151
|
Lu C, Wang Y, Zhang F, Lu F, Xu M, Qin Y, Wu W, Li S, Song L, Yang S, Wu D, Jin L, Shen H, Sha J, Xia Y, Hu Z, Wang X. DAZ duplications confer the predisposition of Y chromosome haplogroup K* to non-obstructive azoospermia in Han Chinese populations. Hum Reprod 2013; 28:2440-9. [PMID: 23696539 DOI: 10.1093/humrep/det234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION What are the genetic causes for the predisposition of certain Y chromosome haplogroups (Y-hgs) to spermatogenic impairment? SUMMARY ANSWER The AZFc(azoospermia factor c)/DAZ (deleted in azoospermia) duplications might underlie the susceptibility of Y-hg K* to spermatogenic impairment. WHAT IS KNOWN ALREADY The roles of Y chromosomal genetic background in spermatogenesis are controversial and vary among human populations. Individuals in predisposed Y-hgs may carry some genetic factors, which might be a potential genetic modifier for the Y-hg-specific susceptibility to spermatogenic impairment. STUDY DESIGN, SIZE, DURATION A total of 2444 individuals with azoospermia or oligozoospermia and 2456 healthy controls were recruited to this study from March 2004 and January 2011. PARTICIPANTS/MATERIALS, SETTING, METHODS We performed a two-stage association study to investigate the risk and/or protective Y-hgs for spermatogenic impairment. In addition, the genetic causes for the predisposition of certain Y-hg to spermatogenic impairment were investigated. Deletion typing and DAZ gene copy number quantification were performed for individuals in predisposed Y-hgs. MAIN RESULTS AND THE ROLE OF CHANCE Y-hgs K* and O3e* showed significantly different distribution between cases and controls consistently in two-stage studies. Combined analyses identified significant predisposition to non-obstructive azoospermia in Y-hg K* [odds ratio (OR) 8.58; 95% confidence interval (CI) 3.31-22.28; P = 1.40 × 10⁻⁵], but a protecting effect in Y-hg O3e* (OR 0.64; 95% CI 0.53-0.78; P = 4.20 × 10⁻⁵). Based on the dynamic nature of the Y chromosome, we hypothesized that Y-hgs K* and O3e* may be accompanied by modifying genetic factors for their predisposing or protecting effects in spermatogenesis. Accordingly, we quantified the multi-copy DAZ gene, which has variable copy numbers between individuals and plays an important role in spermatogenesis. In combined analysis, we found that the over-dosage of DAZ was significantly more frequent in Y-hg K* than in O3e* (OR 4.79; 95% CI 1.67-13.70; P = 6 × 10⁻³). LIMITATIONS, REASONS FOR CAUTION Owing to the inconsistency of genetic background, it remains to be determined whether the results derived from Han Chinese populations are applicable to other ethnic groups. WIDER IMPLICATIONS OF THE FINDINGS The findings of this study can advance the etiology of spermatogenic impairment, and also shed new light on Y chromosome evolution in human populations. Y-hg-specific genetic factors of modifying spermatogenic phenotypes deserve further investigation in larger and diverse populations.
Collapse
Affiliation(s)
- Chuncheng Lu
- Institute of Toxicology, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Qi X, Cui C, Peng Y, Zhang X, Yang Z, Zhong H, Zhang H, Xiang K, Cao X, Wang Y, Ouzhuluobu, Basang, Ciwangsangbu, Bianba, Gonggalanzi, Wu T, Chen H, Shi H, Su B. Genetic evidence of paleolithic colonization and neolithic expansion of modern humans on the tibetan plateau. Mol Biol Evol 2013; 30:1761-78. [PMID: 23682168 DOI: 10.1093/molbev/mst093] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tibetans live on the highest plateau in the world, their current population size is approximately 5 million, and most of them live at an altitude exceeding 3,500 m. Therefore, the Tibetan Plateau is a remarkable area for cultural and biological studies of human population history. However, the chronological profile of the Tibetan Plateau's colonization remains an unsolved question of human prehistory. To reconstruct the prehistoric colonization and demographic history of modern humans on the Tibetan Plateau, we systematically sampled 6,109 Tibetan individuals from 41 geographic populations across the entire region of the Tibetan Plateau and analyzed the phylogeographic patterns of both paternal (n = 2,354) and maternal (n = 6,109) lineages as well as genome-wide single nucleotide polymorphism markers (n = 50) in Tibetan populations. We found that there have been two distinct, major prehistoric migrations of modern humans into the Tibetan Plateau. The first migration was marked by ancient Tibetan genetic signatures dated to approximately 30,000 years ago, indicating that the initial peopling of the Tibetan Plateau by modern humans occurred during the Upper Paleolithic rather than Neolithic. We also found evidences for relatively young (only 7-10 thousand years old) shared Y chromosome and mitochondrial DNA haplotypes between Tibetans and Han Chinese, suggesting a second wave of migration during the early Neolithic. Collectively, the genetic data indicate that Tibetans have been adapted to a high altitude environment since initial colonization of the Tibetan Plateau in the early Upper Paleolithic, before the last glacial maximum, followed by a rapid population expansion that coincided with the establishment of farming and yak pastoralism on the Plateau in the early Neolithic.
Collapse
Affiliation(s)
- Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Tamang R, Singh L, Thangaraj K. Complex genetic origin of Indian populations and its implications. J Biosci 2013; 37:911-9. [PMID: 23107926 DOI: 10.1007/s12038-012-9256-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Indian populations are classified into various caste, tribe and religious groups, which altogether makes them very unique compared to rest of the world. The long-term firm socio-religious boundaries and the strict endogamy practices along with the evolutionary forces have further supplemented the existing high-level diversity. As a result, drawing definite conclusions on its overall origin, affinity, health and disease conditions become even more sophisticated than was thought earlier. In spite of these challenges, researchers have undertaken tireless and extensive investigations using various genetic markers to estimate genetic variation and its implication in health and diseases. We have demonstrated that the Indian populations are the descendents of the very first modern humans, who ventured the journey of out-of-Africa about 65,000 years ago. The recent gene flow from east and west Eurasia is also evident. Thus, this review attempts to summarize the unique genetic variation among Indian populations as evident from our extensive study among approximately 20,000 samples across India.
Collapse
Affiliation(s)
- Rakesh Tamang
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500 007
| | | | | |
Collapse
|
154
|
Pijpe J, de Voogt A, van Oven M, Henneman P, van der Gaag KJ, Kayser M, de Knijff P. Indian Ocean crossroads: human genetic origin and population structure in the Maldives. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 151:58-67. [PMID: 23526367 PMCID: PMC3652038 DOI: 10.1002/ajpa.22256] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 02/05/2013] [Indexed: 11/07/2022]
Abstract
The Maldives are an 850 km-long string of atolls located centrally in the northern Indian Ocean basin. Because of this geographic situation, the present-day Maldivian population has potential for uncovering genetic signatures of historic migration events in the region. We therefore studied autosomal DNA-, mitochondrial DNA-, and Y-chromosomal DNA markers in a representative sample of 141 unrelated Maldivians, with 119 from six major settlements. We found a total of 63 different mtDNA haplotypes that could be allocated to 29 mtDNA haplogroups, mostly within the M, R, and U clades. We found 66 different Y-STR haplotypes in 10 Y-chromosome haplogroups, predominantly H1, J2, L, R1a1a, and R2. Parental admixture analysis for mtDNA- and Y-haplogroup data indicates a strong genetic link between the Maldive Islands and mainland South Asia, and excludes significant gene flow from Southeast Asia. Paternal admixture from West Asia is detected, but cannot be distinguished from admixture from South Asia. Maternal admixture from West Asia is excluded. Within the Maldives, we find a subtle genetic substructure in all marker systems that is not directly related to geographic distance or linguistic dialect. We found reduced Y-STR diversity and reduced male-mediated gene flow between atolls, suggesting independent male founder effects for each atoll. Detected reduced female-mediated gene flow between atolls confirms a Maldives-specific history of matrilocality. In conclusion, our new genetic data agree with the commonly reported Maldivian ancestry in South Asia, but furthermore suggest multiple, independent immigration events and asymmetrical migration of females and males across the archipelago.
Collapse
Affiliation(s)
- Jeroen Pijpe
- Department of Human Genetics, Leiden University Medical Center, Postzone S5, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
155
|
Karachanak S, Grugni V, Fornarino S, Nesheva D, Al-Zahery N, Battaglia V, Carossa V, Yordanov Y, Torroni A, Galabov AS, Toncheva D, Semino O. Y-chromosome diversity in modern Bulgarians: new clues about their ancestry. PLoS One 2013; 8:e56779. [PMID: 23483890 PMCID: PMC3590186 DOI: 10.1371/journal.pone.0056779] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/15/2013] [Indexed: 11/18/2022] Open
Abstract
To better define the structure and origin of the Bulgarian paternal gene pool, we have examined the Y-chromosome variation in 808 Bulgarian males. The analysis was performed by high-resolution genotyping of biallelic markers and by analyzing the STR variation within the most informative haplogroups. We found that the Y-chromosome gene pool in modern Bulgarians is primarily represented by Western Eurasian haplogroups with ∼ 40% belonging to haplogroups E-V13 and I-M423, and 20% to R-M17. Haplogroups common in the Middle East (J and G) and in South Western Asia (R-L23*) occur at frequencies of 19% and 5%, respectively. Haplogroups C, N and Q, distinctive for Altaic and Central Asian Turkic-speaking populations, occur at the negligible frequency of only 1.5%. Principal Component analyses group Bulgarians with European populations, apart from Central Asian Turkic-speaking groups and South Western Asia populations. Within the country, the genetic variation is structured in Western, Central and Eastern Bulgaria indicating that the Balkan Mountains have been permeable to human movements. The lineage analysis provided the following interesting results: (i) R-L23* is present in Eastern Bulgaria since the post glacial period; (ii) haplogroup E-V13 has a Mesolithic age in Bulgaria from where it expanded after the arrival of farming; (iii) haplogroup J-M241 probably reflects the Neolithic westward expansion of farmers from the earliest sites along the Black Sea. On the whole, in light of the most recent historical studies, which indicate a substantial proto-Bulgarian input to the contemporary Bulgarian people, our data suggest that a common paternal ancestry between the proto-Bulgarians and the Altaic and Central Asian Turkic-speaking populations either did not exist or was negligible.
Collapse
Affiliation(s)
- Sena Karachanak
- Department of Medical Genetics, Medical University of Sofia, Sofia, Bulgaria
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
| | - Viola Grugni
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
| | - Simona Fornarino
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
| | - Desislava Nesheva
- Department of Medical Genetics, Medical University of Sofia, Sofia, Bulgaria
| | - Nadia Al-Zahery
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
| | - Vincenza Battaglia
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
| | - Valeria Carossa
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
| | - Yordan Yordanov
- Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
| | - Angel S. Galabov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Draga Toncheva
- Department of Medical Genetics, Medical University of Sofia, Sofia, Bulgaria
- * E-mail: (DT); (OS)
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, Pavia, Italy
- * E-mail: (DT); (OS)
| |
Collapse
|
156
|
Regueiro M, Alvarez J, Rowold D, Herrera RJ. On the origins, rapid expansion and genetic diversity of Native Americans from hunting-gatherers to agriculturalists. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 150:333-48. [PMID: 23283701 DOI: 10.1002/ajpa.22207] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/08/2012] [Indexed: 11/05/2022]
Abstract
Given the importance of Y-chromosome haplogroup Q to better understand the source populations of contemporary Native Americans, we studied 8 biallelic and 17 microsatellite polymorphisms on the background of 128 Q Y-chromosomes from geographically targeted populations. The populations examined in this study include three from the Tuva Republic in Central Asia (Bai-Tai, Kungurtug, and Toora-Hem, n = 146), two from the northeastern tip of Siberia (New Chaplino and Chukchi, n = 32), and two from Mesoamerica (Mayans from Yucatan, Mexico n = 72, and Mayans from the Guatemalan Highlands, n = 43). We also see evidence of a dramatic Mesoamerican post-migration population growth in the ubiquitous and diverse Y-STR profiles of the Mayan and other Mesoamerican populations. In the case of the Mayans, this demographic growth was most likely fueled by the agricultural- and trade-based subsistence adopted during the Pre-Classic, Classic and Post-Classic periods of their empire. The limited diversity levels observed in the Altaian and Tuvinian regions of Central Asia, the lowest of all populations examined, may be the consequence of bottleneck events fostered by the spatial isolation and low effective population size characteristic of a nomadic lifestyle. Furthermore, our data illustrate how a sociocultural characteristic such as mode of subsistence may be of impact on the genetic structure of populations. We analyzed our genetic data using Multidimensional Scaling Analysis of populations, Principal Component Analysis of individuals, Median-joining networks of M242, M346, L54, and M3 individuals, age estimations based on microsatellite variation utilizing genealogical and evolutionary mutation rates/generation times and estimation of Y- STR average gene diversity indices.
Collapse
Affiliation(s)
- Maria Regueiro
- Department of Molecular and Human Genetics, College of Medicine, Florida International University, Miami, FL 33199, USA
| | | | | | | |
Collapse
|
157
|
Abstract
AIM The purpose of this study was to characterize Y-chromosome diversity in Tajiks from Tajikistan and in Persians and Kurds from Iran. METHOD Y-chromosome haplotypes were identified in 40 Tajiks, 77 Persians and 25 Kurds, using 12 short tandem repeats (STR) and 18 binary markers. RESULTS High genetic diversity was observed in the populations studied. Six of 12 haplogroups were common in Persians, Kurds and Tajiks, but only three haplogroups (G-M201, J-12f2 and L-M20) were the most frequent in all populations, comprising together ~60% of the Y-chromosomes in the pooled data set. Analysis of genetic distances between Y-STR haplotypes revealed that the Kurds showed a great distance to the Iranian-speaking populations of Iran, Afghanistan and Tajikistan. The presence of Indian-specific haplogroups L-M20, H1-M52 and R2a-M124 in both Tajik samples from Afghanistan and Tajikistan demonstrates an apparent genetic affinity between Tajiks from these two regions. CONCLUSIONS Despite the marked similarities between Y-chromosome gene pools of Iranian-speaking populations, there are differences between them, defined by many factors, including geographic and linguistic relationships.
Collapse
Affiliation(s)
- Boris Malyarchuk
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia
| | | | | | | |
Collapse
|
158
|
Rai N, Chaubey G, Tamang R, Pathak AK, Singh VK, Karmin M, Singh M, Rani DS, Anugula S, Yadav BK, Singh A, Srinivasagan R, Yadav A, Kashyap M, Narvariya S, Reddy AG, van Driem G, Underhill PA, Villems R, Kivisild T, Singh L, Thangaraj K. The phylogeography of Y-chromosome haplogroup h1a1a-m82 reveals the likely Indian origin of the European Romani populations. PLoS One 2012; 7:e48477. [PMID: 23209554 PMCID: PMC3509117 DOI: 10.1371/journal.pone.0048477] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/02/2012] [Indexed: 12/16/2022] Open
Abstract
Linguistic and genetic studies on Roma populations inhabited in Europe have unequivocally traced these populations to the Indian subcontinent. However, the exact parental population group and time of the out-of-India dispersal have remained disputed. In the absence of archaeological records and with only scanty historical documentation of the Roma, comparative linguistic studies were the first to identify their Indian origin. Recently, molecular studies on the basis of disease-causing mutations and haploid DNA markers (i.e. mtDNA and Y-chromosome) supported the linguistic view. The presence of Indian-specific Y-chromosome haplogroup H1a1a-M82 and mtDNA haplogroups M5a1, M18 and M35b among Roma has corroborated that their South Asian origins and later admixture with Near Eastern and European populations. However, previous studies have left unanswered questions about the exact parental population groups in South Asia. Here we present a detailed phylogeographical study of Y-chromosomal haplogroup H1a1a-M82 in a data set of more than 10,000 global samples to discern a more precise ancestral source of European Romani populations. The phylogeographical patterns and diversity estimates indicate an early origin of this haplogroup in the Indian subcontinent and its further expansion to other regions. Tellingly, the short tandem repeat (STR) based network of H1a1a-M82 lineages displayed the closest connection of Romani haplotypes with the traditional scheduled caste and scheduled tribe population groups of northwestern India.
Collapse
Affiliation(s)
- Niraj Rai
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Gyaneshwer Chaubey
- Evolutionary Biology Group, Estonian Biocentre, Tartu, Estonia
- * E-mail: (GC); (KT)
| | - Rakesh Tamang
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Ajai Kumar Pathak
- Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Vipin Kumar Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Monika Karmin
- Evolutionary Biology Group, Estonian Biocentre, Tartu, Estonia
- Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Manvendra Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Deepa Selvi Rani
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Sharath Anugula
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Brijesh Kumar Yadav
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Ashish Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | | - Anita Yadav
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Manju Kashyap
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Sapna Narvariya
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Alla G. Reddy
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - George van Driem
- Himalayan Languages Project, Institut für Sprachwissenschaft, Universität Bern, Bern, Switzerland
| | - Peter A. Underhill
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Richard Villems
- Evolutionary Biology Group, Estonian Biocentre, Tartu, Estonia
- Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Toomas Kivisild
- Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Department of Biological Anthropology, University of Cambridge, Cambridge, United Kingdom
| | - Lalji Singh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
- Genome Foundation, Hyderabad, India
- Banaras Hindu University, Varanasi, India
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
- * E-mail: (GC); (KT)
| |
Collapse
|
159
|
ArunKumar G, Soria-Hernanz DF, Kavitha VJ, Arun VS, Syama A, Ashokan KS, Gandhirajan KT, Vijayakumar K, Narayanan M, Jayalakshmi M, Ziegle JS, Royyuru AK, Parida L, Wells RS, Renfrew C, Schurr TG, Smith CT, Platt DE, Pitchappan R. Population differentiation of southern Indian male lineages correlates with agricultural expansions predating the caste system. PLoS One 2012; 7:e50269. [PMID: 23209694 PMCID: PMC3508930 DOI: 10.1371/journal.pone.0050269] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 10/22/2012] [Indexed: 02/06/2023] Open
Abstract
Previous studies that pooled Indian populations from a wide variety of geographical locations, have obtained contradictory conclusions about the processes of the establishment of the Varna caste system and its genetic impact on the origins and demographic histories of Indian populations. To further investigate these questions we took advantage that both Y chromosome and caste designation are paternally inherited, and genotyped 1,680 Y chromosomes representing 12 tribal and 19 non-tribal (caste) endogamous populations from the predominantly Dravidian-speaking Tamil Nadu state in the southernmost part of India. Tribes and castes were both characterized by an overwhelming proportion of putatively Indian autochthonous Y-chromosomal haplogroups (H-M69, F-M89, R1a1-M17, L1-M27, R2-M124, and C5-M356; 81% combined) with a shared genetic heritage dating back to the late Pleistocene (10–30 Kya), suggesting that more recent Holocene migrations from western Eurasia contributed <20% of the male lineages. We found strong evidence for genetic structure, associated primarily with the current mode of subsistence. Coalescence analysis suggested that the social stratification was established 4–6 Kya and there was little admixture during the last 3 Kya, implying a minimal genetic impact of the Varna (caste) system from the historically-documented Brahmin migrations into the area. In contrast, the overall Y-chromosomal patterns, the time depth of population diversifications and the period of differentiation were best explained by the emergence of agricultural technology in South Asia. These results highlight the utility of detailed local genetic studies within India, without prior assumptions about the importance of Varna rank status for population grouping, to obtain new insights into the relative influences of past demographic events for the population structure of the whole of modern India.
Collapse
Affiliation(s)
- GaneshPrasad ArunKumar
- The Genographic Laboratory, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
- Chettinad Academy of Research and Education, Kelampakkam, Chennai, Tamil Nadu, India
| | - David F. Soria-Hernanz
- National Geographic Society, Washington, District of Columbia, United States of America
- Institut de Biologia Evolutiva (CSIC-UPF), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Valampuri John Kavitha
- The Genographic Laboratory, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India
| | | | - Adhikarla Syama
- The Genographic Laboratory, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Kumaran Samy Ashokan
- Nilgiri Adivasi Welfare Association, Kota Hall Road, Kothagiri, Tamil Nadu, India
| | | | | | | | - Mariakuttikan Jayalakshmi
- The Genographic Laboratory, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Janet S. Ziegle
- Applied Biosystems, Foster City, California, United States of America
| | - Ajay K. Royyuru
- Computational Biology Group, IBM - Thomas J. Watson Research Center, New York, New York, United States of America
| | - Laxmi Parida
- Computational Biology Group, IBM - Thomas J. Watson Research Center, New York, New York, United States of America
| | - R. Spencer Wells
- National Geographic Society, Washington, District of Columbia, United States of America
| | - Colin Renfrew
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, United Kingdom
| | - Theodore G. Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Chris Tyler Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Daniel E. Platt
- Computational Biology Group, IBM - Thomas J. Watson Research Center, New York, New York, United States of America
| | - Ramasamy Pitchappan
- The Genographic Laboratory, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
- Chettinad Academy of Research and Education, Kelampakkam, Chennai, Tamil Nadu, India
- * E-mail:
| | | |
Collapse
|
160
|
Bird SC. Towards improvements in the estimation of the coalescent: implications for the most effective use of Y chromosome short tandem repeat mutation rates. PLoS One 2012; 7:e48638. [PMID: 23119076 PMCID: PMC3485328 DOI: 10.1371/journal.pone.0048638] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 10/01/2012] [Indexed: 11/30/2022] Open
Abstract
Over the past two decades, many short tandem repeat (STR) microsatellite loci on the human Y chromosome have been identified together with mutation rate estimates for the individual loci. These have been used to estimate the coalescent age, or the time to the most recent common ancestor (TMRCA) expressed in generations, in conjunction with the average square difference measure (ASD), an unbiased point estimator of TMRCA based upon the average within-locus allele variance between haplotypes. The ASD estimator, in turn, depends on accurate mutation rate estimates to be able to produce good approximations of the coalescent age of a sample. Here, a comparison is made between three published sets of per locus mutation rate estimates as they are applied to the calculation of the coalescent age for real and simulated population samples. A novel evaluation method is developed for estimating the degree of conformity of any Y chromosome STR locus of interest to the strict stepwise mutation model and specific recommendations are made regarding the suitability of thirty-two commonly used Y-STR loci for the purpose of estimating the coalescent. The use of the geometric mean for averaging ASD and across loci is shown to improve the consistency of the resulting estimates, with decreased sensitivity to outliers and to the number of STR loci compared or the particular set of mutation rates selected.
Collapse
Affiliation(s)
- Steven C Bird
- Department of Biology, Texas State University, San Marcos, Texas, United States of America.
| |
Collapse
|
161
|
Pamjav H, Fehér T, Németh E, Pádár Z. Brief communication: New Y-chromosome binary markers improve phylogenetic resolution within haplogroup R1a1. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 149:611-5. [DOI: 10.1002/ajpa.22167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/05/2012] [Indexed: 11/07/2022]
|
162
|
Tamang R, Thangaraj K. Genomic view on the peopling of India. INVESTIGATIVE GENETICS 2012; 3:20. [PMID: 23020857 PMCID: PMC3514343 DOI: 10.1186/2041-2223-3-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/07/2012] [Indexed: 01/11/2023]
Abstract
India is known for its vast human diversity, consisting of more than four and a half thousand anthropologically well-defined populations. Each population differs in terms of language, culture, physical features and, most importantly, genetic architecture. The size of populations varies from a few hundred to millions. Based on the social structure, Indians are classified into various caste, tribe and religious groups. These social classifications are very rigid and have remained undisturbed by emerging urbanisation and cultural changes. The variable social customs, strict endogamy marriage practices, long-term isolation and evolutionary forces have added immensely to the diversification of the Indian populations. These factors have also led to these populations acquiring a set of Indian-specific genetic variations responsible for various diseases in India. Interestingly, most of these variations are absent outside the Indian subcontinent. Thus, this review is focused on the peopling of India, the caste system, marriage practice and the resulting health and forensic implications.
Collapse
Affiliation(s)
- Rakesh Tamang
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India.
| | | |
Collapse
|
163
|
Rębała K, Martínez-Cruz B, Tönjes A, Kovacs P, Stumvoll M, Lindner I, Büttner A, Wichmann HE, Siváková D, Soták M, Quintana-Murci L, Szczerkowska Z, Comas D. Contemporary paternal genetic landscape of Polish and German populations: from early medieval Slavic expansion to post-World War II resettlements. Eur J Hum Genet 2012; 21:415-22. [PMID: 22968131 DOI: 10.1038/ejhg.2012.190] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Homogeneous Proto-Slavic genetic substrate and/or extensive mixing after World War II were suggested to explain homogeneity of contemporary Polish paternal lineages. Alternatively, Polish local populations might have displayed pre-war genetic heterogeneity owing to genetic drift and/or gene flow with neighbouring populations. Although sharp genetic discontinuity along the political border between Poland and Germany indisputably results from war-mediated resettlements and homogenisation, it remained unknown whether Y-chromosomal diversity in ethnically/linguistically defined populations was clinal or discontinuous before the war. In order to answer these questions and elucidate early Slavic migrations, 1156 individuals from several Slavic and German populations were analysed, including Polish pre-war regional populations and an autochthonous Slavic population from Germany. Y chromosomes were assigned to 39 haplogroups and genotyped for 19 STRs. Genetic distances revealed similar degree of differentiation of Slavic-speaking pre-war populations from German populations irrespective of duration and intensity of contacts with German speakers. Admixture estimates showed minor Slavic paternal ancestry (~20%) in modern eastern Germans and hardly detectable German paternal ancestry in Slavs neighbouring German populations for centuries. BATWING analysis of isolated Slavic populations revealed that their divergence was preceded by rapid demographic growth, undermining theory that Slavic expansion was primarily linguistic rather than population spread. Polish pre-war regional populations showed within-group heterogeneity and lower STR variation within R-M17 subclades compared with modern populations, which might have been homogenised by war resettlements. Our results suggest that genetic studies on early human history in the Vistula and Oder basins should rely on reconstructed pre-war rather than modern populations.
Collapse
Affiliation(s)
- Krzysztof Rębała
- Institut de Biologia Evolutiva, CSIC-UPF, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Grugni V, Battaglia V, Hooshiar Kashani B, Parolo S, Al-Zahery N, Achilli A, Olivieri A, Gandini F, Houshmand M, Sanati MH, Torroni A, Semino O. Ancient migratory events in the Middle East: new clues from the Y-chromosome variation of modern Iranians. PLoS One 2012; 7:e41252. [PMID: 22815981 PMCID: PMC3399854 DOI: 10.1371/journal.pone.0041252] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 06/19/2012] [Indexed: 11/18/2022] Open
Abstract
Knowledge of high resolution Y-chromosome haplogroup diversification within Iran provides important geographic context regarding the spread and compartmentalization of male lineages in the Middle East and southwestern Asia. At present, the Iranian population is characterized by an extraordinary mix of different ethnic groups speaking a variety of Indo-Iranian, Semitic and Turkic languages. Despite these features, only few studies have investigated the multiethnic components of the Iranian gene pool. In this survey 938 Iranian male DNAs belonging to 15 ethnic groups from 14 Iranian provinces were analyzed for 84 Y-chromosome biallelic markers and 10 STRs. The results show an autochthonous but non-homogeneous ancient background mainly composed by J2a sub-clades with different external contributions. The phylogeography of the main haplogroups allowed identifying post-glacial and Neolithic expansions toward western Eurasia but also recent movements towards the Iranian region from western Eurasia (R1b-L23), Central Asia (Q-M25), Asia Minor (J2a-M92) and southern Mesopotamia (J1-Page08). In spite of the presence of important geographic barriers (Zagros and Alborz mountain ranges, and the Dasht-e Kavir and Dash-e Lut deserts) which may have limited gene flow, AMOVA analysis revealed that language, in addition to geography, has played an important role in shaping the nowadays Iranian gene pool. Overall, this study provides a portrait of the Y-chromosomal variation in Iran, useful for depicting a more comprehensive history of the peoples of this area as well as for reconstructing ancient migration routes. In addition, our results evidence the important role of the Iranian plateau as source and recipient of gene flow between culturally and genetically distinct populations.
Collapse
Affiliation(s)
- Viola Grugni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Vincenza Battaglia
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | | | - Silvia Parolo
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Nadia Al-Zahery
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia Cellulare e Ambientale, Università di Perugia, Perugia, Italy
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Francesca Gandini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Hossein Sanati
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, Pavia, Italy
- Centro Interdipartimentale “Studi di Genere”, Università di Pavia, Pavia, Italy
| |
Collapse
|
165
|
Pemberton TJ, Li FY, Hanson EK, Mehta NU, Choi S, Ballantyne J, Belmont JW, Rosenberg NA, Tyler-Smith C, Patel PI. Impact of restricted marital practices on genetic variation in an endogamous Gujarati group. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 149:92-103. [PMID: 22729696 DOI: 10.1002/ajpa.22101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 05/07/2012] [Indexed: 12/15/2022]
Abstract
Recent studies have examined the influence on patterns of human genetic variation of a variety of cultural practices. In India, centuries-old marriage customs have introduced extensive social structuring into the contemporary population, potentially with significant consequences for genetic variation. Social stratification in India is evident as social classes that are defined by endogamous groups known as castes. Within a caste, there exist endogamous groups known as gols (marriage circles), each of which comprises a small number of exogamous gotra (lineages). Thus, while consanguinity is strictly avoided and some randomness in mate selection occurs within the gol, gene flow is limited with groups outside the gol. Gujarati Patels practice this form of "exogamic endogamy." We have analyzed genetic variation in one such group of Gujarati Patels, the Chha Gaam Patels (CGP), who comprise individuals from six villages. Population structure analysis of 1,200 autosomal loci offers support for the existence of distinctive multilocus genotypes in the CGP with respect to both non-Gujaratis and other Gujaratis, and indicates that CGP individuals are genetically very similar. Analysis of Y-chromosomal and mitochondrial haplotypes provides support for both patrilocal and patrilineal practices within the gol, and a low-level of female gene flow into the gol. Our study illustrates how the practice of gol endogamy has introduced fine-scale genetic structure into the population of India, and contributes more generally to an understanding of the way in which marriage practices affect patterns of genetic variation.
Collapse
Affiliation(s)
- Trevor J Pemberton
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Khusnutdinova EK, Litvinov SS, Kutuev IA, Yunusbayev BB, Khusainova RI, Ahmetova VL, Ahatova FS, Metspalu E, Rootsi S, Villems R. Gene pool of ethnic groups of the Caucasus: Results of integrated study of the Y chromosome and mitochondrial DNA and genome-wide data. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412060063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
167
|
Regueiro M, Rivera L, Chennakrishnaiah S, Popovic B, Andjus S, Milasin J, Herrera RJ. Ancestral modal Y-STR haplotype shared among Romani and South Indian populations. Gene 2012; 504:296-302. [PMID: 22609956 DOI: 10.1016/j.gene.2012.04.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/24/2012] [Accepted: 04/30/2012] [Indexed: 11/17/2022]
Abstract
One of the primary unanswered questions regarding the dispersal of Romani populations concerns the geographical region and/or the Indian caste/tribe that gave rise to the proto-Romani group. To shed light on this matter, 161 Y-chromosomes from Roma, residing in two different provinces of Serbia, were analyzed. Our results indicate that the paternal gene pool of both groups is shaped by several strata, the most prominent of which, H1-M52, comprises almost half of each collection's patrilineages. The high frequency of M52 chromosomes in the two Roma populations examined may suggest that they descend from a single founder that has its origins in the Indian subcontinent. Moreover, when the Y-STR profiles of haplogroup H derived individuals in our Roma populations were compared to those typed in the South Indian emigrants from Malaysia and groups from Madras, Karnataka (Lingayat and Vokkaliga castes) and tribal Soligas, sharing of the two most common haplotypes was observed. These similarities suggest that South India may have been one of the contributors to the proto-Romanis. European genetic signatures (i.e., haplogroups E1b1b1a1b-V13, G2a-P15, I-M258, J2-M172 and R1-M173), on the other hand, were also detected in both groups, but at varying frequencies. The divergent European genetic signals in each collection are likely the result of differential gene flow and/or admixture with the European host populations but may also be attributed to dissimilar endogamous practices following the initial founder effect. Our data also support the notion that a number of haplogroups including G2a-P15, J2a3b-M67(xM92), I-M258 and E1b1b1-M35 were incorporated into the proto-Romani paternal lineages as migrants moved from northern India through Southwestern Asia, the Middle East and/or Anatolia into the Balkans.
Collapse
Affiliation(s)
- Maria Regueiro
- Department of Molecular and Human Genetics, College of Medicine, Florida International University, Miami, FL, USA
| | | | | | | | | | | | | |
Collapse
|
168
|
Distinguishing the co-ancestries of haplogroup G Y-chromosomes in the populations of Europe and the Caucasus. Eur J Hum Genet 2012; 20:1275-82. [PMID: 22588667 DOI: 10.1038/ejhg.2012.86] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Haplogroup G, together with J2 clades, has been associated with the spread of agriculture, especially in the European context. However, interpretations based on simple haplogroup frequency clines do not recognize underlying patterns of genetic diversification. Although progress has been recently made in resolving the haplogroup G phylogeny, a comprehensive survey of the geographic distribution patterns of the significant sub-clades of this haplogroup has not been conducted yet. Here we present the haplogroup frequency distribution and STR variation of 16 informative G sub-clades by evaluating 1472 haplogroup G chromosomes belonging to 98 populations ranging from Europe to Pakistan. Although no basal G-M201* chromosomes were detected in our data set, the homeland of this haplogroup has been estimated to be somewhere nearby eastern Anatolia, Armenia or western Iran, the only areas characterized by the co-presence of deep basal branches as well as the occurrence of high sub-haplogroup diversity. The P303 SNP defines the most frequent and widespread G sub-haplogroup. However, its sub-clades have more localized distribution with the U1-defined branch largely restricted to Near/Middle Eastern and the Caucasus, whereas L497 lineages essentially occur in Europe where they likely originated. In contrast, the only U1 representative in Europe is the G-M527 lineage whose distribution pattern is consistent with regions of Greek colonization. No clinal patterns were detected suggesting that the distributions are rather indicative of isolation by distance and demographic complexities.
Collapse
|
169
|
Y-chromosome analysis reveals genetic divergence and new founding native lineages in Athapaskan- and Eskimoan-speaking populations. Proc Natl Acad Sci U S A 2012; 109:8471-6. [PMID: 22586127 DOI: 10.1073/pnas.1118760109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
For decades, the peopling of the Americas has been explored through the analysis of uniparentally inherited genetic systems in Native American populations and the comparison of these genetic data with current linguistic groupings. In northern North America, two language families predominate: Eskimo-Aleut and Na-Dene. Although the genetic evidence from nuclear and mtDNA loci suggest that speakers of these language families share a distinct biological origin, this model has not been examined using data from paternally inherited Y chromosomes. To test this hypothesis and elucidate the migration histories of Eskimoan- and Athapaskan-speaking populations, we analyzed Y-chromosomal data from Inuvialuit, Gwich'in, and Tłįch populations living in the Northwest Territories of Canada. Over 100 biallelic markers and 19 chromosome short tandem repeats (STRs) were genotyped to produce a high-resolution dataset of Y chromosomes from these groups. Among these markers is an SNP discovered in the Inuvialuit that differentiates them from other Aboriginal and Native American populations. The data suggest that Canadian Eskimoan- and Athapaskan-speaking populations are genetically distinct from one another and that the formation of these groups was the result of two population expansions that occurred after the initial movement of people into the Americas. In addition, the population history of Athapaskan speakers is complex, with the Tłįch being distinct from other Athapaskan groups. The high-resolution biallelic data also make clear that Y-chromosomal diversity among the first Native Americans was greater than previously recognized.
Collapse
|
170
|
He JD, Peng MS, Quang HH, Dang KP, Trieu AV, Wu SF, Jin JQ, Murphy RW, Yao YG, Zhang YP. Patrilineal perspective on the Austronesian diffusion in Mainland Southeast Asia. PLoS One 2012; 7:e36437. [PMID: 22586471 PMCID: PMC3346718 DOI: 10.1371/journal.pone.0036437] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 04/02/2012] [Indexed: 01/22/2023] Open
Abstract
The Cham people are the major Austronesian speakers of Mainland Southeast Asia (MSEA) and the reconstruction of the Cham population history can provide insights into their diffusion. In this study, we analyzed non-recombining region of the Y chromosome markers of 177 unrelated males from four populations in MSEA, including 59 Cham, 76 Kinh, 25 Lao, and 17 Thai individuals. Incorporating published data from mitochondrial DNA (mtDNA), our results indicated that, in general, the Chams are an indigenous Southeast Asian population. The origin of the Cham people involves the genetic admixture of the Austronesian immigrants from Island Southeast Asia (ISEA) with the local populations in MSEA. Discordance between the overall patterns of Y chromosome and mtDNA in the Chams is evidenced by the presence of some Y chromosome lineages that prevail in South Asians. Our results suggest that male-mediated dispersals via the spread of religions and business trade might play an important role in shaping the patrilineal gene pool of the Cham people.
Collapse
Affiliation(s)
- Jun-Dong He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Huy Ho Quang
- Department of Immunology, Hanoi Medical University, Hanoi, Vietnam
| | - Khoa Pham Dang
- Department of Immunology, Hanoi Medical University, Hanoi, Vietnam
| | - An Vu Trieu
- Department of Immunology, Hanoi Medical University, Hanoi, Vietnam
| | - Shi-Fang Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jie-Qiong Jin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Robert W. Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, Canada
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, China
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, China
- * E-mail:
| |
Collapse
|
171
|
Schurr TG, Dulik MC, Owings AC, Zhadanov SI, Gaieski JB, Vilar MG, Ramos J, Moss MB, Natkong F. Clan, language, and migration history has shaped genetic diversity in Haida and Tlingit populations from Southeast Alaska. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 148:422-35. [PMID: 22549307 DOI: 10.1002/ajpa.22068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 03/06/2012] [Indexed: 11/10/2022]
Abstract
The linguistically distinctive Haida and Tlingit tribes of Southeast Alaska are known for their rich material culture, complex social organization, and elaborate ritual practices. However, much less is known about these tribes from a population genetic perspective. For this reason, we analyzed mtDNA and Y-chromosome variation in Haida and Tlingit populations to elucidate several key issues pertaining to the history of this region. These included the genetic relationships of Haida and Tlingit to other indigenous groups in Alaska and Canada; the relationship between linguistic and genetic data for populations assigned to the Na-Dene linguistic family, specifically, the inclusion of Haida with Athapaskan, Eyak, and Tlingit in the language family; the possible influence of matrilineal clan structure on patterns of genetic variation in Haida and Tlingit populations; and the impact of European entry into the region on the genetic diversity of these indigenous communities. Our analysis indicates that, while sharing a "northern" genetic profile, the Haida and the Tlingit are genetically distinctive from each other. In addition, Tlingit groups themselves differ across their geographic range, in part due to interactions of Tlingit tribes with Athapaskan and Eyak groups to the north. The data also reveal a strong influence of maternal clan identity on mtDNA variation in these groups, as well as the significant influence of non-native males on Y-chromosome diversity. These results yield new details about the histories of the Haida and Tlingit tribes in this region.
Collapse
Affiliation(s)
- Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, 19104-6398, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Regueiro M, Rivera L, Damnjanovic T, Lukovic L, Milasin J, Herrera RJ. High levels of Paleolithic Y-chromosome lineages characterize Serbia. Gene 2012; 498:59-67. [PMID: 22310393 DOI: 10.1016/j.gene.2012.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
Whether present-day European genetic variation and its distribution patterns can be attributed primarily to the initial peopling of Europe by anatomically modern humans during the Paleolithic, or to latter Near Eastern Neolithic input is still the subject of debate. Southeastern Europe has been a crossroads for several cultures since Paleolithic times and the Balkans, specifically, would have been part of the route used by Neolithic farmers to enter Europe. Given its geographic location in the heart of the Balkan Peninsula at the intersection of Central and Southeastern Europe, Serbia represents a key geographical location that may provide insight to elucidate the interactions between indigenous Paleolithic people and agricultural colonists from the Fertile Crescent. In this study, we examine, for the first time, the Y-chromosome constitution of the general Serbian population. A total of 103 individuals were sampled and their DNA analyzed for 104 Y-chromosome bi-allelic markers and 17 associated STR loci. Our results indicate that approximately 58% of Serbian Y-chromosomes (I1-M253, I2a-P37.2 and R1a1a-M198) belong to lineages believed to be pre-Neolithic. On the other hand, the signature of putative Near Eastern Neolithic lineages, including E1b1b1a1-M78, G2a-P15, J1-M267, J2-M172 and R1b1a2-M269 accounts for 39% of the Y-chromosome. Haplogroup frequency distributions in Western and Eastern Europe reveal a spotted landscape of paleolithic Y chromosomes, undermining continental-wide generalizations. Furthermore, an examination of the distribution of Y-chromosome filiations in Europe indicates extreme levels of Paleolithic lineages in a region encompassing Serbia, Bosnia-Herzegovina and Croatia, possibly the result of Neolithic migrations encroaching on Paleolithic populations against the Adriatic Sea.
Collapse
Affiliation(s)
- Maria Regueiro
- Department of Molecular and Human Genetics, College of Medicine, Florida International University, Miami, FL 33199, USA
| | | | | | | | | | | |
Collapse
|
173
|
Lacau H, Gayden T, Regueiro M, Chennakrishnaiah S, Bukhari A, Underhill PA, Garcia-Bertrand RL, Herrera RJ. Afghanistan from a Y-chromosome perspective. Eur J Hum Genet 2012; 20:1063-70. [PMID: 22510847 DOI: 10.1038/ejhg.2012.59] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Central Asia has served as a corridor for human migrations providing trading routes since ancient times. It has functioned as a conduit connecting Europe and the Middle East with South Asia and far Eastern civilizations. Therefore, the study of populations in this region is essential for a comprehensive understanding of early human dispersal on the Eurasian continent. Although Y- chromosome distributions in Central Asia have been widely surveyed, present-day Afghanistan remains poorly characterized genetically. The present study addresses this lacuna by analyzing 190 Pathan males from Afghanistan using high-resolution Y-chromosome binary markers. In addition, haplotype diversity for its most common lineages (haplogroups R1a1a*-M198 and L3-M357) was estimated using a set of 15 Y-specific STR loci. The observed haplogroup distribution suggests some degree of genetic isolation of the northern population, likely due to the Hindu Kush mountain range separating it from the southern Afghans who have had greater contact with neighboring Pathans from Pakistan and migrations from the Indian subcontinent. Our study demonstrates genetic similarities between Pathans from Afghanistan and Pakistan, both of which are characterized by the predominance of haplogroup R1a1a*-M198 (>50%) and the sharing of the same modal haplotype. Furthermore, the high frequencies of R1a1a-M198 and the presence of G2c-M377 chromosomes in Pathans might represent phylogenetic signals from Khazars, a common link between Pathans and Ashkenazi groups, whereas the absence of E1b1b1a2-V13 lineage does not support their professed Greek ancestry.
Collapse
Affiliation(s)
- Harlette Lacau
- Department of Molecular and Human Genetics, College of Medicine, Florida International University, Miami, FL 33199, USA
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Haber M, Platt DE, Ashrafian Bonab M, Youhanna SC, Soria-Hernanz DF, Martínez-Cruz B, Douaihy B, Ghassibe-Sabbagh M, Rafatpanah H, Ghanbari M, Whale J, Balanovsky O, Wells RS, Comas D, Tyler-Smith C, Zalloua PA. Afghanistan's ethnic groups share a Y-chromosomal heritage structured by historical events. PLoS One 2012; 7:e34288. [PMID: 22470552 PMCID: PMC3314501 DOI: 10.1371/journal.pone.0034288] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/25/2012] [Indexed: 11/24/2022] Open
Abstract
Afghanistan has held a strategic position throughout history. It has been inhabited since the Paleolithic and later became a crossroad for expanding civilizations and empires. Afghanistan's location, history, and diverse ethnic groups present a unique opportunity to explore how nations and ethnic groups emerged, and how major cultural evolutions and technological developments in human history have influenced modern population structures. In this study we have analyzed, for the first time, the four major ethnic groups in present-day Afghanistan: Hazara, Pashtun, Tajik, and Uzbek, using 52 binary markers and 19 short tandem repeats on the non-recombinant segment of the Y-chromosome. A total of 204 Afghan samples were investigated along with more than 8,500 samples from surrounding populations important to Afghanistan's history through migrations and conquests, including Iranians, Greeks, Indians, Middle Easterners, East Europeans, and East Asians. Our results suggest that all current Afghans largely share a heritage derived from a common unstructured ancestral population that could have emerged during the Neolithic revolution and the formation of the first farming communities. Our results also indicate that inter-Afghan differentiation started during the Bronze Age, probably driven by the formation of the first civilizations in the region. Later migrations and invasions into the region have been assimilated differentially among the ethnic groups, increasing inter-population genetic differences, and giving the Afghans a unique genetic diversity in Central Asia.
Collapse
Affiliation(s)
- Marc Haber
- The Lebanese American University, Chouran, Beirut, Lebanon
- Evolutionary Biology Institute, Pompeu Fabra University, Barcelona, Spain
| | - Daniel E. Platt
- Bioinformatics and Pattern Discovery, IBM T. J. Watson Research Centre, Yorktown Heights, New York, United States of America
| | - Maziar Ashrafian Bonab
- Biological Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | | | - David F. Soria-Hernanz
- Evolutionary Biology Institute, Pompeu Fabra University, Barcelona, Spain
- The Genographic Project, National Geographic Society, Washington, D.C., United States of America
| | | | | | | | | | | | - John Whale
- Biological Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Oleg Balanovsky
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | - R. Spencer Wells
- The Genographic Project, National Geographic Society, Washington, D.C., United States of America
| | - David Comas
- Evolutionary Biology Institute, Pompeu Fabra University, Barcelona, Spain
| | - Chris Tyler-Smith
- Wellcome Trust Genome Campus, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Pierre A. Zalloua
- The Lebanese American University, Chouran, Beirut, Lebanon
- Harvard School of Public Health, Harvard University, Boston, Massachusetts, United States of America
- * E-mail:
| | | |
Collapse
|
175
|
Sharma G, Tamang R, Chaudhary R, Singh VK, Shah AM, Anugula S, Rani DS, Reddy AG, Eaaswarkhanth M, Chaubey G, Singh L, Thangaraj K. Genetic affinities of the central Indian tribal populations. PLoS One 2012; 7:e32546. [PMID: 22393414 PMCID: PMC3290590 DOI: 10.1371/journal.pone.0032546] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/27/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The central Indian state Madhya Pradesh is often called as 'heart of India' and has always been an important region functioning as a trinexus belt for three major language families (Indo-European, Dravidian and Austroasiatic). There are less detailed genetic studies on the populations inhabited in this region. Therefore, this study is an attempt for extensive characterization of genetic ancestries of three tribal populations, namely; Bharia, Bhil and Sahariya, inhabiting this region using haploid and diploid DNA markers. METHODOLOGY/PRINCIPAL FINDINGS Mitochondrial DNA analysis showed high diversity, including some of the older sublineages of M haplogroup and prominent R lineages in all the three tribes. Y-chromosomal biallelic markers revealed high frequency of Austroasiatic-specific M95-O2a haplogroup in Bharia and Sahariya, M82-H1a in Bhil and M17-R1a in Bhil and Sahariya. The results obtained by haploid as well as diploid genetic markers revealed strong genetic affinity of Bharia (a Dravidian speaking tribe) with the Austroasiatic (Munda) group. The gene flow from Austroasiatic group is further confirmed by their Y-STRs haplotype sharing analysis, where we determined their founder haplotype from the North Munda speaking tribe, while, autosomal analysis was largely in concordant with the haploid DNA results. CONCLUSIONS/SIGNIFICANCE Bhil exhibited largely Indo-European specific ancestry, while Sahariya and Bharia showed admixed genetic package of Indo-European and Austroasiatic populations. Hence, in a landscape like India, linguistic label doesn't unequivocally follow the genetic footprints.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Zoology, Government Motilal Vigyan Mahavidyalaya, Bhopal, India
| | - Rakesh Tamang
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Ruchira Chaudhary
- Department of Zoology, Government Motilal Vigyan Mahavidyalaya, Bhopal, India
- * E-mail: (KT); (RC)
| | | | - Anish M. Shah
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Sharath Anugula
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Deepa Selvi Rani
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Alla G. Reddy
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Gyaneshwer Chaubey
- Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu and Estonian Biocentre, Tartu, Estonia
| | - Lalji Singh
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Genome Foundation, Hyderabad, India
- Banaras Hindu University, Varanasi, India
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- * E-mail: (KT); (RC)
| |
Collapse
|
176
|
Mitochondrial DNA and Y chromosome variation provides evidence for a recent common ancestry between Native Americans and Indigenous Altaians. Am J Hum Genet 2012; 90:229-46. [PMID: 22281367 DOI: 10.1016/j.ajhg.2011.12.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/06/2011] [Accepted: 12/19/2011] [Indexed: 11/20/2022] Open
Abstract
The Altai region of southern Siberia has played a critical role in the peopling of northern Asia as an entry point into Siberia and a possible homeland for ancestral Native Americans. It has an old and rich history because humans have inhabited this area since the Paleolithic. Today, the Altai region is home to numerous Turkic-speaking ethnic groups, which have been divided into northern and southern clusters based on linguistic, cultural, and anthropological traits. To untangle Altaian genetic histories, we analyzed mtDNA and Y chromosome variation in northern and southern Altaian populations. All mtDNAs were assayed by PCR-RFLP analysis and control region sequencing, and the nonrecombining portion of the Y chromosome was scored for more than 100 biallelic markers and 17 Y-STRs. Based on these data, we noted differences in the origin and population history of Altaian ethnic groups, with northern Altaians appearing more like Yeniseian, Ugric, and Samoyedic speakers to the north, and southern Altaians having greater affinities to other Turkic speaking populations of southern Siberia and Central Asia. Moreover, high-resolution analysis of Y chromosome haplogroup Q has allowed us to reshape the phylogeny of this branch, making connections between populations of the New World and Old World more apparent and demonstrating that southern Altaians and Native Americans share a recent common ancestor. These results greatly enhance our understanding of the peopling of Siberia and the Americas.
Collapse
|
177
|
Delfin F, Myles S, Choi Y, Hughes D, Illek R, van Oven M, Pakendorf B, Kayser M, Stoneking M. Bridging near and remote Oceania: mtDNA and NRY variation in the Solomon Islands. Mol Biol Evol 2012; 29:545-64. [PMID: 21771715 DOI: 10.1093/molbev/msr186] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
Although genetic studies have contributed greatly to our understanding of the colonization of Near and Remote Oceania, important gaps still exist. One such gap is the Solomon Islands, which extend between Bougainville and Vanuatu, thereby bridging Near and Remote Oceania, and include both Austronesian-speaking and Papuan-speaking groups. Here, we describe patterns of mitochondrial DNA (mtDNA) and nonrecombining Y chromosome (NRY) variation in over 700 individuals from 18 populations in the Solomons, including 11 Austronesian-speaking groups, 3 Papuan-speaking groups, and 4 Polynesian Outliers (descended via back migration from Polynesia). We find evidence for ancient (pre-Lapita) colonization of the Solomons in old NRY paragroups as well as from M2-M353, which probably arose in the Solomons ∼9,200 years ago and is the most frequent NRY haplogroup there. There are no consistent genetic differences between Austronesian-speaking and Papuan-speaking groups, suggesting extensive genetic contact between them. Santa Cruz, which is located in Remote Oceania, shows unusually low frequencies of mtDNA and NRY haplogroups of recent Asian ancestry. This is in apparent contradiction with expectations based on archaeological and linguistic evidence for an early (∼3,200 years ago), direct colonization of Santa Cruz by Lapita people from the Bismarck Archipelago, via a migration that "leapfrogged" over the rest of the Solomons. Polynesian Outliers show dramatic island-specific founder events involving various NRY haplogroups. We also find that NRY, but not mtDNA, genetic distance is correlated with the geographic distance between Solomons groups and that historically attested spheres of cultural interaction are associated with the recent genetic structure of Solomons groups, as revealed by mtDNA HV1 sequence and Y-STR haplotype diversity. Our results fill an important lacuna in human genetic studies of Oceania and aid in understanding the colonization and genetic history of this region.
Collapse
Affiliation(s)
- Frederick Delfin
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Young KL, Sun G, Deka R, Crawford MH. Paternal genetic history of the Basque population of Spain. Hum Biol 2012; 83:455-75. [PMID: 21846204 DOI: 10.3378/027.083.0402] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study examines the genetic variation in Basque Y chromosome lineages using data on 12 Y-short tandem repeat (STR) loci in a sample of 158 males from four Basque provinces of Spain (Alava, Vizcaya, Guipuzcoa, and Navarre). As reported in previous studies, the Basques are characterized by high frequencies of haplogroup R1b (83%). AMOVA analysis demonstrates genetic homogeneity, with a small but significant amount of genetic structure between provinces (Y-short tandem repeat loci STRs: 1.71%, p = 0.0369). Gene and haplotype diversity levels in the Basque population are on the low end of the European distribution (gene diversity: 0.4268; haplotype diversity: 0.9421). Post-Neolithic contribution to the paternal Basque gene pool was estimated by measuring the proportion of those haplogroups with a Time to Most Recent Common Ancestor (TMRCA) previously dated either prior (R1b, I2a2) or subsequent to (E1b1b, G2a, J2a) the Neolithic. Based on these estimates, the Basque provinces show varying degrees of post-Neolithic contribution in the paternal lineages (10.9% in the combined sample).
Collapse
Affiliation(s)
- Kristin L Young
- Department of Family Medicine, Research Division, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | |
Collapse
|
179
|
Klyosov AA, Rozhanskii IL. Haplogroup R1a as the Proto Indo-Europeans and the Legendary Aryans as Witnessed by the DNA of Their Current Descendants. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/aa.2012.21001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
180
|
Increased Y-chromosome resolution of haplogroup O suggests genetic ties between the Ami aborigines of Taiwan and the Polynesian Islands of Samoa and Tonga. Gene 2012; 492:339-48. [DOI: 10.1016/j.gene.2011.10.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/13/2011] [Accepted: 10/18/2011] [Indexed: 11/22/2022]
|
181
|
Riccio ME, Nunes JM, Rahal M, Kervaire B, Tiercy JM, Sanchez-Mazas A. The Austroasiatic Munda population from India and Its enigmatic origin: a HLA diversity study. Hum Biol 2011; 83:405-35. [PMID: 21740156 DOI: 10.3378/027.083.0306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Austroasiatic linguistic family disputes its origin between two geographically distant regions of Asia, India, and Southeast Asia, respectively. As genetic studies based on classical and gender-specific genetic markers provided contradictory results to this debate thus far, we investigated the HLA diversity (HLA-A, -B, and -DRB1 loci) of an Austroasiatic Munda population from Northeast India and its relationships with other populations from India and Southeast Asia. Because molecular methods currently used to test HLA markers often provide ambiguous results due to the high complexity of this polymorphism, we applied two different techniques (reverse PCR-SSO typing on microbeads arrays based on Luminex technology, and PCR-SSP typing) to type the samples. After validating the resulting frequency distributions through the original statistical method described in our companion article ( Nunes et al. 2011 ), we compared the HLA genetic profile of the sampled Munda to those of other Asiatic populations, among which Dravidian and Indo-European-speakers from India and populations from East and Southeast Asia speaking languages belonging to different linguistic families. We showed that the Munda from Northeast India exhibit a peculiar genetic profile with a reduced level of HLA diversity compared to surrounding Indian populations. They also exhibit less diversity than Southeast Asian populations except at locus DRB1. Several analyses using genetic distances indicate that the Munda are much more closely related to populations from the Indian subcontinent than to Southeast Asian populations speaking languages of the same Austroasiatic linguistic family. On the other hand, they do not share a closer relationship with Dravidians compared with Indo-Europeans, thus arguing against the idea that the Munda share a common and ancient Indian origin with Dravidians. Our results do not favor either a scenario where the Munda would be representative of an ancestral Austroasiatic population giving rise to an eastward Austroasiatic expansion to Southeast Asia. Rather, their peculiar genetic profile is better explained by a decrease in genetic diversity through genetic drift from an ancestral population having a genetic profile similar to present-day Austroasiatic populations from Southeast Asia (thus suggesting a possible southeastern origin), followed by intensive gene flow with neighboring Indian populations. This conclusion is in agreement with archaeological and linguistic information. The history of the Austroasiatic family represents a fascinating example where complex interactions among culturally distinct human populations occurred in the past.
Collapse
Affiliation(s)
- Maria Eugenia Riccio
- Laboratory of Anthropology, Genetics, and Peopling History (AGP), Laboratory of Anthropology, Genetics, and Peopling History (AGP), Anthropology Unit, Department of Genetics and Evolution, University of Geneva, Switzerland.
| | | | | | | | | | | |
Collapse
|
182
|
Neolithic patrilineal signals indicate that the Armenian plateau was repopulated by agriculturalists. Eur J Hum Genet 2011; 20:313-20. [PMID: 22085901 DOI: 10.1038/ejhg.2011.192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Armenia, situated between the Black and Caspian Seas, lies at the junction of Turkey, Iran, Georgia, Azerbaijan and former Mesopotamia. This geographic position made it a potential contact zone between Eastern and Western civilizations. In this investigation, we assess Y-chromosomal diversity in four geographically distinct populations that represent the extent of historical Armenia. We find a striking prominence of haplogroups previously implicated with the Agricultural Revolution in the Near East, including the J2a-M410-, R1b1b1(*)-L23-, G2a-P15- and J1-M267-derived lineages. Given that the Last Glacial Maximum event in the Armenian plateau occured a few millennia before the Neolithic era, we envision a scenario in which its repopulation was achieved mainly by the arrival of farmers from the Fertile Crescent temporally coincident with the initial inception of farming in Greece. However, we detect very restricted genetic affinities with Europe that suggest any later cultural diffusions from Armenia to Europe were not associated with substantial amounts of paternal gene flow, despite the presence of closely related Indo-European languages in both Armenia and Southeast Europe.
Collapse
|
183
|
Ayub Q. Male lineages in the Himalayan foothills: a commentary on Y-chromosome haplogroup diversity in the sub-Himalayan Terai and Duars populations of East India. J Hum Genet 2011; 56:813-4. [PMID: 21975650 DOI: 10.1038/jhg.2011.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
184
|
Borkar M, Ahmad F, Khan F, Agrawal S. Paleolithic spread of Y-chromosomal lineage of tribes in eastern and northeastern India. Ann Hum Biol 2011; 38:736-46. [DOI: 10.3109/03014460.2011.617389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Minal Borkar
- Department of Medical Genetics, SGPGIMS,
Lucknow, India
- Hospital Universitario Marqués de Valdecilla,
Santander, Spain
| | - Fahim Ahmad
- Center for Excellence on Infectious Disease, Texas Tech University,
TX, USA
| | - Faisal Khan
- Faculty of Medicine, University of Calgary, Canada
| | | |
Collapse
|
185
|
Al-Zahery N, Pala M, Battaglia V, Grugni V, Hamod MA, Hooshiar Kashani B, Olivieri A, Torroni A, Santachiara-Benerecetti AS, Semino O. In search of the genetic footprints of Sumerians: a survey of Y-chromosome and mtDNA variation in the Marsh Arabs of Iraq. BMC Evol Biol 2011; 11:288. [PMID: 21970613 PMCID: PMC3215667 DOI: 10.1186/1471-2148-11-288] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 10/04/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND For millennia, the southern part of the Mesopotamia has been a wetland region generated by the Tigris and Euphrates rivers before flowing into the Gulf. This area has been occupied by human communities since ancient times and the present-day inhabitants, the Marsh Arabs, are considered the population with the strongest link to ancient Sumerians. Popular tradition, however, considers the Marsh Arabs as a foreign group, of unknown origin, which arrived in the marshlands when the rearing of water buffalo was introduced to the region. RESULTS To shed some light on the paternal and maternal origin of this population, Y chromosome and mitochondrial DNA (mtDNA) variation was surveyed in 143 Marsh Arabs and in a large sample of Iraqi controls. Analyses of the haplogroups and sub-haplogroups observed in the Marsh Arabs revealed a prevalent autochthonous Middle Eastern component for both male and female gene pools, with weak South-West Asian and African contributions, more evident in mtDNA. A higher male than female homogeneity is characteristic of the Marsh Arab gene pool, likely due to a strong male genetic drift determined by socio-cultural factors (patrilocality, polygamy, unequal male and female migration rates). CONCLUSIONS Evidence of genetic stratification ascribable to the Sumerian development was provided by the Y-chromosome data where the J1-Page08 branch reveals a local expansion, almost contemporary with the Sumerian City State period that characterized Southern Mesopotamia. On the other hand, a more ancient background shared with Northern Mesopotamia is revealed by the less represented Y-chromosome lineage J1-M267*. Overall our results indicate that the introduction of water buffalo breeding and rice farming, most likely from the Indian sub-continent, only marginally affected the gene pool of autochthonous people of the region. Furthermore, a prevalent Middle Eastern ancestry of the modern population of the marshes of southern Iraq implies that if the Marsh Arabs are descendants of the ancient Sumerians, also the Sumerians were most likely autochthonous and not of Indian or South Asian ancestry.
Collapse
Affiliation(s)
- Nadia Al-Zahery
- Dipartimento di Genetica e Microbiologia, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Affiliation(s)
- Peter Forster
- Murray Edwards College, University of Cambridge, Cambridge CB3 0DF, UK.
| | | |
Collapse
|
187
|
Jota MS, Lacerda DR, Sandoval JR, Vieira PPR, Santos-Lopes SS, Bisso-Machado R, Paixão-Cortes VR, Revollo S, Paz-Y-Miño C, Fujita R, Salzano FM, Bonatto SL, Bortolini MC, Santos FR. A new subhaplogroup of native American Y-Chromosomes from the Andes. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 146:553-9. [PMID: 21913173 DOI: 10.1002/ajpa.21519] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/31/2011] [Indexed: 11/06/2022]
Abstract
The human Y chromosome contains highly informative markers for making historical inferences about the pre-Columbian peopling of Americas. However, the scarcity of these markers has limited its use in the inference of shared ancestry and past migrations relevant to the origin of the culturally and biologically diverse Native Americans. To identify new single nucleotide polymorphisms (SNPs) and increase the phylogenetic resolution of the major haplogroup Q found in the Americas, we have performed a search for new polymorphisms based on sequencing divergent Y chromosomes identified by microsatellite haplotype analysis. Using this approach, a new Y-SNP (SA01) has been identified in the Andean populations of South America, allowing for the detection of a new sublineage of Q1a3a. This sublineage displays a less complex phylogeographic network of associated microsatellites and more restricted geographic occurrence, and is given the designation Q1a3a4. This result indicates that our approach can be successfully used to identify sublineages of interest in a specific region that allow the investigation of particular histories of human populations.
Collapse
Affiliation(s)
- Marilza S Jota
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Y-chromosome haplogroup diversity in the sub-Himalayan Terai and Duars populations of East India. J Hum Genet 2011; 56:765-71. [PMID: 21900945 DOI: 10.1038/jhg.2011.98] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The sub-Himalayan Terai and Duars, the important outermost zones comprising the plains of East India, are known as the reservoirs of ethnic diversity. Analysis of the paternal genetic diversity of the populations inhabiting these regions and their genetic relationships with adjacent Himalayan and other Asian populations has not been addressed empirically. In the present investigation, we undertook a Y-chromosome phylogeographic study on 10 populations (n=375) representing four different linguistic groups from the sub-Himalayan Terai and Duars regions of East India. The high-resolution analysis of Y-chromosome haplogroup variations based on 76 binary markers revealed that the sub-Himalayan paternal gene pool is extremely heterogeneous. Three major haplogroups, namely H, O and R, are shared across the four linguistic groups. The Indo-European-speaking castes exhibit more haplogroup diversity than the tribal groups. The findings of the present investigation suggest that the sub-Himalayan gene pools have received predominant Southeast Asian contribution. In addition, the presence of Northeast and South Asian signatures illustrate multiple events of population migrations as well as extensive genetic admixture amongst the linguistic groups.
Collapse
|
189
|
Busby GBJ, Brisighelli F, Sánchez-Diz P, Ramos-Luis E, Martinez-Cadenas C, Thomas MG, Bradley DG, Gusmão L, Winney B, Bodmer W, Vennemann M, Coia V, Scarnicci F, Tofanelli S, Vona G, Ploski R, Vecchiotti C, Zemunik T, Rudan I, Karachanak S, Toncheva D, Anagnostou P, Ferri G, Rapone C, Hervig T, Moen T, Wilson JF, Capelli C. The peopling of Europe and the cautionary tale of Y chromosome lineage R-M269. Proc Biol Sci 2011; 279:884-92. [PMID: 21865258 DOI: 10.1098/rspb.2011.1044] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, the debate on the origins of the major European Y chromosome haplogroup R1b1b2-M269 has reignited, and opinion has moved away from Palaeolithic origins to the notion of a younger Neolithic spread of these chromosomes from the Near East. Here, we address this debate by investigating frequency patterns and diversity in the largest collection of R1b1b2-M269 chromosomes yet assembled. Our analysis reveals no geographical trends in diversity, in contradiction to expectation under the Neolithic hypothesis, and suggests an alternative explanation for the apparent cline in diversity recently described. We further investigate the young, STR-based time to the most recent common ancestor estimates proposed so far for R-M269-related lineages and find evidence for an appreciable effect of microsatellite choice on age estimates. As a consequence, the existing data and tools are insufficient to make credible estimates for the age of this haplogroup, and conclusions about the timing of its origin and dispersal should be viewed with a large degree of caution.
Collapse
|
190
|
Gaieski JB, Owings AC, Vilar MG, Dulik MC, Gaieski DF, Gittelman RM, Lindo J, Gau L, Schurr TG. Genetic ancestry and indigenous heritage in a Native American descendant community in Bermuda. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 146:392-405. [PMID: 21994016 DOI: 10.1002/ajpa.21588] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/17/2011] [Indexed: 11/09/2022]
Abstract
Discovered in the early 16th century by European colonists, Bermuda is an isolated set of islands located in the mid-Atlantic. Shortly after its discovery, Bermuda became the first English colony to forcibly import its labor by trafficking in enslaved Africans, white ethnic minorities, and indigenous Americans. Oral traditions circulating today among contemporary tribes from the northeastern United States recount these same events, while, in Bermuda, St. David's Islanders consider their histories to be linked to a complex Native American, European, and African past. To investigate the influence of historical events on biological ancestry and native cultural identity, we analyzed genetic variation in 111 members of Bermuda's self-proclaimed St. David's Island Native Community. Our results reveal that the majority of mitochondrial DNA (mtDNA) and Y-chromosome haplotypes are of African and West Eurasian origin. However, unlike other English-speaking New World colonies, most African mtDNA haplotypes appear to derive from central and southeast Africa, reflecting the extent of maritime activities in the region. In light of genealogical and oral historical data from the St. David's community, the low frequency of Native American mtDNA and NRY lineages may reflect the influence of genetic drift, the demographic impact of European colonization, and historical admixture with persons of non-native backgrounds, which began with the settlement of the islands. By comparing the genetic data with genealogical and historical information, we are able to reconstruct the complex history of this Bermudian community, which is unique among New World populations.
Collapse
Affiliation(s)
- Jill B Gaieski
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA 19104-6398, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Lu C, Zhang F, Yang H, Xu M, Du G, Wu W, An Y, Qin Y, Ji G, Han X, Gu A, Xia Y, Song L, Wang S, Jin L, Wang X. Additional genomic duplications in AZFc underlie the b2/b3 deletion-associated risk of spermatogenic impairment in Han Chinese population. Hum Mol Genet 2011; 20:4411-21. [PMID: 21852246 DOI: 10.1093/hmg/ddr369] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The azoospermia factor c (AZFc) region on the Y chromosome is a genetically dynamic locus in the human genome. Numerous genomic rearrangements, including deletion, duplication and inversion, have been identified in AZFc. The complete deletion of AZFc can cause spermatogenic impairment. However, the roles of partial AZFc deletions (e.g. b2/b3 deletion) in spermatogenesis are controversial and variable among human populations. Secondary duplication has been hypothesized to be a compensatory factor for partial AZFc deletions. To further study genomic duplications in AZFc as a potential genetic modifier underlying the phenotypic variations of partial AZFc deletions in spermatogenesis, we conducted comprehensive molecular analyses in 711 idiopathic infertile men and 390 healthy controls. Unexpectedly, we found that additional AZFc duplications accompanying the b2/b3 deletion, instead of the b2/b3 deletion alone, led to the b2/b3 deletion-associated risk of spermatogenic impairment previously reported in Han Chinese population. In addition, partial AZFc duplication also rendered a risk factor in the non-deletion patients. DAZ is a multi-copy AZFc gene (DAZ1-DAZ4) implicated in spermatogenesis. Genetic variations do exist between DAZ copies. Intriguingly, we found that the DAZ1/2 cluster was the main duplicated copies in the partial AZFc duplications associated with spermatogenic impairment, suggesting a potential different role of spermatogenesis between DAZ copies. Our findings demonstrated that additional AZFc duplications did not compensate but convey the susceptibility of the b2/b3 deletion to spermatogenic impairment in the tested population. Notably, genomic duplications and deletions in AZFc deserve comprehensive investigations to uncover spermatogenic roles of the AZFc region.
Collapse
Affiliation(s)
- Chuncheng Lu
- Key Laboratory of Reproductive Medicine, School of Public Health, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Fadhlaoui-Zid K, Martinez-Cruz B, Khodjet-el-khil H, Mendizabal I, Benammar-Elgaaied A, Comas D. Genetic structure of Tunisian ethnic groups revealed by paternal lineages. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 146:271-80. [DOI: 10.1002/ajpa.21581] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/24/2011] [Indexed: 11/12/2022]
|
193
|
Narang A, Jha P, Rawat V, Mukhopadhayay A, Dash D, Basu A, Mukerji M, Basu A, Mukerji M. Recent admixture in an Indian population of African ancestry. Am J Hum Genet 2011; 89:111-20. [PMID: 21737057 DOI: 10.1016/j.ajhg.2011.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/21/2011] [Accepted: 06/09/2011] [Indexed: 01/03/2023] Open
Abstract
Identification and study of genetic variation in recently admixed populations not only provides insight into historical population events but also is a powerful approach for mapping disease loci. We studied a population (OG-W-IP) that is of African-Indian origin and has resided in the western part of India for 500 years; members of this population are believed to be descendants of the Bantu-speaking population of Africa. We have carried out this study by using a set of 18,534 autosomal markers common between Indian, CEPH-HGDP, and HapMap populations. Principal-components analysis clearly revealed that the African-Indian population derives its ancestry from Bantu-speaking west-African as well as Indo-European-speaking north and northwest Indian population(s). STRUCTURE and ADMIXTURE analyses show that, overall, the OG-W-IPs derive 58.7% of their genomic ancestry from their African past and have very little inter-individual ancestry variation (8.4%). The extent of linkage disequilibrium also reveals that the admixture event has been recent. Functional annotation of genes encompassing the ancestry-informative markers that are closer in allele frequency to the Indian ancestral population revealed significant enrichment of biological processes, such as ion-channel activity, and cadherins. We briefly examine the implications of determining the genetic diversity of this population, which could provide opportunities for studies involving admixture mapping.
Collapse
|
194
|
Spectrum of large copy number variations in 26 diverse Indian populations: potential involvement in phenotypic diversity. Hum Genet 2011; 131:131-43. [PMID: 21744140 DOI: 10.1007/s00439-011-1050-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 06/19/2011] [Indexed: 10/18/2022]
Abstract
Copy number variations (CNVs) have provided a dynamic aspect to the apparently static human genome. We have analyzed CNVs larger than 100 kb in 477 healthy individuals from 26 diverse Indian populations of different linguistic, ethnic and geographic backgrounds. These CNVRs were identified using the Affymetrix 50K Xba 240 Array. We observed 1,425 and 1,337 CNVRs in the deletion and amplification sets, respectively, after pooling data from all the populations. More than 50% of the genes encompassed entirely in CNVs had both deletions and amplifications. There was wide variability across populations not only with respect to CNV extent (ranging from 0.04-1.14% of genome under deletion and 0.11-0.86% under amplification) but also in terms of functional enrichments of processes like keratinization, serine proteases and their inhibitors, cadherins, homeobox, olfactory receptors etc. These did not correlate with linguistic, ethnic, geographic backgrounds and size of populations. Certain processes were near exclusive to deletion (serine proteases, keratinization, olfactory receptors, GPCRs) or duplication (homeobox, serine protease inhibitors, embryonic limb morphogenesis) datasets. Populations having same enriched processes were observed to contain genes from different genomic loci. Comparison of polymorphic CNVRs (5% or more) with those cataloged in Database of Genomic Variants revealed that 78% (2473) of the genes in CNVRs in Indian populations are novel. Validation of CNVs using Sequenom MassARRAY revealed extensive heterogeneity in CNV boundaries. Exploration of CNV profiles in such diverse populations would provide a widely valuable resource for understanding diversity in phenotypes and disease.
Collapse
|
195
|
Malyarchuk B, Derenko M, Denisova G, Maksimov A, Wozniak M, Grzybowski T, Dambueva I, Zakharov I. Ancient links between Siberians and Native Americans revealed by subtyping the Y chromosome haplogroup Q1a. J Hum Genet 2011; 56:583-8. [PMID: 21677663 DOI: 10.1038/jhg.2011.64] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To investigate the structure of Y chromosome haplogroups R-M207 and Q-M242 in human populations of North Asia, we have performed high-resolution genotyping using both single nucleotide polymorphisms and short tandem repeat (STR)-based approaches of 121 M207- and M242-derived samples from 885 males of 16 ethnic groups of Siberia and East Asia. As a result, the following Y chromosome haplogroups were revealed: R1b1b1-M73 (2.0%), R1b1b2-M269 (0.7%), R2-M124 (1.1%), Q1a*-MEH2 (0.5%), Q1a2-M25 (0.1%), Q1a3*-M346 (9.2%) and Q1a3a-M3 (0.2%). Despite the low coalescence age of haplogroup Q1a3*-M346, which is estimated in South Siberia as about 4.5±1.5 thousand years ago (Ka), divergence time between these Q1a3*-M346 haplotypes and Amerindian-specific haplogroup Q1a3a-M3 is equal to 13.8±3.9 Ka, pointing to a relatively recent entry date to America. In addition, unique cluster of haplotypes belonging to Q1a*-MEH2 was found in Koryaks inhabiting the Sea of Okhotsk coast (at a frequency of 10.3%). Although the level of STR diversity associated with Q1a*-MEH2 is very low, this lineage appears to be closest to the extinct Palaeo-Eskimo individuals belonging to the Saqqaq culture arisen in the New World Arctic about 5.5 Ka. This finding suggests that Q1a*-MEH2 likely traces a population migration originating in Northeast Siberia across the Bering Strait.
Collapse
Affiliation(s)
- Boris Malyarchuk
- Genetics Laboratory, Institute of Biological Problems of the North, Russian Academy of Sciences, Portovaya street 18, Magadan, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Balanovsky O, Dibirova K, Dybo A, Mudrak O, Frolova S, Pocheshkhova E, Haber M, Platt D, Schurr T, Haak W, Kuznetsova M, Radzhabov M, Balaganskaya O, Romanov A, Zakharova T, Soria Hernanz DF, Zalloua P, Koshel S, Ruhlen M, Renfrew C, Wells RS, Tyler-Smith C, Balanovska E. Parallel evolution of genes and languages in the Caucasus region. Mol Biol Evol 2011; 28:2905-20. [PMID: 21571925 DOI: 10.1093/molbev/msr126] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We analyzed 40 single nucleotide polymorphism and 19 short tandem repeat Y-chromosomal markers in a large sample of 1,525 indigenous individuals from 14 populations in the Caucasus and 254 additional individuals representing potential source populations. We also employed a lexicostatistical approach to reconstruct the history of the languages of the North Caucasian family spoken by the Caucasus populations. We found a different major haplogroup to be prevalent in each of four sets of populations that occupy distinct geographic regions and belong to different linguistic branches. The haplogroup frequencies correlated with geography and, even more strongly, with language. Within haplogroups, a number of haplotype clusters were shown to be specific to individual populations and languages. The data suggested a direct origin of Caucasus male lineages from the Near East, followed by high levels of isolation, differentiation, and genetic drift in situ. Comparison of genetic and linguistic reconstructions covering the last few millennia showed striking correspondences between the topology and dates of the respective gene and language trees and with documented historical events. Overall, in the Caucasus region, unmatched levels of gene-language coevolution occurred within geographically isolated populations, probably due to its mountainous terrain.
Collapse
Affiliation(s)
- Oleg Balanovsky
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Kshatriya GK, Aggarwal A, Khurana P, Italia YM. Genomic congruence of Indo-European speaking tribes of western India with Dravidian-speaking populations of southern India: A study of 20 autosomal DNA markers. Ann Hum Biol 2011; 38:583-91. [PMID: 21561300 DOI: 10.3109/03014460.2011.577455] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Gautam K Kshatriya
- Department of Anthropology, University of Delhi , Delhi - 110007, India.
| | | | | | | |
Collapse
|
198
|
Morlote DM, Gayden T, Arvind P, Babu A, Herrera RJ. The Soliga, an isolated tribe from Southern India: genetic diversity and phylogenetic affinities. J Hum Genet 2011; 56:258-69. [PMID: 21307856 DOI: 10.1038/jhg.2010.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
India's role in the dispersal of modern humans can be explored by investigating its oldest inhabitants: the tribal people. The Soliga people of the Biligiri Rangana Hills, a tribal community in Southern India, could be among the country's first settlers. This forest-bound, Dravidian speaking group, lives isolated, practicing subsistence-level agriculture under primitive conditions. The aim of this study is to examine the phylogenetic relationships of the Soligas in relation to 29 worldwide, geographically targeted, reference populations. For this purpose, we employed a battery of 15 hypervariable autosomal short tandem repeat loci as markers. The Soliga tribe was found to be remarkably different from other Indian populations including other southern Dravidian-speaking tribes. In contrast, the Soliga people exhibited genetic affinity to two Australian aboriginal populations. This genetic similarity could be attributed to the 'Out of Africa' migratory wave(s) along the southern coast of India that eventually reached Australia. Alternatively, the observed genetic affinity may be explained by more recent migrations from the Indian subcontinent into Australia.
Collapse
Affiliation(s)
- Diana M Morlote
- Department of Molecular and Human Genetics, College of Medicine, Florida International University, Miami, FL 33199, USA
| | | | | | | | | |
Collapse
|
199
|
King RJ, Di Cristofaro J, Kouvatsi A, Triantaphyllidis C, Scheidel W, Myres NM, Lin AA, Eissautier A, Mitchell M, Binder D, Semino O, Novelletto A, Underhill PA, Chiaroni J. The coming of the Greeks to Provence and Corsica: Y-chromosome models of archaic Greek colonization of the western Mediterranean. BMC Evol Biol 2011; 11:69. [PMID: 21401952 PMCID: PMC3068964 DOI: 10.1186/1471-2148-11-69] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 03/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The process of Greek colonization of the central and western Mediterranean during the Archaic and Classical Eras has been understudied from the perspective of population genetics. To investigate the Y chromosomal demography of Greek colonization in the western Mediterranean, Y-chromosome data consisting of 29 YSNPs and 37 YSTRs were compared from 51 subjects from Provence, 58 subjects from Smyrna and 31 subjects whose paternal ancestry derives from Asia Minor Phokaia, the ancestral embarkation port to the 6th century BCE Greek colonies of Massalia (Marseilles) and Alalie (Aleria, Corsica). RESULTS 19% of the Phokaian and 12% of the Smyrnian representatives were derived for haplogroup E-V13, characteristic of the Greek and Balkan mainland, while 4% of the Provencal, 4.6% of East Corsican and 1.6% of West Corsican samples were derived for E-V13. An admixture analysis estimated that 17% of the Y-chromosomes of Provence may be attributed to Greek colonization. Using the following putative Neolithic Anatolian lineages: J2a-DYS445 = 6, G2a-M406 and J2a1b1-M92, the data predict a 0% Neolithic contribution to Provence from Anatolia. Estimates of colonial Greek vs. indigenous Celto-Ligurian demography predict a maximum of a 10% Greek contribution, suggesting a Greek male elite-dominant input into the Iron Age Provence population. CONCLUSIONS Given the origin of viniculture in Provence is ascribed to Massalia, these results suggest that E-V13 may trace the demographic and socio-cultural impact of Greek colonization in Mediterranean Europe, a contribution that appears to be considerably larger than that of a Neolithic pioneer colonization.
Collapse
Affiliation(s)
- Roy J King
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Y-chromosome variation in Altaian Kazakhs reveals a common paternal gene pool for Kazakhs and the influence of Mongolian expansions. PLoS One 2011; 6:e17548. [PMID: 21412412 PMCID: PMC3055870 DOI: 10.1371/journal.pone.0017548] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 02/08/2011] [Indexed: 12/28/2022] Open
Abstract
Kazakh populations have traditionally lived as nomadic pastoralists that seasonally migrate across the steppe and surrounding mountain ranges in Kazakhstan and southern Siberia. To clarify their population history from a paternal perspective, we analyzed the non-recombining portion of the Y-chromosome from Kazakh populations living in southern Altai Republic, Russia, using a high-resolution analysis of 60 biallelic markers and 17 STRs. We noted distinct differences in the patterns of genetic variation between maternal and paternal genetic systems in the Altaian Kazakhs. While they possess a variety of East and West Eurasian mtDNA haplogroups, only three East Eurasian paternal haplogroups appear at significant frequencies (C3*, C3c and O3a3c*). In addition, the Y-STR data revealed low genetic diversity within these lineages. Analysis of the combined biallelic and STR data also demonstrated genetic differences among Kazakh populations from across Central Asia. The observed differences between Altaian Kazakhs and indigenous Kazakhs were not the result of admixture between Altaian Kazakhs and indigenous Altaians. Overall, the shared paternal ancestry of Kazakhs differentiates them from other Central Asian populations. In addition, all of them showed evidence of genetic influence by the 13th century CE Mongol Empire. Ultimately, the social and cultural traditions of the Kazakhs shaped their current pattern of genetic variation.
Collapse
|