1X8, Canada.,Institute of Biomaterials & Biomedical Engineering and Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Peter K Kim
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Department of Biochemistry, University of Toronto, Toronto M5G 1X8, Canada
| | - Hugo Wurtele
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal H1T 2M4, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Stephane Lefrancois
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Laval, Québec H7V 1B7, Canada .,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
175
|
Farmer T, Reinecke JB, Xie S, Bahl K, Naslavsky N, Caplan S. Control of mitochondrial homeostasis by endocytic regulatory proteins. J Cell Sci 2017; 130:2359-2370. [PMID: 28596240 DOI: 10.1242/jcs.204537] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/31/2017] [Indexed: 12/19/2022] Open
Abstract
Mitochondria play essential roles in cellular energy processes, including ATP production, control of reactive oxygen species (ROS) and apoptosis. While mitochondrial function is regulated by the dynamics of fusion and fission, mitochondrial homeostasis remains incompletely understood. Recent studies implicate dynamin-2 and dynamin-related protein-1 (Drp1, also known as DNM1L), as GTPases involved in mitochondrial fission. Here, we identify the ATPase and endocytic protein EHD1 as a novel regulator of mitochondrial fission. EHD1 depletion induces a static and elongated network of mitochondria in the cell. However, unlike dynamin-2 and Drp1, whose depletion protects cells from staurosporine-induced mitochondrial fragmentation, EHD1-depleted cells remain sensitive to staurosporine, suggesting a different mechanism for EHD1 function. Recent studies have demonstrated that VPS35 and the retromer complex influence mitochondrial homeostasis either by Mul1-mediated ubiquitylation and degradation of the fusion protein Mfn2, or by removal of inactive Drp1 from the mitochondrial membrane. We demonstrate that EHD1 and its interaction partner rabankyrin-5 interact with the retromer complex to influence mitochondrial dynamics, likely by inducing VPS35-mediated removal of inactive Drp1 from mitochondrial membranes. Our study sheds light on mitochondrial dynamics, expanding a new paradigm of endocytic protein regulation of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Trey Farmer
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA.,The Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James B Reinecke
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA.,The Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shuwei Xie
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA.,The Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kriti Bahl
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA.,The Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Naava Naslavsky
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA .,The Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA .,The Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
176
|
McMillan KJ, Gallon M, Jellett AP, Clairfeuille T, Tilley FC, McGough I, Danson CM, Heesom KJ, Wilkinson KA, Collins BM, Cullen PJ. Atypical parkinsonism-associated retromer mutant alters endosomal sorting of specific cargo proteins. J Cell Biol 2017; 214:389-99. [PMID: 27528657 PMCID: PMC4987296 DOI: 10.1083/jcb.201604057] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/22/2016] [Indexed: 01/12/2023] Open
Abstract
Mutations in the retromer complex, which is involved in sorting integral membrane proteins from endosomes to cellular compartments, are associated with atypical parkinsonism, but how these mutations affect retromer function remains unclear. Through a quantitative proteomic analysis of the retromer interactome, McMillan et al. reveal a new mechanism for perturbed endosomal sorting in parkinsonism. The retromer complex acts as a scaffold for endosomal protein complexes that sort integral membrane proteins to various cellular destinations. The retromer complex is a heterotrimer of VPS29, VPS35, and VPS26. Two of these paralogues, VPS26A and VPS26B, are expressed in humans. Retromer dysfunction is associated with neurodegenerative disease, and recently, three VPS26A mutations (p.K93E, p.M112V, and p.K297X) were discovered to be associated with atypical parkinsonism. Here, we apply quantitative proteomics to provide a detailed description of the retromer interactome. By establishing a comparative proteomic methodology, we identify how this interactome is perturbed in atypical parkinsonism-associated VPS26A mutants. In particular, we describe a selective defect in the association of VPS26A (p.K297X) with the SNX27 cargo adaptor. By showing how a retromer mutant leads to altered endosomal sorting of specific PDZ ligand–containing cargo proteins, we reveal a new mechanism for perturbed endosomal cargo sorting in atypical parkinsonism.
Collapse
Affiliation(s)
- Kirsty J McMillan
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| | - Matthew Gallon
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| | - Adam P Jellett
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| | - Thomas Clairfeuille
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Frances C Tilley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| | - Ian McGough
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| | - Chris M Danson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| | - Kevin A Wilkinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Peter J Cullen
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, England, UK
| |
Collapse
|
177
|
Aoki Y, Manzano R, Lee Y, Dafinca R, Aoki M, Douglas AGL, Varela MA, Sathyaprakash C, Scaber J, Barbagallo P, Vader P, Mäger I, Ezzat K, Turner MR, Ito N, Gasco S, Ohbayashi N, El Andaloussi S, Takeda S, Fukuda M, Talbot K, Wood MJA. C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia. Brain 2017; 140:887-897. [PMID: 28334866 DOI: 10.1093/brain/awx024] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 12/28/2016] [Indexed: 11/13/2022] Open
Abstract
A non-coding hexanucleotide repeat expansion in intron 1 of the C9orf72 gene is the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), however, the precise molecular mechanism by which the C9orf72 hexanucleotide repeat expansion directs C9ALS/FTD pathogenesis remains unclear. Here, we report a novel disease mechanism arising due to the interaction of C9ORF72 with the RAB7L1 GTPase to regulate vesicle trafficking. Endogenous interaction between C9ORF72 and RAB7L1 was confirmed in human SH-SY5Y neuroblastoma cells. The C9orf72 hexanucleotide repeat expansion led to haploinsufficiency resulting in severely defective intracellular and extracellular vesicle trafficking and a dysfunctional trans-Golgi network phenotype in patient-derived fibroblasts and induced pluripotent stem cell-derived motor neurons. Genetic ablation of RAB7L1or C9orf72 in SH-SY5Y cells recapitulated the findings in C9ALS/FTD fibroblasts and induced pluripotent stem cell neurons. When C9ORF72 was overexpressed or antisense oligonucleotides were targeted to the C9orf72 hexanucleotide repeat expansion to upregulate normal variant 1 transcript levels, the defective vesicle trafficking and dysfunctional trans-Golgi network phenotypes were reversed, suggesting that both loss- and gain-of-function mechanisms play a role in disease pathogenesis. In conclusion, we have identified a novel mechanism for C9ALS/FTD pathogenesis highlighting the molecular regulation of intracellular and extracellular vesicle trafficking as an important pathway in C9ALS/FTD pathogenesis.
Collapse
Affiliation(s)
- Yoshitsugu Aoki
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Raquel Manzano
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Yi Lee
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Ruxandra Dafinca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Misako Aoki
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Andrew G L Douglas
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Miguel A Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Chaitra Sathyaprakash
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Jakub Scaber
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Paola Barbagallo
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Pieter Vader
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.,Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Kariem Ezzat
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.,Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Naoki Ito
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Samanta Gasco
- Lagenbio, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragon (I2A), Health Research Institute of Aragon (IIS), University of Zaragoza, Zaragoza, Spain
| | - Norihiko Ohbayashi
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.,Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| |
Collapse
|
178
|
Bäck N, Kanerva K, Kurutihalli V, Yanik A, Ikonen E, Mains RE, Eipper BA. The endocytic pathways of a secretory granule membrane protein in HEK293 cells: PAM and EGF traverse a dynamic multivesicular body network together. Eur J Cell Biol 2017; 96:407-417. [PMID: 28377049 DOI: 10.1016/j.ejcb.2017.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 12/31/2022] Open
Abstract
Peptidylglycine α-amidating monooxygenase (PAM) is highly expressed in neurons and endocrine cells, where it catalyzes one of the final steps in the biosynthesis of bioactive peptides. PAM is also expressed in unicellular organisms such as Chlamydomonas reinhardtii, which do not store peptides in secretory granules. As for other granule membrane proteins, PAM is retrieved from the cell surface and returned to the trans-Golgi network. This pathway involves regulated entry of PAM into multivesicular body intralumenal vesicles (ILVs). The aim of this study was defining the endocytic pathways utilized by PAM in cells that do not store secretory products in granules. Using stably transfected HEK293 cells, endocytic trafficking of PAM was compared to that of the mannose 6-phosphate (MPR) and EGF (EGFR) receptors, established markers for the endosome to trans-Golgi network and degradative pathways, respectively. As in neuroendocrine cells, PAM internalized by HEK293 cells accumulated in the trans-Golgi network. Based on surface biotinylation, >70% of the PAM on the cell surface was recovered intact after a 4h chase and soluble, bifunctional PAM was produced. Endosomes containing PAM generally contained both EGFR and MPR and ultrastructural analysis confirmed that all three cargos accumulated in ILVs. PAM containing multivesicular bodies made frequent dynamic tubular contacts with younger and older multivesicular bodies. Frequent dynamic contacts were observed between lysosomes and PAM containing early endosomes and multivesicular bodies. The ancient ability of PAM to localize to ciliary membranes, which release bioactive ectosomes, may be related to its ability to accumulate in ILVs and exosomes.
Collapse
Affiliation(s)
- Nils Bäck
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Kristiina Kanerva
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Andrew Yanik
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
179
|
Elwell CA, Czudnochowski N, von Dollen J, Johnson JR, Nakagawa R, Mirrashidi K, Krogan NJ, Engel JN, Rosenberg OS. Chlamydia interfere with an interaction between the mannose-6-phosphate receptor and sorting nexins to counteract host restriction. eLife 2017; 6. [PMID: 28252385 PMCID: PMC5364026 DOI: 10.7554/elife.22709] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/26/2017] [Indexed: 02/02/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen that resides in a membrane-bound compartment, the inclusion. The bacteria secrete a unique class of proteins, Incs, which insert into the inclusion membrane and modulate the host-bacterium interface. We previously reported that IncE binds specifically to the Sorting Nexin 5 Phox domain (SNX5-PX) and disrupts retromer trafficking. Here, we present the crystal structure of the SNX5-PX:IncE complex, showing IncE bound to a unique and highly conserved hydrophobic groove on SNX5. Mutagenesis of the SNX5-PX:IncE binding surface disrupts a previously unsuspected interaction between SNX5 and the cation-independent mannose-6-phosphate receptor (CI-MPR). Addition of IncE peptide inhibits the interaction of CI-MPR with SNX5. Finally, C. trachomatis infection interferes with the SNX5:CI-MPR interaction, suggesting that IncE and CI-MPR are dependent on the same binding surface on SNX5. Our results provide new insights into retromer assembly and underscore the power of using pathogens to discover disease-related cell biology.
Collapse
Affiliation(s)
- Cherilyn A Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Nadine Czudnochowski
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - John von Dollen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Rachel Nakagawa
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Kathleen Mirrashidi
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,QB3, California Institute for Quantitative Biosciences, San Francisco, United States.,Gladstone Institutes, San Francisco, United States
| | - Joanne N Engel
- Department of Medicine, University of California, San Francisco, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Oren S Rosenberg
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
180
|
Role of the VPS35 D620N mutation in Parkinson's disease. Parkinsonism Relat Disord 2017; 36:10-18. [DOI: 10.1016/j.parkreldis.2016.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/29/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022]
|
181
|
Niu Y, Dai Z, Liu W, Zhang C, Yang Y, Guo Z, Li X, Xu C, Huang X, Wang Y, Shi YS, Liu JJ. Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory. eLife 2017; 6. [PMID: 28134614 PMCID: PMC5323044 DOI: 10.7554/elife.20991] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/28/2017] [Indexed: 11/14/2022] Open
Abstract
SNX6 is a ubiquitously expressed PX-BAR protein that plays important roles in retromer-mediated retrograde vesicular transport from endosomes. Here we report that CNS-specific Snx6 knockout mice exhibit deficits in spatial learning and memory, accompanied with loss of spines from distal dendrites of hippocampal CA1 pyramidal cells. SNX6 interacts with Homer1b/c, a postsynaptic scaffold protein crucial for the synaptic distribution of other postsynaptic density (PSD) proteins and structural integrity of dendritic spines. We show that SNX6 functions independently of retromer to regulate distribution of Homer1b/c in the dendritic shaft. We also find that Homer1b/c translocates from shaft to spines by protein diffusion, which does not require SNX6. Ablation of SNX6 causes reduced distribution of Homer1b/c in distal dendrites, decrease in surface levels of AMPAR and impaired AMPAR-mediated synaptic transmission. These findings reveal a physiological role of SNX6 in CNS excitatory neurons. DOI:http://dx.doi.org/10.7554/eLife.20991.001 Neurons are the building blocks of the nervous system. These cells generally consist of a round portion called the cell body and a long cable-like axon. The cell body bears numerous branches called dendrites, which are in turn covered in spines. Neurons communicate with one another at junctions – or synapses – that typically form between the end of the axon of one cell and a dendritic spine on another. Specialized proteins stabilize the dendritic spines and enable the cells to exchange messages across the synapse. However, it is the cell body – rather than the dendrites – that produces most of these proteins. Structures called molecular motors transport proteins to their destinations within the cell along fixed tracks, similar to how a freight train carries cargo over the rail network. One of the key molecular motors within neurons is called dynein‒dynactin. This in turn interacts with other proteins called adaptors, enabling it to transport specific types of cargo. Niu, Dai, Liu et al. have now examined the role of SNX6, an adaptor protein for the dynein‒dynactin motor. Mice that have been genetically modified to lack SNX6 in their brains have fewer spines on their dendrites compared with normal mice. This was particularly true for dendrites that contain AMPAR, a protein that receives signals sent across synapses. Niu, Dai, Liu et al. showed that SNX6 interacts with another protein called Homer1b/c and is responsible for distributing this protein in dendrites far from the cell body. The Homer1b/c protein helps to stabilize dendritic spines and to regulate the number of AMPAR proteins within them. Mice that lack SNX6 therefore have less Homer1b/c in the dendrites furthest from the cell body, and fewer spines on these dendrites too. These mice also have fewer AMPAR proteins at their synapses than control mice. Mice that lack SNX6 show impaired learning and memory compared to control mice. This is consistent with the fact that changes in the strength of synapses that possess AMPAR proteins are thought to underlie learning and memory. Additional experiments are required to explore these relationships further, and to determine whether SNX6 helps to localize any other proteins that also contribute to changes in the strength of synapses. DOI:http://dx.doi.org/10.7554/eLife.20991.002
Collapse
Affiliation(s)
- Yang Niu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghua Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wenxue Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China.,Model Animal Research Center, Nanjing University, Nanjing, China
| | - Cheng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yanrui Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhenzhen Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Chenchang Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Graduate School, University of Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yun S Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China.,Model Animal Research Center, Nanjing University, Nanjing, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
182
|
Abstract
Ras is the best-studied member of the superfamily of small GTPases because of its role in cancer. Ras proteins transmit signals for proliferation, differentiation and survival. Three RAS genes encode 4 isoforms. All Ras isoforms have long been considered membrane bound, a localization required for function. Our recent study revealed that N-Ras differs from all other isoforms in being largely cytosolic even following modification with a prenyl lipid. Endogenous, cytosolic N-Ras chromatographed in both high and low molecular weight pools, a pattern that required prenylation, suggesting prenyl-dependent interaction with other proteins. VPS35, a coat protein of the retromer, was shown to interact with prenylated N-Ras in the cytosol. Silencing VPS35 results in partial N-Ras mislocalization on vesicular and tubulovesicular structures, reduced GTP-loading of Ras proteins, and inhibited proliferation and MAPK signaling in an oncogenic N-Ras-driven tumor cell line. Our data revealed a novel regulator of N-Ras trafficking and signaling.
Collapse
Affiliation(s)
- Mo Zhou
- a Perlmutter Cancer Center, New York University School of Medicine , New York , NY , USA
| | - Mark R Philips
- a Perlmutter Cancer Center, New York University School of Medicine , New York , NY , USA
| |
Collapse
|
183
|
Caspase-mediated proteolysis of the sorting nexin 2 disrupts retromer assembly and potentiates Met/hepatocyte growth factor receptor signaling. Cell Death Discov 2017; 3:16100. [PMID: 28179995 PMCID: PMC5253419 DOI: 10.1038/cddiscovery.2016.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
The unfolding of apoptosis involves the cleavage of hundreds of proteins by the caspase family of cysteinyl peptidases. Among those substrates are proteins involved in intracellular vesicle trafficking with a net outcome of shutting down the crucial processes governing protein transport to organelles and to the plasma membrane. However, because of the intertwining of receptor trafficking and signaling, cleavage of specific proteins may lead to unintended consequences. Here we show that in apoptosis, sorting nexin 1 and 2 (SNX1 and SNX2), two proteins involved in endosomal sorting, are cleaved by initiator caspases and also by executioner caspase-6 in the case of SNX2. Moreover, SNX1 is cleaved at multiple sites, including following glutamate residues. Cleavage of SNX2 results in a loss of association with the endosome-to-trans-Golgi network transport protein Vps35 and in a delocalization from endosomes of its associated partner Vps26. We also demonstrate that SNX2 depletion causes an increase in hepatocyte growth factor receptor tyrosine phosphorylation and Erk1/2 signaling in cells. Finally, we show that SNX2 mRNA and protein levels are decreased in colorectal carcinoma and that lower SNX2 gene expression correlates with an increase in cancer patient mortality. Our study reveals the importance to characterize the cleavage fragments produced by caspases of specific death substrates given their potential implication in the mechanism of regulation of physiological (signaling/trafficking) pathways or in the dysfunction leading to pathogenesis.
Collapse
|
184
|
SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes. Proc Natl Acad Sci U S A 2017; 114:E307-E316. [PMID: 28053230 DOI: 10.1073/pnas.1612730114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
After endocytosis, transmembrane cargo reaches endosomes, where it encounters complexes dedicated to opposing functions: recycling and degradation. Microdomains containing endosomal sorting complexes required for transport (ESCRT)-0 component Hrs [hepatocyte growth factor-regulated tyrosine kinase substrate (HGRS-1) in Caenorhabditis elegans] mediate cargo degradation, concentrating ubiquitinated cargo and organizing the activities of ESCRT. At the same time, retromer associated sorting nexin one (SNX-1) and its binding partner, J-domain protein RME-8, sort cargo away from degradation, promoting cargo recycling to the Golgi. Thus, we hypothesized that there could be important regulatory interactions between retromer and ESCRT that balance degradative and recycling functions. Taking advantage of the naturally large endosomes of the C. elegans coelomocyte, we visualized complementary ESCRT-0 and RME-8/SNX-1 microdomains in vivo and assayed the ability of retromer and ESCRT microdomains to regulate one another. We found in snx-1(0) and rme-8(ts) mutants increased endosomal coverage and intensity of HGRS-1-labeled microdomains, as well as increased total levels of HGRS-1 bound to membranes. These effects are specific to SNX-1 and RME-8, as loss of other retromer components SNX-3 and vacuolar protein sorting-associated protein 35 (VPS-35) did not affect HGRS-1 microdomains. Additionally, knockdown of hgrs-1 had little to no effect on SNX-1 and RME-8 microdomains, suggesting directionality to the interaction. Separation of the functionally distinct ESCRT-0 and SNX-1/RME-8 microdomains was also compromised in the absence of RME-8 and SNX-1, a phenomenon we observed to be conserved, as depletion of Snx1 and Snx2 in HeLa cells also led to greater overlap of Rme-8 and Hrs on endosomes.
Collapse
|
185
|
Priya A, Sugatha J, Parveen S, Lacas-gervais S, Raj P, Gilleron J, Datta S. Essential and selective role of SNX12 in transport of endocytic and retrograde cargo. J Cell Sci 2017; 130:2707-2721. [DOI: 10.1242/jcs.201905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/05/2017] [Indexed: 12/28/2022] Open
Abstract
The endosomal protein sorting machineries play vital roles in diverse physiologically important cellular processes. Much of the core membrane sorting apparatus are conserved in evolution, such as retromer, involved in the recycling of a diverse set of cargoes via retrograde trafficking route. Here, using a RNAi based loss of function study, we identified that SNX12 when suppressed, leads to severe blockage in CIM6PR transport and alters the morphology of the endocytic compartments. We demonstrate that SNX12 is involved in the early phase of CIM6PR transport and mediates receptor recycling upstream of the other well established SNX components of retromer. Ultra-structural analysis revealed that SNX12 resides on tubulo-vesicular structures, inspite of lacking a BAR domain. Further, we illustrate that SNX12 plays a key role in intraluminal vesicle formation and in the maturation of a sub-population of early endosomes to late endosomes thereby regulating selective endocytic transport of cargo for degradation. This study therefore provides evidence for the existence of early endosomal sub-populations, which have differential roles in sorting of the cargoes along endocytic degradative pathways.
Collapse
Affiliation(s)
- Amulya Priya
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-462023, India
| | - Jini Sugatha
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-462023, India
| | - Sameena Parveen
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-462023, India
| | - Sandra Lacas-gervais
- Centre Commun de Microscopie Appliquée, Université Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
| | - Prateek Raj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Jérôme Gilleron
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire C3M, Nice, France
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal-462023, India
| |
Collapse
|
186
|
Aufschnaiter A, Kohler V, Büttner S. Taking out the garbage: cathepsin D and calcineurin in neurodegeneration. Neural Regen Res 2017; 12:1776-1779. [PMID: 29239314 PMCID: PMC5745822 DOI: 10.4103/1673-5374.219031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cellular homeostasis requires a tightly controlled balance between protein synthesis, folding and degradation. Especially long-lived, post-mitotic cells such as neurons depend on an efficient proteostasis system to maintain cellular health over decades. Thus, a functional decline of processes contributing to protein degradation such as autophagy and general lysosomal proteolytic capacity is connected to several age-associated neurodegenerative disorders, including Parkinson's, Alzheimer's and Huntington's diseases. These so called proteinopathies are characterized by the accumulation and misfolding of distinct proteins, subsequently driving cellular demise. We recently linked efficient lysosomal protein breakdown via the protease cathepsin D to the Ca2+/calmodulin-dependent phosphatase calcineurin. In a yeast model for Parkinson's disease, functional calcineurin was required for proper trafficking of cathepsin D to the lysosome and for recycling of its endosomal sorting receptor to allow further rounds of shuttling. Here, we discuss these findings in relation to present knowledge about the involvement of cathepsin D in proteinopathies in general and a possible connection between this protease, calcineurin signalling and endosomal sorting in particular. As dysregulation of Ca2+ homeostasis as well as lysosomal impairment is connected to a plethora of neurodegenerative disorders, this novel interplay might very well impact pathologies beyond Parkinson's disease.
Collapse
Affiliation(s)
- Andreas Aufschnaiter
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 106 91 Stockholm, Sweden
| |
Collapse
|
187
|
Defects in trafficking bridge Parkinson's disease pathology and genetics. Nature 2016; 539:207-216. [PMID: 27830778 DOI: 10.1038/nature20414] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is a debilitating, age-associated movement disorder. A central aspect of the pathophysiology of Parkinson's disease is the progressive demise of midbrain dopamine neurons and their axonal projections, but the underlying causes of this loss are unclear. Advances in genetics and experimental model systems have illuminated an important role for defects in intracellular transport pathways to lysosomes. The accumulation of altered proteins and damaged mitochondria, particularly at axon terminals, ultimately might overwhelm the capacity of intracellular disposal mechanisms. Cell-extrinsic mechanisms, including inflammation and prion-like spreading, are proposed to have both protective and deleterious functions in Parkinson's disease.
Collapse
|
188
|
Lucas M, Gershlick DC, Vidaurrazaga A, Rojas AL, Bonifacino JS, Hierro A. Structural Mechanism for Cargo Recognition by the Retromer Complex. Cell 2016; 167:1623-1635.e14. [PMID: 27889239 PMCID: PMC5147500 DOI: 10.1016/j.cell.2016.10.056] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/03/2016] [Accepted: 10/28/2016] [Indexed: 01/08/2023]
Abstract
Retromer is a multi-protein complex that recycles transmembrane cargo from endosomes to the trans-Golgi network and the plasma membrane. Defects in retromer impair various cellular processes and underlie some forms of Alzheimer's disease and Parkinson's disease. Although retromer was discovered over 15 years ago, the mechanisms for cargo recognition and recruitment to endosomes have remained elusive. Here, we present an X-ray crystallographic analysis of a four-component complex comprising the VPS26 and VPS35 subunits of retromer, the sorting nexin SNX3, and a recycling signal from the divalent cation transporter DMT1-II. This analysis identifies a binding site for canonical recycling signals at the interface between VPS26 and SNX3. In addition, the structure highlights a network of cooperative interactions among the VPS subunits, SNX3, and cargo that couple signal-recognition to membrane recruitment.
Collapse
Affiliation(s)
- María Lucas
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - David C Gershlick
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ander Vidaurrazaga
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Adriana L Rojas
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Aitor Hierro
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
189
|
Jia D, Zhang JS, Li F, Wang J, Deng Z, White MA, Osborne DG, Phillips-Krawczak C, Gomez TS, Li H, Singla A, Burstein E, Billadeau DD, Rosen MK. Structural and mechanistic insights into regulation of the retromer coat by TBC1d5. Nat Commun 2016; 7:13305. [PMID: 27827364 PMCID: PMC5105194 DOI: 10.1038/ncomms13305] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/19/2016] [Indexed: 01/09/2023] Open
Abstract
Retromer is a membrane coat complex that is recruited to endosomes by the small GTPase Rab7 and sorting nexin 3. The timing of this interaction and consequent endosomal dynamics are thought to be regulated by the guanine nucleotide cycle of Rab7. Here we demonstrate that TBC1d5, a GTPase-activating protein (GAP) for Rab7, is a high-affinity ligand of the retromer cargo selective complex VPS26/VPS29/VPS35. The crystal structure of the TBC1d5 GAP domain bound to VPS29 and complementary biochemical and cellular data show that a loop from TBC1d5 binds to a conserved hydrophobic pocket on VPS29 opposite the VPS29-VPS35 interface. Additional data suggest that a distinct loop of the GAP domain may contact VPS35. Loss of TBC1d5 causes defective retromer-dependent trafficking of receptors. Our findings illustrate how retromer recruits a GAP, which is likely to be involved in the timing of Rab7 inactivation leading to membrane uncoating, with important consequences for receptor trafficking.
Collapse
Affiliation(s)
- Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Paediatrics, West China Second University Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
- Department of Biophysics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Jin-San Zhang
- Departments of Immunology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fang Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Paediatrics, West China Second University Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Paediatrics, West China Second University Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhihui Deng
- Departments of Immunology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Pathophysiology, Qiqihar Medical University, Qiqihar 161006, China
| | - Mark A. White
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Douglas G. Osborne
- Departments of Immunology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Christine Phillips-Krawczak
- Departments of Immunology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Timothy S. Gomez
- Departments of Immunology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Haiying Li
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Amika Singla
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ezra Burstein
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Daniel D. Billadeau
- Departments of Immunology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Michael K. Rosen
- Department of Biophysics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
190
|
Lee MS, Choi HJ, Park EJ, Park HJ, Kwon TH. Depletion of vacuolar protein sorting-associated protein 35 is associated with increased lysosomal degradation of aquaporin-2. Am J Physiol Renal Physiol 2016; 311:F1294-F1307. [PMID: 27733367 DOI: 10.1152/ajprenal.00307.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/22/2016] [Accepted: 10/07/2016] [Indexed: 11/22/2022] Open
Abstract
The carboxyl terminus of aquaporin-2 (AQP2c) undergoes posttranslational modifications, including phosphorylation and ubiquitination, in the process of regulating aquaporin-2 (AQP2) translocation and protein abundance. We aimed to identify novel proteins interacting with AQP2c. Recombinant AQP2c protein was made in Escherichia coli BL21 (DE3) cells by exploiting the pET32 TrxA fusion system. Lysates of rat kidney inner medullary collecting duct (IMCD) tubule suspensions interacted with rat AQP2c bound to Ni2+-resin were subjected to LC-MS/MS proteomic analysis. Potential interacting proteins were identified, including vacuolar protein sorting-associated protein 35 (Vps35). Coimmunoprecipitation assay demonstrated that Vps35 interacted with AQP2c. Immunohistochemistry of rat kidney revealed that AQP2 and Vps35 were partly colocalized at the intracellular vesicles in collecting duct cells. The role of Vps35 in AQP2 regulation induced by 1-deamino-8D-arginine vasopressin (dDAVP) was examined in mpkCCDc14 cells. Cell surface biotinylation assay demonstrated that dDAVP-induced apical translocation of AQP2 was significantly decreased under siRNA-mediated Vps35 knockdown. dDAVP-induced AQP2 upregulation was less prominent in the cells with Vps35 knockdown. Moreover, AQP2 protein abundance was decreased to a greater extent during the withdrawal period after dDAVP stimulation under Vps35 knockdown, which was significantly inhibited by chloroquine (a blocker of the lysosomal pathway) but not by MG132 (a proteasome inhibitor). Immunocytochemistry demonstrated that internalized AQP2 was more associated with lysosomal-associated membrane protein 1 (LAMP-1) in primary cultured IMCD cells under a Vps35 knockdown situation. Taken together, our results show that Vps35 interacts with AQP2c, and depletion of Vps35 is likely to be associated with decreased AQP2 trafficking and increased lysosomal degradation of AQP2 protein.
Collapse
Affiliation(s)
- Mi Suk Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Taegu, Korea
| | - Hyo-Jung Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and
| | - Eui-Jung Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Taegu, Korea
| | - Hye-Jeong Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Taegu, Korea
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; and .,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Taegu, Korea
| |
Collapse
|
191
|
Progida C, Bakke O. Bidirectional traffic between the Golgi and the endosomes - machineries and regulation. J Cell Sci 2016; 129:3971-3982. [PMID: 27802132 DOI: 10.1242/jcs.185702] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The bidirectional transport between the Golgi complex and the endocytic pathway has to be finely regulated in order to ensure the proper delivery of newly synthetized lysosomal enzymes and the return of sorting receptors from degradative compartments. The high complexity of these routes has led to experimental difficulties in properly dissecting and separating the different pathways. As a consequence, several models have been proposed during the past decades. However, recent advances in our understanding of endosomal dynamics have helped to unify these different views. We provide here an overview of the current insights into the transport routes between Golgi and endosomes in mammalian cells. The focus of the Commentary is on the key molecules involved in the trafficking pathways between these intracellular compartments, such as Rab proteins and sorting receptors, and their regulation. A proper understanding of the bidirectional traffic between the Golgi complex and the endolysosomal system is of uttermost importance, as several studies have demonstrated that mutations in the factors involved in these transport pathways result in various pathologies, in particular lysosome-associated diseases and diverse neurological disorders, such as Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Oslo, Norway
| |
Collapse
|
192
|
Buckley CM, Gopaldass N, Bosmani C, Johnston SA, Soldati T, Insall RH, King JS. WASH drives early recycling from macropinosomes and phagosomes to maintain surface phagocytic receptors. Proc Natl Acad Sci U S A 2016; 113:E5906-E5915. [PMID: 27647881 PMCID: PMC5056073 DOI: 10.1073/pnas.1524532113] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Macropinocytosis is an ancient mechanism that allows cells to harvest nutrients from extracellular media, which also allows immune cells to sample antigens from their surroundings. During macropinosome formation, bulk plasma membrane is internalized with all its integral proteins. It is vital for cells to salvage these proteins before degradation, but the mechanisms for sorting them are not known. Here we describe the evolutionarily conserved recruitment of the WASH (WASP and SCAR homolog) complex to both macropinosomes and phagosomes within a minute of internalization. Using Dictyostelium, we demonstrate that WASH drives protein sorting and recycling from macropinosomes and is thus essential to maintain surface receptor levels and sustain phagocytosis. WASH functionally interacts with the retromer complex at both early and late phases of macropinosome maturation, but mediates recycling via retromer-dependent and -independent pathways. WASH mutants consequently have decreased membrane levels of integrins and other surface proteins. This study reveals an important pathway enabling cells to sustain macropinocytosis without bulk degradation of plasma membrane components.
Collapse
Affiliation(s)
- Catherine M Buckley
- Department of Biomedical Sciences, Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield S10 2TN, United Kingdom; Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Navin Gopaldass
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Cristina Bosmani
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Simon A Johnston
- Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom; Department of Infection, Immunity and Cardiovascular Sciences, University of Sheffield Medical School, Sheffield S10 2RX, United Kingdom
| | - Thierry Soldati
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Robert H Insall
- Beatson Institute for Cancer Research, Glasgow G61 1BD, United Kingdom
| | - Jason S King
- Department of Biomedical Sciences, Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield S10 2TN, United Kingdom; Bateson Centre, University of Sheffield, Sheffield S10 2TN, United Kingdom;
| |
Collapse
|
193
|
Tyson T, Steiner JA, Brundin P. Sorting out release, uptake and processing of alpha-synuclein during prion-like spread of pathology. J Neurochem 2016; 139 Suppl 1:275-289. [PMID: 26617280 PMCID: PMC4958606 DOI: 10.1111/jnc.13449] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 12/17/2022]
Abstract
Parkinson's disease is a progressive neurological disorder that is characterized by the formation of intracellular protein inclusion bodies composed primarily of a misfolded and aggregated form of the protein α-synuclein. There is growing evidence that supports the prion-like hypothesis of α-synuclein progression. This hypothesis postulates that α-synuclein is a prion-like pathological agent and is responsible for the progression of Parkinson pathology in the brain. Potential misfolding or aggregation of α-synuclein that might occur in the peripheral nervous system as a result of some insult, environmental or genetic (or more likely a combination of both) that might spread into the midbrain, eventually causing degeneration of the neurons in the substantia nigra. As the disease progresses further, it is likely that α-synuclein pathology continues to spread throughout the brain, including the cortex, leading to deterioration of cognition and higher brain functions. While it is unknown why α-synuclein initially misfolds and aggregates, a great deal has been learned about how the cell handles aberrant α-synuclein assemblies. In this review, we focus on these mechanisms and discuss them in an attempt to define the role that they might play in the propagation of misfolded α-synuclein from cell-to-cell. The prion-like hypothesis of α-synuclein pathology suggests a method for the transmission of misfolded α-synuclein from one neuron to another. This hypothesis postulates that misfolded α-synuclein becomes aggregation prone and when released and taken up by neighboring cells, seeds further misfolding and aggregation. In this review we examine the cellular mechanisms that are involved in the processing of α-synuclein and how these may contribute to the prion-like propagation of α-synuclein pathology. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Trevor Tyson
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Jennifer A Steiner
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
194
|
Xin H, Wang F, Li Y, Lu QE, Cheung WL, Zhang Y, Zhang ZG, Chopp M. Secondary Release of Exosomes From Astrocytes Contributes to the Increase in Neural Plasticity and Improvement of Functional Recovery After Stroke in Rats Treated With Exosomes Harvested From MicroRNA 133b-Overexpressing Multipotent Mesenchymal Stromal Cells. Cell Transplant 2016; 26:243-257. [PMID: 27677799 DOI: 10.3727/096368916x693031] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We previously demonstrated that multipotent mesenchymal stromal cells (MSCs) that overexpress microRNA 133b (miR-133b) significantly improve functional recovery in rats subjected to middle cerebral artery occlusion (MCAO) compared with naive MSCs and that exosomes generated from naive MSCs mediate the therapeutic benefits of MSC therapy for stroke. Here we investigated whether exosomes isolated from miR-133b-overexpressing MSCs (Ex-miR-133b+) exert amplified therapeutic effects. Rats subjected to 2 h of MCAO were intra-arterially injected with Ex-miR-133b+, exosomes from MSCs infected by blank vector (Ex-Con), or phosphate-buffered saline (PBS) and were sacrificed 28 days after MCAO. Compared with the PBS treatment, both exosome treatment groups exhibited significant improvement of functional recovery. Ex-miR-133b+ treatment significantly increased functional improvement and neurite remodeling/brain plasticity in the ischemic boundary area compared with the Ex-Con treatment. Treatment with Ex-miR-133b+ also significantly increased brain exosome content compared with Ex-Con treatment. To elucidate mechanisms underlying the enhanced therapeutic effects of Ex-miR-133b+, astrocytes cultured under oxygen- and glucose-deprived (OGD) conditions were incubated with exosomes harvested from naive MSCs (Ex-Naive), miR-133b downregulated MSCs (Ex-miR-133b-), and Ex-miR-133b+. Compared with the Ex-Naive treatment, Ex-miR-133b+ significantly increased exosomes released by OGD astrocytes, whereas Ex-miR-133b- significantly decreased the release. Also, exosomes harvested from OGD astrocytes treated with Ex-miR-133b+ significantly increased neurite branching and elongation of cultured cortical embryonic rat neurons compared with the exosomes from OGD astrocytes subjected to Ex-Con. Our data suggest that exosomes harvested from miR-133b-overexpressing MSCs improve neural plasticity and functional recovery after stroke with a contribution from a stimulated secondary release of neurite-promoting exosomes from astrocytes.
Collapse
|
195
|
Chang HF, Bzeih H, Chitirala P, Ravichandran K, Sleiman M, Krause E, Hahn U, Pattu V, Rettig J. Preparing the lethal hit: interplay between exo- and endocytic pathways in cytotoxic T lymphocytes. Cell Mol Life Sci 2016; 74:399-408. [PMID: 27585956 PMCID: PMC5241346 DOI: 10.1007/s00018-016-2350-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/08/2016] [Accepted: 08/29/2016] [Indexed: 12/11/2022]
Abstract
Cytotoxic T lymphocytes patrol our body in search for infected cells which they kill through the release of cytotoxic substances contained in cytotoxic granules. The fusion of cytotoxic granules occurs at a specially formed contact site, the immunological synapse, and is tightly controlled to ensure specificity. In this review, we discuss the contribution of two intracellular compartments, endosomes and cytotoxic granules, to the formation, function and disassembly of the immunological synapse. We highlight a recently proposed sequential process of fusion events at the IS upon target cell recognition. First, recycling endosomes fuse with the plasma membrane to deliver cargo required for the docking of cytotoxic granules. Second, cytotoxic granules arrive and fuse upon docking in a SNARE-dependent manner. Following fusion, membrane components of the cytotoxic granule are retrieved through endocytosis to ensure the fast, efficient serial killing of target cells that is characteristic of cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Hsin-Fang Chang
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Hawraa Bzeih
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Praneeth Chitirala
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Keerthana Ravichandran
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Marwa Sleiman
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Elmar Krause
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Ulrike Hahn
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Varsha Pattu
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
196
|
Multiple Roles of the Small GTPase Rab7. Cells 2016; 5:cells5030034. [PMID: 27548222 PMCID: PMC5040976 DOI: 10.3390/cells5030034] [Citation(s) in RCA: 302] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022] Open
Abstract
Rab7 is a small GTPase that belongs to the Rab family and controls transport to late endocytic compartments such as late endosomes and lysosomes. The mechanism of action of Rab7 in the late endocytic pathway has been extensively studied. Rab7 is fundamental for lysosomal biogenesis, positioning and functions, and for trafficking and degradation of several signaling receptors, thus also having implications on signal transduction. Several Rab7 interacting proteins have being identified leading to the discovery of a number of different important functions, beside its established role in endocytosis. Furthermore, Rab7 has specific functions in neurons. This review highlights and discusses the role and the importance of Rab7 on different cellular pathways and processes.
Collapse
|
197
|
Kucera A, Bakke O, Progida C. The multiple roles of Rab9 in the endolysosomal system. Commun Integr Biol 2016; 9:e1204498. [PMID: 27574541 PMCID: PMC4988448 DOI: 10.1080/19420889.2016.1204498] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 02/08/2023] Open
Abstract
The small GTPase Rab9 has long been described as a protein that mediates endosome-to-trans-Golgi Network (TGN) transport, and specifically mannose-6-phospate receptor (MPR) recycling. However, studies have challenged this view by showing that Rab9 also is connected to sorting pathways toward the endolysosomal compartments. We recently characterized the spatio-temporal dynamics of Rab9 and, by using live cell imaging, we showed that it enters the endosomal pathway together with CI-MPR at the transition stage between early, Rab5-positive, and late, Rab7a-positive, endosomes. More so, the Rab9 constitutively active mutant, Rab9Q66L, accumulates on late endosomes and promotes carrier formation at the TGN. Here, we discuss our findings in light of previous reports on Rab9 in the retrograde transport pathway.
Collapse
Affiliation(s)
- Ana Kucera
- Department of Biosciences, Centre for Immune Regulation, University of Oslo , Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo , Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo , Oslo, Norway
| |
Collapse
|
198
|
Follett J, Bugarcic A, Yang Z, Ariotti N, Norwood SJ, Collins BM, Parton RG, Teasdale RD. Parkinson Disease-linked Vps35 R524W Mutation Impairs the Endosomal Association of Retromer and Induces α-Synuclein Aggregation. J Biol Chem 2016; 291:18283-98. [PMID: 27385586 DOI: 10.1074/jbc.m115.703157] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 12/20/2022] Open
Abstract
Endosomal sorting is a highly orchestrated cellular process. Retromer is a heterotrimeric complex that associates with endosomal membranes and facilitates the retrograde sorting of multiple receptors, including the cation-independent mannose 6-phosphate receptor for lysosomal enzymes. The cycling of retromer on and off the endosomal membrane is regulated by a network of retromer-interacting proteins. Here, we find that Parkinson disease-associated Vps35 variant, R524W, but not P316S, is a loss-of-function mutation as marked by a reduced association with this regulatory network and dysregulation of endosomal receptor sorting. Expression of Vps35 R524W-containing retromer results in the accumulation of intracellular α-synuclein-positive aggregates, a hallmark of Parkinson disease. Overall, the Vps35 R524W-containing retromer has a decreased endosomal association, which can be partially rescued by R55, a small molecule previously shown to stabilize the retromer complex, supporting the potential for future targeting of the retromer complex in the treatment of Parkinson disease.
Collapse
Affiliation(s)
- Jordan Follett
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia and
| | - Andrea Bugarcic
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia and
| | - Zhe Yang
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia and
| | - Nicholas Ariotti
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia and
| | - Suzanne J Norwood
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia and
| | - Brett M Collins
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia and
| | - Robert G Parton
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia and the Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rohan D Teasdale
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia and
| |
Collapse
|
199
|
Abstract
Mutations in PARK2 (parkin), which encodes Parkin protein, an E3 ubiquitin ligase, are associated with autosomal recessive early-onset Parkinson's disease (PD). While several studies implicated Parkin in the regulation of mitophagy and proteasomal degradation, the precise mechanism leading to neurodegeneration upon Parkin loss of function remains incompletely understood. In this study, we found that Parkin modulates the endocytic pathway through the regulation of endosomal structure and function. We showed that loss of Parkin function led to decreased endosomal tubulation and membrane association of vesicle protein sorting 35 (VPS35) and sorting nexin 1 (SNX1), as well as decreased mannose 6 phosphate receptor (M6PR), suggesting the impairment of retromer pathway in Parkin-deficient cells. We also found increased formation of intraluminal vesicles coupled with enhanced release of exosomes in the presence of mutant Parkin. To elucidate the molecular mechanism of these alterations in the endocytic pathway in Parkin-deficient cells, we found that Parkin regulates the levels and activity of Rab7 by promoting its ubiquitination on lysine 38 residue. Both endogenous Rab7 in Parkin-deficient cells and overexpressed K38 R-Rab7 mutant displayed decreased effector binding and membrane association. Furthermore, overexpression of K38R-Rab7 in HEK293 cells phenocopied the increased secretion of exosomes observed in Parkin-deficient cells, suggesting that Rab7 deregulation may be at least partially responsible for the endocytic phenotype observed in Parkin-deficient cells. These findings establish a role for Parkin in regulating the endo-lysosomal pathway and retromer function and raise the possibility that alterations in these pathways contribute to the development of pathology in Parkin-linked Parkinson's disease.
Collapse
|
200
|
Marquer C, Tian H, Yi J, Bastien J, Dall'Armi C, Yang-Klingler Y, Zhou B, Chan RB, Di Paolo G. Arf6 controls retromer traffic and intracellular cholesterol distribution via a phosphoinositide-based mechanism. Nat Commun 2016; 7:11919. [PMID: 27336679 PMCID: PMC4931008 DOI: 10.1038/ncomms11919] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/12/2016] [Indexed: 12/29/2022] Open
Abstract
Small GTPases play a critical role in membrane traffic. Among them, Arf6 mediates transport to and from the plasma membrane, as well as phosphoinositide signalling and cholesterol homeostasis. Here we delineate the molecular basis for the link between Arf6 and cholesterol homeostasis using an inducible knockout (KO) model of mouse embryonic fibroblasts (MEFs). We find that accumulation of free cholesterol in the late endosomes/lysosomes of Arf6 KO MEFs results from mistrafficking of Niemann-Pick type C protein NPC2, a cargo of the cation-independent mannose-6-phosphate receptor (CI-M6PR). This is caused by a selective increase in an endosomal pool of phosphatidylinositol-4-phosphate (PI4P) and a perturbation of retromer, which controls the retrograde transport of CI-M6PR via sorting nexins, including the PI4P effector SNX6. Finally, reducing PI4P levels in KO MEFs through independent mechanisms rescues aberrant retromer tubulation and cholesterol mistrafficking. Our study highlights a phosphoinositide-based mechanism for control of cholesterol distribution via retromer.
Collapse
Affiliation(s)
- Catherine Marquer
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Huasong Tian
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Julie Yi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Jayson Bastien
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Claudia Dall'Armi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - YoungJoo Yang-Klingler
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Bowen Zhou
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Robin Barry Chan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York 10032, USA
| |
Collapse
|