151
|
Geddes-McAlister J, Shapiro RS. New pathogens, new tricks: emerging, drug-resistant fungal pathogens and future prospects for antifungal therapeutics. Ann N Y Acad Sci 2018; 1435:57-78. [DOI: 10.1111/nyas.13739] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Jennifer Geddes-McAlister
- Department of Molecular and Cellular Biology; University of Guelph; Guelph Ontario Canada
- Department of Proteomics and Signal Transduction; Max Planck Institute of Biochemistry; Munich Germany
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology; University of Guelph; Guelph Ontario Canada
| |
Collapse
|
152
|
Patil S, Majumdar B, Sarode SC, Sarode GS, Awan KH. Oropharyngeal Candidosis in HIV-Infected Patients-An Update. Front Microbiol 2018; 9:980. [PMID: 29867882 PMCID: PMC5962761 DOI: 10.3389/fmicb.2018.00980] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/26/2018] [Indexed: 01/16/2023] Open
Abstract
Oropharyngeal candidosis (OPC) is an opportunistic fungal infection that is commonly found in HIV-infected patients, even in the twenty-first century. Candida albicans is the main pathogen, but other Candida species have been isolated. OPC usually presents months or years before other severe opportunistic infections and may indicate the presence or progression of HIV disease. The concept of OPC as a biofilm infection has changed our understanding of its pathobiology. Various anti-fungal agents (both topical and systemic) are available to treat OPC. However, anti-fungal resistance as a result of the long-term use of anti-fungal agents and recurrent oropharyngeal infection in AIDS patients require alternative anti-fungal therapies. In addition, both identifying the causative Candida species and conducting anti-fungal vulnerability testing can improve a clinician's ability to prescribe effective anti-fungal agents. The present review focuses on the current findings and therapeutic challenges for HIV-infected patients with OPC.
Collapse
Affiliation(s)
- Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jizan, Saudi Arabia
| | - Barnali Majumdar
- Department of Oral Pathology and Microbiology, Bhojia Dental College & Hospital, Baddi, India
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, India
| | - Gargi S Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, India
| | - Kamran H Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| |
Collapse
|
153
|
Radhakrishnan VS, Reddy Mudiam MK, Kumar M, Dwivedi SP, Singh SP, Prasad T. Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen ( Candida albicans). Int J Nanomedicine 2018; 13:2647-2663. [PMID: 29760548 PMCID: PMC5937493 DOI: 10.2147/ijn.s150648] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose A significant increase in the incidence of fungal infections and drug resistance has been observed in the past decades due to limited availability of broad-spectrum antifungal drugs. Nanomedicines have shown significant antimicrobial potential against various drug-resistant microbes. Silver nanoparticles (AgNps) are known for their antimicrobial properties and lower host toxicity; however, for clinical applications, evaluation of their impact at cellular and molecular levels is essential. The present study aims to understand the cellular and molecular mechanisms of AgNp-induced toxicity in a common fungal pathogen, Candida albicans. Methods AgNps were synthesized by chemical reduction method and characterized using UV-visible spectroscopy, X-ray powder diffraction, transmission electron microscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy, energy dispersive X-ray fluorescence, and zeta potential. The anti-Candida activity of AgNps was assessed by broth microdilution and spot assays. Effects of AgNps on cellular and molecular targets were assessed by monitoring the intracellular reactive oxygen species (ROS) production in the absence and presence of natural antioxidant, changes in surface morphology, cellular ultrastructure, membrane microenvironment, membrane fluidity, membrane ergosterol, and fatty acids. Results Spherical AgNps (10-30 nm) showed minimum inhibitory concentration (minimum concentration required to inhibit the growth of 90% of organisms) at 40 μg/mL. Our results demonstrated that AgNps induced dose-dependent intracellular ROS which exerted antifungal effects; however, even scavenging ROS by antioxidant could not offer protection from AgNp mediated killing. Treatment with AgNps altered surface morphology, cellular ultrastructure, membrane microenvironment, membrane fluidity, ergosterol content, and fatty acid composition, especially oleic acid. Conclusion To summarize, AgNps affected multiple cellular targets crucial for drug resistance and pathogenicity in the fungal cells. The study revealed new cellular targets of AgNps which include fatty acids like oleic acid, vital for hyphal morphogenesis (a pathogenic trait of Candida). Yeast to hypha transition being pivotal for virulence and biofilm formation, targeting virulence might emerge as a new paradigm for developing nano silver-based therapy for clinical applications in fungal therapeutics.
Collapse
Affiliation(s)
- Venkatraman Srinivasan Radhakrishnan
- Advanced Instrumentation Research and Facility (AIRF), Jawaharlal Nehru University (JNU), New Delhi, Delhi, India.,Special Centre for Nano Sciences (SCNS), Jawaharlal Nehru University (JNU), New Delhi, Delhi, India
| | - Mohana Krishna Reddy Mudiam
- Analytical Chemistry Lab, Council for Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research (IITR), Lucknow, Uttar Pradesh, India
| | - Manish Kumar
- Advanced Instrumentation Research and Facility (AIRF), Jawaharlal Nehru University (JNU), New Delhi, Delhi, India.,Special Centre for Nano Sciences (SCNS), Jawaharlal Nehru University (JNU), New Delhi, Delhi, India
| | | | | | - Tulika Prasad
- Advanced Instrumentation Research and Facility (AIRF), Jawaharlal Nehru University (JNU), New Delhi, Delhi, India.,Special Centre for Nano Sciences (SCNS), Jawaharlal Nehru University (JNU), New Delhi, Delhi, India
| |
Collapse
|
154
|
Acylhydrazones as Antifungal Agents Targeting the Synthesis of Fungal Sphingolipids. Antimicrob Agents Chemother 2018; 62:AAC.00156-18. [PMID: 29507066 PMCID: PMC5923120 DOI: 10.1128/aac.00156-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/21/2018] [Indexed: 01/19/2023] Open
Abstract
The incidence of invasive fungal infections has risen dramatically in recent decades. Current antifungal drugs are either toxic, likely to interact with other drugs, have a narrow spectrum of activity, or induce fungal resistance. Hence, there is a great need for new antifungals, possibly with novel mechanisms of action. Previously our group reported an acylhydrazone called BHBM that targeted the sphingolipid pathway and showed strong antifungal activity against several fungi. In this study, we screened 19 derivatives of BHBM. Three out of 19 derivatives were highly active against Cryptococcus neoformansin vitro and had low toxicity in mammalian cells. In particular, one of them, called D13, had a high selectivity index and showed better activity in an animal model of cryptococcosis, candidiasis, and pulmonary aspergillosis. D13 also displayed suitable pharmacokinetic properties and was able to pass through the blood-brain barrier. These results suggest that acylhydrazones are promising molecules for the research and development of new antifungal agents.
Collapse
|
155
|
Alnajjar LM, Bulatova NR, Darwish RM. Evaluation of four calcium channel blockers as fluconazole resistance inhibitors in Candida glabrata. J Glob Antimicrob Resist 2018; 14:185-189. [PMID: 29665423 DOI: 10.1016/j.jgar.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/29/2018] [Accepted: 04/08/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the ability of four calcium channel blockers (CCBs), namely verapamil, diltiazem, nicardipine (NIC) and nifedipine (NIF), to enhance the susceptibility of Candida glabrata strains to fluconazole (FLC). METHODS Synergistic antifungal effects of the CCBs with FLC were examined by the chequerboard method, and fractional inhibitory concentration indices (FICIs) were determined. The time-kill curve method was used for the most promising combination to further evaluate the synergetic effects. RESULTS NIC showed an additive effect with FLC against FLC-resistant and FLC-susceptible-dose-dependent strains (DSY 565 and CBS 138) known to express efflux pumps, but not against FLC-susceptible strains. NIF exhibited an additive effect with FLC both by the chequerboard method (0.5<FICI<1) and time-kill curves (<2 log10 CFU/mL decrease in viable count). In addition, NIF had its own antifungal effect consistently against most of the strains used in this study, with minimum inhibitory concentrations (MICs) of 8μg/mL. CONCLUSIONS NIC showed an additive effect with FLC against FLC-resistant C. glabrata strains, most probably via efflux pump inhibition as demonstrated selectively in FLC-resistant strains with known efflux pumps. NIF displayed a promising antifungal effect alone as well as an additive effect with FLC against most of the strains.
Collapse
Affiliation(s)
- Lina M Alnajjar
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Queen Rania Street, 11942 Amman, Jordan
| | - Nailya R Bulatova
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Queen Rania Street, 11942 Amman, Jordan.
| | - Rula M Darwish
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Queen Rania Street, 11942 Amman, Jordan
| |
Collapse
|
156
|
Radhakrishnan VS, Dwivedi SP, Siddiqui MH, Prasad T. In vitro studies on oxidative stress-independent, Ag nanoparticles-induced cell toxicity of Candida albicans, an opportunistic pathogen. Int J Nanomedicine 2018; 13:91-96. [PMID: 29593404 PMCID: PMC5863646 DOI: 10.2147/ijn.s125010] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Silver nanoparticles (AgNps) have attracted maximal attention among all metal nanoparticles, and the study of their biological properties has gained impetus for further medical adoption. This study evaluated the cellular and molecular mechanisms associated with the action of AgNps against an opportunistic pathogen, Candida albicans. Spherical, stable AgNp (average size 21.6 nm) prepared by a chemical reduction method showed minimum inhibitory concentration (required to inhibit the growth of 90% of organisms) at 40 μg/mL. AgNps have been reported to induce oxidative stress-mediated programmed cell death through the accumulation of intracellular reactive oxygen species (ROS). However, this study demonstrated that intracellular levels of AgNp-induced ROS could be reversed by using antioxidant ascorbic acid, but the sensitivity of AgNp-treated Candida cells could not be completely reversed. Moreover, in addition to the generation of ROS, the AgNps were found to affect other cellular targets resulting in altered membrane fluidity, membrane microenvironment, ergosterol content, cellular morphology, and ultrastructure. Thus, the generation of ROS does not seem to be the sole major cause of AgNp-mediated cell toxicity in Candida. Rather, the multitargeted action of AgNps, generation of ROS, alterations in ergosterol content, and membrane fluidity together seem to have potentiated anti-Candida action. Thus, this "nano-based drug therapy" is likely to favor broad-spectrum activity, multiple cellular targets, and minimum host toxicity. AgNps, therefore, appear to have the potential to address the challenges in multidrug resistance and fungal therapeutics.
Collapse
Affiliation(s)
| | | | | | - Tulika Prasad
- Advanced Instrumentation Research Facility (AIRF), Jawaharlal Nehru University, New Delhi
| |
Collapse
|
157
|
Agrawal P, Bhalla S, Chaudhary K, Kumar R, Sharma M, Raghava GPS. In Silico Approach for Prediction of Antifungal Peptides. Front Microbiol 2018. [PMID: 29535692 PMCID: PMC5834480 DOI: 10.3389/fmicb.2018.00323] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This paper describes in silico models developed using a wide range of peptide features for predicting antifungal peptides (AFPs). Our analyses indicate that certain types of residue (e.g., C, G, H, K, R, Y) are more abundant in AFPs. The positional residue preference analysis reveals the prominence of the particular type of residues (e.g., R, V, K) at N-terminus and a certain type of residues (e.g., C, H) at C-terminus. In this study, models have been developed for predicting AFPs using a wide range of peptide features (like residue composition, binary profile, terminal residues). The support vector machine based model developed using compositional features of peptides achieved maximum accuracy of 88.78% on the training dataset and 83.33% on independent or validation dataset. Our model developed using binary patterns of terminal residues of peptides achieved maximum accuracy of 84.88% on training and 84.64% on validation dataset. We benchmark models developed in this study and existing methods on a dataset containing compositionally similar antifungal and non-AFPs. It was observed that binary based model developed in this study preforms better than any model/method. In order to facilitate scientific community, we developed a mobile app, standalone and a user-friendly web server ‘Antifp’ (http://webs.iiitd.edu.in/raghava/antifp).
Collapse
Affiliation(s)
- Piyush Agrawal
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Sherry Bhalla
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Kumardeep Chaudhary
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Rajesh Kumar
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Meenu Sharma
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Gajendra P S Raghava
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India.,Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
158
|
Reversal of Azole Resistance in Candida albicans by Sulfa Antibacterial Drugs. Antimicrob Agents Chemother 2018; 62:AAC.00701-17. [PMID: 29263071 DOI: 10.1128/aac.00701-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
Invasive candidiasis presents an emerging global public health challenge due to the emergence of resistance to the frontline treatment options, such as fluconazole. Hence, the identification of other compounds capable of pairing with fluconazole and averting azole resistance would potentially prolong the clinical utility of this important group. In an effort to repurpose drugs in the field of antifungal drug discovery, we explored sulfa antibacterial drugs for the purpose of reversing azole resistance in Candida In this study, we assembled and investigated a library of 21 sulfa antibacterial drugs for their ability to restore fluconazole sensitivity in Candida albicans Surprisingly, the majority of assayed sulfa drugs (15 of 21) were found to exhibit synergistic relationships with fluconazole by checkerboard assay with fractional inhibitory concentration index (ΣFIC) values ranging from <0.0312 to 0.25. Remarkably, five sulfa drugs were able to reverse azole resistance in a clinically achievable range. The structure-activity relationships (SARs) of the amino benzene sulfonamide scaffold as antifungal agents were studied. We also identified the possible mechanism of the synergistic interaction of sulfa antibacterial drugs with azole antifungal drugs. Furthermore, the ability of sulfa antibacterial drugs to inhibit Candida biofilm by 40% in vitro was confirmed. In addition, the effects of sulfa-fluconazole combinations on Candida growth kinetics and efflux machinery were explored. Finally, using a Caenorhabditis elegans infection model, we demonstrated that the sulfa-fluconazole combination does possess potent antifungal activity in vivo, reducing Candida in infected worms by ∼50% compared to the control.
Collapse
|
159
|
Bongomin F, Oladele RO, Gago S, Moore CB, Richardson MD. A systematic review of fluconazole resistance in clinical isolates of Cryptococcus species. Mycoses 2018; 61:290-297. [PMID: 29377368 DOI: 10.1111/myc.12747] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/30/2022]
Abstract
Fluconazole is the most commonly used antifungal agent for both the treatment of cryptococcal meningitis, and for prophylaxis against the disease. However, its prolonged use has the potential to exert selection pressure in favour of fluconazole-resistant strains. We evaluated the prevalence of fluconazole resistance in Cryptococcus spp. clinical isolates in 29 studies from 1988 to May 2017 included in EMBASE and MEDLINE databases. A total of 4995 Cryptococcus isolates from 3210 patients constituted this study; 248 (5.0%) of the isolates from relapsed episodes of cryptococcosis were included in this analysis. Eleven (38%) of the studies used minimum inhibitory concentrations (MICs) breakpoints of ≥64 μg/mL to define fluconazole resistance, 6 (21%) used ≥32 μg/mL, 11 (38%) used ≥16 μg/mL and 1 (3%) used ≤20 μg/mL. Overall, mean prevalence of fluconazole resistance was 12.1% (95% confidence interval [CI]: 6.7-17.6) for all isolates (n = 4995). Mean fluconazole resistance was 10.6% (95% CI: 5.5-15.6) for the incident isolates (n = 4747) and 24.1% (95% CI: -3.1-51.2) for the relapse isolates (n = 248). Of the 4995 isolates, 936 (18.7%) had MICs above the ecological cut-off value. Fluconazole resistance appears to be an issue in Cryptococcus isolates from patients with relapses. It remains unclear whether relapses occur due to resistance or other factors. There is an urgent need to establish antifungal breakpoints for Cryptococcus spp.
Collapse
Affiliation(s)
- Felix Bongomin
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The National Aspergillosis Centre & NHS Mycology Reference Centre-Manchester, ECMM Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rita O Oladele
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Sara Gago
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Caroline B Moore
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The National Aspergillosis Centre & NHS Mycology Reference Centre-Manchester, ECMM Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Malcolm D Richardson
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,The National Aspergillosis Centre & NHS Mycology Reference Centre-Manchester, ECMM Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
160
|
Chandrika NT, Shrestha SK, Ranjan N, Sharma A, Arya DP, Garneau-Tsodikova S. New Application of Neomycin B-Bisbenzimidazole Hybrids as Antifungal Agents. ACS Infect Dis 2018; 4:196-207. [PMID: 29227087 PMCID: PMC5971066 DOI: 10.1021/acsinfecdis.7b00254] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alkylated aminoglycosides and bisbenzimidazoles have previously been shown to individually display antifungal activity. Herein, we explore for the first time the antifungal activity (in liquid cultures and in biofilms) of ten alkylated aminoglycosides covalently linked to either mono- or bisbenzimidazoles. We also investigate their toxicity against mammalian cells, their hemolytic activity, and their potential mechanism(s) of action (inhibition of fungal ergosterol biosynthetic pathway and/or reactive oxygen species (ROS) production). Overall, many of our hybrids exhibited broad-spectrum antifungal activity. We also found them to be less cytotoxic to mammalian cells and less hemolytic than the FDA-approved antifungal agents amphotericin B and voriconazole, respectively. Finally, we show with our best derivative (8) that the mechanism of action of our compounds is not the inhibition of ergosterol biosynthesis, but that it involves ROS production in yeast cells.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Sanjib K. Shrestha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Nihar Ranjan
- Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, South Carolina 29634, United States
| | - Anindra Sharma
- Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, South Carolina 29634, United States
| | - Dev P. Arya
- Department of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, South Carolina 29634, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lee T. Todd, Jr. Building, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
161
|
Muthamil S, Devi VA, Balasubramaniam B, Balamurugan K, Pandian SK. Green synthesized silver nanoparticles demonstrating enhanced in vitro and in vivo antibiofilm activity against Candida
spp. J Basic Microbiol 2018; 58:343-357. [DOI: 10.1002/jobm.201700529] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/08/2018] [Accepted: 01/20/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Subramanian Muthamil
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | - Vivekanandham Amsa Devi
- Department of Biotechnology; Science Campus; Alagappa University; Karaikudi Tamil Nadu India
| | | | | | | |
Collapse
|
162
|
Giovati L, Santinoli C, Ferrari E, Ciociola T, Martin E, Bandi C, Ricci I, Epis S, Conti S. Candidacidal Activity of a Novel Killer Toxin from Wickerhamomyces anomalus against Fluconazole-Susceptible and -Resistant Strains. Toxins (Basel) 2018; 10:E68. [PMID: 29401638 PMCID: PMC5848169 DOI: 10.3390/toxins10020068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/16/2022] Open
Abstract
The isolation and characterization from the sand fly Phlebotomus perniciosus of a Wickerhamomyces anomalus yeast strain (Wa1F1) displaying the killer phenotype was recently reported. In the present work, the killer toxin (KT) produced by Wa1F1 was purified and characterized, and its antimicrobial activity in vitro was investigated against fluconazole- susceptible and -resistant clinical isolates and laboratory strains of Candida albicans and C. glabrata displaying known mutations. Wa1F1-KT showed a differential killing ability against different mutant strains of the same species. The results may be useful for the design of therapeutic molecules based on Wa1F1-KT and the study of yeast resistance mechanisms.
Collapse
Affiliation(s)
- Laura Giovati
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy.
| | - Claudia Santinoli
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy.
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy.
| | - Tecla Ciociola
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy.
| | - Elena Martin
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
| | - Claudio Bandi
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
- Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Ospedale "Luigi Sacco", 20157 Milan, Italy.
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
| | - Sara Epis
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
- Pediatric Clinical Research Center Romeo and Enrica Invernizzi, Ospedale "Luigi Sacco", 20157 Milan, Italy.
| | - Stefania Conti
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy.
| |
Collapse
|
163
|
Chemogenomic Profiling of the Fungal Pathogen Candida albicans. Antimicrob Agents Chemother 2018; 62:AAC.02365-17. [PMID: 29203491 PMCID: PMC5786791 DOI: 10.1128/aac.02365-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022] Open
Abstract
There is currently a small number of classes of antifungal drugs, and these drugs are known to target a very limited set of cellular functions. We derived a set of approximately 900 nonessential, transactivator-defective disruption strains from the tetracycline-regulated GRACE collection of strains of the fungal pathogen Candida albicans This strain set was screened against classic antifungal drugs to identify gene inactivations that conferred either enhanced sensitivity or increased resistance to the compounds. We examined two azoles, fluconazole and posaconazole; two echinocandins, caspofungin and anidulafungin; and a polyene, amphotericin B. Overall, the chemogenomic profiles within drug classes were highly similar, but there was little overlap between classes, suggesting that the different drug classes interacted with discrete networks of genes in C. albicans We also tested two pyridine amides, designated GPI-LY7 and GPI-C107; these drugs gave very similar profiles that were distinct from those of the echinocandins, azoles, or polyenes, supporting the idea that they target a distinct cellular function. Intriguingly, in cases where these gene sets can be compared to genetic disruptions conferring drug sensitivity in other fungi, we find very little correspondence in genes. Thus, even though the drug targets are the same in the different species, the specific genetic profiles that can lead to drug sensitivity are distinct. This implies that chemogenomic screens of one organism may be poorly predictive of the profiles found in other organisms and that drug sensitivity and resistance profiles can differ significantly among organisms even when the apparent target of the drug is the same.
Collapse
|
164
|
The Brief Case: Recurrent Granulomatous Mastitis Due to Corynebacterium kroppenstedtii. J Clin Microbiol 2018; 54:1938-41. [PMID: 27458268 DOI: 10.1128/jcm.03131-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
165
|
Abstract
Cutaneous fungal infections affect more than one-fourth of world's population. The pathogenesis and severity of fungal infection depend on various immunological and nonimmunological factors. The rampant use of antifungal therapy in immunocompromised individuals marked the onset of antifungal drug resistance. Fungal resistance can be microbiological or clinical. Microbiological resistance depends on various fungal factors which have established due to genetic alteration in the fungi. Clinical resistance is due to host- or drug-related factors. All these factors may cause fungal resistance individually or in tandem. In addition to standardized susceptibility testing and appropriate drug dosing, one of the ways to avoid resistance is the use of combinational antifungal therapy. Combination therapy also offers advantages in increased synergistic action with enhanced spectrum activity. Newer insights into mechanisms of drug resistance will help in the development of appropriate antifungal therapy.
Collapse
Affiliation(s)
- Varadraj Pai
- Department of Dermatology, Goa Medical College, Bambolim, Goa, India
| | - Ajantha Ganavalli
- Department of Microbiology, SDM College of Medical Sciences and Hospital, Dharwad, Karnataka, India
| | | |
Collapse
|
166
|
Santos AF, Ferreira IP, Takahashi JA, Rodrigues GLS, Pinheiro CB, Teixeira LR, Rocha WR, Beraldo H. Silver(i) complexes with 2-acetylpyridinebenzoylhydrazones exhibit antimicrobial effects against yeast and filamentous fungi. NEW J CHEM 2018. [DOI: 10.1039/c7nj04280a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-Acetylpyridinebenzoylhydrazones and their silver(i) complexes show antimicrobial effects and deserve to be investigated as antifungal drug candidates.
Collapse
Affiliation(s)
- Ane F. Santos
- Departamento de Química
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | | | | | | | - Carlos B. Pinheiro
- Departamento de Física
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - Letícia R. Teixeira
- Departamento de Química
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - Willian R. Rocha
- Departamento de Química
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - Heloisa Beraldo
- Departamento de Química
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| |
Collapse
|
167
|
Evaluation of synergistic anticandidal and apoptotic effects of ferulic acid and caspofungin against Candida albicans. J Food Drug Anal 2018; 26:439-443. [PMID: 29389586 PMCID: PMC9332672 DOI: 10.1016/j.jfda.2016.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/15/2016] [Accepted: 12/23/2016] [Indexed: 11/23/2022] Open
Abstract
This study aimed to investigate the synergy between anticandidal and apoptotic effects of ferulic acid and caspofungin against Candida albicans and Candida glabrata, with the help of a quantitative checkerboard microdilution assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) as a viability dye. Apoptotic effects of caspofungin and ferulic acid concentrations (alone and combined) were analyzed for C. albicans and C. glabrata based on annexin V–propidium iodide binding capacities using flow cytometric analysis. C. albicans showed a synergistic effect, represented by a fractional inhibitory concentration index of < 0.5, but C. glabrata showed no synergistic effect (fractional inhibitory concentration index > 0.5). Early and late apoptotic effects of caspofungin and ferulic acid concentrations (1 μg/mL and 1000 μg/mL) were calculated as 55.7% and 18.3%, respectively, while their necrotic effects were determined as 5.8% and 51.6%, respectively, using flow cytometric analyses. The apoptotic effects of the combination of caspofungin and ferulic acid at concentrations of 1 μg/mL and 1000 μg/mL on C. albicans and C. glabrata were 73.0% and 48.7%, respectively. Ferulic acid also demonstrated a synergistic effect in combination with caspofungin against C. albicans. Another possibility is to combine the existing anticandidal drug with phytochemicals to enhance the efficacy of anticandidal drug.
Collapse
|
168
|
Osaigbovo II, Lofor PV, Oladele RO. Fluconazole Resistance among Oral Candida Isolates from People Living with HIV/AIDS in a Nigerian Tertiary Hospital. J Fungi (Basel) 2017; 3:jof3040069. [PMID: 29371583 PMCID: PMC5753171 DOI: 10.3390/jof3040069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 11/29/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022] Open
Abstract
Oropharyngeal candidiasis, a common fungal infection in people living with HIV/AIDS (PLWHA), arises from Candida species colonizing the oral cavity. Fluconazole is the preferred treatment and is often used empirically. Few studies have investigated the prevalence of fluconazole resistance in Nigeria. This study aimed at determining the burden of fluconazole resistance among Candida species in the oral cavities of PLWHA. We sampled the oral cavities of 350 HIV-infected adults and an equal number of HIV-negative controls. Candida isolates were identified using germ tube tests, CHROMagar Candida (CHROMagar, Paris, France), and API Candida yeast identification system (BioMérieux, Marcy-l’Étoile, France). Fluconazole susceptibility was determined using the Clinical and Laboratory Standards Institute disc diffusion method. Data were analysed using SPSS version 21 (IBM, New York, NY, USA). The significance level was set at p ≤ 0.05. The isolation rates for Candida amongst HIV-infected subjects and controls were 20.6% and 3.4%, respectively (p < 0.001). In PLWHA, Candida albicans was most frequently isolated (81.3%) and fluconazole resistance was present in 18 (24%) of the 75 Candida isolates. Resistance to fluconazole was present in half of the non-albicans Candida isolates. Fluconazole resistance is prevalent among oral Candida isolates in PLWHA in the study area with a significantly higher rate among non-albicans Candida spp.
Collapse
Affiliation(s)
- Iriagbonse I Osaigbovo
- Department of Medical Microbiology, School of Medicine, University of Benin, Benin City PMB 1154, Nigeria.
- Department of Medical Microbiology, University of Benin Teaching Hospital, Benin City PMB 1111, Nigeria.
| | - Patrick V Lofor
- Department of Medical Microbiology, School of Medicine, University of Benin, Benin City PMB 1154, Nigeria.
- Department of Medical Microbiology, University of Benin Teaching Hospital, Benin City PMB 1111, Nigeria.
| | - Rita O Oladele
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M139PL, UK.
| |
Collapse
|
169
|
Klingspor L, Lindbäck E, Ullberg M, Özenci V. Seven years of clinical experience with the Yeast Traffic Light PNA FISH: Assay performance and possible implications on antifungal therapy. Mycoses 2017; 61:179-185. [PMID: 29086449 DOI: 10.1111/myc.12722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 01/02/2023]
Abstract
We evaluated the performance of Yeast Traffic Light PNA FISH (YTL PNA FISH) in identification of Candida spp. from blood cultures. A total of 200 new episodes of candidaemia were analysed prospectively. The YTL PNA FISH results were reported to the clinicians and data on antifungal therapy were documented. In total, there were 164/200 (82%) positive blood culture bottles with monomicrobial growth. Coverage of monomicrobial yeast was 150/164 (91.5%). YTL PNA FISH could identify 23/24 (95.8%) Candida spp. in bottles with concomitant growth of bacteria and one yeast. Growth of two or more different yeast was observed in 12/200 (6%) blood culture bottles and the method could identify all yeast in 8/12 (66.7%). Data on antifungal treatment were available for 181/200 patients (90.5%). In 132/137 (96.4%) samples from patients without antifungal treatment, YTL PNA FISH could identify the Candida spp. or gave a negative result for yeast not included in panel, and based on the result guide appropriate antifungal therapy the same day when the blood culture bottle signalled positive. This study shows that YTL PNA FISH is a rapid, reliable diagnostic method which significantly reduces time delay for choice of appropriate antifungal therapy for critically ill patients.
Collapse
Affiliation(s)
- Lena Klingspor
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emma Lindbäck
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Måns Ullberg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Volkan Özenci
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
170
|
Multicenter Identification and Antifungal Susceptibility Patterns of Candida Species Isolated from Clinical Samples. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.56117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
171
|
Clark-Ordóñez I, Callejas-Negrete OA, Aréchiga-Carvajal ET, Mouriño-Pérez RR. Candida species diversity and antifungal susceptibility patterns in oral samples of HIV/AIDS patients in Baja California, Mexico. Med Mycol 2017; 55:285-294. [PMID: 27630251 DOI: 10.1093/mmy/myw069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022] Open
Abstract
Candidiasis is the most common opportunistic fungal infection in HIV patients. The aims of this study were to identify the prevalence of carriers of Candida, Candida species diversity, and in vitro susceptibility to antifungal drugs. In 297 HIV/AIDS patients in Baja California, Mexico, Candida strains were identified by molecular methods (PCR-RFLP) from isolates of oral rinses of patients in Tijuana, Mexicali, and Ensenada. 56.3% of patients were colonized or infected with Candida. In Tijuana, there was a significantly higher percentage of carriers (75.5%). Out of the 181 strains that were isolated, 71.8% were Candida albicans and 28.2% were non-albicans species. The most common non-albicans species was Candida tropicalis (12.2%), followed by Candida glabrata (8.3%), Candida parapsilosis (2.2%), Candida krusei (1.7%), and Candida guilliermondii (1.1%). Candida dubliniensis was not isolated. Two associated species were found in 11 patients. In Mexicali and Ensenada, there was a lower proportion of Candida carriers compared to other regions in Mexico and worldwide, however, in Tijuana, a border town with many peculiarities, a higher carrier rate was found. In this population, only a high viral load was associated with oral Candida carriers. Other factors such as gender, use of antiretroviral therapy, CD4+ T-lymphocyte levels, time since diagnosis, and alcohol/ tobacco consumption, were not associated with Candida carriers.
Collapse
Affiliation(s)
- Isadora Clark-Ordóñez
- Departamento de Microbiología. Centro de Investigación Científica y de Educación Superior de Ensenada. Ensenada B. C.,Facultad de Medicina. Universidad Autónoma de Baja California. Mexicali, B. C
| | - Olga A Callejas-Negrete
- Departamento de Microbiología. Centro de Investigación Científica y de Educación Superior de Ensenada. Ensenada B. C
| | - Elva T Aréchiga-Carvajal
- Departamento de Microbiología e Inmunología. Facultad de Ciencias Biológicas. Universidad Autónoma de Nuevo León. Monterrey, N. L
| | - Rosa R Mouriño-Pérez
- Departamento de Microbiología. Centro de Investigación Científica y de Educación Superior de Ensenada. Ensenada B. C
| |
Collapse
|
172
|
Synergistic Activity between Two Antifungal Proteins, the Plant Defensin NaD1 and the Bovine Pancreatic Trypsin Inhibitor. mSphere 2017; 2:mSphere00390-17. [PMID: 29062897 PMCID: PMC5646242 DOI: 10.1128/msphere.00390-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/22/2017] [Indexed: 12/02/2022] Open
Abstract
This work describes the increased activity of a natural antifungal peptide in the presence of another antifungal peptide from a different family. This is termed antifungal synergy. Synergy is important for decreasing the amount of antifungal molecule needed to control the disease. Traditionally, naturally occurring antifungal molecules are assayed in isolation. Identification of synergistic interactions between antifungal peptides means that their activities in a complex biological system are likely to be different from what we observe when examining them individually. This study identified synergy between an antifungal peptide and a group of peptides that do not affect fungal growth in vitro. This provides the foundation for generation of transgenic plants with increased resistance to fungal disease and identification of antifungal accessory factors that enhance the activity of innate immune molecules but do not have an antifungal effect on their own. Defensins are a large family of small, cationic, cysteine-rich proteins that are part of the defense arsenal that plants use for protection against potentially damaging fungal infections. The plant defensin NaD1 from Nicotiana alata is a potent antifungal protein that inhibits growth and kills a variety of fungal pathogens that affect both plant and animal (human) hosts. Some serine protease inhibitors have also been reported to be antifungal molecules, while others have no inhibitory activity against fungi. Here we describe the synergistic activity of the plant defensin NaD1 with a selection of serine protease inhibitors against the plant pathogens Fusarium graminearum and Colletotrichum graminicola and the animal pathogen Candida albicans. The synergistic activity was not related to the protease inhibitory activity of these molecules but may arise from activation of fungal stress response pathways. The bovine pancreatic trypsin inhibitor (BPTI) displayed the most synergy with NaD1. BPTI also acted synergistically with several other antifungal molecules. The observation that NaD1 acts synergistically with protease inhibitors provides the foundation for the design of transgenic plants with improved resistance to fungal disease. It also supports the possibility of naturally occurring accessory factors that function to enhance the activity of innate immunity peptides in biological systems. IMPORTANCE This work describes the increased activity of a natural antifungal peptide in the presence of another antifungal peptide from a different family. This is termed antifungal synergy. Synergy is important for decreasing the amount of antifungal molecule needed to control the disease. Traditionally, naturally occurring antifungal molecules are assayed in isolation. Identification of synergistic interactions between antifungal peptides means that their activities in a complex biological system are likely to be different from what we observe when examining them individually. This study identified synergy between an antifungal peptide and a group of peptides that do not affect fungal growth in vitro. This provides the foundation for generation of transgenic plants with increased resistance to fungal disease and identification of antifungal accessory factors that enhance the activity of innate immune molecules but do not have an antifungal effect on their own.
Collapse
|
173
|
de Sousa JRP, Gonçalves VN, de Holanda RA, Santos DA, Bueloni CFLG, Costa AO, Petry MV, Rosa CA, Rosa LH. Pathogenic potential of environmental resident fungi from ornithogenic soils of Antarctica. Fungal Biol 2017; 121:991-1000. [PMID: 29122179 DOI: 10.1016/j.funbio.2017.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/25/2022]
Abstract
We assessed the diversity of cultivable fungi in the ornithogenic soil nests of bird species like Phalacrocorax atriceps, Macronectes giganteus, Pygoscelis antarcticus, and Pygoscelis papua in the Antarctic islands. From 481 fungi isolated at 15 °C, only 50 displayed growth at 37 °C, and were identified as 14 species of 15 genera. Aspergillus fumigatus, Penicillium chrysogenum, and Rhodotorula mucilaginosa were the most abundant species obtained. Fifty taxa grew at 40 °C; displayed haemolytic and phospholipase activities; produced tiny spores, capsule, and melanin; showed growth at different pH; and showed resistance to amphotericin B. Interestingly, the minimum inhibitory concentration of amphotericin B increased by 5-10 fold for some A. fumigatus isolates after phagocytosis by amoeba. Our results show relations among fungal community compositions present in Antarctic ornithogenic soil and their pathogenic risk to humans in vitro. As the Antarctica Peninsula is a major region of the planet affected by global climate changes, our results, though preliminary, raise concerns about the dispersal of potential pathogenic microbes present in Antarctic substrates by wild birds, which can fly great distances and spread potential pathogens mainly to South America and Oceania.
Collapse
Affiliation(s)
- Jordana R P de Sousa
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vívian N Gonçalves
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo A de Holanda
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Parasite Biology Laboratory, CEUMA University, Maranhão, Brazil
| | - Daniel A Santos
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Adriana O Costa
- Department of Pathology, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Maria V Petry
- Laboratory of Ornithology and Marine Animals, University of Vale Do Rio Dos Sinos, São Leopoldo, RS, Brazil
| | - Carlos A Rosa
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz H Rosa
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
174
|
Inflammatory Ly6C high Monocytes Protect against Candidiasis through IL-15-Driven NK Cell/Neutrophil Activation. Immunity 2017. [PMID: 28636955 DOI: 10.1016/j.immuni.2017.05.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neutrophils play a crucial role in defense against systemic candidiasis, a disease associated with a high mortality rate in patients receiving immunosuppressive therapy, although the early immune mechanisms that boost the candidacidal activity of neutrophils remain to be defined in depth. Here, we used a murine model of systemic candidiasis to explore the role of inflammatory Ly6Chigh monocytes in NK cell-mediated neutrophil activation during the innate immune response against C. albicans. We found that efficient anti-Candida immunity required a collaborative response between the spleen and kidney, which relied on type I interferon-dependent IL-15 production by spleen inflammatory Ly6Chigh monocytes to drive efficient activation and GM-CSF release by spleen NK cells; this in turn was necessary to boost the Candida killing potential of kidney neutrophils. Our findings unveil a role for IL-15 as a critical mediator in defense against systemic candidiasis and hold promise for the design of IL-15-based antifungal immunotherapies.
Collapse
|
175
|
Ku TSN, Bernardo S, Walraven CJ, Lee SA. Candidiasis and the impact of flow cytometry on antifungal drug discovery. Expert Opin Drug Discov 2017; 12:1127-1137. [PMID: 28876963 DOI: 10.1080/17460441.2017.1377179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Invasive candidiasis continues to be associated with significant morbidity and mortality as well as substantial health care costs nationally and globally. One of the contributing factors is the development of resistance to antifungal agents that are already in clinical use. Moreover, there are known treatment limitations with all of the available antifungal agents. Since traditional techniques in novel drug discovery are time consuming, high-throughput screening using flow cytometry presents as a potential tool to identify new antifungal agents that would be useful in the management of these patients. Areas covered: In this review, the authors discuss the use of automated high-throughput screening assays based upon flow cytometry to identify potential antifungals from a library comprised of a large number of bioactive compounds. They also review studies that employed the use of this research methodology that has identified compounds with antifungal activity. Expert opinion: High-throughput screening using flow cytometry has substantially decreased the processing time necessary for screening thousands of compounds, and has helped enhance our understanding of fungal pathogenesis. Indeed, the authors see this technology as a powerful tool to help scientists identify new antifungal agents that can be added to the clinician's arsenal in their fight against invasive candidiasis.
Collapse
Affiliation(s)
- Tsun Sheng N Ku
- a Section of Infectious Diseases , New Mexico VA Health Care System , Albuquerque , NM , USA.,b Division of Infectious Diseases , University of New Mexico Health Science Center , Albuquerque , NM , USA
| | - Stella Bernardo
- a Section of Infectious Diseases , New Mexico VA Health Care System , Albuquerque , NM , USA.,b Division of Infectious Diseases , University of New Mexico Health Science Center , Albuquerque , NM , USA
| | - Carla J Walraven
- c Department of Pharmaceutical Services , University of New Mexico Hospital , Albuquerque , NM , USA
| | - Samuel A Lee
- a Section of Infectious Diseases , New Mexico VA Health Care System , Albuquerque , NM , USA.,b Division of Infectious Diseases , University of New Mexico Health Science Center , Albuquerque , NM , USA
| |
Collapse
|
176
|
Vipulanandan G, Herrera M, Wiederhold NP, Li X, Mintz J, Wickes BL, Kadosh D. Dynamics of Mixed- Candida Species Biofilms in Response to Antifungals. J Dent Res 2017; 97:91-98. [PMID: 28850289 DOI: 10.1177/0022034517729351] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Oral infections caused by Candida species, the most commonly isolated human fungal pathogen, are frequently associated with biofilms. Although Candida albicans is the predominant organism found in patients with oral thrush, a biofilm infection, there is an increasing incidence of oral colonization and infections caused by non- albicans Candida species, including C. glabrata, C. dubliniensis, and C. tropicalis, which are frequently more resistant to antifungal treatment. While single-species Candida biofilms have been well studied, considerably less is known about the dynamics of mixed- Candida species biofilms and how these dynamics are altered by antifungal treatment. To address these questions, we developed a quantitative polymerase chain reaction-based approach to determine the precise species composition of mixed- Candida species biofilms formed by clinical isolates and laboratory strains in the presence and absence of clinically relevant concentrations of 3 commonly used antifungals: fluconazole, caspofungin, and amphotericin B. In monospecies biofilms, fluconazole exposure favored growth of C. glabrata and C. tropicalis, while caspofungin generally favored significant growth of all species to a varying degree. Fluconazole was not effective against preformed mixed- Candida species biofilms while amphotericin B was potent. As a general trend, in mixed- Candida species biofilms, C. albicans lost dominance in the presence of antifungals. Interestingly, presence in mixed versus monospecies biofilms reduced susceptibility to amphotericin B for C. tropicalis and C. glabrata. Overall, our data suggest that antifungal treatment favors the growth of specific non- albicans Candida species in mixed- Candida species biofilms.
Collapse
Affiliation(s)
- G Vipulanandan
- 1 Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - M Herrera
- 1 Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - N P Wiederhold
- 2 Department of Pathology and Fungus Testing Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - X Li
- 3 Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - J Mintz
- 3 Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - B L Wickes
- 1 Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - D Kadosh
- 1 Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
177
|
Pinheiro AM, Carreira A, Prescott TAK, Ferreira RB, Monteiro SA. Bridging the Gap to Non-toxic Fungal Control: Lupinus-Derived Blad-Containing Oligomer as a Novel Candidate to Combat Human Pathogenic Fungi. Front Microbiol 2017; 8:1182. [PMID: 28702011 PMCID: PMC5487463 DOI: 10.3389/fmicb.2017.01182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/12/2017] [Indexed: 01/17/2023] Open
Abstract
The lack of antifungal drugs with novel modes of action reaching the clinic is a serious concern. Recently a novel antifungal protein referred to as Blad-containing oligomer (BCO) has received regulatory approval as an agricultural antifungal agent. Interestingly its spectrum of antifungal activity includes human pathogens such as Candida albicans, however, its mode of action has yet to be elucidated. Here we demonstrate that BCO exerts its antifungal activity through inhibition of metal ion homeostasis which results in apoptotic cell death in C. albicans. HIP HOP profiling in Saccharomyces cerevisiae using a panel of signature strains that are characteristic for common modes of action identified hypersensitivity in yeast lacking the iron-dependent transcription factor Aft1 suggesting restricted iron uptake as a mode of action. Furthermore, global transcriptome profiling in C. albicans also identified disruption of metal ion homeostasis as a potential mode of action. Experiments were carried out to assess the effect of divalent metal ions on the antifungal activity of BCO revealing that BCO activity is antagonized by metal ions such as Mn2+, Zn2+, and Fe2+. The transcriptome profile also implicated sterol synthesis as a possible secondary mode of action which was subsequently confirmed in sterol synthesis assays in C. albicans. Animal models for toxicity showed that BCO is generally well tolerated and presents a promising safety profile as a topical applied agent. Given its potent broad spectrum antifungal activity and novel multitarget mode of action, we propose BCO as a promising new antifungal agent for the topical treatment of fungal infections.
Collapse
Affiliation(s)
- Ana M Pinheiro
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Alexandra Carreira
- CEV, SA, Parque Industrial de Cantanhede/Biocant-ParkCantanhede, Portugal
| | | | - Ricardo B Ferreira
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Sara A Monteiro
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal.,CEV, SA, Parque Industrial de Cantanhede/Biocant-ParkCantanhede, Portugal
| |
Collapse
|
178
|
Antifungal Susceptibility Testing of Candida and Cryptococcus Species and Mechanisms of Resistance: Implications for Clinical Laboratories. CURRENT FUNGAL INFECTION REPORTS 2017. [DOI: 10.1007/s12281-017-0282-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
179
|
Antarctic rocks from continental Antarctica as source of potential human opportunistic fungi. Extremophiles 2017; 21:851-860. [PMID: 28660362 DOI: 10.1007/s00792-017-0947-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/17/2017] [Indexed: 10/19/2022]
Abstract
We assessed the diversity of culturable fungi associated with rocks of continental Antarctica to evaluate their physiological opportunistic virulence potential in vitro. The seventy fungal isolates obtained were identified as nine species of Acremonium, Byssochlamys, Cladosporium, Debaryomyces, Penicillium, and Rhodotorula. Acremonium sp., D. hansenii, P. chrysogenum, P. citrinum, P. tardochrysogenum, and R. mucilaginosa were able to grow at 37 °C; in addition, B. spectabilis displayed a high level of growth at 37 and 45 °C. Thirty-one isolates of P. chrysogenum, P. citrinum, and P. tardochrysogenum were able to produce partial haemolysis on blood agar at 37 °C. Acremonium sp., P. citrinum, and P. tardochrysogenum showed spore sizes ranging from 2.81 to 5.13 µm diameters at 37 °C. Of these, P. chrysogenum and P. tardochrysogenum displayed macro- and micro morphological polymorphism. Our results suggest that rocks of the ultra-extreme cold and dry environment of Antarctica harbour cryptic fungi phylogenetically close to opportunistic pathogenic and mycotoxigenic taxa with physiologic virulence characteristics in vitro.
Collapse
|
180
|
Ansary I, Das A, Sen Gupta PS, Bandyopadhyay AK. Synthesis, molecular modeling ofN-acyl benzoazetinones and their docking simulation on fungal modeled target. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1328514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Inul Ansary
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Arijit Das
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | | | | |
Collapse
|
181
|
|
182
|
Mathur M, Devi VK. Potential of novel drug delivery systems in the management of topical candidiasis. J Drug Target 2017; 25:685-703. [DOI: 10.1080/1061186x.2017.1331352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mahima Mathur
- Department of Pharmaceutics, Al-Ameen College of Pharmacy, Bangalore, India
| | - V. Kusum Devi
- Department of Pharmaceutics, Al-Ameen College of Pharmacy, Bangalore, India
| |
Collapse
|
183
|
Sahibzada MUK, Sadiq A, Khan S, Faidah HS, Naseemullah, Khurram M, Amin MU, Haseeb A. Fabrication, characterization and in vitro evaluation of silibinin nanoparticles: an attempt to enhance its oral bioavailability. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1453-1464. [PMID: 28553075 PMCID: PMC5440029 DOI: 10.2147/dddt.s133806] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Silibinin has gained in importance in the past few decades as a hepatoprotector and is used widely as oral therapy for toxic liver damage, liver cirrhosis, and chronic inflammatory liver diseases, as well as for the treatment of different types of cancers. Unfortunately, it has low aqueous solubility and inadequate dissolution, which results in low oral bioavailability. Materials and methods In this study, nanoparticles (NPs) of silibinin, which is a hydrophobic drug, were manufactured using two cost-effective methods. Antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN) were used. The prepared NPs were characterized using different analytical techniques such as scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray powder diffractometry (XRD) and were sifted for their bioavailability through in vitro dissolution and solubility studies. Moreover, the prepared NPs were evaluated for antimicrobial activity against a battery of bacteria and yeast. Results DSC and XRD studies indicated that the prepared NPs were amorphous in nature, with more solubility and dissolution compared to the crystalline form of this drug. NPs prepared through the EPN method had better results than those prepared using the APSP method. Antimicrobial activities of the NPs were improved compared to the unprocessed drugs, while having comparable activities to standard antimicrobial drugs. Conclusion Results indicate that the NPs have significantly increased solubility, dissolution rate, and antimicrobial activities due to the conversion of crystalline structure into amorphous form.
Collapse
Affiliation(s)
- Muhammad Umar Khayam Sahibzada
- Department of Pharmacy, University of Malakand, Chakdara, Lower Dir.,Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Lower Dir
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara, Lower Dir
| | - Hani S Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al Qura University, Makkah, Saudi Arabia
| | - Naseemullah
- Department of Pharmacy, University of Malakand, Chakdara, Lower Dir
| | - Muhammad Khurram
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Upper Dir
| | - Muhammad Usman Amin
- Department of Pharmacology, KMU Institute of Medical Sciences, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Haseeb
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| |
Collapse
|
184
|
Roberts CA, Miller JH, Atkinson PH. The genetic architecture in Saccharomyces cerevisiae that contributes to variation in drug response to the antifungals benomyl and ketoconazole. FEMS Yeast Res 2017; 17:3787663. [DOI: 10.1093/femsyr/fox027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/29/2017] [Indexed: 12/14/2022] Open
|
185
|
4-Hydroxy-7-methyl-3-phenylcoumarin Suppresses Aflatoxin Biosynthesis via Downregulation of aflK Expressing Versicolorin B Synthase in Aspergillus flavus. Molecules 2017; 22:molecules22050712. [PMID: 28468270 PMCID: PMC6154296 DOI: 10.3390/molecules22050712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 11/22/2022] Open
Abstract
Naturally occurring coumarins possess antibacterial and antifungal properties. In this study, these natural and synthetic coumarins were used to evaluate their antifungal activities against Aspergillus flavus, which produces aflatoxins. In addition to control antifungal activities, antiaflatoxigenic properties were also determined using a high-performance liquid chromatography in conjunction with fluorescence detection. In this study, 38 compounds tested and 4-hydroxy-7-methyl-3-phenyl coumarin showed potent antifungal and antiaflatoxigenic activities against A. flavus. Inhibitory mode of antiaflatoxigenic action by 4-hydroxy-7-methyl-3-phenyl coumarin was based on the downregulation of aflD, aflK, aflQ, and aflR in aflatoxin biosynthesis. In the cases of coumarins, antifungal and aflatoxigenic activities are highly related to the lack of diene moieties in the structures. In structurally related compounds, 2,3-dihydrobenzofuran exhibited antifungal and antiaflatoxigenic activities against A. flavus. The inhibitory mode of antiaflatoxigenic action by 2,3-dihydrobenzofuran was based on the inhibition of the transcription factor (aflS) in the aflatoxin biosynthesis pathway. These potent inhibitions of 2,3-dihydrobenzofuran and 4-hydroxy-7-methyl-3-phenyl coumarin on the Aspergillus growth and production of aflatoxins contribute to the development of new controlling agents to mitigate aflatoxin contamination.
Collapse
|
186
|
Mourad A, Perfect JR. What Can the Clinical Mycology Laboratory Do for Clinicians Today and Tomorrow? CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0061-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
187
|
Ghosh C, Yadav V, Younis W, Mohammad H, Hegazy YA, Seleem MN, Sanyal K, Haldar J. Aryl-alkyl-lysines: Membrane-Active Fungicides That Act against Biofilms of Candida albicans. ACS Infect Dis 2017; 3:293-301. [PMID: 28238268 DOI: 10.1021/acsinfecdis.6b00192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mortality due to pathogenic fungi has been exacerbated by the rapid development of resistance to frontline antifungal drugs. Fungicidal compounds with novel mechanisms of action are urgently needed. Aryl-alkyl-lysines, which are membrane-active small molecules, were earlier shown to be broad-spectrum antibacterial agents with potency in vitro and in vivo. Herein, we report the antifungal properties of aryl-alkyl-lysines. After identifying the most active compound (NCK-10), we tested its activity against a panel of clinically relevant pathogenic fungi and examined NCK-10's effect against immature and mature biofilms of Candida albicans. NCK-10 was capable of inhibiting the growth of various species of fungi (including Candida spp., Cryptococcus spp., and Aspergillus fumigatus) at concentrations similar to those of antifungal drugs used clinically. It was observed that polarization and permeability of the fungal cell membrane were compromised upon addition of NCK-10, indicating its mechanism is disruption of the fungal cell membrane. In addition to interfering with the growth of planktonic fungi, NCK-10 demonstrated the ability to both inhibit biofilm formation and reduce the metabolic activity of cells in C. albicans biofilm. Additionally, our compound was capable of crossing the blood-brain barrier in an in vitro model, expanding the potential antifungal applications for NCK-10. Overall, aryl-alkyl-lysines were found to be excellent compounds that warrant further investigation as novel antifungal agents.
Collapse
Affiliation(s)
- Chandradhish Ghosh
- Chemical Biology
and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - Vikas Yadav
- Molecular
Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - Waleed Younis
- Department
of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Haroon Mohammad
- Department
of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Youssef A. Hegazy
- Department
of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Mohamed N. Seleem
- Department
of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, United States
- Purdue
Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kaustuv Sanyal
- Molecular
Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| | - Jayanta Haldar
- Chemical Biology
and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka 560064, India
| |
Collapse
|
188
|
Distribution and antifungal susceptibility of yeasts isolates from intensive care unit patients. Folia Microbiol (Praha) 2017; 62:525-530. [PMID: 28361459 DOI: 10.1007/s12223-017-0525-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
Abstract
Yeasts frequently colonize non-sterile sites in the body. The aim of the study was to determine distribution in clinical samples and antifungal susceptibility to five antifungals. From January 2013 through June 2015, 800 isolates were obtained from intensive care unit patients. Candida albicans (58.9%), Candida glabrata (20.4%), Candida krusei (8.6%), and Candida parapsilosis (3.6%) were the leading species. Majority of the C. albicans isolates were susceptible to the fluconazole. Elevated voriconazole minimal inhibitory concentrations (MICs) were observed in isolates exhibiting high fluconazole MICs, most frequently in C. glabrata. Isolates with echinocandins MICs suggesting reduced susceptibility were only sporadic cases with the exception of Trichosporon spp. The amphotericin B MICs were slightly higher for some C. krusei.
Collapse
|
189
|
Investigation of aryl isonitrile compounds with potent, broad-spectrum antifungal activity. Bioorg Med Chem 2017; 25:2926-2931. [PMID: 28385596 DOI: 10.1016/j.bmc.2017.03.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/10/2017] [Accepted: 03/17/2017] [Indexed: 11/22/2022]
Abstract
Invasive fungal infections present a formidable global public health challenge due to the limited number of approved antifungal agents and the emergence of resistance to the frontline treatment options, such as fluconazole. Three fungal pathogens of significant concern are Candida, Cryptococcus, and Aspergillus given their propensity to cause opportunistic infections in immunocompromised individuals. New antifungal agents composed of unique chemical scaffolds are needed to address this public health challenge. The present study examines the structure-activity relationship of a set of aryl isonitrile compounds that possess broad-spectrum antifungal activity primarily against species of Candida and Cryptococcus. The most potent derivatives are capable of inhibiting growth of these key pathogens at concentrations as low as 0.5µM. Remarkably, the most active compounds exhibit an excellent safety profile and are non-toxic to mammalian cells even at concentrations up to 256µM. The present study lays the foundation for further investigation of aryl isonitrile compounds as a new class of antifungal agents.
Collapse
|
190
|
The anti-dermatophyte activity of Zataria multiflora essential oils. J Mycol Med 2017; 27:232-237. [PMID: 28347599 DOI: 10.1016/j.mycmed.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/04/2017] [Accepted: 03/02/2017] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Dermtophytes are a group of pathogenic fungi and the major cause of dermatophytosis in humans and animals. Fighting dermatophytes by natural essential oils is one important issue in new researches. MATERIALS AND METHODS In this investigation, we evaluated the anti-dermatophyte activities of three samples of Z. multiflora essential oils against dermatophytes along with analysis of chemical compositions of the essential oils and their anti-elastase activities on elastase production in dermatophytes. RESULTS Carvacrol (1.5-34.4%), thymol (25.8-41.2%), carvacrol methyl ether (1.9-28.3%) and p-cymene (2.3-8.3%) were the main components of Z. multiflora essential oils. Z. multiflora essential oils (100ppm) inhibited the mycelium growth of dermatophytes (6±1.7-47.0±1.4%) and had the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) values of 0.03-0.25μl/ml against dermatophytes. Essential oils inhibited elastase produced in dermatophytes and pure porcine elastase. CONCLUSION Z. multiflora essential oils can be used as natural anti-dermatophyte agent for fighting dermatophytes in further preclinical and clinical studies.
Collapse
|
191
|
Resistance to antifungal therapies. Essays Biochem 2017; 61:157-166. [DOI: 10.1042/ebc20160067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/02/2017] [Accepted: 01/05/2017] [Indexed: 11/17/2022]
Abstract
The evolution of antifungal resistance among fungal pathogens has rendered the limited arsenal of antifungal drugs futile. Considering the recent rise in the number of nosocomial fungal infections in immunocompromised patients, the emerging clinical multidrug resistance (MDR) has become a matter of grave concern for medical professionals. Despite advances in therapeutic interventions, it has not yet been possible to devise convincing strategies to combat antifungal resistance. Comprehensive understanding of the molecular mechanisms of antifungal resistance is essential for identification of novel targets that do not promote or delay emergence of drug resistance. The present study discusses features and limitations of the currently available antifungals, mechanisms of antifungal resistance and highlights the emerging therapeutic strategies that could be deployed to combat MDR.
Collapse
|
192
|
Roy P, Das S, Singh N, Saha R, Kajla G, Snehaa K, Gupta V. Changing trends in fungal and bacterial profile of infectious keratitis at a tertiary care hospital: A six-year study. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2017. [DOI: 10.1016/j.cegh.2016.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
193
|
Rodrigues CF, Rodrigues ME, Silva S, Henriques M. Candida glabrata Biofilms: How Far Have We Come? J Fungi (Basel) 2017; 3:E11. [PMID: 29371530 PMCID: PMC5715960 DOI: 10.3390/jof3010011] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/07/2017] [Accepted: 02/16/2017] [Indexed: 11/25/2022] Open
Abstract
Infections caused by Candida species have been increasing in the last decades and can result in local or systemic infections, with high morbidity and mortality. After Candida albicans, Candida glabrata is one of the most prevalent pathogenic fungi in humans. In addition to the high antifungal drugs resistance and inability to form hyphae or secret hydrolases, C. glabrata retain many virulence factors that contribute to its extreme aggressiveness and result in a low therapeutic response and serious recurrent candidiasis, particularly biofilm formation ability. For their extraordinary organization, especially regarding the complex structure of the matrix, biofilms are very resistant to antifungal treatments. Thus, new approaches to the treatment of C. glabrata's biofilms are emerging. In this article, the knowledge available on C. glabrata's resistance will be highlighted, with a special focus on biofilms, as well as new therapeutic alternatives to control them.
Collapse
Affiliation(s)
- Célia F Rodrigues
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| | - Maria Elisa Rodrigues
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| | - Sónia Silva
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| | - Mariana Henriques
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
194
|
Chang YL, Yu SJ, Heitman J, Wellington M, Chen YL. New facets of antifungal therapy. Virulence 2017; 8:222-236. [PMID: 27820668 PMCID: PMC5354158 DOI: 10.1080/21505594.2016.1257457] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/19/2016] [Accepted: 11/01/2016] [Indexed: 01/13/2023] Open
Abstract
Invasive fungal infections remain a major cause of morbidity and mortality in immunocompromised patients, and such infections are a substantial burden to healthcare systems around the world. However, the clinically available armamentarium for invasive fungal diseases is limited to 3 main classes (i.e., polyenes, triazoles, and echinocandins), and each has defined limitations related to spectrum of activity, development of resistance, and toxicity. Further, current antifungal therapies are hampered by limited clinical efficacy, high rates of toxicity, and significant variability in pharmacokinetic properties. New antifungal agents, new formulations, and novel combination regimens may improve the care of patients in the future by providing improved strategies to combat challenges associated with currently available antifungal agents. Likewise, therapeutic drug monitoring may be helpful, but its present use remains controversial due to the lack of available data. This article discusses new facets of antifungal therapy with a focus on new antifungal formulations and the synergistic effects between drugs used in combination therapy.
Collapse
Affiliation(s)
- Ya-Lin Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Shang-Jie Yu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Melanie Wellington
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Ying-Lien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
195
|
Galvis-Marín JC, Rodríguez-Bocanegra MX, Pulido-Villamarín ADP, Castañeda-Salazar R, Celis-Ramírez AM, Linares-Linares MY. [In vitro antifungal activity of azoles and amphotericin B against Malassezia furfur by the CLSI M27-A3 microdilution and Etest ® methods]. Rev Iberoam Micol 2017; 34:89-93. [PMID: 28214276 DOI: 10.1016/j.riam.2016.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 11/12/2015] [Accepted: 05/16/2016] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Malassezia furfur is a human skin commensal yeast that can cause skin and opportunistic systemic infections. Given its lipid dependant status, the reference methods established by the Clinical and Laboratory Standards Institute (CLSI) to evaluate antifungal susceptibility in yeasts are not applicable. AIMS To evaluate the in vitro susceptibility of M. furfur isolates from infections in humans to antifungals of clinical use. METHODS The susceptibility profile to amphotericin B, itraconazole, ketoconazole and voriconazole of 20 isolates of M. furfur, using the broth microdilution method (CLSI M27-A3) and Etest®, was evaluated. RESULTS Itraconazole and voriconazole had the highest antifungal activity against the isolates tested. The essential agreement between the two methods for azoles antifungal activity was in the region of 60-85% and the categorical agreement was around 70-80%, while the essential and categorical agreement for amphotericin B was 10%. CONCLUSIONS The azoles were the compounds that showed the highest antifungal activity against M. furfur, as determined by the two techniques used; however more studies need to be performed to support that Etest® is a reliable method before its implementation as a routine clinical laboratory test.
Collapse
Affiliation(s)
- Juan Camilo Galvis-Marín
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - María Ximena Rodríguez-Bocanegra
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Del Pilar Pulido-Villamarín
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Rubiela Castañeda-Salazar
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Adriana Marcela Celis-Ramírez
- Laboratorio de Micología y Fitopatología (LAMFU), Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Melva Yomary Linares-Linares
- Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
196
|
Fyhrquist P, Virjamo V, Hiltunen E, Julkunen-Tiitto R. Epidihydropinidine, the main piperidine alkaloid compound of Norway spruce (Picea abies) shows promising antibacterial and anti-Candida activity. Fitoterapia 2017; 117:138-146. [PMID: 28163074 DOI: 10.1016/j.fitote.2017.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/23/2017] [Accepted: 01/29/2017] [Indexed: 01/26/2023]
Abstract
This study reports for the first time promising antibacterial and antifungal effects of epidihydropinidine, the major piperidine alkaloid in the needles and bark of Norway spruce, Picea abies (L.) Karsten. Epidihydropinidine was growth inhibitory against all bacterial and fungal strains used in our investigation, showing the lowest MIC value of 5.37μg/mL against Pseudomonas aeruginosa, Enterococcus faecalis, Candida glabrata and C. albicans. Epidihydropinidine was nearly three times more active than tetracycline against P. aeruginosa and E. faecalis. Promising antibacterial effects were also recorded against Staphylococcus aureus and Bacillus cereus (MIC 10.75μg/mL) as well as against Salmonella enterica (MIC and MBC 43μg/mL). Our preliminary results suggest that epidihydropinidine as well related alkaloids of Norway spruce could be powerful candidates for new antibiotics and for preventing food spoilage.
Collapse
Affiliation(s)
- Pia Fyhrquist
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, P.O. Box 56, FIN-00014, University of Helsinki, Finland.
| | - Virpi Virjamo
- Natural Product Research Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu, Finland
| | - Eveliina Hiltunen
- Natural Product Research Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu, Finland
| | - Riitta Julkunen-Tiitto
- Natural Product Research Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu, Finland
| |
Collapse
|
197
|
Hutnick MA, Ahsanuddin S, Guan L, Lam M, Baron ED, Pokorski JK. PEGylated Dendrimers as Drug Delivery Vehicles for the Photosensitizer Silicon Phthalocyanine Pc 4 for Candidal Infections. Biomacromolecules 2017; 18:379-385. [DOI: 10.1021/acs.biomac.6b01436] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Melanie A. Hutnick
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Sayeeda Ahsanuddin
- Department
of Dermatology, Case Skin Disease Research Center, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, United States
| | - Linna Guan
- Department
of Dermatology, Case Skin Disease Research Center, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, United States
| | - Minh Lam
- Department
of Dermatology, Case Skin Disease Research Center, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, United States
| | - Elma D. Baron
- Department
of Dermatology, Case Skin Disease Research Center, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio 44106, United States
| | - Jonathan K. Pokorski
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, 2100 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
198
|
Scorzoni L, de Paula E Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, Costa-Orlandi CB, Mendes-Giannini MJS, Fusco-Almeida AM. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front Microbiol 2017; 8:36. [PMID: 28167935 PMCID: PMC5253656 DOI: 10.3389/fmicb.2017.00036] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the preliminary testing of new antifungal agents. In general, many years are required from discovery of a new antifungal to clinical use. However, the development of new antifungal strategies will reduce the therapeutic time and/or increase the quality of life of patients.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Wanessa C M A de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline B Costa-Orlandi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| |
Collapse
|
199
|
Scotto CI, Burger P, Khodjet el Khil M, Ginouves M, Prevot G, Blanchet D, Delprete PG, Fernandez X. Chemical composition and antifungal activity of the essential oil of Varronia schomburgkii (DC.) Borhidi (Cordiaceae) from plants cultivated in French Guiana. JOURNAL OF ESSENTIAL OIL RESEARCH 2017. [DOI: 10.1080/10412905.2017.1278729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Camille Inès Scotto
- Université Nice Sophia Antipolis, ICN, UMR 7272, Parc Valrose, Nice Cedex 2, France
| | - Pauline Burger
- Université Nice Sophia Antipolis, ICN, UMR 7272, Parc Valrose, Nice Cedex 2, France
| | | | - Marine Ginouves
- Université de la Guyane, Laboratoire des Ecosystèmes Amazoniens et Pathologie Tropicale EA 3593 – Labex CEBA DFR Santé, Cayenne, French Guiana, France
| | - Ghislaine Prevot
- Université de la Guyane, Laboratoire des Ecosystèmes Amazoniens et Pathologie Tropicale EA 3593 – Labex CEBA DFR Santé, Cayenne, French Guiana, France
| | - Denis Blanchet
- Université de la Guyane, Laboratoire des Ecosystèmes Amazoniens et Pathologie Tropicale EA 3593 – Labex CEBA DFR Santé, Cayenne, French Guiana, France
- Laboratoire Hospitalo-Universitaire de Parasitologie et Mycologie, Centre Hospitalier de Cayenne, Cayenne, French Guiana, France
| | - Piero G. Delprete
- Herbier IRD de Guyane, Institut de Recherche pour le Développement (IRD), UMR AMAP, Boite Postale 165, Cayenne Cedex, French Guiana, France
| | - Xavier Fernandez
- Université Nice Sophia Antipolis, ICN, UMR 7272, Parc Valrose, Nice Cedex 2, France
| |
Collapse
|
200
|
El-Awady R, Saleh E, Hashim A, Soliman N, Dallah A, Elrasheed A, Elakraa G. The Role of Eukaryotic and Prokaryotic ABC Transporter Family in Failure of Chemotherapy. Front Pharmacol 2017; 7:535. [PMID: 28119610 PMCID: PMC5223437 DOI: 10.3389/fphar.2016.00535] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022] Open
Abstract
Over the years chemotherapy failure has been a vital research topic as researchers have been striving to discover reasons behind it. The extensive studies carried out on chemotherapeutic agents confirm that resistance to chemotherapy is a major reason for treatment failure. “Resistance to chemotherapy,” however, is a comprehensive phrase that refers to a variety of different mechanisms in which ATP-binding cassette (ABC) mediated efflux dominates. The ABC is one of the largest gene superfamily of transporters among both eukaryotes and prokaryotes; it represents a variety of genes that code for proteins, which perform countless functions, including drug efflux – a natural process that protects cells from foreign chemicals. Up to date, chemotherapy failure due to ABC drug efflux is an active research topic that continuously provides further evidence on multiple drug resistance (MDR), aiding scientists in tackling and overcoming this issue. This review focuses on drug resistance by ABC efflux transporters in human, viral, parasitic, fungal and bacterial cells and highlights the importance of the MDR permeability glycoprotein being the mutual ABC transporter among all studied organisms. Current developments and future directions to overcome this problem are also discussed.
Collapse
Affiliation(s)
- Raafat El-Awady
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Ekram Saleh
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of SharjahSharjah, United Arab Emirates; National Cancer Institute - Cancer Biology Department, Cairo UniversityCairo, Egypt
| | - Amna Hashim
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Nehal Soliman
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Alaa Dallah
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Azza Elrasheed
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| | - Ghada Elakraa
- Department of Pharmacy Practice and Pharmacotherapeutics, Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| |
Collapse
|