151
|
Dange T, Grünwald D, Grünwald A, Peters R, Kubitscheck U. Autonomy and robustness of translocation through the nuclear pore complex: a single-molecule study. ACTA ACUST UNITED AC 2008; 183:77-86. [PMID: 18824568 PMCID: PMC2557044 DOI: 10.1083/jcb.200806173] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
All molecular traffic between nucleus and cytoplasm occurs via the nuclear pore complex (NPC) within the nuclear envelope. In this study we analyzed the interactions of the nuclear transport receptors kapα2, kapβ1, kapβ1ΔN44, and kapβ2, and the model transport substrate, BSA-NLS, with NPCs to determine binding sites and kinetics using single-molecule microscopy in living cells. Recombinant transport receptors and BSA-NLS were fluorescently labeled by AlexaFluor 488, and microinjected into the cytoplasm of living HeLa cells expressing POM121-GFP as a nuclear pore marker. After bleaching the dominant GFP fluorescence the interactions of the microinjected molecules could be studied using video microscopy with a time resolution of 5 ms, achieving a colocalization precision of 30 nm. These measurements allowed defining the interaction sites with the NPCs with an unprecedented precision, and the comparison of the interaction kinetics with previous in vitro measurements revealed new insights into the translocation mechanism.
Collapse
Affiliation(s)
- Thomas Dange
- Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, D-53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
152
|
Höppener C, Novotny L. Imaging of membrane proteins using antenna-based optical microscopy. NANOTECHNOLOGY 2008; 19:384012. [PMID: 21832571 DOI: 10.1088/0957-4484/19/38/384012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The localization and identification of individual proteins is of key importance for the understanding of biological processes on the molecular scale. Here, we demonstrate near-field fluorescence imaging of single proteins in their native cell membrane. Incident laser radiation is localized and enhanced with an optical antenna in the form of a spherical gold particle attached to a pointed dielectric tip. Individual proteins can be identified with a diffraction-unlimited spatial resolution of ∼50 nm. Besides determining the concentration and distribution of specific membrane proteins, this approach makes it possible to study the colocalization of different membrane proteins. Moreover, it enables a simultaneous recording of the membrane topology. Protein distributions can be correlated with the local membrane topology, thereby providing important information on the chemical and structural organization of cellular membranes.
Collapse
Affiliation(s)
- Christiane Höppener
- The Institute of Optics and Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
153
|
Zilman A, Di Talia S, Chait BT, Rout MP, Magnasco MO. Efficiency, selectivity, and robustness of nucleocytoplasmic transport. PLoS Comput Biol 2008; 3:e125. [PMID: 17630825 PMCID: PMC1914370 DOI: 10.1371/journal.pcbi.0030125] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 05/17/2007] [Indexed: 01/16/2023] Open
Abstract
All materials enter or exit the cell nucleus through nuclear pore complexes (NPCs), efficient transport devices that combine high selectivity and throughput. NPC-associated proteins containing phenylalanine–glycine repeats (FG nups) have large, flexible, unstructured proteinaceous regions, and line the NPC. A central feature of NPC-mediated transport is the binding of cargo-carrying soluble transport factors to the unstructured regions of FG nups. Here, we model the dynamics of nucleocytoplasmic transport as diffusion in an effective potential resulting from the interaction of the transport factors with the flexible FG nups, using a minimal number of assumptions consistent with the most well-established structural and functional properties of NPC transport. We discuss how specific binding of transport factors to the FG nups facilitates transport, and how this binding and competition between transport factors and other macromolecules for binding sites and space inside the NPC accounts for the high selectivity of transport. We also account for why transport is relatively insensitive to changes in the number and distribution of FG nups in the NPC, providing an explanation for recent experiments where up to half the total mass of the FG nups has been deleted without abolishing transport. Our results suggest strategies for the creation of artificial nanomolecular sorting devices. The DNA at the heart of our cells is contained in the nucleus. This nucleus is surrounded by a barrier in which are buried gatekeepers, termed nuclear pore complexes (NPCs), which allow the quick and efficient passage of certain materials while excluding all others. It has long been known that materials must bind to the NPC to be transported across it, but how this binding translates into selective passage through the NPC has remained a mystery. Here we describe a theory to explain how the NPC works. Our theory accounts for the observed characteristics of NPC–mediated transport, and even suggests strategies for the creation of artificial nanomolecular sorting devices.
Collapse
Affiliation(s)
- Anton Zilman
- Laboratory of Mathematical Physics, The Rockefeller University, New York, New York, United States of America
| | - Stefano Di Talia
- Laboratory of Mathematical Physics, The Rockefeller University, New York, New York, United States of America
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, United States of America
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail: (MPR); (MOM)
| | - Marcelo O Magnasco
- Laboratory of Mathematical Physics, The Rockefeller University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail: (MPR); (MOM)
| |
Collapse
|
154
|
Kapon R, Topchik A, Mukamel D, Reich Z. A possible mechanism for self-coordination of bidirectional traffic across nuclear pores. Phys Biol 2008; 5:036001. [DOI: 10.1088/1478-3975/5/3/036001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
155
|
Abstract
To explore whether super-resolution fluorescence microscopy is able to resolve topographic features of single cellular protein complexes, a two-photon 4Pi microscope was used to study the nuclear pore complex (NPC). The microscope had an axial resolution of 110-130 nm and a two-color localization accuracy of 5-10 nm. In immune-labeled HeLa cells, NPCs could be resolved much better by 4Pi than by confocal microscopy. When two epitopes of the NPC, one localized at the tip of the cytoplasmic filaments and the other at the ring of the nuclear basket, were immune-labeled, they could be clearly resolved in single NPCs, with the distance between them determined to be 152 +/- 30 nm. In cells expressing a green fluorescent protein construct localized at the NPC center, the distances between the ring of the nuclear filaments and the NPC center was 76 +/- 12 (Potorous tridactylus cells) or 91 +/- 21 nm (normal rat kidney cells), whereas the distance between the NPC center and the tips of the cytoplasmic filaments was 84 +/- 18 nm, all values in good agreement with previous electron or single-molecule fluorescence estimates. We conclude that super-resolution fluorescence microscopy is a powerful method for analyzing single protein complexes and the cellular nanomachinery in general.
Collapse
|
156
|
Deniz AA, Mukhopadhyay S, Lemke EA. Single-molecule biophysics: at the interface of biology, physics and chemistry. J R Soc Interface 2008; 5:15-45. [PMID: 17519204 PMCID: PMC2094721 DOI: 10.1098/rsif.2007.1021] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Single-molecule methods have matured into powerful and popular tools to probe the complex behaviour of biological molecules, due to their unique abilities to probe molecular structure, dynamics and function, unhindered by the averaging inherent in ensemble experiments. This review presents an overview of the burgeoning field of single-molecule biophysics, discussing key highlights and selected examples from its genesis to our projections for its future. Following brief introductions to a few popular single-molecule fluorescence and manipulation methods, we discuss novel insights gained from single-molecule studies in key biological areas ranging from biological folding to experiments performed in vivo.
Collapse
Affiliation(s)
- Ashok A Deniz
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
157
|
Abstract
The spatial separation between the cytoplasm and the cell nucleus necessitates the continuous exchange of macromolecular cargo across the double-membraned nuclear envelope. Being the only passageway in and out of the nucleus, the nuclear pore complex (NPC) has the principal function of regulating the high throughput of nucleocytoplasmic transport in a highly selective manner so as to maintain cellular order and function. Here, we present a retrospective review of the evidence that has led to the current understanding of both NPC structure and function. Looking towards the future, we contemplate on how various outstanding effects and nanoscopic characteristics ought to be addressed, with the goal of reconciling structure and function into a single unified picture of the NPC.
Collapse
|
158
|
Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 2008; 5:159-61. [DOI: 10.1038/nmeth1171] [Citation(s) in RCA: 883] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 11/27/2007] [Indexed: 11/08/2022]
|
159
|
Single molecule tracking for studying nucleocytoplasmic transport and intranuclear dynamics. Methods Mol Biol 2008; 464:343-61. [PMID: 18951194 DOI: 10.1007/978-1-60327-461-6_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Microscopic imaging of single fluorescent molecules within cells provides a molecular, real-time view of physiological processes in vivo. Single fluorescent molecules produce diffraction-limited light spots in the image plane, which can be localised with a very high precision. In single-molecule fluorescence microscopy (SMF) the achievable localisation precision depends only on the signal-to-noise ratio (SNR) and the stability of the optical setup. Typically values between 20 and 40 nm can be achieved. Highly dynamic processes and Brownian motion characterised by diffusion coefficients <20 microm(2)/sec can be followed by high-speed imaging, hence the method is an ideal tool to study intranuclear protein or ribonucleoprotein particle mobility. In contrast to conventional techniques, different forms of mobility in a heterogeneous system may well be distinguished from each other. Furthermore, specific binding and bimolecular interaction events can be followed at the single molecule level. A prominent example of an application is the study of nucleocytoplasmic transport one molecule at a time. In this case, the high localisation precision allows to analyse the binding site distribution of single molecules at the nuclear pore complex, and the high time resolution allows determination of the binding duration of soluble receptors and transport substrates.
Collapse
|
160
|
Lim RYH, Ullman KS, Fahrenkrog B. Biology and biophysics of the nuclear pore complex and its components. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:299-342. [PMID: 18544502 DOI: 10.1016/s1937-6448(08)00632-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleocytoplasmic exchange of proteins and ribonucleoprotein particles occurs via nuclear pore complexes (NPCs) that reside in the double membrane of the nuclear envelope (NE). Significant progress has been made during the past few years in obtaining better structural resolution of the three-dimensional architecture of NPC with the help of cryo-electron tomography and atomic structures of domains from nuclear pore proteins (nucleoporins). Biophysical and imaging approaches have helped elucidate how nucleoporins act as a selective barrier in nucleocytoplasmic transport. Nucleoporins act not only in trafficking of macromolecules but also in proper microtubule attachment to kinetochores, in the regulation of gene expression and signaling events associated with, for example, innate and adaptive immunity, development and neurodegenerative disorders. Recent research has also been focused on the dynamic processes of NPC assembly and disassembly that occur with each cell cycle. Here we review emerging results aimed at understanding the molecular arrangement of the NPC and how it is achieved, defining the roles of individual nucleoporins both at the NPC and at other sites within the cell, and finally deciphering how the NPC serves as both a barrier and a conduit of active transport.
Collapse
Affiliation(s)
- Roderick Y H Lim
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | |
Collapse
|
161
|
Abstract
Studying single mRNA molecules has added new dimensions to our understanding of gene expression and the life cycle of mRNA in cells. Advances in microscopes and detection technology have opened access to single molecule research to most researchers interested in molecular biology. Here we provide an overview technique for single molecule studies of RNA in either fixed samples or in living cells. As part of a volume on mRNA turnover, it is increasingly relevant, because many of the recent advances in studies of mRNA turnover have suggested that there is non-homogeneous distribution of turnover factors in the cell. For this reason, understanding of spatial relationships between mRNA and mRNA turnover factors should enrich our understanding of this process.
Collapse
Affiliation(s)
- David Grünwald
- Albert Einstein College of Medicine, Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Bronx, Albert Einstein College of Medicine, New York, USA
| | | | | |
Collapse
|
162
|
Abstract
Genome activity and nuclear metabolism clearly depend on accessibility, but it is not known whether and to what extent nuclear structures limit the mobility and access of individual molecules. We used fluorescently labeled streptavidin with a nuclear localization signal as an average-sized, inert protein to probe the nuclear environment. The protein was injected into the cytoplasm of mouse cells, and single molecules were tracked in the nucleus with high-speed fluorescence microscopy. We analyzed and compared the mobility of single streptavidin molecules in structurally and functionally distinct nuclear compartments of living cells. Our results indicated that all nuclear subcompartments were easily and similarly accessible for such an average-sized protein, and even condensed heterochromatin neither excluded single molecules nor impeded their passage. The only significant difference was a higher frequency of transient trappings in heterochromatin, which lasted only tens of milliseconds. The streptavidin molecules, however, did not accumulate in heterochromatin, suggesting comparatively less free volume. Interestingly, the nucleolus seemed to exclude streptavidin, as it did many other nuclear proteins, when visualized by conventional fluorescence microscopy. The tracking of single molecules, nonetheless, showed no evidence for repulsion at the border but relatively unimpeded passage through the nucleolus. These results clearly show that single-molecule tracking can provide novel insights into mobility of proteins in the nucleus that cannot be obtained by conventional fluorescence microscopy. Our results suggest that nuclear processes may not be regulated at the level of physical accessibility but rather by local concentration of reactants and availability of binding sites.
Collapse
|
163
|
Gregor T, Wieschaus EF, McGregor AP, Bialek W, Tank DW. Stability and nuclear dynamics of the bicoid morphogen gradient. Cell 2007; 130:141-52. [PMID: 17632061 PMCID: PMC2253672 DOI: 10.1016/j.cell.2007.05.026] [Citation(s) in RCA: 353] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 02/15/2007] [Accepted: 05/03/2007] [Indexed: 11/30/2022]
Abstract
Patterning in multicellular organisms results from spatial gradients in morphogen concentration, but the dynamics of these gradients remain largely unexplored. We characterize, through in vivo optical imaging, the development and stability of the Bicoid morphogen gradient in Drosophila embryos that express a Bicoid-eGFP fusion protein. The gradient is established rapidly (approximately 1 hr after fertilization), with nuclear Bicoid concentration rising and falling during mitosis. Interphase levels result from a rapid equilibrium between Bicoid uptake and removal. Initial interphase concentration in nuclei in successive cycles is constant (+/-10%), demonstrating a form of gradient stability, but it subsequently decays by approximately 30%. Both direct photobleaching measurements and indirect estimates of Bicoid-eGFP diffusion constants (D < or = 1 microm(2)/s) provide a consistent picture of Bicoid transport on short ( approximately min) time scales but challenge traditional models of long-range gradient formation. A new model is presented emphasizing the possible role of nuclear dynamics in shaping and scaling the gradient.
Collapse
Affiliation(s)
- Thomas Gregor
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | | | |
Collapse
|
164
|
Frey S, Görlich D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 2007; 130:512-23. [PMID: 17693259 DOI: 10.1016/j.cell.2007.06.024] [Citation(s) in RCA: 409] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 03/21/2007] [Accepted: 06/13/2007] [Indexed: 01/14/2023]
Abstract
The permeability barrier of nuclear pore complexes (NPCs) controls the exchange between nucleus and cytoplasm. It suppresses the flux of inert macromolecules > or = 30 kDa but allows rapid passage of even very large cargoes, provided these are bound to appropriate nuclear transport receptors. We show here that a saturated hydrogel formed by a single nucleoporin FG-repeat domain is sufficient to reproduce the permeability properties of NPCs. Importin beta and related nuclear transport receptors entered such hydrogel >1000x faster than a similarly sized inert macromolecule. The FG-hydrogel even reproduced import signal-dependent and importin-mediated cargo influx, allowing importin beta to accelerate the gel entry of a large cognate cargo more than 20,000-fold. Intragel diffusion of the importin beta-cargo complex occurred rapidly enough to traverse an NPC within approximately 12 ms. We extend the "selective phase model" to explain these effects.
Collapse
Affiliation(s)
- Steffen Frey
- Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany
| | | |
Collapse
|
165
|
Abstract
In this issue, Frey and Görlich (2007) provide new insight into the selective barrier that controls protein traffic through the nuclear pore complex. They show that a single protein domain of the nuclear pore protein Nsp1 can form a hydrogel that allows highly selective access of nuclear transport receptors and their cargos, but rejects other proteins of similar size.
Collapse
Affiliation(s)
- Karsten Weis
- Department of Molecular and Cell Biology, Division of Cell and Developmental Biology, University of California Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
166
|
Abstract
Studying the properties of individual events and molecules offers a host of advantages over taking only macroscopic measurements of populations. Here we review such advantages, as well as some pitfalls, focusing on examples from biological imaging. Examples include single proteins, their interactions in cells, organelles, and their interactions both with each other and with parts of the cell. Additionally, we discuss constraints that limit the study of single events, along with the criteria that must be fulfilled to determine whether single molecules or events are being detected.
Collapse
Affiliation(s)
- Stefan Wennmalm
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
167
|
Roth CM, Heinlein PI, Heilemann M, Herten DP. Imaging Diffusion in Living Cells Using Time-Correlated Single-Photon Counting. Anal Chem 2007; 79:7340-5. [PMID: 17803281 DOI: 10.1021/ac071039q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Current efforts to monitor the diffusion of proteins in living cells are based on either fluorescence correlation spectroscopy (FCS), fluorescence recovery after photobleaching, or image correlation spectroscopy. However, these methods cannot generate a map of diffusion times. Here, we introduce a new method termed diffusion imaging microscopy that combines scanning confocal microscopy, time-correlated single-photon counting, and FCS and thus allows us to measure spatially resolved diffusion times. In our approach, we record scan images with time-resolved photon streams within each individual pixel. By extending the pixel dwell time to 25-100 ms, a software correlation of individual photons within each pixel yields the average diffusion time. Additionally, information on fluorescence intensity (number of photons) and fluorescence lifetime is available and can be used to sort fluorescence photons and to discriminate from autofluorescence. We evaluated our method by measuring diffusion times of dT20-TMR in solutions of different viscosity. We further demonstrate the applicability of the method to living cells and recorded a diffusion map of a living 3T3 mouse fibroblast incubated with dT20-ATTO488.
Collapse
Affiliation(s)
- Christian M Roth
- Physikalisch-Chemisches Insitut, Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
168
|
Grünwald D, Hoekstra A, Dange T, Buschmann V, Kubitscheck U. Direct observation of single protein molecules in aqueous solution. Chemphyschem 2007; 7:812-5. [PMID: 16528778 DOI: 10.1002/cphc.200500632] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David Grünwald
- Department of Physical and Theoretical Chemistry, Wegeler Str. 12 Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
169
|
Abstract
Recent progress in proteomics suggests that the cell can be conceived as a large network of highly refined, nanomachine-like protein complexes. This working hypothesis calls for new methods capable of analyzing individual protein complexes in living cells and tissues at high speed. Here, we examine whether single-molecule fluorescence (SMF) analysis can satisfy that demand. First, recent technical progress in the visualization, localization, tracking, conformational analysis, and true resolution of individual protein complexes is highlighted. Second, results obtained by the SMF analysis of protein complexes are reviewed, focusing on the nuclear pore complex as an instructive example. We conclude that SMF methods provide powerful, indispensable tools for the structural and functional characterization of protein complexes. However, the transition from in vitro systems to living cells is in the initial stages. We discuss how current limitations in the nanoscopic analysis of living cells and tissues can be overcome to create a new paradigm, nanoscopic biomedicine.
Collapse
Affiliation(s)
- Reiner Peters
- Institute of Medical Physics and Biophysics, and Center for Nanotechnology (CeNTech), University of Münster, 48149 Münster, Germany.
| |
Collapse
|
170
|
Abstract
The nuclear import of proteins through nuclear pore complexes (NPCs) illustrates how a complex biological function can be generated by a spatially and temporally organized cycle of interactions between cargoes, carriers and the Ran GTPase. Recent work has given considerable insight into this process, especially about how interactions are coordinated and the basis for the molecular recognition that underlies the process. Although considerable progress has been made in identifying and characterizing the molecular interactions in the soluble phase that drive the nuclear protein import cycle, understanding the precise mechanism of translocation through NPCs remains a major challenge.
Collapse
Affiliation(s)
- Murray Stewart
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
171
|
Timney BL, Tetenbaum-Novatt J, Agate DS, Williams R, Zhang W, Chait BT, Rout MP. Simple kinetic relationships and nonspecific competition govern nuclear import rates in vivo. ACTA ACUST UNITED AC 2007; 175:579-93. [PMID: 17116750 PMCID: PMC2064595 DOI: 10.1083/jcb.200608141] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many cargoes destined for nuclear import carry nuclear localization signals that are recognized by karyopherins (Kaps). We present methods to quantitate import rates and measure Kap and cargo concentrations in single yeast cells in vivo, providing new insights into import kinetics. By systematically manipulating the amounts, types, and affinities of Kaps and cargos, we show that import rates in vivo are simply governed by the concentrations of Kaps and their cargo and the affinity between them. These rates fit to a straightforward pump–leak model for the import process. Unexpectedly, we deduced that the main limiting factor for import is the poor ability of Kaps and cargos to find each other in the cytoplasm in a background of overwhelming nonspecific competition, rather than other more obvious candidates such as the nuclear pore complex and Ran. It is likely that most of every import round is taken up by Kaps and nuclear localization signals sampling other cytoplasmic proteins as they locate each other in the cytoplasm.
Collapse
Affiliation(s)
- Benjamin L Timney
- Laboratory of Cellular and Structural Biology and Laboratory of Gaseous Ion Chemistry, Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
172
|
PARADISE ALLISON, LEVIN MIKHAILK, KORZA GEORGE, CARSON JOHNH. Significant proportions of nuclear transport proteins with reduced intracellular mobilities resolved by fluorescence correlation spectroscopy. J Mol Biol 2007. [PMID: 17056062 PMCID: PMC1831836 DOI: 10.1016/j.jmb.2006.09.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nuclear transport requires freely diffusing nuclear transport proteins to facilitate movement of cargo molecules through the nuclear pore. We analyzed dynamic properties of importin alpha, importin beta, Ran and NTF2 in nucleus, cytoplasm and at the nuclear pore of neuroblastoma cells using fluorescence correlation spectroscopy. Mobile components were quantified by global fitting of autocorrelation data from multiple cells. Immobile components were quantified by analysis of photobleaching kinetics. Wild-type Ran was compared to various mutant Ran proteins to identify components representing GTP or GDP forms of Ran. Untreated cells were compared to cells treated with nocodazole or latrunculin to identify components associated with cytoskeletal elements. The results indicate that freely diffusing importin alpha, importin beta, Ran and NTF2 are in dynamic equilibrium with larger pools associated with immobile binding partners such as microtubules in the cytoplasm. These findings suggest that formation of freely diffusing nuclear transport intermediates is in competition with binding to immobile partners. Variation in concentrations of freely diffusing nuclear transport intermediates among cells indicates that the nuclear transport system is sufficiently robust to function over a wide range of conditions.
Collapse
|
173
|
Affiliation(s)
- Rainer Heintzmann
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom
| | | |
Collapse
|
174
|
Managing free-energy barriers in nuclear pore transport. J Biol Phys 2006; 32:465-72. [PMID: 19669451 DOI: 10.1007/s10867-006-9029-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 11/12/2006] [Indexed: 10/23/2022] Open
Abstract
The Nuclear Pore Complexes (NPC) facilitate highly selective gateways for transport of macromolecules across the Nuclear Envelope (NE). Based on the current accumulated knowledge of the architecture of NPC we have established a minimal physical model of the pore and the transport mechanism. The barrier properties of the NPC model are analyzed by the recently established Wang-Landau Monte Carlo computer simulation technique and the transport properties are extracted by employing Kramers' theory of reaction rates. We show that our physical model can account for a range of characteristics observed for nuclear pore transport.
Collapse
|
175
|
Naim B, Brumfeld V, Kapon R, Kiss V, Nevo R, Reich Z. Passive and facilitated transport in nuclear pore complexes is largely uncoupled. J Biol Chem 2006; 282:3881-8. [PMID: 17164246 DOI: 10.1074/jbc.m608329200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nuclear pore complexes provide the sole gateway for the exchange of material between nucleus and cytoplasm of interphase eukaryotic cells. They support two modes of transport: passive diffusion of ions, metabolites, and intermediate-sized macromolecules and facilitated, receptor-mediated translocation of proteins, RNA, and ribonucleoprotein complexes. It is generally assumed that both modes of transport occur through a single diffusion channel located within the central pore of the nuclear pore complex. To test this hypothesis, we studied the mutual effects between transporting molecules utilizing either the same or different modes of translocation. We find that the two modes of transport do not interfere with each other, but molecules utilizing a particular mode of transport do hinder motion of others utilizing the same pathway. We therefore conclude that the two modes of transport are largely segregated.
Collapse
Affiliation(s)
- Bracha Naim
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
176
|
Leslie DM, Timney B, Rout MP, Aitchison JD. Studying nuclear protein import in yeast. Methods 2006; 39:291-308. [PMID: 16979507 DOI: 10.1016/j.ymeth.2006.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Accepted: 07/15/2006] [Indexed: 01/18/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is a common model organism for biological discovery. It has become popularized primarily because it is biochemically and genetically amenable for many fundamental studies on eukaryotic cells. These features, as well as the development of a number of procedures and reagents for isolating protein complexes, and for following macromolecules in vivo, have also fueled studies on nucleo-cytoplasmic transport in yeast. One limitation of using yeast to study transport has been the absence of a reconstituted in vitro system that yields quantitative data. However, advances in microscopy and data analysis have recently enabled quantitative nuclear import studies, which, when coupled with the significant advantages of yeast, promise to yield new fundamental insights into the mechanisms of nucleo-cytoplasmic transport.
Collapse
Affiliation(s)
- Deena M Leslie
- Institute for Systems Biology, 1141 N 34th St., Seattle, WA 98103, USA
| | | | | | | |
Collapse
|
177
|
Yang W, Musser SM. Visualizing single molecules interacting with nuclear pore complexes by narrow-field epifluorescence microscopy. Methods 2006; 39:316-28. [PMID: 16879979 PMCID: PMC2442885 DOI: 10.1016/j.ymeth.2006.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 06/12/2006] [Indexed: 11/30/2022] Open
Abstract
The utility of single molecule fluorescence (SMF) for understanding biological reactions has been amply demonstrated by a diverse series of studies over the last decade. In large part, the molecules of interest have been limited to those within a small focal volume or near a surface to achieve the high sensitivity required for detecting the inherently weak signals arising from individual molecules. Consequently, the investigation of molecular behavior with high time and spatial resolution deep within cells using SMF has remained challenging. Recently, we demonstrated that narrow-field epifluorescence microscopy allows visualization of nucleocytoplasmic transport at the single cargo level. We describe here the methodological approach that yields 2 ms and approximately 15 nm resolution for a stationary particle. The spatial resolution for a mobile particle is inherently worse, and depends on how fast the particle is moving. The signal-to-noise ratio is sufficiently high to directly measure the time a single cargo molecule spends interacting with the nuclear pore complex. Particle tracking analysis revealed that cargo molecules randomly diffuse within the nuclear pore complex, exiting as a result of a single rate-limiting step. We expect that narrow-field epifluorescence microscopy will be useful for elucidating other binding and trafficking events within cells.
Collapse
|
178
|
Affiliation(s)
- Michael Elbaum
- Department of Materials and Interfaces, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
179
|
Siebrasse JP, Grünwald D, Kubitscheck U. Single-molecule tracking in eukaryotic cell nuclei. Anal Bioanal Chem 2006; 387:41-4. [PMID: 17033772 DOI: 10.1007/s00216-006-0763-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/11/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Jan Peter Siebrasse
- Department of Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Wegelerstrasse 12, 53115, Bonn, Germany
| | | | | |
Collapse
|
180
|
Paradise A, Levin MK, Korza G, Carson JH. Significant proportions of nuclear transport proteins with reduced intracellular mobilities resolved by fluorescence correlation spectroscopy. J Mol Biol 2006; 365:50-65. [PMID: 17056062 PMCID: PMC1831836 DOI: 10.1016/j.jmb.2006.09.089] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 11/20/2022]
Abstract
Nuclear transport requires freely diffusing nuclear transport proteins to facilitate movement of cargo molecules through the nuclear pore. We analyzed dynamic properties of importin alpha, importin beta, Ran and NTF2 in nucleus, cytoplasm and at the nuclear pore of neuroblastoma cells using fluorescence correlation spectroscopy. Mobile components were quantified by global fitting of autocorrelation data from multiple cells. Immobile components were quantified by analysis of photobleaching kinetics. Wild-type Ran was compared to various mutant Ran proteins to identify components representing GTP or GDP forms of Ran. Untreated cells were compared to cells treated with nocodazole or latrunculin to identify components associated with cytoskeletal elements. The results indicate that freely diffusing importin alpha, importin beta, Ran and NTF2 are in dynamic equilibrium with larger pools associated with immobile binding partners such as microtubules in the cytoplasm. These findings suggest that formation of freely diffusing nuclear transport intermediates is in competition with binding to immobile partners. Variation in concentrations of freely diffusing nuclear transport intermediates among cells indicates that the nuclear transport system is sufficiently robust to function over a wide range of conditions.
Collapse
Affiliation(s)
- Allison Paradise
- Department of Molecular Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
181
|
Abstract
Over 4 decades ago, microelectrode studies of in situ nuclei showed that, under certain conditions, the nuclear envelope (NE) behaves as a barrier opposing the nucleocytoplasmic flow of physiological ions. As the nuclear pore complexes (NPCs) of the NE are the only pathways for direct nucleocytoplasmic flow, those experiments implied that the NPCs are capable of restricting ion flow. These early studies validated electrophysiology as a useful approach to quantify some of the mechanisms by which NPCs mediate gene activity and expression. Since electron microscopy (EM) and other non-electrophysiological investigations, showed that the NPC lumen is a nanochannel, the opinion prevailed that the NPC could not oppose the flow of ions and, therefore, that electrophysiological observations resulted from technical artifacts. Consequently, the initial enthusiasm with nuclear electrophysiology faded out in less than a decade. In 1990, nuclear electrophysiology was revisited with patch-clamp, the most powerful electrophysiological technique to date. Patch-clamp has consistently demonstrated that the NE has intrinsic ion channel activity. Direct demonstrations of the NPC on-off ion channel gating behavior were published for artificial conditions in 1995 and for intact living nuclei in 2002. This on-off switching/gating behavior can be interpreted in terms of a metastable energy barrier. In the hope of advancing nuclear electrophysiology, and to complement the other papers contained in this special issue of the journal, here I review some of the main technical, experimental, and theoretical issues of the field, with special focus on NPCs.
Collapse
Affiliation(s)
- José Omar Bustamante
- The Nuclear Physiology Lab and The Nanobiotechnology Group, The Millenium Institute of Nanosciences, The South-American Network of Nanobiotechnology, Federal University of Sergipe, Department of Physics, Brazil.
| |
Collapse
|
182
|
Grünwald D, Spottke B, Buschmann V, Kubitscheck U. Intranuclear binding kinetics and mobility of single native U1 snRNP particles in living cells. Mol Biol Cell 2006; 17:5017-27. [PMID: 16987963 PMCID: PMC1679670 DOI: 10.1091/mbc.e06-06-0559] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Uridine-rich small nuclear ribonucleoproteins (U snRNPs) are splicing factors, which are diffusely distributed in the nucleoplasm and also concentrated in nuclear speckles. Fluorescently labeled, native U1 snRNPs were microinjected into the cytoplasm of living HeLa cells. After nuclear import single U1 snRNPs could be visualized and tracked at a spatial precision of 30 nm at a frame rate of 200 Hz employing a custom-built microscope with single-molecule sensitivity. The single-particle tracks revealed that most U1 snRNPs were bound to specific intranuclear sites, many of those presumably representing pre-mRNA splicing sites. The dissociation kinetics from these sites showed a multiexponential decay behavior on time scales ranging from milliseconds to seconds, reflecting the involvement of U1 snRNPs in numerous distinct interactions. The average dwell times for U1 snRNPs bound at sites within the nucleoplasm did not differ significantly from those in speckles, indicating that similar processes occur in both compartments. Mobile U1 snRNPs moved with diffusion constants in the range from 0.5 to 8 microm2/s. These values were consistent with uncomplexed U1 snRNPs diffusing at a viscosity of 5 cPoise and U1 snRNPs moving in a largely restricted manner, and U1 snRNPs contained in large supramolecular assemblies such as spliceosomes or supraspliceosomes.
Collapse
Affiliation(s)
- David Grünwald
- *Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, D-53115 Bonn, Germany; and
| | - Beatrice Spottke
- *Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, D-53115 Bonn, Germany; and
| | | | - Ulrich Kubitscheck
- *Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, D-53115 Bonn, Germany; and
| |
Collapse
|
183
|
Hofmann KP, Spahn CMT, Heinrich R, Heinemann U. Building functional modules from molecular interactions. Trends Biochem Sci 2006; 31:497-508. [PMID: 16890441 DOI: 10.1016/j.tibs.2006.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/01/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
The main reaction pathways in the living cell are carried out by functional modules--namely, macromolecular machines with compact structure or ensembles that change their composition and/or organization during function. Modules define themselves by spatial sequestration, chemical specificity and a characteristic time domain within which their function proceeds. On receiving a specific input, modules go through functional cycles, with phases of increasing and decreasing complexity of molecular interactions. Here, we discuss how such modules are formed and the experimental and theoretical approaches that can be used to investigate them, using examples from polynucleotide-protein interactions, vesicle transport and signal transduction to illustrate the underlying principles. Further progress in this field, where systems biology and biochemistry meet, will depend on iterative validation of the experimental and theoretical approaches.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik, Charité Universitätsmedizin Berlin, Campus Mitte, Charitéplatz 1, 10098 Berlin, Germany.
| | | | | | | |
Collapse
|
184
|
Abstract
The exchange of molecules between the nucleus and cytoplasm is mediated through nuclear pore complexes (NPCs) embedded in the nuclear envelope. Altering the interactions between transport receptors and their cargo has been shown to be a major regulatory mechanism to control traffic through NPCs. New evidence now suggests that NPC proteins play active roles in translocation, and that transport is also controlled by dynamic changes in NPC composition and architecture. This view of ever-changing NPCs necessitates the re-evaluation of current models of nuclear transport and how this process is regulated.
Collapse
Affiliation(s)
- Elizabeth J Tran
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, U-3209 MRBIII, 465 21st Avenue South, Nashville, TN 37232 USA
| | | |
Collapse
|
185
|
Lill Y, Lill MA, Fahrenkrog B, Schwarz-Herion K, Paulillo S, Aebi U, Hecht B. Single hepatitis-B virus core capsid binding to individual nuclear pore complexes in Hela cells. Biophys J 2006; 91:3123-30. [PMID: 16877503 PMCID: PMC1578495 DOI: 10.1529/biophysj.106.087650] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We investigate the interaction of hepatitis B virus capsids lacking a nuclear localization signal with nuclear pore complexes (NPCs) in permeabilized HeLa cells. Confocal and wide-field optical images of the nuclear envelope show well-spaced individual NPCs. Specific interactions of capsids with single NPCs are characterized by extended residence times of capsids in the focal volume which are characterized by fluorescence correlation spectroscopy. In addition, single-capsid-tracking experiments using fast wide-field fluorescence microscopy at 50 frames/s allow us to directly observe specific binding via a dual-color colocalization of capsids and NPCs. We find that binding occurs with high probability on the nuclear-pore ring moiety, at 44 +/- 9 nm radial distance from the central axis.
Collapse
Affiliation(s)
- Yoriko Lill
- Nano-Optics Group, National Competence Center for Research in Nanoscale Science, Institute of PhysicsK, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
186
|
Lim RYH, Fahrenkrog B. The nuclear pore complex up close. Curr Opin Cell Biol 2006; 18:342-7. [PMID: 16631361 DOI: 10.1016/j.ceb.2006.03.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 03/30/2006] [Indexed: 11/19/2022]
Abstract
Transport between the nucleus and cytoplasm is mediated by nuclear pore complexes (NPCs), perforations in the double-membrane of the nuclear envelope. NPCs are huge protein assemblies made up of distinct subcomplexes. The complex modular nature of the NPC and limitations in the current experimental approaches render the analysis of NPCs and nucleocytoplasmic transport at the molecular level difficult. Recent efforts in the NPC/nucleocytoplasmic transport field have focused on elucidating the core components that make up NPC structure (or the lack thereof) and function. These include results obtained by more conventional methods, such as electron microscopy or biochemical strategies, as well as more advanced applications, such as X-ray crystallography and atomic force microscopy.
Collapse
Affiliation(s)
- Roderick Y H Lim
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
187
|
Prummer M, Meyer BH, Franzini R, Segura JM, George N, Johnsson K, Vogel H. Post-translational Covalent Labeling Reveals Heterogeneous Mobility of Individual G Protein-Coupled Receptors in Living Cells. Chembiochem 2006; 7:908-11. [PMID: 16607667 DOI: 10.1002/cbic.200500477] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael Prummer
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
188
|
Abstract
The extraordinary progress that has taken place in cell science and optical nanoscale microscopy has led recently to the concept of medical nanoscopy. Here, we lay out a concept for developing live cell nanoscopy into a comprehensive diagnostic and therapeutic scheme referred to as nanoscopic medicine, which integrates live cell nanoscopy with the structural and functional studies of nanoscopic protein machines (NPMs), the systems biology of NPMs, fluorescent labeling, nanoscopic analysis, and nanoscopic intervention, in order to advance the medical frontier toward the nanoscopic fundament of the cell. It aims at the diagnosis and therapy of diseases by directly visualizing, analyzing, and modifying NPMs and their networks in living cells and tissues.
Collapse
Affiliation(s)
- Reiner Peters
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Strasse 31, 48149 Münster, Germany.
| |
Collapse
|
189
|
van der Aa MAEM, Mastrobattista E, Oosting RS, Hennink WE, Koning GA, Crommelin DJA. The Nuclear Pore Complex: The Gateway to Successful Nonviral Gene Delivery. Pharm Res 2006; 23:447-59. [PMID: 16525863 DOI: 10.1007/s11095-005-9445-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 11/10/2005] [Indexed: 02/04/2023]
Abstract
One of the limiting steps in the efficiency of nonviral gene delivery is transport of genetic material across the nuclear membrane. Trafficking of nuclear proteins from the cytoplasm into the nucleus occurs via the nuclear pore complex and is mediated by nuclear localization signals and their nuclear receptors. Several strategies employing this transport mechanism have been designed and explored to improve nonviral gene delivery. In this article, we review the mechanism of nuclear import through the nuclear pore complex and the strategies used to facilitate nuclear import of exogenous DNA and improve gene expression.
Collapse
Affiliation(s)
- Marieke A E M van der Aa
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
190
|
Peters R. Checking and fixing the cellular nanomachinery: towards medical nanoscopy. Trends Mol Med 2006; 12:83-9. [PMID: 16406702 DOI: 10.1016/j.molmed.2005.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 11/22/2005] [Accepted: 12/12/2005] [Indexed: 11/15/2022]
Abstract
Most diseases, regardless of their diverse etiologies, manifest themselves as defects of cellular proteins. Cellular proteins have been recently shown to form specific complexes exerting their functions as if they were nanoscopic machines. Such nanoscopic protein machines cooperate in functional modules, yielding extended, highly compartmentalized networks. The classical resolution limits of fluorescence microscopy have also been recently overcome, opening the nanometer domain to live-cell imaging. Together, progress in functional proteomics and live-cell imaging provide novel possibilities for directly analyzing and modifying nanoscopic protein machines in living cells and tissues.
Collapse
Affiliation(s)
- Reiner Peters
- Institute of Medical Physics and Biophysics, and Center of Nanotechnology (CeNTech), University of Muenster, 48149 Germany.
| |
Collapse
|
191
|
Lim RYH, Aebi U, Stoffler D. From the trap to the basket: getting to the bottom of the nuclear pore complex. Chromosoma 2006; 115:15-26. [PMID: 16402261 DOI: 10.1007/s00412-005-0037-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 11/12/2005] [Accepted: 11/21/2005] [Indexed: 11/25/2022]
Abstract
Nuclear pore complexes (NPCs) are large supramolecular assemblies that perforate the double-membraned nuclear envelope and serve as the sole gateways of molecular exchange between the cytoplasm and the nucleus in interphase cells. Combining novel specimen preparation regimes with innovative use of high-resolution scanning electron microscopy, Hans Ris produced in the late eighties stereo images of the NPC with unparalleled clarity and structural detail, thereby setting new standards in the field. Since that time, efforts undertaken to resolve the molecular structure and architecture, and the numerous interactions that occur between NPC proteins (nucleoporins), soluble transport receptors, and the small GTPase Ran, have led to a deeper understanding of the functional role of NPCs in nucleocytoplasmic transport. In spite of these breakthroughs, getting to the bottom of the actual cargo translocation mechanism through the NPC remains elusive and controversial. Here, we review recent insights into NPC function by correlating structural findings with biochemical data. By introducing new experimental and computational results, we reexamine how NPCs can discriminate between receptor-mediated and passive cargo to promote vectorial translocation in a highly regulated manner. Moreover, we comment on the importance and potential benefits of identifying and experimenting with individual key components implicated in the translocation mechanism. We conclude by dwelling on questions that we feel are pertinent to a more rational understanding of the physical aspects governing NPC mechanics. Last but not least, we substantiate these uncertainties by boldly suggesting a new direction in NPC research as a means to verify such novel concepts, for example, a de novo designed 'minimalist' NPC.
Collapse
Affiliation(s)
- Roderick Y H Lim
- ME Müller Institute for Structural Biology, Biozentrum, University of Basel, Switzerland
| | | | | |
Collapse
|
192
|
Abstract
Nucleocytoplasmic transport, the exchange of matter between nucleus and cytoplasm, plays a fundamental role in human and other eukaryotic cells, affecting almost every aspect of health and disease. The only gate for the transport of small and large molecules as well as supramolecular complexes between nucleus and cytoplasm is the nuclear pore complex (NPC). The NPC is not a normal membrane transport protein (transporter). Composed of 500 to 1000 peptide chains, the NPC features a mysterious functional duality. For most molecules, it constitutes a molecular sieve with a blurred cutoff at approx 10 nm, but for molecules binding to phenylalanine-glycine (FG) motifs, the NPC appears to be a channel of approx 50 nm diameter, permitting bidirectional translocation at high speed. To achieve this, the NPC cooperates with soluble factors, the nuclear transport receptors, which shuttle between nuclear contents and cytoplasm. Here, we provide a short introduction to nucleocytoplasmic transport by describing first the structure and composition of the nuclear pore complex. Then, mechanisms of nucleocytoplasmic transport are discussed. Finally, the still essentially unresolved mechanisms by which nuclear transport receptors and transport complexes are translocated through the nuclear pore complex are considered, and a novel translocation model is suggested.
Collapse
Affiliation(s)
- Reiner Peters
- Institute of Medical Physics and Biophysics and Center for Nanotechnology, University of Münster, Germany
| |
Collapse
|
193
|
Lénárt P, Ellenberg J. Monitoring the permeability of the nuclear envelope during the cell cycle. Methods 2006; 38:17-24. [PMID: 16343937 DOI: 10.1016/j.ymeth.2005.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2005] [Indexed: 11/28/2022] Open
Abstract
In animal organisms the nuclear envelope (NE) dis-assembles during cell division resulting in complete intermixing of cytoplasmic and nuclear compartments. This leads to the activation of many mitotic enzymes, which were kept away from their substrates or regulators by nuclear or cytoplasmic sequestration in interphase. Nuclear envelope breakdown (NEBD) is thus an essential step of mitotic entry and commits a cell to M-phase. NEBD begins with the partial disassembly of nuclear pore complexes, leading to a limited permeabilization of the NE for molecules up to approximately 40 nm diameter. This is followed by the complete disruption of nuclear pores, which causes local fenestration of the double nuclear membrane and subsequently breakdown of the entire NE structure. Here, we describe the use of different sized inert fluorescent tracer molecules to directly visualize these different steps of NEBD in live cells by fluorescence microscopy.
Collapse
Affiliation(s)
- Péter Lénárt
- Gene Expression and Cell Biology/Biophysics Programmes, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
194
|
Hetzer MW, Walther TC, Mattaj IW. PUSHING THE ENVELOPE: Structure, Function, and Dynamics of the Nuclear Periphery. Annu Rev Cell Dev Biol 2005; 21:347-80. [PMID: 16212499 DOI: 10.1146/annurev.cellbio.21.090704.151152] [Citation(s) in RCA: 253] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nuclear envelope (NE) is a highly specialized membrane that delineates the eukaryotic cell nucleus. It is composed of the inner and outer nuclear membranes, nuclear pore complexes (NPCs) and, in metazoa, the lamina. The NE not only regulates the trafficking of macromolecules between nucleoplasm and cytosol but also provides anchoring sites for chromatin and the cytoskeleton. Through these interactions, the NE helps position the nucleus within the cell and chromosomes within the nucleus, thereby regulating the expression of certain genes. The NE is not static, rather it is continuously remodeled during cell division. The most dramatic example of NE reorganization occurs during mitosis in metazoa when the NE undergoes a complete cycle of disassembly and reformation. Despite the importance of the NE for eukaryotic cell life, relatively little is known about its biogenesis or many of its functions. We thus are far from understanding the molecular etiology of a diverse group of NE-associated diseases.
Collapse
Affiliation(s)
- Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
195
|
Abstract
Translocation through the nuclear pore complex (NPC), a large transporter spanning the nuclear envelope, is a passive, diffusion-driven process, paradoxically enhanced by binding. To account for this mystery, several models have been suggested. However, recent experiments with modified NPCs make reconsideration necessary. Here, we suggest that nuclear transport receptors (NTRs) such as the karyopherins, in accordance with their peculiar boat-like structure, act as nanoscopic ferries transporting cargos through the NPC by sliding on a surface of phenylalanine glycine (FG) motifs. The dense array of FG motifs that covers the cytoplasmic filaments of the NPC is thought to continue on the wall of the large channel permeating the central framework of the NPC and on parts of the nuclear filaments to yield a coherent FG surface. Nuclear transport receptors are assumed to bind to the FG surface at filaments or at the channel entrance and then to rapidly search the FG surface by a two-dimensional random walk for the channel exit where they are released. The passage of neutral molecules is restricted to a narrow tube in the center of the central channel by a loose network of peptide chains. The model features virtual gating, is compatible with but not dependent on FG affinity gradients and tolerates deletions and transpositions of FG motifs. Implications of the model are discussed and tests are suggested.
Collapse
Affiliation(s)
- Reiner Peters
- Institute of Medical Physics and Biophysics and Center of Nanotechnology (CeNTech), University of Muenster, Robert-Koch-Strasse 31, 48149 Muenster, Germany.
| |
Collapse
|
196
|
Abstract
Artificial nanopores have recently emerged as versatile tools for analyzing and sorting single molecules at high speed. However, the biological cell has already developed a large set of sophisticated protein nanopores that are able to selectively translocate all types of molecules through membranes. Therefore, hybrid devices combining artifical solid-state with biomimetic protein nanopores appear to us as a particularly promising approach to the creation of powerful diagnostic, preparative and therapeutic devices. Here, we discuss a technique, optical single-transporter recording (OSTR), in which arrays of artificial micropores and nanopores are employed to analyze protein nanopores of cellular membranes. After briefly summarizing some salient features of OSTR, the technique is compared with the electrical patch clamp method and the first results of our efforts to amalgamate optical and electrical recording are described. Finally, prospects for combining OSTR with 4Pi microscopy, single-molecule fluorescence spectroscopy and fluorescence correlation spectroscopy are discussed.
Collapse
Affiliation(s)
- Reiner Peters
- Institute of Medical Physics and Biophysics, University of Muenster, Robert-Koch-Strasse 31, 48149 Münster, Germany, Center of Nanotechnology, Muenster, Germany.
| |
Collapse
|