151
|
Shi W, Deng H, Zhang J, Zhang Y, Zhang X, Cui G. Mitochondria-Targeting Small Molecules Effectively Prevent Cardiotoxicity Induced by Doxorubicin. Molecules 2018; 23:E1486. [PMID: 29921817 PMCID: PMC6099719 DOI: 10.3390/molecules23061486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
Doxorubicin (Dox) is a chemotherapeutic agent widely used for the treatment of numerous cancers. However, the clinical use of Dox is limited by its unwanted cardiotoxicity. Mitochondrial dysfunction has been associated with Dox-induced cardiotoxicity. To mitigate Dox-related cardiotoxicity, considerable successful examples of a variety of small molecules that target mitochondria to modulate Dox-induced cardiotoxicity have appeared in recent years. Here, we review the related literatures and discuss the evidence showing that mitochondria-targeting small molecules are promising cardioprotective agents against Dox-induced cardiac events.
Collapse
Affiliation(s)
- Wei Shi
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| | - Hongkuan Deng
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Jianyong Zhang
- Pharmacy School, Zunyi Medical University, Zunyi 563003, China.
| | - Ying Zhang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| | - Xiufang Zhang
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Guozhen Cui
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| |
Collapse
|
152
|
Damiani RM, Moura DJ, Viau CM, Brito V, Morás AM, Henriques JAP, Saffi J. Influence of PARP-1 inhibition in the cardiotoxicity of the topoisomerase 2 inhibitors doxorubicin and mitoxantrone. Toxicol In Vitro 2018; 52:203-213. [PMID: 29913208 DOI: 10.1016/j.tiv.2018.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/17/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
Abstract
Doxorubicin (DOX) and Mitoxantrone (MTX) are very effective drugs for a range of tumors despite being highly cardiotoxic. DNA topoisomerase 2 beta (Top2ß) was revealed as key mediator of DOX-induced cardiotoxicity, although ROS generation is also an important mechanism. Oxidative stress is also an important issue in MTX-induced cardiotoxicity that is manifested by mitochondrial dysfunction. Studies have demonstrated the relationship between PARP-1 overactivation and cell viability in DOX-treated cardiomyocytes. In reference of MTX, data regarding PARP-1 overactivation as the mechanism responsible for cardiotoxicity is difficult to find. The aim of this study was to evaluate the influence of PARP-1 inhibitor DPQ on DOX- and MTX-mediated cardiotoxicity. Cells were exposed for 24 h to DOX or MTX in the presence or absence of DPQ. Viability, apoptosis, and genotoxicity assays were carried out. Immunofluorescence of phosphorylated histone H2AX was analyzed in H9c2 cells and cardiomyocytes from neonatal rats. Results demonstrated that DPQ co-treatment increases DOX-induced apoptosis in H9c2 cells. DPQ also prevents DOX and MTX-ROS generation in part by increasing SOD and CAT activities. Furthermore, DPQ co-treatment increased the generation of DNA strand breaks by DOX and MTX whilst also inducing phosphorylation of H2AX, MRE11, and ATM in H9c2 cells. Our results demonstrated that as well as increasing DNA damage and inducing apoptotic cell death, DPQ enhances DOX- and MTX-mediated cytotoxicity in H9c2.
Collapse
Affiliation(s)
- Roberto Marques Damiani
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves av., 9500, Porto Alegre, RS, Brazil; Centro Universitário Ritter dos Reis (UniRitter), Orfanotrófio st, 555, Porto Alegre, RS, Brazil.
| | - Dinara Jaqueline Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil
| | - Cassiana Macagnan Viau
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil
| | - Verônica Brito
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil
| | - Ana Moira Morás
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil
| | - João Antonio Pêgas Henriques
- Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves av., 9500, Porto Alegre, RS, Brazil; Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves av., 9500, Porto Alegre, RS, Brazil
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves av., 9500, Porto Alegre, RS, Brazil
| |
Collapse
|
153
|
Yang X, Liu N, Li X, Yang Y, Wang X, Li L, Jiang L, Gao Y, Tang H, Tang Y, Xing Y, Shang H. A Review on the Effect of Traditional Chinese Medicine Against Anthracycline-Induced Cardiac Toxicity. Front Pharmacol 2018; 9:444. [PMID: 29867456 PMCID: PMC5963334 DOI: 10.3389/fphar.2018.00444] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/16/2018] [Indexed: 01/29/2023] Open
Abstract
Anthracyclines are effective agents generally used to treat solid-tumor and hematologic malignancies. The use of anthracyclines for over 40 years has improved cancer survival statistics. Nevertheless, the clinical utility of anthracyclines is limited by its dose-dependent cardiotoxicity that adversely affects 10-30% of patients. Anthracycline-induced cardiotoxicity may be classified as acute/subacute or chronic/late toxicity and leads to devastating adverse effects resulting in poor quality of life, morbidity, and premature mortality. Traditional Chinese medicine has a history of over 2,000 years, involving both unique theories and substantial experience. Several studies have investigated the potential of natural products to decrease the cardiotoxic effects of chemotherapeutic agents on healthy cells, without negatively affecting their antineoplastic activity. This article discusses the mechanism of anthracycline-induced cardiotoxicity, and summarizes traditional Chinese medicine treatment for anthracycline-induced heart failure (HF), cardiac arrhythmia, cardiomyopathy, and myocardial ischemia in recent years, in order to provide a reference for the clinical prevention and treatment of cardiac toxicity.
Collapse
Affiliation(s)
- Xinyu Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Nian Liu
- Department of Cardiology, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Xinye Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yihan Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaofeng Wang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Linling Li
- Department of Cardiology, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Le Jiang
- Department of Cardiology, Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hebin Tang
- Department of Pharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yong Tang
- Department of Pancreatic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yanwei Xing
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
154
|
Chen L, Xia W, Hou M. Mesenchymal stem cells attenuate doxorubicin‑induced cellular senescence through the VEGF/Notch/TGF‑β signaling pathway in H9c2 cardiomyocytes. Int J Mol Med 2018; 42:674-684. [PMID: 29693137 DOI: 10.3892/ijmm.2018.3635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/05/2018] [Indexed: 11/06/2022] Open
Abstract
The clinical use of doxorubicin (Dox) is limited by its cardiotoxicity. The fundamental changes it induces include interstitial myocardial fibrosis and the appearance of senescent cardiomyocytes. Mesenchymal stem cell (MSC)‑based therapies have also been reported to modulate cellular senescence, and have been used effectively to treat age‑related cardiovascular diseases. In the present study, the Transwell system was used to coculture H9c2 cells with MSCs, and their proliferation and viability were assessed. The expression of senescence‑related genes p53 and p16, and telomere length were measured using reverse transcription‑quantitative polymerase chain reaction analysis, and the Jagged‑1/Notch‑1 signaling pathway was detected using western blot analysis. The results revealed that Dox induced the senescence of H9c2 cells, characterized by a low proliferation rate, poor viability, reduced telomere length and impaired telomerase activity, and by marked increases in the expression of p53 and p16. By contrast, when cocultured with MSCs in the presence of Dox, H9c2 cell proliferation and viability increased, whereas the expression levels of p53 and p16 decreased, and telomere length and telomerase activity increased. The mechanism underlying the antisenescence function of MSCs was clarified, which involved the vascular endothelial growth factor (VEGF)/Jagged‑1/Notch‑1/transforming growth factor‑β1 (TGF‑β1) signaling pathway. It was confirmed that inhibiting VEGF, or silencing Jagged‑1 or Notch‑1 with small interfering RNA, or using recombinant TGF‑β1 eliminated the antisenescence effects of MSCs on the Dox‑treated H9c2 cells. The results revealed that MSCs rescued H9c2 cells from Dox‑induced senescence through the release of VEGF, which activated the Jagged‑1/Notch‑1 signaling pathway, leading to the inhibition of TGF‑β1 release. Therefore, treatment with MSCs may have important therapeutic implications on the attenuation of cardiotoxicity in patients with cancer treated with Dox.
Collapse
Affiliation(s)
- Lingli Chen
- Department of Neurology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenzheng Xia
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Meng Hou
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
155
|
Wang Y, Lei T, Yuan J, Wu Y, Shen X, Gao J, Feng W, Lu Z. GCN2 deficiency ameliorates doxorubicin-induced cardiotoxicity by decreasing cardiomyocyte apoptosis and myocardial oxidative stress. Redox Biol 2018; 17:25-34. [PMID: 29660505 PMCID: PMC6006681 DOI: 10.1016/j.redox.2018.04.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 01/17/2023] Open
Abstract
The clinical use of doxorubicin for cancer therapy is limited by its cardiotoxicity, which involves cardiomyocyte apoptosis and oxidative stress. Previously, we showed that general control nonderepressible 2 (GCN2), an eukaryotic initiation factor 2α (eIF2α) kinase, impairs the ventricular adaptation to chronic pressure overload by affecting cardiomyocyte apoptosis. However, the impact of GCN2 on Dox-induced cardiotoxicity has not been investigated. In the present study, we treated wild type (WT) and Gcn2−/− mice with four intraperitoneal injections (5 mg/kg/week) to induce cardiomyopathy. After Dox treatment, Gcn2−/− mice developed less contractile dysfunction, myocardial fibrosis, apoptosis, and oxidative stress compared with WT mice. In the hearts of the Dox-treated mice, GCN2 deficiency attenuated eIF2α phosphorylation and induction of its downstream targets, activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), and preserved the expression of anti-apoptotic factor Bcl-2 and mitochondrial uncoupling protein-2(UCP2). Furthermore, we found that GCN2 knockdown attenuated, whereas GCN2 overexpression exacerbated, Dox-induced cell death, oxidative stress and reduction of Bcl-2 and UCP2 expression through the eIF2α-CHOP-dependent pathway in H9C2 cells. Collectively, our data provide solid evidence that GCN2 has a marked effect on Dox induced myocardial apoptosis and oxidative stress. Our findings suggest that strategies to inhibit GCN2 activity in cardiomyocyte may provide a novel approach to attenuate Dox-related cardiotoxicity. GCN2 deficiency ameliorates doxorubicin-induced cardiac dysfunction. GCN2 promotes doxorubicin-induced cardiomyocyte apoptosis and oxidative stress. GCN2 decreases Bcl-2 and UCP2 expression via a CHOP dependent manner. Knockdown of UCP2 exacerbated doxorubicin-induced cell death and oxidative stress.
Collapse
Affiliation(s)
- Yue Wang
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Tong Lei
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Juntao Yuan
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Yongguang Wu
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Xiyue Shen
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Junling Gao
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Wei Feng
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, 19 A Yuquanlu, Beijing 100049, China.
| |
Collapse
|
156
|
Abstract
We report the cardioprotective effects of moderate aerobic exercise from parallel pediatric murine models of doxorubicin (Doxo) exposure in non-tumor-bearing immune competent (NTB-IC) mice and tumor-bearing nude mice (TB-NM). In both models, animals at 4 weeks of age underwent Doxo treatment with or without 2 weeks of simultaneous exercise. In sedentary NTB-IC or TB-NM mice, Doxo treatment resulted in a statistically significant decrease in ejection fraction and fractional shortening compared with control animals. Interestingly, moderate aerobic exercise during Doxo treatment significantly mitigated decreases in ejection fraction and fractional shortening. In contrast, these protective effects of exercise were not observed when exercise was started after completion of Doxo treatments. Moreover, in the TB-NM model, Doxo caused a decrease in heart mass: tibia length and in body weight that was prevented by exercise, whereas NTB-IC mice exhibited no change in these measurements. Doxo delivery to the hearts of TB-NM was decreased by consistent moderate aerobic exercise before Doxo injection. These findings demonstrate the important but subtle differences in cardiotoxicity observed in different mouse models. Collectively, these results also strongly suggest that aerobic exercise during early-life Doxo exposure mitigates cardiotoxicity, possibly through altered delivery of Doxo to myocardial tissue.
Collapse
|
157
|
Danilenko LM. Doxorubicin-associated Cardiomyopathy: New Approaches to Pharmacological Correction Using 3-(2,2,2-trimethylhydrazinium) Propionate Derivatives. RESEARCH RESULTS IN PHARMACOLOGY 2018. [DOI: 10.3897/rrpharmacology.4.25530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The search for new compounds with cardioprotective activity amongst the 3-(2,2,2-trimethylhydrazinium) propionate derivatives looks promising.
Research objectives: to study cardioprotective effects of the 3-(2,2,2-trimethylhydrazinium) propionate derivatives.
Methods: The cardioprotective effect of the derivatives (nicotinate, 5-hydroxynicotinate) of 3-(2,2,2-trimethylhydrazinium) propionate) and reference medicine meldonium in the case of doxorubicin (DOX) (20 mg/kg, intraperitoneally for 48 hours) cardiomyopathy was evaluated by the results of a functional test with high-frequency stimulation (480 bpm).
To provide integral validation for the development of the simulated pathological processes, biochemical and morphological studies of the heart were carried out. For a biochemical evaluation of myocardial damage in the homogenisate, the isoenzyme creatinine kinase MB (CK-MB) and lactate dehydrogenase (LDH) were determined.
Results: The derivatives nicotinate and 5-hydroxynicotinate of 3-(2,2,2-trimethylhydrazinium) propionate) exert a cardioprotective effect on a doxorubicin pathology model, which is expressed in a decreased coefficient of diastolic dysfunction (StTTI) to the level of 5.8±0.1 ru and 4.6±0.2 ru in comparison with that in the control group 8.3±0.1 ru and reference medicine meldonium 6.5±0.1 ru, respectively.
The cardioprotective effect was confirmed by decreased levels of markers of damage to CK-MB and LDH and a decreased diameter of cardiomyocytes compared to those in the control group.
Conclusion: The derivatives of 3-(2,2,2-trimethylhydrazinium) propionate (nicotinate, 5-hydroxynicotinate) 3-(2,2,2-trimethylhydrazinium) propionate reduce diastolic dysfunction and irreversible damage to cardiomyocytes in case of doxorubicin-associated cardiomyopathy.
Collapse
|
158
|
Angiotensin-converting enzyme 2 overexpression protects against doxorubicin-induced cardiomyopathy by multiple mechanisms in rats. Oncotarget 2018; 8:24548-24563. [PMID: 28445944 PMCID: PMC5421869 DOI: 10.18632/oncotarget.15595] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/13/2017] [Indexed: 11/25/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is considered a potential therapeutic target of the renin-angiotensin system (RAS) for the treatment of cardiovascular diseases. We aimed to explore the effects of ACE2 overexpression on doxorubicin-induced cardiomyopathy in rats. Rats were randomly divided into treatment and control groups. The rats of treatment group were injected intraperitoneally with 6 doses of doxorubicin (2.5 mg/kg) within a period of two weeks. Two weeks after the initial injection of doxorubicin, these rats were randomly divided into Mock, Ad-EGFP, Ad-ACE2, and Cilazapril groups. The rats of Ad-EGFP and Ad-ACE2 groups received intramyocardial injection of Ad-EGFP and Ad-ACE2, respectively. The rats of Cilazapril group received cilazapril (10 mg/kg/day) via intragastric intubation. Apoptosis, inflammation, oxidative stress, cardiac function, the extent of myocardial fibrosis, and levels of ACE2, ACE, angiotensin II (AngII), and angiotensin (1–7) were evaluated. Four weeks after ACE2 gene transfer, the Ad-ACE2 group showed not only reduced apoptosis, inflammatory response, oxidative stress, left ventricular (LV) volume, extent of myocardial fibrosis and mortality of rats, but also increased LV ejection fraction and ACE2 expression level compared with the Mock and Ad-EGFP groups. ACE2 overexpression was superior to cilazapril in improving doxorubicin-induced cardiomyopathy. The putative mechanisms may involve activation of the AMPK and PI3K-AKT pathways, inhibition of the ERK pathway, decrease of TGF-β1 expression, and interactions of shifting RAS components, such as decreased myocardium AngII levels, increased myocardium Ang (1–7) levels, and reduced ACE expression. Thus, ACE2 may be a novel therapeutic approach to prevent and treat doxorubicin-induced cardiomyopathy.
Collapse
|
159
|
Chemotherapeutic Drugs and Mitochondrial Dysfunction: Focus on Doxorubicin, Trastuzumab, and Sunitinib. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7582730. [PMID: 29743983 PMCID: PMC5878876 DOI: 10.1155/2018/7582730] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/23/2018] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
Abstract
Many cancer therapies produce toxic side effects whose molecular mechanisms await full elucidation. The most feared and studied side effect of chemotherapeutic drugs is cardiotoxicity. Also, skeletal muscle physiology impairment has been recorded after many chemotherapeutical treatments. However, only doxorubicin has been extensively studied for its side effects on skeletal muscle. Chemotherapeutic-induced adverse side effects are, in many cases, mediated by mitochondrial damage. In particular, trastuzumab and sunitinib toxicity is mainly associated with mitochondria impairment and is mostly reversible. Vice versa, doxorubicin-induced toxicity not only includes mitochondria damage but can also lead to a more robust and extensive cell injury which is often irreversible and lethal. Drugs interfering with mitochondrial functionality determine the depletion of ATP reservoirs and lead to subsequent reversible contractile dysfunction. Mitochondrial damage includes the impairment of the respiratory chain and the loss of mitochondrial membrane potential with subsequent disruption of cellular energetic. In a context of increased stress, AMPK has a key role in maintaining energy homeostasis, and inhibition of the AMPK pathway is one of the proposed mechanisms possibly mediating mitochondrial toxicity due to chemotherapeutics. Therapies targeting and protecting cell metabolism and energy management might be useful tools in protecting muscular tissues against the toxicity induced by chemotherapeutic drugs.
Collapse
|
160
|
Varricchi G, Ameri P, Cadeddu C, Ghigo A, Madonna R, Marone G, Mercurio V, Monte I, Novo G, Parrella P, Pirozzi F, Pecoraro A, Spallarossa P, Zito C, Mercuro G, Pagliaro P, Tocchetti CG. Antineoplastic Drug-Induced Cardiotoxicity: A Redox Perspective. Front Physiol 2018; 9:167. [PMID: 29563880 PMCID: PMC5846016 DOI: 10.3389/fphys.2018.00167] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/20/2018] [Indexed: 12/28/2022] Open
Abstract
Antineoplastic drugs can be associated with several side effects, including cardiovascular toxicity (CTX). Biochemical studies have identified multiple mechanisms of CTX. Chemoterapeutic agents can alter redox homeostasis by increasing the production of reactive oxygen species (ROS) and reactive nitrogen species RNS. Cellular sources of ROS/RNS are cardiomyocytes, endothelial cells, stromal and inflammatory cells in the heart. Mitochondria, peroxisomes and other subcellular components are central hubs that control redox homeostasis. Mitochondria are central targets for antineoplastic drug-induced CTX. Understanding the mechanisms of CTX is fundamental for effective cardioprotection, without compromising the efficacy of anticancer treatments. Type 1 CTX is associated with irreversible cardiac cell injury and is typically caused by anthracyclines and conventional chemotherapeutic agents. Type 2 CTX, associated with reversible myocardial dysfunction, is generally caused by biologicals and targeted drugs. Although oxidative/nitrosative reactions play a central role in CTX caused by different antineoplastic drugs, additional mechanisms involving directly and indirectly cardiomyocytes and inflammatory cells play a role in cardiovascular toxicities. Identification of cardiologic risk factors and an integrated approach using molecular, imaging, and clinical data may allow the selection of patients at risk of developing chemotherapy-related CTX. Although the last decade has witnessed intense research related to the molecular and biochemical mechanisms of CTX of antineoplastic drugs, experimental and clinical studies are urgently needed to balance safety and efficacy of novel cancer therapies.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
| | - Pietro Ameri
- Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Christian Cadeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Rosalinda Madonna
- Institute of Cardiology, Center of Excellence on Aging, Università degli Studi “G. d'Annunzio” Chieti – Pescara, Chieti, Italy
- Department of Internal Medicine, Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, University of Texas Health Science Center, Houston, TX, United States
| | - Giancarlo Marone
- Section of Hygiene, Department of Public Health, University of Naples Federico II, Naples, Italy
- Monaldi Hospital Pharmacy, Naples, Italy
| | - Valentina Mercurio
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Ines Monte
- Department of General Surgery and Medical-Surgery Specialities, University of Catania, Catania, Italy
| | - Giuseppina Novo
- U.O.C. Magnetic Resonance Imaging, Fondazione Toscana G. Monasterio C.N.R., Pisa, Italy
| | - Paolo Parrella
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Flora Pirozzi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Paolo Spallarossa
- Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Concetta Zito
- Division of Clinical and Experimental Cardiology, Department of Medicine and Pharmacology, Policlinico “G. Martino” University of Messina, Messina, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Carlo G. Tocchetti
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
161
|
Jirkovský E, Jirkovská A, Bureš J, Chládek J, Lenčová O, Stariat J, Pokorná Z, Karabanovich G, Roh J, Brázdová P, Šimůnek T, Kovaříková P, Štěrba M. Pharmacokinetics of the Cardioprotective Drug Dexrazoxane and Its Active Metabolite ADR-925 with Focus on Cardiomyocytes and the Heart. J Pharmacol Exp Ther 2018; 364:433-446. [PMID: 29273587 DOI: 10.1124/jpet.117.244848] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/19/2017] [Indexed: 11/22/2022] Open
Abstract
Dexrazoxane (DEX), the only cardioprotectant approved against anthracycline cardiotoxicity, has been traditionally deemed to be a prodrug of the iron-chelating metabolite ADR-925. However, pharmacokinetic profile of both agents, particularly with respect to the cells and tissues essential for its action (cardiomyocytes/myocardium), remains poorly understood. The aim of this study is to characterize the conversion and disposition of DEX to ADR-925 in vitro (primary cardiomyocytes) and in vivo (rabbits) under conditions where DEX is clearly cardioprotective against anthracycline cardiotoxicity. Our results show that DEX is hydrolyzed to ADR-925 in cell media independently of the presence of cardiomyocytes or their lysate. Furthermore, ADR-925 directly penetrates into the cells with contribution of active transport, and detectable concentrations occur earlier than after DEX incubation. In rabbits, ADR-925 was detected rapidly in plasma after DEX administration to form sustained concentrations thereafter. ADR-925 was not markedly retained in the myocardium, and its relative exposure was 5.7-fold lower than for DEX. Unlike liver tissue, myocardium homogenates did not accelerate the conversion of DEX to ADR-925 in vitro, suggesting that myocardial concentrations in vivo may originate from its distribution from the central compartment. The pharmacokinetic parameters for both DEX and ADR-925 were determined by both noncompartmental analyses and population pharmacokinetics (including joint parent-metabolite model). Importantly, all determined parameters were closer to human than to rodent data. The present results open venues for the direct assessment of the cardioprotective effects of ADR-925 in vitro and in vivo to establish whether DEX is a drug or prodrug.
Collapse
Affiliation(s)
- Eduard Jirkovský
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Anna Jirkovská
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jan Bureš
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jaroslav Chládek
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Olga Lenčová
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Ján Stariat
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Zuzana Pokorná
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Galina Karabanovich
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jaroslav Roh
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Petra Brázdová
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Tomáš Šimůnek
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Petra Kovaříková
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Martin Štěrba
- Department of Pharmacology, Faculty of Medicine in Hradec Králové (E.J., J.C., O.L., Z.P., P.B., M.Š.), and Departments of Biochemical Sciences (E.J., A.J., T.Š.), Pharmaceutical Chemistry and Pharmaceutical Analysis (J.B., J.S., P.K.), and Inorganic and Organic Chemistry (G.K., J.R.), Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
162
|
Riccio G, Antonucci S, Coppola C, D'Avino C, Piscopo G, Fiore D, Maurea C, Russo M, Rea D, Arra C, Condorelli G, Di Lisa F, Tocchetti CG, De Lorenzo C, Maurea N. Ranolazine Attenuates Trastuzumab-Induced Heart Dysfunction by Modulating ROS Production. Front Physiol 2018; 9:38. [PMID: 29467663 PMCID: PMC5808165 DOI: 10.3389/fphys.2018.00038] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022] Open
Abstract
The ErbB2 blocker trastuzumab improves survival in oncologic patients, but can cause cardiotoxicity. The late Na+ current inhibitor ranolazine has been shown to counter experimental HF, including doxorubicin cardiotoxicity (a condition characterized by derangements in redox balance), by lowering the levels of reactive oxygen species (ROS). Since ErbB2 can modulate ROS signaling, we tested whether trastuzumab cardiotoxicity could be blunted by ranolazine via redox-mediated mechanisms. Trastuzumab decreased fractional shortening and ejection fraction in mice, but ranolazine prevented heart dysfunction when co-administered with trastuzumab. Trastuzumab cardiotoxicity was accompanied by elevations in natriuretic peptides and matrix metalloproteinase 2 (MMP2) mRNAs, which were not elevated with co-treatment with ranolazine. Trastuzumab also increased cleavage of caspase-3, indicating activation of the proapoptotic machinery. Again, ranolazine prevented this activation. Interestingly, Neonatal Rat Ventricular Myocytes (NRVMs), labeled with MitoTracker Red and treated with trastuzumab, showed only a small increase in ROS compared to baseline conditions. We then stressed trastuzumab-treated cells with the beta-agonist isoproterenol to increase workload, and we observed a significant increase of probe fluorescence, compared with cells treated with isoproterenol alone, reflecting induction of oxidative stress. These effects were blunted by ranolazine, supporting a role for INa inhibition in the regulation of redox balance also in trastuzumab cardiotoxicity.
Collapse
Affiliation(s)
- Gennaro Riccio
- Department of Pharmacy, Federico II University, Naples, Italy
| | - Salvatore Antonucci
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy
| | - Carmela Coppola
- Division of Cardiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - Chiara D'Avino
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Giovanna Piscopo
- Division of Cardiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - Danilo Fiore
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Carlo Maurea
- Division of Cardiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - Michele Russo
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Domenica Rea
- Department of Animal Experimental Research, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - Claudio Arra
- Department of Animal Experimental Research, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Claudia De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, Federico II University, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Nicola Maurea
- Division of Cardiology, National Cancer Institute, G. Pascale Foundation, Naples, Italy
| |
Collapse
|
163
|
Li K, Zhang Y, Chen M, Hu Y, Jiang W, Zhou L, Li S, Xu M, Zhao Q, Wan R. Enhanced antitumor efficacy of doxorubicin-encapsulated halloysite nanotubes. Int J Nanomedicine 2017; 13:19-30. [PMID: 29296083 PMCID: PMC5741065 DOI: 10.2147/ijn.s143928] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To improve the antitumor efficacy of doxorubicin (DOX) and provide novel clinical treatment of gastric cancer, halloysite nanotubes (HNTs) loaded with DOX were encapsulated by soybean phospholipid (LIP) and the formed HNTs/DOX/LIP was systematically characterized via different techniques. The in vitro anticancer activity of HNTs/DOX/LIP was examined using an MTT assay. The antitumor efficacy and biocompatibility were monitored by measuring the tumor volume and assessing the blood routine and serum biochemistry using an ectopic implantation cancer model. The results show that when the concentration of HNTs was 3 mg/mL and the concentration of DOX was 1 mg/mL the optimal DOX loading efficiency was as high as 22.01%±0.43%. In vitro drug release behavior study demonstrated that HNTs/DOX/LIP shows a pH-responsive release property with fast drug release under acidic conditions (pH =5.4). MTT assays and in vivo experimental results revealed that HNTs/DOX/LIP exhibits a significantly higher inhibitory efficacy on the growth of mouse gastric cancer cells than free DOX at the same drug concentration. In addition, the life span of tumor-bearing mice in the HNTs/DOX/LIP-treated group was obviously prolonged compared with the control groups. Moreover, HNTs/DOX/LIP possessed excellent hemocompatibility as shown in the blood and histology studies. These findings indicated that the formed HNTs/DOX/LIP possesses higher antitumor efficacy and may be used as a targeted delivery nanoplatform for targeting therapy of different types of cancer cells.
Collapse
Affiliation(s)
- Kai Li
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yongxing Zhang
- Department of Orthopaedics, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Mengting Chen
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yangyang Hu
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Weiliang Jiang
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Li Zhou
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Sisi Li
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Min Xu
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qinghua Zhao
- Department of Orthopaedics, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Rong Wan
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
164
|
Tang F, Zhou X, Wang L, Shan L, Li C, Zhou H, Lee SMY, Hoi MPM. A novel compound DT-010 protects against doxorubicin-induced cardiotoxicity in zebrafish and H9c2 cells by inhibiting reactive oxygen species-mediated apoptotic and autophagic pathways. Eur J Pharmacol 2017; 820:86-96. [PMID: 29229534 DOI: 10.1016/j.ejphar.2017.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/03/2017] [Accepted: 12/08/2017] [Indexed: 01/25/2023]
Abstract
Doxorubicin (Dox) is an effective anti-cancer agent but limited by its cardiotoxicity, thus the search for pharmacological agents for enhancing anti-cancer activities and protecting against cardiotoxicity has been a subject of great interest. We have previously reported the synergistic anti-cancer effects of a novel compound DT-010. In the present study, we further investigated the cardioprotective effects of DT-010 in zebrafish embryos in vivo and the molecular underlying mechanisms in H9c2 cardiomyocytes in vitro. We showed that DT-010 prevented the Dox-induced morphological distortions in the zebrafish heart and the associated cardiac impairments, and especially improved ventricular functions. By using H9c2 cells model, we showed that DT-010 directly inhibited the generation of reactive oxygen species by Dox and protected cell death and cellular damage. We further observed that DT-010 protected against Dox-induced myocardiopathy via inhibiting downstream molecular pathways in response to oxidative stress, including reactive oxygen species-mediated MAPK signaling pathways ERK and JNK, and apoptotic pathways involving the activation of caspase 3, caspase 7, and PARP signaling. Recent studies also suggest the importance of alterations in cardiac autophagy in Dox cardiotoxicity. We further showed that DT-010 could inhibit the induction of autophagosomes formation by Dox via regulating the upstream Akt/AMPK/mTOR signaling. Since Dox-induced cardiotoxicity is multifactorial, our results suggest that multi-functional agent such as DT-010 might be an effective therapeutic agent for combating cardiotoxicity associated with chemotherapeutic agents such as Dox.
Collapse
Key Words
- Anti-apoptosis
- Anti-oxidative stress
- Autophagy regulation
- Cardioprotection
- DT-010, 4-(3,5,6-trimethylpyrazin-2-yl) hepta-1,6-dien-4-yl (R)-3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate
- Danshensu (PubChem CID: 11600642),(R)-3-(3,4-Dihydroxyphenyl)-2-hydroxypropanoic acid
- Doxorubicin (PubChem CID: 443939),(7S,9S)-7-[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl] oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione
- H9c2 cardiomyocytes
- Tetramethylpyrazine (PubChem CID: 14296),2,3,5,6-tetramethylpyrazine
- Zebrafish cardiotoxicity
Collapse
Affiliation(s)
- Fan Tang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Xinhua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Liang Wang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Luchen Shan
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chuwen Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Hefeng Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau.
| | - Maggie Pui-Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
165
|
McLaughlin D, Zhao Y, O'Neill KM, Edgar KS, Dunne PD, Kearney AM, Grieve DJ, McDermott BJ. Signalling mechanisms underlying doxorubicin and Nox2 NADPH oxidase-induced cardiomyopathy: involvement of mitofusin-2. Br J Pharmacol 2017; 174:3677-3695. [PMID: 28261787 PMCID: PMC5647180 DOI: 10.1111/bph.13773] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The anthracycline doxorubicin (DOX), although successful as a first-line cancer treatment, induces cardiotoxicity linked with increased production of myocardial ROS, with Nox2 NADPH oxidase-derived superoxide reported to play a key role. The aim of this study was to identify novel mechanisms underlying development of cardiac remodelling/dysfunction further to DOX-stimulated Nox2 activation. EXPERIMENTAL APPROACH Nox2-/- and wild-type (WT) littermate mice were administered DOX (12 mg·kg-1 over 3 weeks) prior to study at 4 weeks. Detailed mechanisms were investigated in murine HL-1 cardiomyocytes, employing a robust model of oxidative stress, gene silencing and pharmacological tools. KEY RESULTS DOX-induced cardiac dysfunction, cardiomyocyte remodelling, superoxide production and apoptosis in WT mice were attenuated in Nox2-/- mice. Transcriptional analysis of left ventricular tissue identified 152 differentially regulated genes (using adjusted P < 0.1) in DOX-treated Nox2-/- versus WT mice, and network analysis highlighted 'Cell death and survival' as the biological function most significant to the dataset. The mitochondrial membrane protein, mitofusin-2 (Mfn2), appeared as a strong candidate, with increased expression (1.5-fold), confirmed by qPCR (1.3-fold), matching clear published evidence of promotion of cardiomyocyte cell death. In HL-1 cardiomyocytes, targeted siRNA knockdown of Nox2 decreased Mfn2 protein expression, but not vice versa. While inhibition of Nox2 activity along with DOX treatment attenuated its apoptotic and cytotoxic effects, reduced apoptosis after Mfn2 silencing reflected a sustained cytotoxic response and reduced cell viability. CONCLUSIONS AND IMPLICATIONS DOX-induced and Nox2-mediated up-regulation of Mfn2, rather than contributing to cardiomyocyte dysfunction through apoptotic pathways, appears to promote a protective mechanism. LINKED ARTICLES This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.
Collapse
Affiliation(s)
- Declan McLaughlin
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Youyou Zhao
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Karla M O'Neill
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Kevin S Edgar
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Philip D Dunne
- Centre for Cancer Research and Cell BiologyQueen's University BelfastBelfastUK
| | - Anna M Kearney
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - David J Grieve
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Barbara J McDermott
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| |
Collapse
|
166
|
All-trans-retinoic acid ameliorates doxorubicin-induced cardiotoxicity: in vivo potential involvement of oxidative stress, inflammation, and apoptosis via caspase-3 and p53 down-expression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 391:59-70. [DOI: 10.1007/s00210-017-1437-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022]
|
167
|
Cappetta D, De Angelis A, Sapio L, Prezioso L, Illiano M, Quaini F, Rossi F, Berrino L, Naviglio S, Urbanek K. Oxidative Stress and Cellular Response to Doxorubicin: A Common Factor in the Complex Milieu of Anthracycline Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1521020. [PMID: 29181122 PMCID: PMC5664340 DOI: 10.1155/2017/1521020] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
The production of reactive species is a core of the redox cycling profile of anthracyclines. However, these molecular characteristics can be viewed as a double-edged sword acting not only on neoplastic cells but also on multiple cellular targets throughout the body. This phenomenon translates into anthracycline cardiotoxicity that is a serious problem in the growing population of paediatric and adult cancer survivors. Therefore, better understanding of cellular processes that operate within but also go beyond cardiomyocytes is a necessary step to develop more effective tools for the prevention and treatment of progressive and often severe cardiomyopathy experienced by otherwise successfully treated oncologic patients. In this review, we focus on oxidative stress-triggered cellular events such as DNA damage, senescence, and cell death implicated in anthracycline cardiovascular toxicity. The involvement of progenitor cells of cardiac and extracardiac origin as well as different cardiac cell types is discussed, pointing to molecular signals that impact on cell longevity and functional competence.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luigi Sapio
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Lucia Prezioso
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Michela Illiano
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Silvio Naviglio
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
168
|
Bures J, Jirkovska A, Sestak V, Jansova H, Karabanovich G, Roh J, Sterba M, Simunek T, Kovarikova P. Investigation of novel dexrazoxane analogue JR-311 shows significant cardioprotective effects through topoisomerase IIbeta but not its iron chelating metabolite. Toxicology 2017; 392:1-10. [PMID: 28941780 DOI: 10.1016/j.tox.2017.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/10/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022]
Abstract
Novel dexrazoxane derivative JR-311 was prepared to investigate structure-activity relationships and mechanism(s) of protection against anthracycline cardiotoxicity. Its cardioprotective, antiproliferative, iron (Fe) chelation and inhibitory and/or depletory activities on topoisomerase IIbeta (TOP2B) were examined and compared with dexrazoxane. While in standard assay, JR-311 failed in both cardioprotection and depletion of TOP2B, its repeated administration to cell culture media led to depletion of TOP2B and significant protection of isolated rat neonatal ventricular cardiomyocytes from daunorubicin-induced damage. This effect was explained by a focused analytical investigation that revealed rapid JR-311 decomposition, resulting in negligible intracellular concentrations of the parent compound but high exposure of cells to the decomposition products, including Fe-chelating JR-H2. Although chemical instability is an obstacle for the development of JR-311, this study identified a novel dexrazoxane analogue with preserved pharmacodynamic properties, contributed to the investigation of structure-activity relationships and suggested that the cardioprotection of bis-dioxopiperazines is likely attributed to TOP2B activity of the parent compound rather than Fe chelation of their hydrolytic metabolites/degradation products. Moreover, this study highlights the importance of early stability testing during future development of novel dexrazoxane analogues.
Collapse
Affiliation(s)
- Jan Bures
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Anna Jirkovska
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Vit Sestak
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Hana Jansova
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Galina Karabanovich
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jaroslav Roh
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Martin Sterba
- Faculty of Medicine in Hradec Králové, Charles University, Šimkova 850, 500 03 Hradec Králové, Czech Republic
| | - Tomas Simunek
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Petra Kovarikova
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
169
|
Altered mitochondrial epigenetics associated with subchronic doxorubicin cardiotoxicity. Toxicology 2017; 390:63-73. [PMID: 28865727 DOI: 10.1016/j.tox.2017.08.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 12/25/2022]
Abstract
Doxorubicin (DOX), a potent and broad-spectrum antineoplastic agent, causes an irreversible, cumulative and dose-dependent cardiomyopathy that ultimately leads to congestive heart failure. The mechanisms responsible for DOX cardiotoxicity remain poorly understood, but seem to involve mitochondrial dysfunction on several levels. Epigenetics may explain a portion of this effect. Since mitochondrial dysfunction may affect the epigenetic landscape, we hypothesize that this cardiac toxicity may result from epigenetic changes related to disruption of mitochondrial function. To test this hypothesis, eight-week-old male Wistar rats (n=6/group) were administered 7 weekly injections with DOX (2mgkg-1) or saline, and sacrificed two weeks after the last injection. We assessed gene expression patterns by qPCR, global DNA methylation by ELISA, and proteome lysine acetylation status by Western blot in cardiac tissue from saline and DOX-treated rats. We show for the first time that DOX treatment decreases global DNA methylation in heart but not in liver. These differences were accompanied by alterations in mRNA expression of multiple functional gene groups. DOX disrupted cardiac mitochondrial biogenesis, as demonstrated by decreased mtDNA levels and altered transcript levels for multiple mitochondrial genes encoded by both nuclear and mitochondrial genomes. Transcription of genes involved in lipid metabolism and epigenetic modulation were also affected. Western blotting analyses indicated a differential protein acetylation pattern in cardiac mitochondrial fractions of DOX-treated rats compared to controls. Additionally, DOX treatment increased the activity of histone deacetylases. These results suggest an interplay between mitochondrial dysfunction and epigenetic alterations, which may be a primary determinant of DOX-induced cardiotoxicity.
Collapse
|
170
|
Cardioprotective effects of fibroblast growth factor 21 against doxorubicin-induced toxicity via the SIRT1/LKB1/AMPK pathway. Cell Death Dis 2017; 8:e3018. [PMID: 28837153 PMCID: PMC5596591 DOI: 10.1038/cddis.2017.410] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
Doxorubicin (DOX) is a highly effective antineoplastic anthracycline drug; however, the adverse effect of the cardiotoxicity has limited its widespread application. Fibroblast growth factor 21 (FGF21), as a well-known regulator of glucose and lipid metabolism, was recently shown to exert cardioprotective effects. The aim of this study was to investigate the possible protective effects of FGF21 against DOX-induced cardiomyopathy. We preliminarily established DOX-induced cardiotoxicity models in H9c2 cells, adult mouse cardiomyocytes, and 129S1/SyImJ mice, which clearly showed cardiac dysfunction and myocardial collagen accumulation accompanying by inflammatory, oxidative stress, and apoptotic damage. Treatment with FGF21 obviously attenuated the DOX-induced cardiac dysfunction and pathological changes. Its effective anti-inflammatory activity was revealed by downregulation of inflammatory factors (tumor necrosis factor-α and interleukin-6) via the IKK/IκBα/nuclear factor-κB pathway. The anti-oxidative stress activity of FGF21 was achieved via reduced generation of reactive oxygen species through regulation of nuclear transcription factor erythroid 2-related factor 2 transcription. Its anti-apoptotic activity was shown by reductions in the number of TUNEL-positive cells and DNA fragments along with a decreased ratio of Bax/Bcl-2 expression. In a further mechanistic study, FGF21 enhanced sirtuin 1 (SIRT1) binding to liver kinase B1 (LKB1) and then decreased LKB1 acetylation, subsequently inducing AMP-activated protein kinase (AMPK) activation, which improved the cardiac inflammation, oxidative stress, and apoptosis. These alterations were significantly prohibited by SIRT1 RNAi. The present work demonstrates for the first time that FGF21 obviously prevented DOX-induced cardiotoxicity via the suppression of oxidative stress, inflammation, and apoptosis through the SIRT1/LKB1/AMPK signaling pathway.
Collapse
|
171
|
Shoukry HS, Ammar HI, Rashed LA, Zikri MB, Shamaa AA, Abou elfadl SG, Rub EAA, Saravanan S, Dhingra S. Prophylactic supplementation of resveratrol is more effective than its therapeutic use against doxorubicin induced cardiotoxicity. PLoS One 2017; 12:e0181535. [PMID: 28727797 PMCID: PMC5519168 DOI: 10.1371/journal.pone.0181535] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 07/03/2017] [Indexed: 02/03/2023] Open
Abstract
Resveratrol (RSV), a polyphenolic compound and naturally occurring phytoalexin, has been reported to exert cardio-protective effects in several animal studies. However, the outcome of initial clinical trials with RSV was less effective compared to pre-clinical studies. Therefore, RSV treatment protocols need to be optimized. In this study we evaluated prophylactic versus therapeutic effect of resveratrol (RSV) in mitigating doxorubicin (Dox)-induced cardiac toxicity in rats. To investigate prophylactic effects, RSV was supplemented for 2 weeks along with Dox administration. After 2 weeks, Dox treatment was stopped and RSV was continued for another 4 weeks. To study therapeutic effects, RSV treatment was initiated after 2 weeks of Dox administration and continued for 4 weeks. Both prophylactic and therapeutic use of RSV mitigated Dox induced deterioration of cardiac function as assessed by echocardiography. Also RSV treatment (prophylactic and therapeutic) prevented Dox induced myocardial damage as measured by cardiac enzymes (LDH and CK-MB) in serum. Which was associated with decrease in Dox induced myocardial apoptosis and fibrosis. Interestingly our study also reveals that prophylactic use of RSV was more effective than its therapeutic use in mitigating Dox induced apoptosis and fibrosis in the myocardium. Therefore, prophylactic use of resveratrol may be projected as a possible future adjuvant therapy to minimize cardiotoxic side effects of doxorubicin in cancer patients.
Collapse
Affiliation(s)
- Heba Samy Shoukry
- Department of Physiology, Biochemistry and Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hania Ibrahim Ammar
- Department of Physiology, Biochemistry and Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
- * E-mail: (SD); (HIA)
| | - Laila Ahmed Rashed
- Department of Physiology, Biochemistry and Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha Balegh Zikri
- Department of Physiology, Biochemistry and Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ashraf Ali Shamaa
- Department of Surgery, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sahar Gamal Abou elfadl
- Department of Physiology, Biochemistry and Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ejlal Abu-Al Rub
- St. Boniface Hospital Research Centre, Department of Physiology, University of Manitoba, Winnipeg, Canada
| | - Sekaran Saravanan
- St. Boniface Hospital Research Centre, Department of Physiology, University of Manitoba, Winnipeg, Canada
| | - Sanjiv Dhingra
- St. Boniface Hospital Research Centre, Department of Physiology, University of Manitoba, Winnipeg, Canada
- * E-mail: (SD); (HIA)
| |
Collapse
|
172
|
Lee YS, Choi YJ, Lee J, Shim DM, Park WY, Seo SW. TP53 alteration determines the combinational cytotoxic effect of doxorubicin and an antioxidant NAC. Tumour Biol 2017; 39:1010428317700159. [PMID: 28653879 DOI: 10.1177/1010428317700159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The anticancer effect of doxorubicin is closely related to the generation of reactive oxygen species. On the contrary, doxorubicin-induced reactive oxygen species induces heart failure, a critical side effect of doxorubicin. Antioxidant supplementation has been proposed to reduce the side effects. However, the use of antioxidants may hamper the anticancer effect of doxorubicin. In this study, doxorubicin-induced reactive oxygen species was shown to differentially affect cancer cells based on their TP53 genetic status; doxorubicin-induced apoptosis was attenuated by an antioxidant, N-acetylcysteine, in TP53 wild cells; however, N-acetylcysteine caused a synergistic increase in the apoptosis rate in TP53-altered cells. N-acetylcysteine prevented phosphorylation of P53 protein that had been induced by doxorubicin. However, N-acetylcysteine increased the cleavage of poly (ADP-ribose) polymerase in the presence of doxorubicin. Synergy score of 26 patient-derived cells were evaluated after the combination treatment of doxorubicin and N-acetylcysteine. The synergy score was significantly higher in TP53-altered group compared with those in TP53 wild group. In conclusion, TP53 genetic alteration is a critical factor that determines the use of antioxidant supplements during doxorubicin treatment.
Collapse
Affiliation(s)
- Yun Sun Lee
- 1 Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Joon Choi
- 1 Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - JeeYun Lee
- 2 Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Da Mi Shim
- 1 Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong-Yang Park
- 3 Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sung Wook Seo
- 1 Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
173
|
Diagnóstico y prevención de la cardiotoxicidad inducida por fármacos antineoplásicos: de la imagen a las tecnologías «ómicas». Rev Esp Cardiol 2017. [DOI: 10.1016/j.recesp.2016.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
174
|
Comparision of doxorubicin-induced cardiotoxicity in the ICR mice of different sources. Lab Anim Res 2017; 33:165-170. [PMID: 28747983 PMCID: PMC5527143 DOI: 10.5625/lar.2017.33.2.165] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 01/05/2023] Open
Abstract
Doxorubicin is a widely used chemotherapeutic agents and is now part of standard therapeutic regimens for a variety of cancers (eg, hematopoietic malignancies and advanced solid tumors of the breast, ovary, thyroid, and bone). However, a potentially lethal and dose-dependent cardiotoxicity that appears within a short time after treatment limits the usage of doxorubicin in cancer patients. Although the mechanism of doxorubicin-induced cardiotoxicity is not completely understood, it is thought that free radical-induced oxidative stress and excessive production of reactive oxygen species are primary drivers of its toxicity. In this study, we compared the doxorubicin-induced cardiotoxicity of ICR mice obtained from three different sources and evaluated the utility of Korl:ICR stock established by the Korean FDA. Because doxorubicin-induced cardiotoxicity is thought to involve the excessive generation of ROS followed by oxidative stress, we determined the representative tissue index of oxidation, lipid peroxidation, and antioxidant, glutathione (GSH), as well as the parameters of heart injury. Doxorubicin treatment successfully induced cardiotoxicity as evidenced by histological examination and serum parameters (eg, levels of LDH and CK activities) in ICR mice. It was accompanied by increased lipid peroxidation and a decrease in both cysteine and GSH, further supporting previous reports that oxidative stress is a potential mechanism of doxorubicin-induced cardiotoxicity. Of interest, we did not observe a significant difference in doxorubicin-induced cardiotoxicity among mice of different origins. Collectively, our results suggest that Korl:ICR strain may be useful in the research of doxorubicin-induced cardiotoxicity.
Collapse
|
175
|
Yang Y, Lu X, Liu Q, Dai Y, Zhu X, Wen Y, Xu J, Lu Y, Zhao D, Chen X, Li N. Palmitoyl ascorbate and doxorubicin co-encapsulated liposome for synergistic anticancer therapy. Eur J Pharm Sci 2017; 105:219-229. [PMID: 28526602 DOI: 10.1016/j.ejps.2017.05.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/22/2017] [Accepted: 05/16/2017] [Indexed: 01/12/2023]
Abstract
Combination therapy with two drugs and nanoparticle-based drug delivery systems are widely applied to reduce the adverse effects of traditional treatment by chemotherapeutic drugs. Palmitoyl ascorbate (PA) as a lipophilic derivative of ascorbic acid shows the advantages in cancer treatment. The aim of the study was to prepare a doxorubicin (DOX) and PA co-loaded liposome to synergistically treat tumor and effectively alleviate the toxicity caused by DOX. The effects were evaluated by in vitro and in vivo studies. The liposomes (weight ratio of DOX to PA=1:20, DOX1/PA20-LPs) exhibited the strongest synergistic effects, combination index was 0.38, 0.56, and 0.05 in MCF-7, HepG2, and A549 cells, respectively. In vitro cellular uptake study, the intercellular concentration of DOX in DOX1/PA20-LPs was 2.5-fold greater than DOX loaded liposome, and DOX1/PA20-LPs was taken in not only by macropinocytosis, but also by clathrin-mediated endocytosis. Intracellular distribution experiment showed that DOX1/PA20-LPs efficiently concentrated in the nucleus. In vivo studies indicated that co-encapsulated liposome not only showed the strongest antitumor ability by tumor growth suppression, but also significantly enhanced the safety by the change of body weight and reduced damages to other tissues (evidenced by histopathology study). These results indicated that DOX and PA co-delivery liposome successfully enhanced the anticancer efficacy and mitigated the toxicities of DOX, which displayed potential for clinical application with enhanced safety and efficacy.
Collapse
Affiliation(s)
- Yue Yang
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Xiaoyu Lu
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Qi Liu
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Yu Dai
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Xiaojie Zhu
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Yanli Wen
- Department of Pharmacy, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Jiaqiu Xu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, China
| | - Yang Lu
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China.
| | - Ning Li
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, China.
| |
Collapse
|
176
|
Cappetta D, Esposito G, Coppini R, Piegari E, Russo R, Ciuffreda LP, Rivellino A, Santini L, Rafaniello C, Scavone C, Rossi F, Berrino L, Urbanek K, De Angelis A. Effects of ranolazine in a model of doxorubicin-induced left ventricle diastolic dysfunction. Br J Pharmacol 2017; 174:3696-3712. [PMID: 28320043 DOI: 10.1111/bph.13791] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Doxorubicin is a highly effective anticancer drug, but its clinical application is hampered by cardiotoxicity. Asymptomatic diastolic dysfunction can be the earliest manifestation of doxorubicin cardiotoxicity. Therefore, a search for therapeutic intervention that can interfere with early manifestations and possibly prevent later development of cardiotoxicity is warranted. Increased doxorubicin-dependent ROS may explain, in part, Ca2+ and Na+ overload that contributes to diastolic dysfunction and development of heart failure. Therefore, we tested whether the administration of ranolazine, a selective blocker of late Na+ current, immediately after completing doxorubicin therapy, could affect diastolic dysfunction and interfere with the progression of functional decline. EXPERIMENTAL APPROACH Fischer 344 rats received a cumulative dose of doxorubicin of 15 mg·kg-1 over a period of 2 weeks. After the assessment of diastolic dysfunction, the animals were treated with ranolazine (80 mg·kg-1 , daily) for the following 4 weeks. KEY RESULTS While diastolic and systolic function progressively deteriorated in doxorubicin-treated animals, treatment with ranolazine relieved diastolic dysfunction and prevented worsening of systolic function, decreasing mortality. Ranolazine lowered myocardial NADPH oxidase 2 expression and oxidative/nitrative stress. Expression of the Na+ /Ca2+ exchanger 1 and Nav 1.5 channels was reduced and of the sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase 2 protein was increased. In addition, ranolazine lowered doxorubicin-induced hyper-phosphorylation and oxidation of Ca2+ /calmodulin-dependent protein kinase II, and decreased myocardial fibrosis. CONCLUSIONS AND IMPLICATIONS Ranolazine, by the increased Na+ influx, induced by doxorubicin, altered cardiac Ca2+ and Na+ handling and attenuated diastolic dysfunction induced by doxorubicin, thus preventing the progression of cardiomyopathy. LINKED ARTICLES This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Grazia Esposito
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Raffaele Coppini
- Department of Neuroscience, Drug Research and Child's Health (NeuroFarBa), Division of Pharmacology, University of Florence, Florence, Italy
| | - Elena Piegari
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa Russo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Loreta Pia Ciuffreda
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessia Rivellino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lorenzo Santini
- Department of Neuroscience, Drug Research and Child's Health (NeuroFarBa), Division of Pharmacology, University of Florence, Florence, Italy
| | - Concetta Rafaniello
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Cristina Scavone
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Konrad Urbanek
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
177
|
Al-Mahayri ZN, Patrinos GP, Ali BR. Pharmacogenomics in pediatric acute lymphoblastic leukemia: promises and limitations. Pharmacogenomics 2017; 18:687-699. [PMID: 28468529 DOI: 10.2217/pgs-2017-0005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/17/2017] [Indexed: 02/07/2023] Open
Abstract
Despite the significant advances achieved in pediatric acute lymphocytic leukemia (ALL) treatment, adverse side effects of drugs remain a challenging issue. Numerous ALL pharmacogenomic studies have been conducted to elucidate the predisposing genetic factors for their development. Plausible pharmacogenomic data are available for the osteonecrosis associated with glucocorticoids, the neurotoxicity associated with vincristine and the cardiotoxicity related to anthracyclines. However, these data have not been fully translated into the clinic due to several limitations, most importantly the lack of reliable evidence. The most robust pharmacogenomics data are those for thiopurines and methotrexate use, with evidence-based preemptive testing recommendations for the former. Pharmacogenomics has a significant potential utility in pediatric ALL treatment regimens. In this review, gaps and limitations in this field are emphasized, which may provide a useful guide for future research design.
Collapse
Affiliation(s)
- Zeina N Al-Mahayri
- Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, United Arab Emirates
| | - George P Patrinos
- Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, United Arab Emirates
- Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, Patras, Greece
| | - Bassam R Ali
- Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, United Arab Emirates
| |
Collapse
|
178
|
Louisse J, Wüst RCI, Pistollato F, Palosaari T, Barilari M, Macko P, Bremer S, Prieto P. Assessment of acute and chronic toxicity of doxorubicin in human induced pluripotent stem cell-derived cardiomyocytes. Toxicol In Vitro 2017; 42:182-190. [PMID: 28456566 DOI: 10.1016/j.tiv.2017.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 11/29/2022]
Abstract
The present study assesses acute and chronic toxicity of doxorubicin in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), with the aim to obtain in vitro biomarkers that can be used as readouts to predict in vivo cardiotoxicity. Possible acute toxicity was investigated by assessing effects on the beating rate and the field potential duration (FPD) of doxorubicin-exposed cardiomyocytes by measuring electrical activity using multi-electrode array (MEA) analyses. No effects on the beating rate and FPD were found at concentrations up to 6μM, whereas at 12μM no electrical activity was recorded, indicating that the cardiomyocytes stopped beating. Acute and chronic effects of doxorubicin on mitochondria, which have been reported to be affected in doxorubicin-induced cardiotoxicity, were assessed using high content imaging techniques. To this end hiPSC-CMs were exposed to 150 or 300nM doxorubicin using both single dosing (3h and 2days) and repetitive dosing (3 times, of 2days each), including washout studies to assess delayed effects (assessment at day 14) and effects on cell number, mitochondrial density, mitochondrial membrane potential, mitochondrial superoxide levels and mitochondrial calcium levels were assessed. No effects of doxorubicin were found on mitochondrial density and mitochondrial superoxide levels, whereas doxorubicin reduced cell survival and slightly altered mitochondrial membrane potential and mitochondrial calcium levels, which was most profound in the washout studies. Altogether, the results of the present study show that concentrations of doxorubicin in the micromolar range were required to affect electrical activity of hiPSC-CMs, whereas nanomolar concentrations already affected cell viability and caused mitochondrial disturbances. Integration of these data with other in vitro data may enable the selection of a series of in vitro biomarkers that can be used as readouts to screen chemicals for possible cardiotoxicity.
Collapse
Affiliation(s)
- Jochem Louisse
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Rob C I Wüst
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Francesca Pistollato
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| | - Taina Palosaari
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| | - Manuela Barilari
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| | - Peter Macko
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| | - Susanne Bremer
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| | - Pilar Prieto
- Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| |
Collapse
|
179
|
Downregulation of myogenic microRNAs in sub-chronic but not in sub-acute model of daunorubicin-induced cardiomyopathy. Mol Cell Biochem 2017; 432:79-89. [DOI: 10.1007/s11010-017-2999-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/04/2017] [Indexed: 12/21/2022]
|
180
|
Jacevic V, Djordjevic A, Srdjenovic B, Milic-Tores V, Segrt Z, Dragojevic-Simic V, Kuca K. Fullerenol nanoparticles prevents doxorubicin-induced acute hepatotoxicity in rats. Exp Mol Pathol 2017; 102:360-369. [PMID: 28315688 DOI: 10.1016/j.yexmp.2017.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/14/2017] [Accepted: 03/14/2017] [Indexed: 01/16/2023]
Abstract
Doxorubicin (DOX), commonly used antineoplastic agent, affects bone marrow, intestinal tract and heart, but it also has some hepatotoxic effects. Main mechanism of its toxicity is the production of free reactive oxygen species. Polyhidroxilated C60 fullerene derivatives, fullerenol nanoparticles (FNP), act as free radical scavengers in in vitro systems. The aim of the study was to investigate potential FNP protective role against DOX-induced hepatotoxicity in rats. Experiments were performed on adult male Wistar rats. Animals were divided into five groups: (1) 0.9% NaCl (control), (2) 100mg/kg ip FNP, (3) 10mg/kg DOX iv, (4) 50mg/kg ip FNP 30min before 10mg/kg iv DOX, (5) 100mg/kg ip FNP 30min before 10mg/kg iv DOX. A general health condition, body and liver weight, TBARS level and antioxidative enzyme activity, as well as pathohistological examination of the liver tissue were conducted on days 2 and 14 of the study. FNP, applied alone, did not alter any examinated parameters. However, when used as a pretreatment it significantly increased survival rate, body and liver weight, and decreased TBARS level, antioxidative enzyme activity and hepatic damage score in DOX-treated rats. FNP administered at a dose of 100mg/kg significantly attenuated effects of doxorubicin administered in a single high dose in rats, concerning general condition, body and liver weight, lipid peroxidation level and antioxidative enzyme activity as well as structural alterations of the hepatic tissue.
Collapse
Affiliation(s)
- Vesna Jacevic
- Department of Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Aleksandar Djordjevic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Science, University of Novi Sad, Novi Sad, Serbia
| | - Branislava Srdjenovic
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Vukosava Milic-Tores
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia; Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Zoran Segrt
- Department for Treatment, Military Medical Academy, Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Viktorija Dragojevic-Simic
- Centre for Clinical Pharmacology, Military Medical Academy, Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Kamil Kuca
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
181
|
Madonna R. Early Diagnosis and Prediction of Anticancer Drug-induced Cardiotoxicity: From Cardiac Imaging to "Omics" Technologies. ACTA ACUST UNITED AC 2017; 70:576-582. [PMID: 28246019 DOI: 10.1016/j.rec.2017.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
Abstract
Heart failure due to antineoplastic therapy remains a major cause of morbidity and mortality in oncological patients. These patients often have no prior manifestation of disease. There is therefore a need for accurate identification of individuals at risk of such events before the appearance of clinical manifestations. The present article aims to provide an overview of cardiac imaging as well as new "-omics" technologies, especially with regard to genomics and proteomics as promising tools for the early detection and prediction of cardiotoxicity and individual responses to antineoplastic drugs.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Center for Aging Sciences and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University, Chieti, Italy; The Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, United States.
| |
Collapse
|
182
|
Statins in anthracycline-induced cardiotoxicity: Rac and Rho, and the heartbreakers. Cell Death Dis 2017; 8:e2564. [PMID: 28102848 PMCID: PMC5386353 DOI: 10.1038/cddis.2016.418] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/02/2016] [Indexed: 01/06/2023]
Abstract
Cancer patients receiving anthracycline-based chemotherapy are at risk to develop life-threatening chronic cardiotoxicity with the pathophysiological mechanism of action not fully understood. Besides the most common hypothesis that anthracycline-induced congestive heart failure (CHF) is mainly caused by generation of reactive oxygen species, recent data point to a critical role of topoisomerase II beta (TOP2B), which is a primary target of anthracycline poisoning, in the pathophysiology of CHF. As the use of the only clinically approved cardioprotectant dexrazoxane has been limited by the FDA in 2011, there is an urgent need for alternative cardioprotective measures. Statins are anti-inflammatory and anti-oxidative drugs that are clinically well established for the prevention of cardiovascular diseases. They exhibit pleiotropic beneficial properties beyond cholesterol-lowering effects that most likely rest on the indirect inhibition of small Ras homologous (Rho) GTPases. The Rho GTPase Rac1 has been shown to be a major factor in the regulation of the pro-oxidative NADPH oxidase as well as in the regulation of type II topoisomerase. Both are discussed to play an important role in the pathophysiology of anthracycline-induced CHF. Therefore, off-label use of statins or novel Rac1 inhibitors might represent a promising pharmacological approach to gain control over chronic cardiotoxicity by interfering with key mechanisms of anthracycline-induced cardiomyocyte cell death.
Collapse
|
183
|
Are cardioprotective effects of NO-releasing drug molsidomine translatable to chronic anthracycline cardiotoxicity settings? Toxicology 2016; 372:52-63. [DOI: 10.1016/j.tox.2016.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 01/27/2023]
|
184
|
de Oliveira BL, Niederer S. A Biophysical Systems Approach to Identifying the Pathways of Acute and Chronic Doxorubicin Mitochondrial Cardiotoxicity. PLoS Comput Biol 2016; 12:e1005214. [PMID: 27870850 PMCID: PMC5117565 DOI: 10.1371/journal.pcbi.1005214] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/20/2016] [Indexed: 11/23/2022] Open
Abstract
The clinical use of the anthracycline doxorubicin is limited by its cardiotoxicity which is associated with mitochondrial dysfunction. Redox cycling, mitochondrial DNA damage and electron transport chain inhibition have been identified as potential mechanisms of toxicity. However, the relative roles of each of these proposed mechanisms are still not fully understood. The purpose of this study is to identify which of these pathways independently or in combination are responsible for doxorubicin toxicity. A state of the art mathematical model of the mitochondria including the citric acid cycle, electron transport chain and ROS production and scavenging systems was extended by incorporating a novel representation for mitochondrial DNA damage and repair. In silico experiments were performed to quantify the contributions of each of the toxicity mechanisms to mitochondrial dysfunction during the acute and chronic stages of toxicity. Simulations predict that redox cycling has a minor role in doxorubicin cardiotoxicity. Electron transport chain inhibition is the main pathway for acute toxicity for supratherapeutic doses, being lethal at mitochondrial concentrations higher than 200μM. Direct mitochondrial DNA damage is the principal pathway of chronic cardiotoxicity for therapeutic doses, leading to a progressive and irreversible long term mitochondrial dysfunction.
Collapse
Affiliation(s)
- Bernardo L. de Oliveira
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
| | - Steven Niederer
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom
| |
Collapse
|
185
|
Ivanova D, Zhelev Z, Aoki I, Bakalova R, Higashi T. Overproduction of reactive oxygen species - obligatory or not for induction of apoptosis by anticancer drugs. Chin J Cancer Res 2016; 28:383-96. [PMID: 27647966 PMCID: PMC5018533 DOI: 10.21147/j.issn.1000-9604.2016.04.01] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Many studies demonstrate that conventional anticancer drugs elevate intracellular level of reactive oxygen species (ROS) and alter redox-homeostasis of cancer cells. It is widely accepted that anticancer effect of these chemotherapeutics is due to induction of oxidative stress and ROS-mediated apoptosis in cancer. On the other hand, the harmful side effects of conventional anticancer chemotherapy are also due to increased production of ROS and disruption of redox-homeostasis of normal cells and tissues. This article describes the mechanisms for triggering and modulation of apoptosis through ROS-dependent and ROS-independent pathways. We try to answer the question: "Is it possible to induce highly specific apoptosis only in cancer cells, without overproduction of ROS, as well as without harmful effects on normal cells and tissues?" The review also suggests a new therapeutic strategy for selective killing of cancer cells, without significant impact on viability of normal cells and tissues, by combining anticancer drugs with redox-modulators, affecting specific signaling pathways and avoiding oxidative stress.
Collapse
Affiliation(s)
- Donika Ivanova
- Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria
| | - Zhivko Zhelev
- Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria; Institute of Biophysics & Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Rumiana Bakalova
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; Medical Faculty, Sofia University, Sofia 1407, Bulgaria
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
186
|
Tycova A, Vido M, Kovarikova P, Foret F. Interface-free capillary electrophoresis-mass spectrometry system with nanospray ionization—Analysis of dexrazoxane in blood plasma. J Chromatogr A 2016; 1466:173-9. [DOI: 10.1016/j.chroma.2016.08.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 01/02/2023]
|
187
|
Moriyama T, Kemi M, Horie T. Elevated cardiac 3-deoxyglucosone, a highly reactive intermediate in glycation reaction, in doxorubicin-induced cardiotoxicity in rats. ACTA ACUST UNITED AC 2016; 23:237-42. [PMID: 27514460 DOI: 10.1016/j.pathophys.2016.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 07/19/2016] [Accepted: 08/03/2016] [Indexed: 01/08/2023]
Abstract
3-Deoxyglucosone (3-DG) is a highly reactive carbonyl intermediate in glycation reaction (also known as Maillard reaction) and plays an important role in diabetic complications. We investigated the potential involvement of 3-DG in doxorubicin (DXR)-induced cardiotoxicity. Male Crl:CD(SD) rats received intravenous injections of DXR at 2mg/kg, once weekly, for 6 weeks, with/without daily intraperitoneal treatment with 3-DG scavenging agents, i.e., aminoguanidine (AG, 25mg/kg/day) and pyridoxamine (PM, 60mg/kg/day). Cardiac levels of 3-DG, thiobarbituric acid reactive substances (TBARS), fructosamine, and pentosidine, plasma glucose levels and cardiac troponin I (cTnI), echocardiography, and histopathology were assessed at 4 and 6 weeks after treatment. Cardiac 3-DG levels were significantly increased by DXR treatment at 4 and 6 weeks. Cardiac fructosamine levels and plasma glucose were not altered by DXR; however, TBARS levels in the heart were significantly increased at 4 and 6 weeks, suggesting that the enhanced generation of 3-DG is not attributed to any abnormal glycemic status, but may be related to oxidative stress by DXR. An advanced glycation end-product, pentosidine, was significantly increased by DXR treatment at 6 weeks. Intervention by AG and PM ameliorated the DXR-induced echocardiographic abnormalities, increased cTnI in plasma, and histopathological lesion as well as normalizing the elevation of 3-DG and pentosidine levels. These results suggest that 3-DG is generated by DXR and involved, at least in part, in the pathogenesis of DXR-cardiotoxicity through glycation reaction.
Collapse
Affiliation(s)
- Tomoyuki Moriyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Masayuki Kemi
- Tsukuba Research Institute, BOZO Research Center Inc., 8 Okubo, Tsukuba, Ibaraki, 300-2611, Japan
| | - Toshiharu Horie
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
188
|
Ezzat SM, El Gaafary M, El Sayed AM, Sabry OM, Ali ZY, Hafner S, Schmiech M, Jin L, Syrovets T, Simmet T. The Cardenolide Glycoside Acovenoside A Affords Protective Activity in Doxorubicin-Induced Cardiotoxicity in Mice. J Pharmacol Exp Ther 2016; 358:262-70. [PMID: 27247000 DOI: 10.1124/jpet.116.232652] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/15/2011] [Indexed: 03/08/2025] Open
Abstract
The current study aimed to investigate the protective effect of the cardenolide glycoside acovenoside A (AcoA) against doxorubicin-induced cardiotoxicity in mice. AcoA was isolated from the pericarps of Acokanthera oppositifolia to chemical homogeneity and characterized by means of one- and two-dimensional nuclear magnetic resonance spectroscopy. AcoA exhibited relatively low toxicity in mice (LD50 = 223.3 mg/kg bw). Repeated administration of doxorubicin induced cardiotoxicity manifested by reduced activity of myocardial membrane-bound ion pumps and elevated serum biomarkers of myocardial dysfunction, oxidative stress, and inflammation. Pretreatment of doxorubicin-exposed mice with AcoA (11.16 or 22.33 mg/kg bw, i.p.) for 2 weeks after 2 weeks of combined administration of AcoA and doxorubicin protected the animals dose dependently against doxorubicin-induced cardiotoxicity as indicated by normalization of the levels of different myocardial markers of oxidative stress (malondialdehyde, nitric oxide, total antioxidant capacity, and cardiac glutathione), serum myocardial diagnostic marker enzymes (serum cardiac troponin T, creatine kinase isoenzyme MB, aspartate aminotransferase, and lactate dehydrogenase), and inflammatory markers (c-reactive protein, tumor necrosis factor-α, and interleukin-6), as well as myocardial Na(+)/K(+)-ATPase activity. These effects were attributed to the negative impact of AcoA on transcription factors nuclear factor κB and interferon regulatory factor 3/7. Thus acovenoside A might act as a cardioprotective agent to prevent doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Shahira M Ezzat
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Giza, Egypt (S.M.E., M.E.G., A.M.E.S., O.M.S.); Department of Biochemistry, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt (Z.Y.A.); Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, D-89081 Ulm, Germany (M.E.G., S.H., M.S., L.J., Ta.S., Th.S.)
| | - Menna El Gaafary
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Giza, Egypt (S.M.E., M.E.G., A.M.E.S., O.M.S.); Department of Biochemistry, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt (Z.Y.A.); Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, D-89081 Ulm, Germany (M.E.G., S.H., M.S., L.J., Ta.S., Th.S.)
| | - Abeer M El Sayed
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Giza, Egypt (S.M.E., M.E.G., A.M.E.S., O.M.S.); Department of Biochemistry, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt (Z.Y.A.); Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, D-89081 Ulm, Germany (M.E.G., S.H., M.S., L.J., Ta.S., Th.S.)
| | - Omar M Sabry
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Giza, Egypt (S.M.E., M.E.G., A.M.E.S., O.M.S.); Department of Biochemistry, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt (Z.Y.A.); Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, D-89081 Ulm, Germany (M.E.G., S.H., M.S., L.J., Ta.S., Th.S.)
| | - Zeinab Y Ali
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Giza, Egypt (S.M.E., M.E.G., A.M.E.S., O.M.S.); Department of Biochemistry, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt (Z.Y.A.); Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, D-89081 Ulm, Germany (M.E.G., S.H., M.S., L.J., Ta.S., Th.S.)
| | - Susanne Hafner
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Giza, Egypt (S.M.E., M.E.G., A.M.E.S., O.M.S.); Department of Biochemistry, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt (Z.Y.A.); Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, D-89081 Ulm, Germany (M.E.G., S.H., M.S., L.J., Ta.S., Th.S.)
| | - Michael Schmiech
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Giza, Egypt (S.M.E., M.E.G., A.M.E.S., O.M.S.); Department of Biochemistry, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt (Z.Y.A.); Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, D-89081 Ulm, Germany (M.E.G., S.H., M.S., L.J., Ta.S., Th.S.)
| | - Lu Jin
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Giza, Egypt (S.M.E., M.E.G., A.M.E.S., O.M.S.); Department of Biochemistry, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt (Z.Y.A.); Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, D-89081 Ulm, Germany (M.E.G., S.H., M.S., L.J., Ta.S., Th.S.)
| | - Tatiana Syrovets
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Giza, Egypt (S.M.E., M.E.G., A.M.E.S., O.M.S.); Department of Biochemistry, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt (Z.Y.A.); Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, D-89081 Ulm, Germany (M.E.G., S.H., M.S., L.J., Ta.S., Th.S.)
| | - Thomas Simmet
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Giza, Egypt (S.M.E., M.E.G., A.M.E.S., O.M.S.); Department of Biochemistry, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt (Z.Y.A.); Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, D-89081 Ulm, Germany (M.E.G., S.H., M.S., L.J., Ta.S., Th.S.)
| |
Collapse
|
189
|
Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol 2016; 90:2063-2076. [PMID: 27342245 DOI: 10.1007/s00204-016-1759-y] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/13/2016] [Indexed: 01/25/2023]
Abstract
Anthracyclines, e.g., doxorubicin (DOX), and anthracenediones, e.g., mitoxantrone (MTX), are drugs used in the chemotherapy of several cancer types, including solid and non-solid malignancies such as breast cancer, leukemia, lymphomas, and sarcomas. Although they are effective in tumor therapy, treatment with these two drugs may lead to side effects such as arrhythmia and heart failure. At the same clinically equivalent dose, MTX causes slightly reduced cardiotoxicity compared with DOX. These drugs interact with iron to generate reactive oxygen species (ROS), target topoisomerase 2 (Top2), and impair mitochondria. These are some of the mechanisms through which these drugs induce late cardiomyopathy. In this review, we compare the cardiotoxicities of these two chemotherapeutic drugs, DOX and MTX. As described here, even though they share similarities in their modes of toxicant action, DOX and MTX seem to differ in a key aspect. DOX is a more redox-interfering drug, while MTX induces energy imbalance. In addition, DOX toxicity can be explained by underlying mechanisms that include targeting of Top2 beta, mitochondrial impairment, and increases in ROS generation. These modes of action have not yet been demonstrated for MTX, and this knowledge gap needs to be filled.
Collapse
|
190
|
Liang S, Brundage RC, Jacobson PA, Blaes A, Kirstein MN. Pharmacokinetic-pharmacodynamic modelling of acute N-terminal pro B-type natriuretic peptide after doxorubicin infusion in breast cancer. Br J Clin Pharmacol 2016; 82:773-83. [PMID: 27128712 DOI: 10.1111/bcp.12989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/04/2016] [Accepted: 04/22/2016] [Indexed: 01/06/2023] Open
Abstract
AIMS The aim of the present study was to develop a pharmacokinetic-pharmacodynamic (PK-PD) model to characterize the relationship between plasma doxorubicin and N-terminal pro B-type natriuretic peptide (NT-proBNP) concentrations within 48 h of doxorubicin treatment. METHODS The study enrolled 17 female patients with stages 1-3 breast cancer and receiving adjuvant doxorubicin (60 mg m(-2) ) and cyclophosphamide (600 mg m(-2) ) every 14 days for four cycles. In two consecutive cycles, plasma concentrations of doxorubicin, doxorubicinol, troponin and NT-proBNP were collected before infusion, and up to 48 h after the end of doxorubicin infusion. Nonlinear mixed-effects modelling was used to describe the PK-PD relationship of doxorubicin and NT-proBNP. RESULTS A three-compartment parent drug with a one-compartment metabolite model best described the PK of doxorubicin and doxorubicinol. Troponin concentrations remained similar to baseline. An indirect PD model with transit compartments best described the relationship of doxorubicin exposure and acute NT-proBNP response. Estimated PD parameters were associated with large between-subject variability (total assay variability 38.8-73.9%). Patient clinical factors, including the use of enalapril, were not observed to be significantly associated with doxorubicin PK or NT-proBNP PD variability. CONCLUSION The relationship between doxorubicin concentration and the acute NT-proBNP response was successfully described with a population PK-PD model. This model will serve as a valuable framework for future studies to identify clinical factors associated with the acute response to doxorubicin. Future studies are warranted to examine the relationship between this acute response and subsequent heart failure. Should such a relationship be established, this model could provide useful information on patients' susceptibility to doxorubicin-induced long-term cardiotoxicity.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Richard C Brundage
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anne Blaes
- Division of Hematology/Oncology/Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark N Kirstein
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.,Masonic Comprehensive Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
191
|
De Falco E, Carnevale R, Pagano F, Chimenti I, Fianchini L, Bordin A, Siciliano C, Monticolo R, Equitani F, Carrizzo A, Peruzzi M, Vecchione C, Rubattu S, Sciarretta S, Frati G. Role of NOX2 in mediating doxorubicin-induced senescence in human endothelial progenitor cells. Mech Ageing Dev 2016; 159:37-43. [PMID: 27181082 DOI: 10.1016/j.mad.2016.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 12/09/2022]
Abstract
Senescence exerts a great impact on both biological and functional properties of circulating endothelial progenitor cells (EPCs), especially in cardiovascular diseases where the physiological process of aging is accelerated upon clinical administration of certain drugs such as doxorubicin. EPC impairment contributes to doxorubicin-induced cardiotoxicity. Doxorubicin accelerates EPC aging, although mechanisms underlying this phenomenon remain to be fully clarified. Here we investigated if Nox2 activity is able to modulate the premature senescence induced in vitro by doxorubicin in human EPCs. Results showed that in conditioned media obtained from late EPC cultures, the levels of interleukin-6, isoprostanes and nitric oxide bioavailability were increased and reduced respectively after 3h of doxorubicin treatment. These derangements returned to physiological levels when cells were co-treated with apocynin or gp91ds-tat (antioxidant and specific Nox2 inhibitors, respectively). Accordingly, Nox2 activity resulted to be activated by doxorubicin. Importantly, we found that Nox2 inhibition reduced doxorubicin-induced EPC senescence, as indicated by a lower percentage of β-gal positive EPCs. In conclusion, Nox2 activity efficiently contributes to the mechanism of oxidative stress-induced increase in premature aging conferred by doxorubicin. The importance of modulation of Nox2 in human EPCs could reveal a useful tool to restore EPC physiological function and properties.
Collapse
Affiliation(s)
- Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome polo pontino, C.so della Repubblica 79, 04100 Latina, Italy.
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome polo pontino, C.so della Repubblica 79, 04100 Latina, Italy.
| | - Francesca Pagano
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome polo pontino, C.so della Repubblica 79, 04100 Latina, Italy.
| | - Isotta Chimenti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome polo pontino, C.so della Repubblica 79, 04100 Latina, Italy.
| | - Luca Fianchini
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome polo pontino, C.so della Repubblica 79, 04100 Latina, Italy.
| | - Antonella Bordin
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome polo pontino, C.so della Repubblica 79, 04100 Latina, Italy.
| | - Camilla Siciliano
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome polo pontino, C.so della Repubblica 79, 04100 Latina, Italy.
| | - Roberto Monticolo
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome polo pontino, C.so della Repubblica 79, 04100 Latina, Italy.
| | - Francesco Equitani
- Transfusion Medicine and Immuno-Hematology Unit, Santa Maria Goretti Hospital, Latina, Italy.
| | - Albino Carrizzo
- Department of AngioCardioNeurology, IRCCS NeuroMed, 86077 Pozzilli, IS, Italy.
| | - Mariangela Peruzzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome polo pontino, C.so della Repubblica 79, 04100 Latina, Italy.
| | - Carmine Vecchione
- Department of AngioCardioNeurology, IRCCS NeuroMed, 86077 Pozzilli, IS, Italy.
| | - Speranza Rubattu
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sant' Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy; Department of AngioCardioNeurology, IRCCS NeuroMed, 86077 Pozzilli, IS, Italy.
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome polo pontino, C.so della Repubblica 79, 04100 Latina, Italy; Department of AngioCardioNeurology, IRCCS NeuroMed, 86077 Pozzilli, IS, Italy.
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome polo pontino, C.so della Repubblica 79, 04100 Latina, Italy; Department of AngioCardioNeurology, IRCCS NeuroMed, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
192
|
Mele D, Tocchetti CG, Pagliaro P, Madonna R, Novo G, Pepe A, Zito C, Maurea N, Spallarossa P. Pathophysiology of anthracycline cardiotoxicity. J Cardiovasc Med (Hagerstown) 2016; 17 Suppl 1:e3-e11. [PMID: 27183523 DOI: 10.2459/jcm.0000000000000378] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Anthracyclines (ANTs) are powerful drugs that have reduced the mortality of cancer patients. However, their use is limited by the development of cardiotoxicity (CTX), which is dose dependent and may lead to left ventricular dysfunction and heart failure. Although various strategies have been suggested to reduce the negative effects of ANTs, CTX is still an important unresolved clinical issue. This may be due at least partly to the incomplete characterization of the molecular and cellular mechanisms of ANT-induced CTX. In addition, although various forms of cardiac damage have been demonstrated with the use of these drugs in experimental studies, it is not yet clear how these translate to the clinical setting. Appropriate characterization of potential candidates for ANT-based therapies is essential to decide whether to administer these drugs. Hopefully, new information from genetic profiling will help to identify patients who are at high risk of developing CTX.
Collapse
Affiliation(s)
- Donato Mele
- aCardiology Unit, University Hospital of Ferrara bDepartment of Translational Medical Sciences, Division of Internal Medicine, Federico II University, Naples cDepartment of Clinical and Biological Sciences, University of Turin, Orbassano dCardiology, Center of Excellence on Aging, 'G. d'Annunzio' University, Chieti eChair and Division of Cardiology, University of Palermo, Palermo fU.O.C. Magnetic Resonance Imaging, Fondazione G. Monasterio C.N.R., Pisa gU.O.C. Cardiology Intensive Unit, A.O.U. Policlinico 'G. Martino', University of Messina, Messina hDivision of Cardiology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale" -IRCCS, Naples, Italy iClinic of Cardiovascular Diseases, IRCCS San Martino IST, Genoa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Deidda M, Madonna R, Mango R, Pagliaro P, Bassareo PP, Cugusi L, Romano S, Penco M, Romeo F, Mercuro G. Novel insights in pathophysiology of antiblastic drugs-induced cardiotoxicity and cardioprotection. J Cardiovasc Med (Hagerstown) 2016; 17 Suppl 1:e76-e83. [PMID: 27183528 DOI: 10.2459/jcm.0000000000000373] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite advances in supportive and protective therapy for myocardial function, heart failure caused by various clinical conditions, including cardiomyopathy due to antineoplastic therapy, remains a major cause of morbidity and mortality. Because of the limitations associated with current therapies, investigators have been searching for alternative treatments that can effectively repair the damaged heart and permanently restore its function. Damage to the heart can result from both traditional chemotherapeutic agents, such as anthracyclines, and new targeted therapies, such as trastuzumab. Because of this unresolved issue, investigators are searching for alternative therapeutic strategies. In this article, we present state-of-the-art technology with regard to the genomic and epigenetic mechanisms underlying cardiotoxicity and cardioprotection, the role of anticancer in influencing the redox (reduction/oxidation) balance and the function of stem cells in the repair/regeneration of the adult heart. These findings, although not immediately transferable to clinical applications, form the basis for the development of personalized medicine based on the prevention of cardiotoxicity with the use of genetic testing. Proteomics, metabolomics and investigations on reactive oxygen species-dependent pathways, particularly those that interact with the production of NO and energy metabolism, appear to be promising for the identification of early markers of cardiotoxicity and for the development of cardioprotective agents. Finally, autologous cardiac stem and progenitor cells may represent future contributions in the field of myocardial protection and recovery in the context of antiblastic therapy.
Collapse
Affiliation(s)
- Martino Deidda
- aDepartment of Medical Sciences 'M. Aresu', University of Cagliari, Cagliari bInstitute of Cardiology, Center of Excellence on Aging, 'G. d'Annunzio' University, Chieti cDepartment of Systems Medicine, University of Rome 'Tor Vergata', Rome dDepartment of Clinical and Biological Sciences, University of Turin, Orbassano eDepartment of Clinical Medicine, Public Health, Life and Environment Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Valcovici M, Andrica F, Serban C, Dragan S. Cardiotoxicity of anthracycline therapy: current perspectives. Arch Med Sci 2016; 12:428-35. [PMID: 27186191 PMCID: PMC4848373 DOI: 10.5114/aoms.2016.59270] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/07/2014] [Indexed: 12/31/2022] Open
Abstract
Anthracyclines, especially doxorubicin and daunorubicin, are the drugs of first choice in the treatment of patients with hematologic malignancies, soft-tissue sarcomas, and solid tumors. Unfortunately, the use of anthracyclines is limited by their dose-dependent and cumulative cardiotoxicity. The molecular mechanism responsible for anthracycline-induced cardiotoxicity remains poorly understood, although experimental and clinical studies have shown that oxidative stress plays the main role. Hence, antioxidant agents, especially dexrazoxane, and also other drug classes (statins, β-blockers) proved to have a beneficial effect in protecting against anthracycline-induced cardiotoxicity. According to previous clinical trials, the major high-risk factors for anthracycline-induced cardiotoxicity are age, body weight, female gender, radiotherapy, and other diseases such as Down syndrome, familial dilated cardiomyopathy, diabetes and hypertension. Consequently, further studies are needed to elucidate the molecular pathogenesis of anthracycline-induced cardiotoxicity and also to discover new cardioprotective agents against anthracycline-induced cardiotoxicity.
Collapse
Affiliation(s)
- Mihaela Valcovici
- Cardiology Department, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
| | - Florina Andrica
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania; Center for Interdisciplinary Research, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
| | - Corina Serban
- Center for Interdisciplinary Research, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania; Department of Functional Sciences, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
| | - Simona Dragan
- Cardiology Department, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania; Center for Interdisciplinary Research, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
| |
Collapse
|
195
|
Inhibition of chymotryptic-like standard proteasome activity exacerbates doxorubicin-induced cytotoxicity in primary cardiomyocytes. Toxicology 2016; 353-354:34-47. [DOI: 10.1016/j.tox.2016.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/19/2016] [Accepted: 04/29/2016] [Indexed: 01/16/2023]
|
196
|
Li DL, Wang ZV, Ding G, Tan W, Luo X, Criollo A, Xie M, Jiang N, May H, Kyrychenko V, Schneider JW, Gillette TG, Hill JA. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification. Circulation 2016; 133:1668-87. [PMID: 26984939 DOI: 10.1161/circulationaha.115.017443] [Citation(s) in RCA: 352] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 03/03/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND The clinical use of doxorubicin is limited by cardiotoxicity. Histopathological changes include interstitial myocardial fibrosis and the appearance of vacuolated cardiomyocytes. Whereas dysregulation of autophagy in the myocardium has been implicated in a variety of cardiovascular diseases, the role of autophagy in doxorubicin cardiomyopathy remains poorly defined. METHODS AND RESULTS Most models of doxorubicin cardiotoxicity involve intraperitoneal injection of high-dose drug, which elicits lethargy, anorexia, weight loss, and peritoneal fibrosis, all of which confound the interpretation of autophagy. Given this, we first established a model that provokes modest and progressive cardiotoxicity without constitutional symptoms, reminiscent of the effects seen in patients. We report that doxorubicin blocks cardiomyocyte autophagic flux in vivo and in cardiomyocytes in culture. This block was accompanied by robust accumulation of undegraded autolysosomes. We go on to localize the site of block as a defect in lysosome acidification. To test the functional relevance of doxorubicin-triggered autolysosome accumulation, we studied animals with diminished autophagic activity resulting from haploinsufficiency for Beclin 1. Beclin 1(+/-) mice exposed to doxorubicin were protected in terms of structural and functional changes within the myocardium. Conversely, animals overexpressing Beclin 1 manifested an amplified cardiotoxic response. CONCLUSIONS Doxorubicin blocks autophagic flux in cardiomyocytes by impairing lysosome acidification and lysosomal function. Reducing autophagy initiation protects against doxorubicin cardiotoxicity.
Collapse
Affiliation(s)
- Dan L Li
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Zhao V Wang
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Guanqiao Ding
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Wei Tan
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Xiang Luo
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Alfredo Criollo
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Min Xie
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Nan Jiang
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Herman May
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Viktoriia Kyrychenko
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Jay W Schneider
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Thomas G Gillette
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX
| | - Joseph A Hill
- From Division of Cardiology (D.L.L., Z.V.W., G.D., X.L., A.C., M.X., N.J., H.M., V.K., J.W.S., T.G.G., J.A.H.) and Department of Molecular Biology (W.T., J.A.H.), UT Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
197
|
Dual Role of ROS as Signal and Stress Agents: Iron Tips the Balance in favor of Toxic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8629024. [PMID: 27006749 PMCID: PMC4783558 DOI: 10.1155/2016/8629024] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/28/2016] [Indexed: 01/01/2023]
Abstract
Iron is essential for life, while also being potentially harmful. Therefore, its level is strictly monitored and complex pathways have evolved to keep iron safely bound to transport or storage proteins, thereby maintaining homeostasis at the cellular and systemic levels. These sequestration mechanisms ensure that mildly reactive oxygen species like anion superoxide and hydrogen peroxide, which are continuously generated in cells living under aerobic conditions, keep their physiologic role in cell signaling while escaping iron-catalyzed transformation in the highly toxic hydroxyl radical. In this review, we describe the multifaceted systems regulating cellular and body iron homeostasis and discuss how altered iron balance may lead to oxidative damage in some pathophysiological settings.
Collapse
|
198
|
Early transcriptional changes in cardiac mitochondria during chronic doxorubicin exposure and mitigation by dexrazoxane in mice. Toxicol Appl Pharmacol 2016; 295:68-84. [PMID: 26873546 DOI: 10.1016/j.taap.2016.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/24/2022]
Abstract
Identification of early biomarkers of cardiotoxicity could help initiate means to ameliorate the cardiotoxic actions of clinically useful drugs such as doxorubicin (DOX). Since DOX has been shown to target mitochondria, transcriptional levels of mitochondria-related genes were evaluated to identify early candidate biomarkers in hearts of male B6C3F1 mice given a weekly intravenous dose of 3mg/kg DOX or saline (SAL) for 2, 3, 4, 6, or 8 weeks (6, 9, 12, 18, or 24 mg/kg cumulative DOX doses, respectively). Also, a group of mice was pretreated (intraperitoneally) with the cardio-protectant, dexrazoxane (DXZ; 60 mg/kg) 30 min before each weekly dose of DOX or SAL. At necropsy a week after the last dose, increased plasma concentrations of cardiac troponin T (cTnT) were detected at 18 and 24 mg/kg cumulative DOX doses, whereas myocardial alterations were observed only at the 24 mg/kg dose. Of 1019 genes interrogated, 185, 109, 140, 184, and 451 genes were differentially expressed at 6, 9, 12, 18, and 24 mg/kg cumulative DOX doses, respectively, compared to concurrent SAL-treated controls. Of these, expression of 61 genes associated with energy metabolism and apoptosis was significantly altered before and after occurrence of myocardial injury, suggesting these as early genomics markers of cardiotoxicity. Much of these DOX-induced transcriptional changes were attenuated by pretreatment of mice with DXZ. Also, DXZ treatment significantly reduced plasma cTnT concentration and completely ameliorated cardiac alterations induced by 24 mg/kg cumulative DOX. This information on early transcriptional changes during DOX treatment may be useful in designing cardioprotective strategies targeting mitochondria.
Collapse
|
199
|
Rharass T, Gbankoto A, Canal C, Kurşunluoğlu G, Bijoux A, Panáková D, Ribou AC. Oxidative stress does not play a primary role in the toxicity induced with clinical doses of doxorubicin in myocardial H9c2 cells. Mol Cell Biochem 2016; 413:199-215. [PMID: 26833193 DOI: 10.1007/s11010-016-2653-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/23/2016] [Indexed: 11/26/2022]
Abstract
The implication of oxidative stress as primary mechanism inducing doxorubicin (DOX) cardiotoxicity is still questionable as many in vitro studies implied supra-clinical drug doses or unreliable methodologies for reactive oxygen species (ROS) detection. The aim of this study was to clarify whether oxidative stress is involved in compliance with the conditions of clinical use of DOX, and using reliable tools for ROS detection. We examined the cytotoxic mechanisms of 2 μM DOX 1 day after the beginning of the treatment in differentiated H9c2 rat embryonic cardiac cells. Cells were exposed for 2 or 24 h with DOX to mimic a single chronic dosage or to favor accumulation, respectively. We found that apoptosis was prevalent in cells exposed for a short period with DOX: cells showed typical hallmarks as loss of anchorage ability, mitochondrial hyperpolarization followed by the collapse of mitochondrial activity, and nuclear condensation. Increasing the exposure period favored a shift to necrosis as the cells preferentially exhibited early DNA impairment and nuclear swelling. In either case, measuring the fluorescence lifetime of 1-pyrenebutyric acid or the intensities of dihydroethidium or amplex red showed a consistent pattern in ROS production which was a slight increased level far from representative of an oxidative stress. Moreover, pre-treatment with dexrazoxane provided a cytoprotective effect although it failed to detoxify ROS. Our data support that oxidative stress is unlikely to be the primary mechanism of DOX cardiac toxicity in vitro.
Collapse
Affiliation(s)
- Tareck Rharass
- Institute of Modeling and Analysis in Geo-Environmental and Health (IMAGES_ESPACE-DEV), University of Perpignan Via Domitia, 66860, Perpignan, France
- Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine (MDC), 13125, Berlin-Buch, Germany
| | - Adam Gbankoto
- Department of Animal Physiology, Faculty of Sciences and Technics, University of Abomey-Calavi, 01 BP 526, Cotonou, Benin
| | - Christophe Canal
- Institute of Modeling and Analysis in Geo-Environmental and Health (IMAGES_ESPACE-DEV), University of Perpignan Via Domitia, 66860, Perpignan, France
| | | | - Amandine Bijoux
- Institute of Modeling and Analysis in Geo-Environmental and Health (IMAGES_ESPACE-DEV), University of Perpignan Via Domitia, 66860, Perpignan, France
| | - Daniela Panáková
- Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine (MDC), 13125, Berlin-Buch, Germany
| | - Anne-Cécile Ribou
- Institute of Modeling and Analysis in Geo-Environmental and Health (IMAGES_ESPACE-DEV), University of Perpignan Via Domitia, 66860, Perpignan, France.
- ESPACE-DEV, UMR UG UA UM IRD, 34093, Montpellier, France.
| |
Collapse
|
200
|
Chung R, Maulik A, Hamarneh A, Hochhauser D, Hausenloy DJ, Walker JM, Yellon DM. Effect of Remote Ischaemic Conditioning in Oncology Patients Undergoing Chemotherapy: Rationale and Design of the ERIC-ONC Study--A Single-Center, Blinded, Randomized Controlled Trial. Clin Cardiol 2016; 39:72-82. [PMID: 26807534 PMCID: PMC4864751 DOI: 10.1002/clc.22507] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/15/2015] [Indexed: 01/01/2023] Open
Abstract
Cancer survival continues to improve, and thus cardiovascular consequences of chemotherapy are increasingly important determinants of long‐term morbidity and mortality. Conventional strategies to protect the heart from chemotherapy have important hemodynamic or myelosuppressive side effects. Remote ischemic conditioning (RIC) using intermittent limb ischemia‐reperfusion reduces myocardial injury in the setting of percutaneous coronary intervention. Anthracycline cardiotoxicity and ischemia‐reperfusion injury share common biochemical pathways in cardiomyocytes. The potential for RIC as a novel treatment to reduce subclinical myocyte injury in chemotherapy has never been explored and will be investigated in the Effect of Remote Ischaemic Conditioning in Oncology (ERIC‐ONC) trial (clinicaltrials.gov NCT 02471885). The ERIC‐ONC trial is a single‐center, blinded, randomized, sham‐controlled study. We aim to recruit 128 adult oncology patients undergoing anthracycline‐based chemotherapy treatment, randomized in a 1:1 ratio into 2 groups: (1) sham procedure or (2) RIC, comprising 4, 5‐minute cycles of upper arm blood pressure cuff inflations and deflations, immediately before each cycle of chemotherapy. The primary outcome measure, defining cardiac injury, will be high‐sensitivity troponin‐T over 6 cycles of chemotherapy and 12 months follow‐up. Secondary outcome measures will include clinical, electrical, structural, and biochemical endpoints comprising major adverse cardiovascular clinical events, incidence of cardiac arrhythmia over 14 days at cycle 5/6, echocardiographic ventricular function, N‐terminal pro‐brain natriuretic peptide levels at 3 months follow‐up, and changes in mitochondrial DNA, micro‐RNA, and proteomics after chemotherapy. The ERIC‐ONC trial will determine the efficacy of RIC as a novel, noninvasive, nonpharmacological, low‐cost cardioprotectant in cancer patients undergoing anthracycline‐based chemotherapy.
Collapse
Affiliation(s)
- Robin Chung
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Angshuman Maulik
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Ashraf Hamarneh
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Daniel Hochhauser
- Research Department of Oncology, The Cancer Institute, University College London, London, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom.,Cardiovascular and Metabolic Disorders Program, Duke University-National University of Singapore Medical School, Singapore
| | - J Malcolm Walker
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| |
Collapse
|