151
|
Slomnicki LP, Malinowska A, Kistowski M, Palusinski A, Zheng JJ, Sepp M, Timmusk T, Dadlez M, Hetman M. Nucleolar Enrichment of Brain Proteins with Critical Roles in Human Neurodevelopment. Mol Cell Proteomics 2016; 15:2055-75. [PMID: 27053602 DOI: 10.1074/mcp.m115.051920] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 11/06/2022] Open
Abstract
To study nucleolar involvement in brain development, the nuclear and nucleolar proteomes from the rat cerebral cortex at postnatal day 7 were analyzed using LC-MS/iTRAQ methodology. Data of the analysis are available via ProteomeXchange with identifier PXD002188. Among 504 candidate nucleolar proteins, the overrepresented gene ontology terms included such cellular compartmentcategories as "nucleolus", "ribosome" and "chromatin". Consistent with such classification, the most overrepresented functional gene ontology terms were related to RNA metabolism/ribosomal biogenesis, translation, and chromatin organization. Sixteen putative nucleolar proteins were associated with neurodevelopmental phenotypes in humans. Microcephaly and/or cognitive impairment were the most common phenotypic manifestations. Although several such proteins have links to ribosomal biogenesis and/or genomic stability/chromatin structure (e.g. EMG1, RPL10, DKC1, EIF4A3, FLNA, SMC1, ATRX, MCM4, NSD1, LMNA, or CUL4B), others including ADAR, LARP7, GTF2I, or TCF4 have no such connections known. Although neither the Alazami syndrome-associated LARP7nor the Pitt-Hopkins syndrome-associated TCF4 were reported in nucleoli of non-neural cells, in neurons, their nucleolar localization was confirmed by immunostaining. In cultured rat hippocampal neurons, knockdown of LARP7 reduced both perikaryal ribosome content and general protein synthesis. Similar anti-ribosomal/anti-translation effects were observed after knockdown of the ribosomal biogenesis factor EMG1 whose deficiency underlies Bowen-Conradi syndrome. Finally, moderate reduction of ribosome content and general protein synthesis followed overexpression of two Pitt-Hopkins syndrome mutant variants of TCF4. Therefore, dysregulation of ribosomal biogenesis and/or other functions of the nucleolus may disrupt neurodevelopment resulting in such phenotypes as microcephaly and/or cognitive impairment.
Collapse
Affiliation(s)
- Lukasz P Slomnicki
- From the ‡Kentucky Spinal Cord Injury Research Center and the Departments of Neurological Surgery and
| | - Agata Malinowska
- ¶Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Kistowski
- ¶Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Antoni Palusinski
- ‖Department of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jing-Juan Zheng
- From the ‡Kentucky Spinal Cord Injury Research Center and the Departments of Neurological Surgery and
| | - Mari Sepp
- **Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Tonis Timmusk
- **Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Michal Dadlez
- ¶Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Hetman
- From the ‡Kentucky Spinal Cord Injury Research Center and the Departments of Neurological Surgery and §Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky;
| |
Collapse
|
152
|
Koné MC, Fleurot R, Chebrout M, Debey P, Beaujean N, Bonnet-Garnier A. Three-Dimensional Distribution of UBF and Nopp140 in Relationship to Ribosomal DNA Transcription During Mouse Preimplantation Development. Biol Reprod 2016; 94:95. [PMID: 26984997 DOI: 10.1095/biolreprod.115.136366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/08/2016] [Indexed: 12/31/2022] Open
Abstract
The nucleolus is a dynamic nuclear compartment that is mostly involved in ribosome subunit biogenesis; however, it may also play a role in many other biological processes, such as stress response and the cell cycle. Mainly using electron microscopy, several studies have tried to decipher how active nucleoli are set up during early development in mice. In this study, we analyzed nucleologenesis during mouse early embryonic development using 3D-immunofluorescent detection of UBF and Nopp140, two proteins associated with different nucleolar compartments. UBF is a transcription factor that helps maintain the euchromatic state of ribosomal genes; Nopp140 is a phosphoprotein that has been implicated in pre-rRNA processing. First, using detailed image analyses and the in situ proximity ligation assay technique, we demonstrate that UBF and Nopp140 dynamic redistribution between the two-cell and blastocyst stages (time of implantation) is correlated with morphological and structural modifications that occur in embryonic nucleolar compartments. Our results also support the hypothesis that nucleoli develop at the periphery of nucleolar precursor bodies. Finally, we show that the RNA polymerase I inhibitor CX-5461: 1) disrupts transcriptional activity, 2) alters preimplantation development, and 3) leads to a complete reorganization of UBF and Nopp140 distribution. Altogether, our results underscore that highly dynamic changes are occurring in the nucleoli of embryos and confirm a close link between ribosomal gene transcription and nucleologenesis during the early stages of development.
Collapse
Affiliation(s)
| | - Renaud Fleurot
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Martine Chebrout
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Pascale Debey
- Sorbonne-Universités, MNHN, CNRS, INSERM, Structure et instabilité des génomes, Paris, France
| | | | | |
Collapse
|
153
|
Marstad A, Landsverk OJB, Strømme O, Otterlei M, Collas P, Sundan A, Brede G. A-kinase anchoring protein AKAP95 is a novel regulator of ribosomal RNA synthesis. FEBS J 2016; 283:757-70. [PMID: 26683827 DOI: 10.1111/febs.13630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 11/30/2022]
Abstract
The RNA polymerase I transcription apparatus acquires and integrates the combined information from multiple cellular signalling cascades to regulate ribosome production essential for cell growth and proliferation. In the present study, we show that a subpopulation of A-kinase anchoring protein 95 (AKAP95) targets the nucleolus during interphase and is involved in regulating rRNA production. We show that AKAP95 co-localizes with the nucleolar upstream binding factor, an essential rRNA transcription factor. Similar to other members of the C2 H2 -zinc finger family, we show, using systematic selection and evolution of ligands by exponential enrichment and in vitro binding analysis, that AKAP95 has a preference for GC-rich DNA in vitro, whereas fluorescence recovery after photobleaching analysis reveals AKAP95 to be a highly mobile protein that exhibits RNA polymerase I and II dependent nucleolar trafficking. In line with its GC-binding features, chromatin immunoprecipitation analysis revealed AKAP95 to be associated with ribosomal chromatin in vivo. Manipulation of AKAP95-expression in U2OS cells revealed a reciprocal relationship between the expression of AKAP95 and 47S rRNA. Taken together, our data indicate that AKAP95 is a novel nucleolus-associated protein with a regulatory role on rRNA production.
Collapse
Affiliation(s)
- Anne Marstad
- Centre of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ole Jørgen B Landsverk
- Department of Pathology, Centre for Immune Regulation, Oslo University Hospital Norway, Norway
| | - Olaf Strømme
- Centre of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Marit Otterlei
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Anders Sundan
- Centre of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,KG Jebsen Centre for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gaute Brede
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
154
|
Mitrea DM, Kriwacki RW. Phase separation in biology; functional organization of a higher order. Cell Commun Signal 2016; 14:1. [PMID: 26727894 PMCID: PMC4700675 DOI: 10.1186/s12964-015-0125-7] [Citation(s) in RCA: 500] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022] Open
Abstract
Inside eukaryotic cells, macromolecules are partitioned into membrane-bounded compartments and, within these, some are further organized into non-membrane-bounded structures termed membrane-less organelles. The latter structures are comprised of heterogeneous mixtures of proteins and nucleic acids and assemble through a phase separation phenomenon similar to polymer condensation. Membrane-less organelles are dynamic structures maintained through multivalent interactions that mediate diverse biological processes, many involved in RNA metabolism. They rapidly exchange components with the cellular milieu and their properties are readily altered in response to environmental cues, often implicating membrane-less organelles in responses to stress signaling. In this review, we discuss: (1) the functional roles of membrane-less organelles, (2) unifying structural and mechanistic principles that underlie their assembly and disassembly, and (3) established and emerging methods used in structural investigations of membrane-less organelles.
Collapse
Affiliation(s)
- Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA.
| |
Collapse
|
155
|
HERBOMEL G, GRICHINE A, FERTIN A, DELON A, VOURC'H C, SOUCHIER C, USSON Y. Wavelet transform analysis of chromatin texture changes during heat shock. J Microsc 2015; 262:295-305. [DOI: 10.1111/jmi.12363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/17/2015] [Indexed: 11/29/2022]
Affiliation(s)
- G. HERBOMEL
- INSERM, IAB, University Grenoble Alpes; Grenoble France
| | - A. GRICHINE
- INSERM, IAB, University Grenoble Alpes; Grenoble France
| | - A FERTIN
- CNRS, TIMC-IMAG, University Grenoble Alpes; Grenoble France
| | - A. DELON
- CNRS, LIPHY, University Grenoble Alpes; Grenoble France
| | - C. VOURC'H
- INSERM, IAB, University Grenoble Alpes; Grenoble France
| | - C. SOUCHIER
- INSERM, IAB, University Grenoble Alpes; Grenoble France
| | - Y. USSON
- CNRS, TIMC-IMAG, University Grenoble Alpes; Grenoble France
| |
Collapse
|
156
|
Larsen DH, Stucki M. Nucleolar responses to DNA double-strand breaks. Nucleic Acids Res 2015; 44:538-44. [PMID: 26615196 PMCID: PMC4737151 DOI: 10.1093/nar/gkv1312] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/09/2015] [Indexed: 11/25/2022] Open
Abstract
Maintenance of cellular homeostasis is key to prevent transformation and disease. The cellular response to DNA double-strand breaks, primarily orchestrated by the ATM/ATR kinases is one of many mechanisms that serve to uphold genome stability and homeostasis. Upon detection of double-strand breaks (DSBs), several signaling cascades are activated to halt cell cycle progression and initiate repair. Furthermore, the DNA damage response (DDR) controls cellular processes such as transcription, splicing and metabolism. Recent studies have uncovered aspects of how the DDR operates within nucleoli. It appears that the DDR controls transcription in the nucleoli, not only when DNA breaks occur in the rDNA repeats, but also when a nuclear DDR is activated. In addition, we have gained first insights into how repair of DSBs is organized in the nucleolus. Collectively, these recent studies provide a more comprehensive picture of how the DDR regulates basic cellular functions to maintain cellular homeostasis. In this review we will summarize recent findings and discuss their implications for our understanding of how the DDR regulates transcription and repair in the nucleolus.
Collapse
Affiliation(s)
- Dorthe Helena Larsen
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Wagistrasse 14, CH-8952 Schlieren, Switzerland
| |
Collapse
|
157
|
NPM1 histone chaperone is upregulated in glioblastoma to promote cell survival and maintain nucleolar shape. Sci Rep 2015; 5:16495. [PMID: 26559910 PMCID: PMC4642306 DOI: 10.1038/srep16495] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/14/2015] [Indexed: 01/08/2023] Open
Abstract
Glioblastoma (grade IV glioma) is the most common and aggressive adult brain tumor. A better understanding of the biology of glioblastoma cells is crucial to identify molecular targets stimulating cell death. NPM1 (nucleophosmin) is a multifunctional chaperone that plays an important role in cancer development. Herein, NPM1 was analyzed by immunohistochemistry in human astrocytic gliomas. NPM1 was detected in all tumors but with a significantly higher staining intensity in grade IV than in low grade tumors. Depletion of NPM1 had only modest effects on the viability of U251MG, U1242MG, and U343MGa Cl2:6 glioma cells, despite alterations in nucleolar morphology. Glioma cell cultures depleted of NPM1 exposed to micromolar levels of actinomycin D were more prone to cell death (apoptosis) compared to cultures retaining NPM1. We had previously found that NPM1 binds to linker histone H1.5. Here we could show that silencing of H1.5 triggered glioma cell apoptosis as evidenced by a marked increase in both the numbers of cleaved caspase-3+ cells and in the amounts of cleaved PARP. Enforced expression of NPM1 suppressed apoptosis in H1.5 depleted glioma cells. Although our studies would suggest little effectiveness of targeting NPM1 alone there could be potential using it as a combination treatment.
Collapse
|
158
|
Brodská B, Holoubek A, Otevřelová P, Kuželová K. Low-Dose Actinomycin-D Induces Redistribution of Wild-Type and Mutated Nucleophosmin Followed by Cell Death in Leukemic Cells. J Cell Biochem 2015; 117:1319-29. [PMID: 26505272 DOI: 10.1002/jcb.25420] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/26/2015] [Indexed: 11/12/2022]
Abstract
Specific mutations involving C-terminal part of the nucleolar protein nucleophosmin (NPM) are associated with better outcome of acute myeloid leukemia (AML) therapy, possibly due to aberrant cytoplasmic NPM localization facilitating induction of anti-NPM immune response. Actinomycin D (actD) is known to induce nucleolar stress leading to redistribution of many nucleolar proteins, including NPM. We analyzed the distribution of both wild-type and mutated NPM (NPMmut) in human cell lines, before and after low-dose actD treatment, in living cells expressing exogenous fluorescently labeled proteins as well as using immunofluorescence staining of endogenous proteins in fixed cells. The wild-type NPM form is prevalently nucleolar in intact cells and relocalizes mainly to the nucleoplasm following actD addition. The mutated NPM form is found both in the nucleoli and in the cytoplasm of untreated cells. ActD treatment leads to a marked increase in NPMmut amount in the nucleoplasm while a mild decrease is observed in the cytoplasm. Cell death was induced by low-dose actD in all the studied leukemic cell lines with different p53 and NPM status. In cells expressing the tumor suppresor p53 (CML-T1, OCI-AML3), cell cycle arrest in G1/G0 phase was followed by p53-dependent apoptosis while in p53-null HL60 cells, transient G2/M-phase arrest was followed by cell necrosis. We conclude that although actD does not increase NPM concentration in the cytoplasm, it could improve the effect of standard chemotherapy in leukemias through more general mechanisms.
Collapse
Affiliation(s)
- Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Petra Otevřelová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| |
Collapse
|
159
|
Harding SM, Boiarsky JA, Greenberg RA. ATM Dependent Silencing Links Nucleolar Chromatin Reorganization to DNA Damage Recognition. Cell Rep 2015; 13:251-9. [PMID: 26440899 DOI: 10.1016/j.celrep.2015.08.085] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/20/2015] [Accepted: 08/28/2015] [Indexed: 02/05/2023] Open
Abstract
Resolution of DNA double-strand breaks (DSBs) is essential for the suppression of genome instability. DSB repair in transcriptionally active genomic regions represents a unique challenge that is associated with ataxia telangiectasia mutated (ATM) kinase-mediated transcriptional silencing. Despite emerging insights into the underlying mechanisms, how DSB silencing connects to DNA repair remains undefined. We observe that silencing within the rDNA depends on persistent DSBs. Non-homologous end-joining was the predominant mode of DSB repair allowing transcription to resume. ATM-dependent rDNA silencing in the presence of persistent DSBs led to the large-scale reorganization of nucleolar architecture, with movement of damaged chromatin to nucleolar cap regions. These findings identify ATM-dependent temporal and spatial control of DNA repair and provide insights into how communication between DSB signaling and ongoing transcription promotes genome integrity.
Collapse
Affiliation(s)
- Shane M Harding
- Departments of Cancer Biology and Pathology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Jonathan A Boiarsky
- Departments of Cancer Biology and Pathology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Roger A Greenberg
- Departments of Cancer Biology and Pathology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
160
|
Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta Neuropathol 2015; 130:537-55. [PMID: 26085200 PMCID: PMC4575390 DOI: 10.1007/s00401-015-1450-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/25/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022]
Abstract
A massive expansion of a GGGGCC repeat upstream of the C9orf72 coding region is the most common known cause of amyotrophic lateral sclerosis and frontotemporal dementia. Despite its intronic localization and lack of a canonical start codon, both strands are translated into aggregating dipeptide repeat (DPR) proteins: poly-GA, poly-GP, poly-GR, poly-PR and poly-PA. To address conflicting findings on the predominant toxicity of the different DPR species in model systems, we compared the expression pattern of the DPR proteins in rat primary neurons and postmortem brain and spinal cord of C9orf72 mutation patients. Only poly-GA overexpression closely mimicked the p62-positive neuronal cytoplasmic inclusions commonly observed for all DPR proteins in patients. In contrast, overexpressed poly-GR and poly-PR formed nucleolar p62-negative inclusions. In patients, most of the less common neuronal intranuclear DPR inclusions were para-nucleolar and p62 positive. Neuronal nucleoli in C9orf72 cases showed normal size and morphology regardless of the presence of poly-GR and poly-PR inclusions arguing against widespread nucleolar stress, reported in cellular models. Colocalization of para-nucleolar DPR inclusions with heterochromatin and a marker of transcriptional repression (H3K9me2) indicates a link to gene transcription. In contrast, we detected numerous intranuclear DPR inclusions not associated with nucleolar structures in ependymal and subependymal cells. In patients, neuronal inclusions of poly-GR, poly-GP and the poly-GA interacting protein Unc119 were less abundant than poly-GA inclusions, but showed similar regional and subcellular distribution. Regardless of neurodegeneration, all inclusions were most abundant in neocortex, hippocampus and thalamus, with few inclusions in brain stem and spinal cord. In the granular cell layer of the cerebellum, poly-GA and Unc119 inclusions were significantly more abundant in cases with FTLD than in cases with MND and FTLD/MND. Poly-PR inclusions were rare throughout the brain but significantly more abundant in the CA3/4 region of FTLD cases than in MND cases. Thus, although DPR distribution is not correlated with neurodegeneration spatially, it correlates with neuropathological subtypes.
Collapse
|
161
|
RNA transcription modulates phase transition-driven nuclear body assembly. Proc Natl Acad Sci U S A 2015; 112:E5237-45. [PMID: 26351690 DOI: 10.1073/pnas.1509317112] [Citation(s) in RCA: 362] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear bodies are RNA and protein-rich, membraneless organelles that play important roles in gene regulation. The largest and most well-known nuclear body is the nucleolus, an organelle whose primary function in ribosome biogenesis makes it key for cell growth and size homeostasis. The nucleolus and other nuclear bodies behave like liquid-phase droplets and appear to condense from the nucleoplasm by concentration-dependent phase separation. However, nucleoli actively consume chemical energy, and it is unclear how such nonequilibrium activity might impact classical liquid-liquid phase separation. Here, we combine in vivo and in vitro experiments with theory and simulation to characterize the assembly and disassembly dynamics of nucleoli in early Caenorhabditis elegans embryos. In addition to classical nucleoli that assemble at the transcriptionally active nucleolar organizing regions, we observe dozens of "extranucleolar droplets" (ENDs) that condense in the nucleoplasm in a transcription-independent manner. We show that growth of nucleoli and ENDs is consistent with a first-order phase transition in which late-stage coarsening dynamics are mediated by Brownian coalescence and, to a lesser degree, Ostwald ripening. By manipulating C. elegans cell size, we change nucleolar component concentration and confirm several key model predictions. Our results show that rRNA transcription and other nonequilibrium biological activity can modulate the effective thermodynamic parameters governing nucleolar and END assembly, but do not appear to fundamentally alter the passive phase separation mechanism.
Collapse
|
162
|
Sorokin DV, Stixová L, Sehnalová P, Legartová S, Suchánková J, Šimara P, Kozubek S, Matula P, Skalníková M, Raška I, Bártová E. Localized movement and morphology of UBF1-positive nucleolar regions are changed by γ-irradiation in G2 phase of the cell cycle. Nucleus 2015. [PMID: 26208041 DOI: 10.1080/19491034.2015.1075111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The nucleolus is a well-organized site of ribosomal gene transcription. Moreover, many DNA repair pathway proteins, including ATM, ATR kinases, MRE11, PARP1 and Ku70/80, localize to the nucleolus (Moore et al., 2011 ). We analyzed the consequences of DNA damage in nucleoli following ultraviolet A (UVA), C (UVC), or γ-irradiation in order to test whether and how radiation-mediated genome injury affects local motion and morphology of nucleoli. Because exposure to radiation sources can induce changes in the pattern of UBF1-positive nucleolar regions, we visualized nucleoli in living cells by GFP-UBF1 expression for subsequent morphological analyses and local motion studies. UVA radiation, but not 5 Gy of γ-rays, induced apoptosis as analyzed by an advanced computational method. In non-apoptotic cells, we observed that γ-radiation caused nucleolar re-positioning over time and changed several morphological parameters, including the size of the nucleolus and the area of individual UBF1-positive foci. Radiation-induced nucleoli re-arrangement was observed particularly in G2 phase of the cell cycle, indicating repair of ribosomal genes in G2 phase and implying that nucleoli are less stable, thus sensitive to radiation, in G2 phase.
Collapse
Affiliation(s)
- Dmitry V Sorokin
- a Institute of Biophysics ; Academy of Sciences of the Czech Republic ; Brno , Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
The actin family protein ARP6 contributes to the structure and the function of the nucleolus. Biochem Biophys Res Commun 2015; 464:554-60. [PMID: 26164235 DOI: 10.1016/j.bbrc.2015.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/01/2015] [Indexed: 12/22/2022]
Abstract
The actin family members, consisting of actin and actin-related proteins (ARPs), are essential components of chromatin remodeling complexes. ARP6, one of the nuclear ARPs, is part of the Snf-2-related CREB-binding protein activator protein (SRCAP) chromatin remodeling complex, which promotes the deposition of the histone variant H2A.Z into the chromatin. In this study, we showed that ARP6 influences the structure and the function of the nucleolus. ARP6 is localized in the central region of the nucleolus, and its knockdown induced a morphological change in the nucleolus. We also found that in the presence of high concentrations of glucose ARP6 contributed to the maintenance of active ribosomal DNA (rDNA) transcription by placing H2A.Z into the chromatin. In contrast, under starvation, ARP6 was required for cell survival through the repression of rDNA transcription independently of H2A.Z. These findings reveal novel pleiotropic roles for the actin family in nuclear organization and metabolic homeostasis.
Collapse
|
164
|
Chakrabarti R, Sanyal S, Ghosh A, Bhar K, Das C, Siddhanta A. Phosphatidylinositol-4-phosphate 5-Kinase 1α Modulates Ribosomal RNA Gene Silencing through Its Interaction with Histone H3 Lysine 9 Trimethylation and Heterochromatin Protein HP1-α. J Biol Chem 2015; 290:20893-20903. [PMID: 26157143 DOI: 10.1074/jbc.m114.633727] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Indexed: 11/06/2022] Open
Abstract
Phosphoinositide signaling has been implicated in the regulation of numerous cellular processes including cytoskeletal dynamics, cellular motility, vesicle trafficking, and gene transcription. Studies have also shown that nuclear phosphoinositide(s) regulates processes such as mRNA export, cell cycle progression, gene transcription, and DNA repair. We have shown previously that the nuclear form of phosphatidylinositol-4-phosphate 5-kinase 1α (PIP5K), the enzyme responsible for phosphatidylinositol 4,5-bisphosphate synthesis, is modified by small ubiquitin-like modifier (SUMO)-1. In this study, we have shown that due to the site-specific Lys to Ala mutations of PIP5K at Lys-244 and Lys-490, it is unable to localize in the nucleus and nucleolus, respectively. Furthermore, by using chromatin immunoprecipitation assays, we have observed that PIP5K associates with the chromatin silencing complex constituted of H3K9me3 and heterochromatin protein 1α at multiple ribosomal DNA (rDNA) loci. These interactions followed a definite cyclical pattern of occupancy (mostly G1) and release from the rDNA loci (G1/S) throughout the cell cycle. Moreover, the immunoprecipitation results clearly demonstrate that PIP5K SUMOylated at Lys-490 interacts with components of the chromatin silencing machinery, H3K9me3 and heterochromatin protein 1α. However, PIP5K does not interact with the gene activation signature protein H3K4me3. This study, for the first time, demonstrates that PIP5K, an enzyme actively associated with lipid modification pathway, has additional roles in rDNA silencing.
Collapse
Affiliation(s)
| | - Sulagna Sanyal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Amit Ghosh
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India and
| | - Kaushik Bhar
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India and
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India.
| | - Anirban Siddhanta
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India and.
| |
Collapse
|
165
|
Yang L, Zhang J, Kamelgarn M, Niu C, Gal J, Gong W, Zhu H. Subcellular localization and RNAs determine FUS architecture in different cellular compartments. Hum Mol Genet 2015; 24:5174-83. [PMID: 26123490 DOI: 10.1093/hmg/ddv239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/22/2015] [Indexed: 12/13/2022] Open
Abstract
Mutations in Fused in sarcoma (FUS) gene cause a subset of familial amyotrophic lateral sclerosis (ALS), a fatal motor neuron degenerative disease. Wild-type FUS is largely localized in the nucleus, but mutant FUS accumulates in the cytoplasm and forms inclusions. It is unclear whether FUS depletion from the nucleus or FUS inclusions in the cytoplasm triggers motor neuron degeneration. In this study, we revealed that the nuclear and cytoplasmic FUS proteins form distinct local distribution patterns. The nuclear FUS forms oligomers and appears granular under confocal microscope. In contrast, the cytoplasmic FUS forms inclusions with no oligomers detected. These patterns are determined by the subcellular localization of FUS, regardless of wild-type or mutant protein. Moreover, mutant FUS remained or re-directed in the nucleus can oligomerize and behave similarly to the wild-type FUS protein. We further found that nuclear RNAs are critical to its oligomerization. Interestingly, the formation of cytoplasmic FUS inclusions is also dependent on RNA binding. Since the ALS mutations disrupt the nuclear localization sequence, mutant FUS is likely retained in the cytoplasm after translation and interacts with cytoplasmic RNAs. We therefore propose that local RNA molecules interacting with the FUS protein in different subcellular compartments play a fundamental role in determining FUS protein architecture and function.
Collapse
Affiliation(s)
- Liuqing Yang
- Department of Molecular and Cellular Biochemistry
| | - Jiayu Zhang
- Department of Molecular and Cellular Biochemistry
| | - Marisa Kamelgarn
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536, USA
| | - Chunyan Niu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China and
| | - Jozsef Gal
- Department of Molecular and Cellular Biochemistry
| | - Weimin Gong
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, Graduate Center for Toxicology, College of Medicine, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536, USA,
| |
Collapse
|
166
|
Uversky VN. The multifaceted roles of intrinsic disorder in protein complexes. FEBS Lett 2015; 589:2498-506. [PMID: 26073257 DOI: 10.1016/j.febslet.2015.06.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/02/2015] [Indexed: 01/08/2023]
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are important constituents of many protein complexes, playing various structural, functional, and regulatory roles. In such disorder-based protein complexes, functional disorder is used both internally (for assembly, movement, and functional regulation of the different parts of a given complex) and externally (for interactions of a complex with its external regulators). In complex assembly, IDPs/IDPRs serve as the molecular glue that cements complexes or as highly flexible scaffolds. Disorder defines the order of complex assembly and the ability of a protein to be involved in polyvalent interactions. It is at the heart of various binding mechanisms and interaction modes ascribed to IDPs. Disorder in protein complexes is related to multifarious applications of induced folding and induced functional unfolding, or defines the entropic chain activities, such as stochastic machines and binding rheostats. This review opens a FEBS Letters Special Issue on Dynamics, Flexibility, and Intrinsic Disorder in protein assemblies and represents a brief overview of intricate roles played by IDPs and IDPRs in various aspects of protein complexes.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation; Department of Biology, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
167
|
Zhu L, Brangwynne CP. Nuclear bodies: the emerging biophysics of nucleoplasmic phases. Curr Opin Cell Biol 2015; 34:23-30. [PMID: 25942753 DOI: 10.1016/j.ceb.2015.04.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/16/2015] [Accepted: 04/14/2015] [Indexed: 01/02/2023]
Abstract
The cell nucleus contains a large number of membrane-less bodies that play important roles in the spatiotemporal regulation of gene expression. Recent work suggests that low complexity/disordered protein motifs and repetitive binding domains drive assembly of droplets of nuclear RNA/protein by promoting nucleoplasmic phase separation. Nucleation and maturation of these structures is regulated by, and may in turn affect, factors including post-translational modifications, protein concentration, transcriptional activity, and chromatin state. Here we present a concise review of these exciting recent advances, and discuss current and future challenges in understanding the assembly, regulation, and function of nuclear RNA/protein bodies.
Collapse
Affiliation(s)
- Lian Zhu
- Princeton University, Department of Chemical and Biological Engineering, Princeton, NJ 08544, USA
| | - Clifford P Brangwynne
- Princeton University, Department of Chemical and Biological Engineering, Princeton, NJ 08544, USA.
| |
Collapse
|
168
|
Yoshikawa H, Ishikawa H, Izumikawa K, Miura Y, Hayano T, Isobe T, Simpson RJ, Takahashi N. Human nucleolar protein Nop52 (RRP1/NNP-1) is involved in site 2 cleavage in internal transcribed spacer 1 of pre-rRNAs at early stages of ribosome biogenesis. Nucleic Acids Res 2015; 43:5524-36. [PMID: 25969445 PMCID: PMC4477673 DOI: 10.1093/nar/gkv470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/29/2015] [Indexed: 01/02/2023] Open
Abstract
During the early steps of ribosome biogenesis in mammals, the two ribosomal subunits 40S and 60S are produced via splitting of the large 90S pre-ribosomal particle (90S) into pre-40S and pre-60S pre-ribosomal particles (pre-40S and pre-60S). We previously proposed that replacement of fibrillarin by Nop52 (RRP1/NNP-1) for the binding to p32 (C1QBP) is a key event that drives this splitting process. However, how the replacement by RRP1 is coupled with the endo- and/or exo-ribonucleolytic cleavage of pre-rRNA remains unknown. In this study, we demonstrate that RRP1 deficiency suppressed site 2 cleavage on ITS1 of 47S/45S, 41S and 36S pre-rRNAs in human cells. RRP1 was also present in 90S and was localized in the dense fibrillar component of the nucleolus dependently on active RNA polymerase I transcription. In addition, double knockdown of XRN2 and RRP1 revealed that RRP1 accelerated the site 2 cleavage of 47S, 45S and 41S pre-rRNAs. These data suggest that RRP1 is involved not only in competitive binding with fibrillarin to C1QBP on 90S but also in site 2 cleavage in ITS1 of pre-rRNAs at early stages of human ribosome biogenesis; thus, it is likely that RRP1 integrates the cleavage of site 2 with the physical split of 90S into pre-40S and pre-60S.
Collapse
Affiliation(s)
- Harunori Yoshikawa
- Department of Applied Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Hideaki Ishikawa
- Department of Applied Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Keiichi Izumikawa
- Department of Applied Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Yutaka Miura
- Department of Applied Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Toshiya Hayano
- Department of Applied Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Toshiaki Isobe
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Richard J Simpson
- La Trobe Institute for Molecular Science (LIMS), LIMS Building 1, Room 412 La Trobe University, Bundoora Victoria 3086, Australia
| | - Nobuhiro Takahashi
- Department of Applied Life Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Sanbancho 5, Chiyoda-ku, Tokyo, 102-0075, Japan
| |
Collapse
|
169
|
Sharif SR, Lee H, Islam MA, Seog DH, Moon IS. N-acetyl-D-glucosamine kinase is a component of nuclear speckles and paraspeckles. Mol Cells 2015; 38:402-8. [PMID: 25921606 PMCID: PMC4443281 DOI: 10.14348/molcells.2015.2242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/27/2022] Open
Abstract
Protein O-GlcNAcylation, dictated by cellular UDP-N-acetylglucosamine (UDP-GlcNAc) levels, plays a crucial role in posttranslational modifications. The enzyme GlcNAc kinase (NAGK, E.C. 2.7.1.59) catalyzes the formation of GlcNAc-6-phosphate, which is a major substrate for the biosynthesis of UDP-GlcNAc. Recent studies have revealed the expression of NAGK in different types of cells especially in neuronal dendrites. Here, by immunocytochemistry (ICC) and immunonucleochemistry (INC) of cultured rat hippocampal neurons, HEK293T and GT1-7 cells, we have showed that NAGK immuno-reactive punctae being present in the nucleoplasm colocalized with small nuclear ribonucleoprotein-associated protein N (snRNPN) and p54NRB, which are speckle and paraspeckle markers, respectively. Furthermore, NAGK IR cluster was also found to be colocalized with GTF2H5 (general transcription factor IIH, polypeptide 5) immuno reactive punctae. In addition, relative localization to the ring of nuclear lamin matrix and to GlcNAc, which is highly enriched in nuclear pore complexes, showed that NAGK surrounds the nucleus at the cytoplasmic face of the nuclear outer membrane. By in situ proximity ligation assay (PLA) we confirmed the colocalization of NAGK with snRNPN in the nucleus and in dendrites, while we also verified the interactions of NAGK with p54NRB, and with GTF2H5 in the nucleus. These associations between NAGK with speckle, paraspeckle and general transcription factor suggest its regulatory roles in gene expression.
Collapse
Affiliation(s)
- Syeda Ridita Sharif
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| | - HyunSook Lee
- Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| | - Md. Ariful Islam
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| | - Dae-Hyun Seog
- Department of Biochemistry, College of Medicine, Inje University, Busan 614-735,
Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
- Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 780-714,
Korea
| |
Collapse
|
170
|
Budhiraja S, Liu H, Couturier J, Malovannaya A, Qin J, Lewis DE, Rice AP. Mining the human complexome database identifies RBM14 as an XPO1-associated protein involved in HIV-1 Rev function. J Virol 2015; 89:3557-67. [PMID: 25589658 PMCID: PMC4403413 DOI: 10.1128/jvi.03232-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/06/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED By recruiting the host protein XPO1 (CRM1), the HIV-1 Rev protein mediates the nuclear export of incompletely spliced viral transcripts. We mined data from the recently described human nuclear complexome to identify a host protein, RBM14, which associates with XPO1 and Rev and is involved in Rev function. Using a Rev-dependent p24 reporter plasmid, we found that RBM14 depletion decreased Rev activity and Rev-mediated enhancement of the cytoplasmic levels of unspliced viral transcripts. RBM14 depletion also reduced p24 expression during viral infection, indicating that RBM14 is limiting for Rev function. RBM14 has previously been shown to localize to nuclear paraspeckles, a structure implicated in retaining unspliced HIV-1 transcripts for either Rev-mediated nuclear export or degradation. We found that depletion of NEAT1 RNA, a long noncoding RNA required for paraspeckle integrity, abolished the ability of overexpressed RBM14 to enhance Rev function, indicating the dependence of RBM14 function on paraspeckle integrity. Our study extends the known host cell interactome of Rev and XPO1 and further substantiates a critical role for paraspeckles in the mechanism of action of Rev. Our study also validates the nuclear complexome as a database from which viral cofactors can be mined. IMPORTANCE This study mined a database of nuclear protein complexes to identify a cellular protein named RBM14 that is associated with XPO1 (CRM1), a nuclear protein that binds to the HIV-1 Rev protein and mediates nuclear export of incompletely spliced viral RNAs. Functional assays demonstrated that RBM14, a protein found in paraspeckle structures in the nucleus, is involved in HIV-1 Rev function. This study validates the nuclear complexome database as a reference that can be mined to identify viral cofactors.
Collapse
Affiliation(s)
- Sona Budhiraja
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hongbing Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jacob Couturier
- Department of Internal Medicine, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Anna Malovannaya
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas, USA
| | - Jun Qin
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas, USA
| | - Dorothy E Lewis
- Department of Internal Medicine, University of Texas Health Sciences Center, Houston, Texas, USA
| | - Andrew P Rice
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
171
|
Yarosh CA, Iacona JR, Lutz CS, Lynch KW. PSF: nuclear busy-body or nuclear facilitator? WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:351-67. [PMID: 25832716 PMCID: PMC4478221 DOI: 10.1002/wrna.1280] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 01/25/2023]
Abstract
PTB-associated splicing factor (PSF) is an abundant and essential nucleic acid-binding protein that participates in a wide range of gene regulatory processes and cellular response pathways. At the protein level, PSF consists of multiple domains, many of which remain poorly characterized. Although grouped in a family with the proteins p54nrb/NONO and PSPC1 based on sequence homology, PSF contains additional protein sequence not included in other family members. Consistently, PSF has also been implicated in functions not ascribed to p54nrb/NONO or PSPC1. Here, we provide a review of the cellular activities in which PSF has been implicated and what is known regarding the mechanisms by which PSF functions in each case. We propose that the complex domain arrangement of PSF allows for its diversity of function and integration of activities. Finally, we discuss recent evidence that individual activities of PSF can be regulated independently from one another through the activity of domain-specific co-factors.
Collapse
Affiliation(s)
- Christopher A Yarosh
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph R Iacona
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, NJ, USA
| | - Carol S Lutz
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers Biomedical and Health Sciences-New Jersey Medical School, Newark, NJ, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
172
|
Astro V, de Curtis I. Plasma membrane-associated platforms: Dynamic scaffolds that organize membrane-associated events. Sci Signal 2015; 8:re1. [DOI: 10.1126/scisignal.aaa3312] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
173
|
Responses of proteins to different ionic environment are linearly interrelated. J Chromatogr A 2015; 1387:32-41. [DOI: 10.1016/j.chroma.2015.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 01/03/2023]
|
174
|
Legartová S, Sbardella G, Kozubek S, Bártová E. Ellagic Acid-Changed Epigenome of Ribosomal Genes and Condensed RPA194-Positive Regions of Nucleoli in Tumour Cells. Folia Biol (Praha) 2015; 61:49-59. [PMID: 26333121 DOI: 10.14712/fb2015061020049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
We studied the effect of ellagic acid (EA) on the morphology of nucleoli and on the pattern of major proteins of the nucleolus. After EA treatment of HeLa cells, we observed condensation of nucleoli as documented by the pattern of argyrophilic nucleolar organizer regions (AgNORs). EA also induced condensation of RPA194-positive nucleolar regions, but no morphological changes were observed in nucleolar compartments positive for UBF1/2 proteins or fibrillarin. Studied morphological changes induced by EA were compared with the morphology of control, non-treated cells and with pronounced condensation of all nucleolar domains caused by actinomycin D (ACT-D) treatment. Similarly as ACT-D, but in a lesser extent, EA induced an increased number of 53BP1-positive DNA lesions. However, the main marker of DNA lesions, γH2AX, was not accumulated in body-like nuclear structures. An increased level of γH2AX was found by immunofluorescence and Western blots only after EA treatment. Intriguingly, the levels of fibrillarin, UBF1/2 and γH2AX were increased at the promoters of ribosomal genes, while 53BP1 and CARM1 levels were decreased by EA treatment at these genomic regions. In the entire genome, EA reduced H3R17 dimethylation. Taken together, ellagic acid is capable of significantly changing the nucleolar morphology and protein levels inside the nucleolus.
Collapse
Affiliation(s)
- S Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v. v. i., Brno, Czech Republic
| | - G Sbardella
- Epigenetic MedChem Lab, Università di Salerno Dipartimento di Farmacia, Fisciano, Salerno, Italy
| | - S Kozubek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v. v. i., Brno, Czech Republic
| | - E Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v. v. i., Brno, Czech Republic
| |
Collapse
|
175
|
Stixová L, Sehnalová P, Legartová S, Suchánková J, Hrušková T, Kozubek S, Sorokin DV, Matula P, Raška I, Kovařík A, Fulneček J, Bártová E. HP1β-dependent recruitment of UBF1 to irradiated chromatin occurs simultaneously with CPDs. Epigenetics Chromatin 2014; 7:39. [PMID: 25587355 PMCID: PMC4293114 DOI: 10.1186/1756-8935-7-39] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 12/12/2014] [Indexed: 11/24/2022] Open
Abstract
Background The repair of spontaneous and induced DNA lesions is a multistep process. Depending on the type of injury, damaged DNA is recognized by many proteins specifically involved in distinct DNA repair pathways. Results We analyzed the DNA-damage response after ultraviolet A (UVA) and γ irradiation of mouse embryonic fibroblasts and focused on upstream binding factor 1 (UBF1), a key protein in the regulation of ribosomal gene transcription. We found that UBF1, but not nucleolar proteins RPA194, TCOF, or fibrillarin, was recruited to UVA-irradiated chromatin concurrently with an increase in heterochromatin protein 1β (HP1β) level. Moreover, Förster Resonance Energy Transfer (FRET) confirmed interaction between UBF1 and HP1β that was dependent on a functional chromo shadow domain of HP1β. Thus, overexpression of HP1β with a deleted chromo shadow domain had a dominant-negative effect on UBF1 recruitment to UVA-damaged chromatin. Transcription factor UBF1 also interacted directly with DNA inside the nucleolus but no interaction of UBF1 and DNA was confirmed outside the nucleolus, where UBF1 recruitment to DNA lesions appeared simultaneously with cyclobutane pyrimidine dimers; this occurrence was cell-cycle-independent. Conclusions We propose that the simultaneous presence and interaction of UBF1 and HP1β at DNA lesions is activated by the presence of cyclobutane pyrimidine dimers and mediated by the chromo shadow domain of HP1β. This might have functional significance for nucleotide excision repair. Electronic supplementary material The online version of this article (doi:10.1186/1756-8935-7-39) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lenka Stixová
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Petra Sehnalová
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Soňa Legartová
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Jana Suchánková
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Tereza Hrušková
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Stanislav Kozubek
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Dmitry V Sorokin
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic ; Faculty of Informatics, Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic
| | - Pavel Matula
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic ; Faculty of Informatics, Masaryk University, Botanická 68a, 602 00 Brno, Czech Republic
| | - Ivan Raška
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01 Prague, Czech Republic
| | - Aleš Kovařík
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Jaroslav Fulneček
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | - Eva Bártová
- Academy of Sciences of the Czech Republic, Institute of Biophysics, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
176
|
Catalano A, O'Day DH. Evidence for nucleolar subcompartments in Dictyostelium. Biochem Biophys Res Commun 2014; 456:901-7. [PMID: 25522879 DOI: 10.1016/j.bbrc.2014.12.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
The nucleolus is a multifunctional nuclear compartment usually consisting of two to three subcompartments which represent stages of ribosomal biogenesis. It is linked to several human diseases including viral infections, cancer, and neurodegeneration. Dictyostelium is a model eukaryote for the study of fundamental biological processes as well as several human diseases however comparatively little is known about its nucleolus. Unlike most nucleoli it does not possess visible subcompartments at the ultrastructural level. Several recently identified nucleolar proteins in Dictyostelium leave the nucleolus after treatment with the rDNA transcription inhibitor actinomycin-D (AM-D). Different proteins exit in different ways, suggesting that previously unidentified nucleolar subcompartments may exist. The identification of nucleolar subcompartments would help to better understand the nucleolus in this model eukaryote. Here, we show that Dictyostelium nucleolar proteins nucleomorphin isoform NumA1 and Bud31 localize throughout the entire nucleolus while calcium-binding protein 4a localizes to only a portion, representing nucleolar subcompartment 1 (NoSC1). SWI/SNF complex member Snf12 localizes to a smaller area within NoSC1 representing a second nucleolar subcompartment, NoSC2. The nuclear/nucleolar localization signal KRKR from Snf12 localized GFP to NoSC2, and thus also appears to function as a nucleolar subcompartment localization signal. FhkA localizes to the nucleolar periphery displaying a similar pattern to that of Hsp32. Similarities between the redistribution patterns of Dictyostelium nucleolar proteins during nucleolar disruption as a result of either AM-D treatment or mitosis support these subcompartments. A model for the AM-D-induced redistribution patterns is proposed.
Collapse
Affiliation(s)
- Andrew Catalano
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd. N., Mississauga, Ontario L5L 1C6, Canada.
| | - Danton H O'Day
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd. N., Mississauga, Ontario L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
177
|
What macromolecular crowding can do to a protein. Int J Mol Sci 2014; 15:23090-140. [PMID: 25514413 PMCID: PMC4284756 DOI: 10.3390/ijms151223090] [Citation(s) in RCA: 393] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 01/17/2023] Open
Abstract
The intracellular environment represents an extremely crowded milieu, with a limited amount of free water and an almost complete lack of unoccupied space. Obviously, slightly salted aqueous solutions containing low concentrations of a biomolecule of interest are too simplistic to mimic the “real life” situation, where the biomolecule of interest scrambles and wades through the tightly packed crowd. In laboratory practice, such macromolecular crowding is typically mimicked by concentrated solutions of various polymers that serve as model “crowding agents”. Studies under these conditions revealed that macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, protein-protein interactions, protein-nucleic acid interactions, and pathological aggregation. The goal of this review is to systematically analyze currently available experimental data on the variety of effects of macromolecular crowding on a protein molecule. The review covers more than 320 papers and therefore represents one of the most comprehensive compendia of the current knowledge in this exciting area.
Collapse
|
178
|
Uversky VN, Kuznetsova IM, Turoverov KK, Zaslavsky B. Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates. FEBS Lett 2014; 589:15-22. [PMID: 25436423 DOI: 10.1016/j.febslet.2014.11.028] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/10/2014] [Accepted: 11/19/2014] [Indexed: 12/25/2022]
Abstract
Here, we hypothesize that intrinsically disordered proteins (IDPs) serve as important drivers of the intracellular liquid-liquid phase separations that generate various membrane-less organelles. This hypothesis is supported by the overwhelming abundance of IDPs in these organelles. Assembly and disassembly of these organelles are controlled by changes in the concentrations of IDPs, their posttranslational modifications, binding of specific partners, and changes in the pH and/or temperature of the solution. Each resulting phase provides a distinct solvent environment for other solutes leading to their unequal distribution within phases. The specificity and efficiency of such partitioning is determined by the nature of the IDP(s) and defines "targeted" enrichment of specific molecules in the resulting membrane-less organelles that determines their specific activities.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation; Biology Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation; St. Petersburg State Polytechnical University, St. Petersburg, Russian Federation
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation; St. Petersburg State Polytechnical University, St. Petersburg, Russian Federation
| | - Boris Zaslavsky
- AnalizaDx Inc., 3615 Superior Ave., Suite 4407B, Cleveland, OH 44114, USA
| |
Collapse
|
179
|
Park H, Han SS, Sako Y, Pack CG. Dynamic and unique nucleolar microenvironment revealed by fluorescence correlation spectroscopy. FASEB J 2014; 29:837-48. [PMID: 25404711 DOI: 10.1096/fj.14-254110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Organization and functions of the nucleolus is maintained by mobilities and interactions of nucleolar factors. Because the nucleolus is a densely packed structure, molecular crowding effects determined by the molecular concentrations and mobilities in the nucleolus should also be important for regulating nucleolar organization and functions. However, such molecular property of nucleolar organization is not fully understood. To understand the biophysical property of nucleolar organization, the diffusional behaviors of inert green fluorescent protein (GFP) oligomers with or without nuclear localization signals (NLSs) were analyzed under various conditions by fluorescence correlation spectroscopy. Our result demonstrates that the mobility of GFPs inside the nucleolus and the nucleoplasm can be represented by single free diffusion under normal conditions, even though the mobility in the nucleolus is considerably slower than that in the chromatin region. Moreover, the free diffusion of GFPs is found to be significantly size- and NLS-dependent only in the nucleolus. Interestingly, the mobility in the nucleolus is highly sensitive to ATP depletion, as well as actinomycin D (ActD) treatment. In contrast, the ultra-structure of the nucleolus was not significantly changed by ATP depletion but was changed by ActD treatment. These results suggest that the nucleolus behaves similarly to an open aqueous-phase medium with an increased molecular crowding effect that depends on both energy and transcription.
Collapse
Affiliation(s)
- Hweon Park
- *Department of Life Sciences, Korea University, Seoul, Republic of Korea; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan; and Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sung-Sik Han
- *Department of Life Sciences, Korea University, Seoul, Republic of Korea; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan; and Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yasushi Sako
- *Department of Life Sciences, Korea University, Seoul, Republic of Korea; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan; and Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Chan-Gi Pack
- *Department of Life Sciences, Korea University, Seoul, Republic of Korea; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan; and Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
180
|
Strang BL. Viral and cellular subnuclear structures in human cytomegalovirus-infected cells. J Gen Virol 2014; 96:239-252. [PMID: 25359764 DOI: 10.1099/vir.0.071084-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In human cytomegalovirus (HCMV)-infected cells, a dramatic remodelling of the nuclear architecture is linked to the creation, utilization and manipulation of subnuclear structures. This review outlines the involvement of several viral and cellular subnuclear structures in areas of HCMV replication and virus-host interaction that include viral transcription, viral DNA synthesis and the production of DNA-filled viral capsids. The structures discussed include those that promote or impede HCMV replication (such as viral replication compartments and promyelocytic leukaemia nuclear bodies, respectively) and those whose role in the infected cell is unclear (for example, nucleoli and nuclear speckles). Viral and cellular proteins associated with subnuclear structures are also discussed. The data reviewed here highlight advances in our understanding of HCMV biology and emphasize the complexity of HCMV replication and virus-host interactions in the nucleus.
Collapse
Affiliation(s)
- Blair L Strang
- Institute for Infection & Immunity, St George's, University of London, London, UK
| |
Collapse
|
181
|
Morgado-Palacin L, Llanos S, Urbano-Cuadrado M, Blanco-Aparicio C, Megias D, Pastor J, Serrano M. Non-genotoxic activation of p53 through the RPL11-dependent ribosomal stress pathway. Carcinogenesis 2014; 35:2822-30. [PMID: 25344835 DOI: 10.1093/carcin/bgu220] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nucleolar disruption has recently emerged as a relevant means to activate p53 through inhibition of HDM2 by ribosome-free RPL11. Most drugs that induce nucleolar disruption also possess important genotoxic activity, which can have lasting mutagenic effects. Therefore, it is of interest to identify compounds that selectively produce nucleolar disruption in the absence of DNA damage. Here, we have performed a high-throughput screening to search for nucleolar disruptors. We have identified an acridine derivative (PubChem CID-765471) previously known for its capacity to activate p53 independently of DNA damage, although the molecular mechanism underlying p53 activation had remained uncharacterized. We report that CID-765471 produces nucleolar disruption by inhibiting ribosomal DNA transcription in a process that includes the selective degradation of the RPA194 subunit of RNA polymerase I. Following nucleolar disruption, CID-765471 activates p53 through the RPL11/HDM2 pathway in the absence of detectable DNA damage. In a secondary screening of compounds approved for medical use, we identify two additional acridine derivatives, aminacrine and ethacridine, that operate in a similar manner as CID-765471. These findings provide the basis for non-genotoxic chemotherapeutic approaches that selectively target the nucleolus.
Collapse
Affiliation(s)
- Lucia Morgado-Palacin
- Tumour Suppression Group, Experimental Therapeutics Program and Confocal Microscopy Unit, Spanish National Cancer Research Centre (CNIO), Madrid, E28029, Spain
| | - Susana Llanos
- Tumour Suppression Group, Experimental Therapeutics Program and Confocal Microscopy Unit, Spanish National Cancer Research Centre (CNIO), Madrid, E28029, Spain
| | | | | | - Diego Megias
- Confocal Microscopy Unit, Spanish National Cancer Research Centre (CNIO), Madrid, E28029, Spain
| | | | - Manuel Serrano
- Tumour Suppression Group, Experimental Therapeutics Program and Confocal Microscopy Unit, Spanish National Cancer Research Centre (CNIO), Madrid, E28029, Spain
| |
Collapse
|
182
|
Bensaude O. Inhibiting eukaryotic transcription: Which compound to choose? How to evaluate its activity? Transcription 2014; 2:103-108. [PMID: 21922053 DOI: 10.4161/trns.2.3.16172] [Citation(s) in RCA: 427] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 04/28/2011] [Indexed: 02/07/2023] Open
Abstract
This review first discusses ways in which we can evaluate transcription inhibition, describe changes in nuclear structure due to transcription inhibition, and report on genes that are paradoxically stimulated by transcription inhibition. Next, it summarizes the characteristics and mechanisms of commonly used inhibitors: α-amanitin is highly selective for RNAP II and RNAP III but its action is slow, actinomycin D is fast but its selectivity is poor, CDK9 inhibitors such as DRB and flavopiridol are fast and reversible but many genes escape transcription inhibition. New compounds, such as triptolide, are fast and selective and able to completely arrest transcription by triggering rapid degradation of RNAP II.
Collapse
|
183
|
Peltonen K, Colis L, Liu H, Jäämaa S, Zhang Z, Af Hällström T, Moore HM, Sirajuddin P, Laiho M. Small molecule BMH-compounds that inhibit RNA polymerase I and cause nucleolar stress. Mol Cancer Ther 2014; 13:2537-46. [PMID: 25277384 DOI: 10.1158/1535-7163.mct-14-0256] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Activation of the p53 pathway has been considered a therapeutic strategy to target cancers. We have previously identified several p53-activating small molecules in a cell-based screen. Two of the compounds activated p53 by causing DNA damage, but this modality was absent in the other four. We recently showed that one of these, BMH-21, inhibits RNA polymerase I (Pol I) transcription, causes the degradation of Pol I catalytic subunit RPA194, and has potent anticancer activity. We show here that three remaining compounds in this screen, BMH-9, BMH-22, and BMH-23, cause reorganization of nucleolar marker proteins consistent with segregation of the nucleolus, a hallmark of Pol I transcription stress. Further, the compounds destabilize RPA194 in a proteasome-dependent manner and inhibit nascent rRNA synthesis and expression of the 45S rRNA precursor. BMH-9- and BMH-22-mediated nucleolar stress was detected in ex vivo-cultured human prostate tissues indicating good tissue bioactivity. Testing of closely related analogues showed that their activities were chemically constrained. Viability screen for BMH-9, BMH-22, and BMH-23 in the NCI60 cancer cell lines showed potent anticancer activity across many tumor types. Finally, we show that the Pol I transcription stress by BMH-9, BMH-22, and BMH-23 is independent of p53 function. These results highlight the dominant impact of Pol I transcription stress on p53 pathway activation and bring forward chemically novel lead molecules for Pol I inhibition, and, potentially, cancer targeting.
Collapse
Affiliation(s)
- Karita Peltonen
- Center for Drug Research, University of Helsinki, Helsinki, Finland
| | - Laureen Colis
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hester Liu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sari Jäämaa
- Center for Drug Research, University of Helsinki, Helsinki, Finland
| | - Zhewei Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Taija Af Hällström
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Henna M Moore
- Center for Drug Research, University of Helsinki, Helsinki, Finland
| | - Paul Sirajuddin
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marikki Laiho
- Center for Drug Research, University of Helsinki, Helsinki, Finland. Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
184
|
Bártová E, Foltánková V, Legartová S, Sehnalová P, Sorokin DV, Suchánková J, Kozubek S. Coilin is rapidly recruited to UVA-induced DNA lesions and γ-radiation affects localized movement of Cajal bodies. Nucleus 2014; 5:460-8. [PMID: 24859326 DOI: 10.4161/nucl.29229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cajal bodies are important nuclear structures containing proteins that preferentially regulate RNA-related metabolism. We investigated the cell-type specific nuclear distribution of Cajal bodies and the level of coilin, a protein of Cajal bodies, in non-irradiated and irradiated human tumor cell lines and embryonic stem (ES) cells. Cajal bodies were localized in different nuclear compartments, including DAPI-poor regions, in the proximity of chromocenters, and adjacent to nucleoli. The number of Cajal bodies per nucleus was cell cycle-dependent, with higher numbers occurring during G2 phase. Human ES cells contained a high coilin level in the nucleoplasm, but coilin-positive Cajal bodies were also identified in nuclei of mouse and human ES cells. Coilin, but not SMN, recognized UVA-induced DNA lesions, which was cell cycle-independent. Treatment with γ-radiation reduced the localized movement of Cajal bodies in many cell types and GFP-coilin fluorescence recovery after photobleaching was very fast in nucleoplasm in comparison with GFP-coilin recovery in DNA lesions. By contrast, nucleolus-localized coilin displayed very slow fluorescence recovery after photobleaching, which indicates very slow rates of protein diffusion, especially in nucleoli of mouse ES cells.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Veronika Foltánková
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Petra Sehnalová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Dmitry V Sorokin
- Faculty of Informatics; Masaryk University; Brno, Czech Republic
| | - Jana Suchánková
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno, Czech Republic
| |
Collapse
|
185
|
Abstract
This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease.
Collapse
Affiliation(s)
| | - Cornelius F. Boerkoel
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-604-875-2157; Fax: +1-604-875-2376
| |
Collapse
|
186
|
Poletto M, Lirussi L, Wilson DM, Tell G. Nucleophosmin modulates stability, activity, and nucleolar accumulation of base excision repair proteins. Mol Biol Cell 2014; 25:1641-52. [PMID: 24648491 PMCID: PMC4019495 DOI: 10.1091/mbc.e13-12-0717] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/19/2014] [Accepted: 03/10/2014] [Indexed: 01/25/2023] Open
Abstract
Nucleophosmin (NPM1) is a multifunctional protein that controls cell growth and genome stability via a mechanism that involves nucleolar-cytoplasmic shuttling. It is clear that NPM1 also contributes to the DNA damage response, yet its exact function is poorly understood. We recently linked NPM1 expression to the functional activation of the major abasic endonuclease in mammalian base excision repair (BER), apurinic/apyrimidinic endonuclease 1 (APE1). Here we unveil a novel role for NPM1 as a modulator of the whole BER pathway by 1) controlling BER protein levels, 2) regulating total BER capacity, and 3) modulating the nucleolar localization of several BER enzymes. We find that cell treatment with the genotoxin cisplatin leads to concurrent relocalization of NPM1 and BER components from nucleoli to the nucleoplasm, and cellular experiments targeting APE1 suggest a role for the redistribution of nucleolar BER factors in determining cisplatin toxicity. Finally, based on the use of APE1 as a representative protein of the BER pathway, our data suggest a function for BER proteins in the regulation of ribogenesis.
Collapse
Affiliation(s)
- Mattia Poletto
- Department of Medical and Biological Sciences, University of Udine, Udine 33100, Italy
| | - Lisa Lirussi
- Department of Medical and Biological Sciences, University of Udine, Udine 33100, Italy
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Gianluca Tell
- Department of Medical and Biological Sciences, University of Udine, Udine 33100, Italy
| |
Collapse
|
187
|
Golomb L, Volarevic S, Oren M. p53 and ribosome biogenesis stress: the essentials. FEBS Lett 2014; 588:2571-9. [PMID: 24747423 DOI: 10.1016/j.febslet.2014.04.014] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 12/18/2022]
Abstract
Cell proliferation and cell growth are two tightly linked processes, as the proliferation program cannot be executed without proper accumulation of cell mass, otherwise endangering the fate of the two daughter cells. It is therefore not surprising that ribosome biogenesis, a key element in cell growth, is regulated by many cell cycle regulators. This regulation is exerted transcriptionally and post-transcriptionally, in conjunction with numerous intrinsic and extrinsic signals. Those signals eventually converge at the nucleolus, the cellular compartment that is not only responsible for executing the ribosome biogenesis program, but also serves as a regulatory hub, responsible for integrating and transmitting multiple stress signals to the omnipotent cell fate gatekeeper, p53. In this review we discuss when, how and why p53 is activated upon ribosomal biogenesis stress, and how perturbation of this critical regulatory interplay may impact human disease.
Collapse
Affiliation(s)
- Lior Golomb
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sinisa Volarevic
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Croatia
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
188
|
TP53 supports basal-like differentiation of mammary epithelial cells by preventing translocation of deltaNp63 into nucleoli. Sci Rep 2014; 4:4663. [PMID: 24722541 PMCID: PMC3983616 DOI: 10.1038/srep04663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 03/27/2014] [Indexed: 12/19/2022] Open
Abstract
Multiple observations suggest a cell type-specific role for TP53 in mammary epithelia. We developed an in vitro assay, in which primary mouse mammary epithelial cells (mMECs) progressed from lumenal to basal-like phenotypes based on expression of Krt18 or ΔNp63, respectively. Such transition was markedly delayed in Trp53−/− mMECs suggesting that Trp53 is required for specification of the basal, but not lumenal cells. Evidence from human basal-like cell lines suggests that TP53 may support the activity of ΔNp63 by preventing its translocation from nucleoplasm into nucleoli. In human lumenal cells, activation of TP53 by inhibiting MDM2 or BRCA1 restored the nucleoplasmic expression of ΔNp63. Trp53−/− mMECs eventually lost epithelial features resulting in upregulation of MDM2 and translocation of ΔNp63 into nucleoli. We propose that TP63 may contribute to TP53-mediated oncogenic transformation of epithelial cells and shed light on tissue- and cell type-specific biases observed for TP53-related cancers.
Collapse
|
189
|
Abstract
The coordinated growth of cells and their organelles is a fundamental and poorly understood problem, with implications for processes ranging from embryonic development to oncogenesis. Recent experiments have shed light on the cell size-dependent assembly of membrane-less cytoplasmic and nucleoplasmic structures, including ribonucleoprotein (RNP) granules and other intracellular bodies. Many of these structures behave as condensed liquid-like phases of the cytoplasm/nucleoplasm. The phase transitions that appear to govern their assembly exhibit an intrinsic dependence on cell size, and may explain the size scaling reported for a number of structures. This size scaling could, in turn, play a role in cell growth and size control.
Collapse
Affiliation(s)
- Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| |
Collapse
|
190
|
Louvet E, Yoshida A, Kumeta M, Takeyasu K. Probing the stiffness of isolated nucleoli by atomic force microscopy. Histochem Cell Biol 2014; 141:365-81. [PMID: 24297448 DOI: 10.1007/s00418-013-1167-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2013] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, ribosome biogenesis occurs in the nucleolus, a membraneless nuclear compartment. Noticeably, the nucleolus is also involved in several nuclear functions, such as cell cycle regulation, non-ribosomal ribonucleoprotein complex assembly, aggresome formation and some virus assembly. The most intriguing question about the nucleolus is how such dynamics processes can occur in such a compact compartment. We hypothesized that its structure may be rather flexible. To investigate this, we used atomic force microscopy (AFM) on isolated nucleoli. Surface topography imaging revealed the beaded structure of the nucleolar surface. With the AFM's ability to measure forces, we were able to determine the stiffness of isolated nucleoli. We could establish that the nucleolar stiffness varies upon drastic morphological changes induced by transcription and proteasome inhibition. Furthermore, upon ribosomal proteins and LaminB1 knockdowns, the nucleolar stiffness was increased. This led us to propose a model where the nucleolus has steady-state stiffness dependent on ribosome biogenesis activity and requires LaminB1 for its flexibility.
Collapse
Affiliation(s)
- Emilie Louvet
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan,
| | | | | | | |
Collapse
|
191
|
Wada K, Sato M, Araki N, Kumeta M, Hirai Y, Takeyasu K, Furukawa K, Horigome T. Dynamics of WD-repeat containing proteins in SSU processome components. Biochem Cell Biol 2014; 92:191-9. [PMID: 24754225 DOI: 10.1139/bcb-2014-0007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nine WD-repeat containing proteins in human SSU processome components have been found in a HeLa cell nuclear matrix fraction. In these proteins, t-UTP sub-complex components, i.e., CIRH1A, UTP15, and WDR43, were shown to be immobilized in the fibrillar centers of nucleoli in living cells. In this study, the dynamics of the remaining six proteins fused with green fluorescent protein (GFP), i.e., PWP2-GFP, TBL3-GFP, GFP-UTP18, GFP-NOL10, GFP-WDR46, and GFP-WDSOF1, were examined in living cells. The findings were as follows. (i) The majority of UTP-B sub-complex components, i.e., PWP2-GFP, TBL3-GFP, and GFP-UTP18, are localized to the dense fibrillar component and granular component regions in nucleoli; (ii) When rRNA transcription is suppressed, the majority of GFP-fused UTP-B sub-complex components are localized in the cap and body regions of nucleoli. (iii) The mobility of these proteins except for GFP-WDSOF1, and half of GFP-UTP18 and GFP-WDR46, respectively, is very low in living cells. (iv) When rRNA transcription is suppressed, the mobility of these proteins except for GFP-WDSOF1 is accelerated but still slow. These findings and others suggest that these WD-repeat proteins other than GFP-WDSOF1 found in the nuclear matrix fraction bind tightly to some macro-protein complexes and act as a scaffold or a core for the complexes in nucleoli.
Collapse
Affiliation(s)
- Kouko Wada
- a Graduate School of Science and Technology, Department of Chemistry, Faculty of Science, Niigata University, Igarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Hutten S, Chachami G, Winter U, Melchior F, Lamond AI. A role for the Cajal-body-associated SUMO isopeptidase USPL1 in snRNA transcription mediated by RNA polymerase II. J Cell Sci 2014; 127:1065-78. [PMID: 24413172 PMCID: PMC3937775 DOI: 10.1242/jcs.141788] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cajal bodies are nuclear structures that are involved in biogenesis of snRNPs and snoRNPs, maintenance of telomeres and processing of histone mRNA. Recently, the SUMO isopeptidase USPL1 was identified as a component of Cajal bodies that is essential for cellular growth and Cajal body integrity. However, a cellular function for USPL1 is so far unknown. Here, we use RNAi-mediated knockdown in human cells in combination with biochemical and fluorescence microscopy approaches to investigate the function of USPL1 and its link to Cajal bodies. We demonstrate that levels of snRNAs transcribed by RNA polymerase (RNAP) II are reduced upon knockdown of USPL1 and that downstream processes such as snRNP assembly and pre-mRNA splicing are compromised. Importantly, we find that USPL1 associates directly with U snRNA loci and that it interacts and colocalises with components of the Little Elongation Complex, which is involved in RNAPII-mediated snRNA transcription. Thus, our data indicate that USPL1 plays a key role in RNAPII-mediated snRNA transcription.
Collapse
Affiliation(s)
- Saskia Hutten
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | | | | | | | | |
Collapse
|
193
|
Neufeld N, Brody Y, Shav-Tal Y. Quantifying the ratio of spliceosome components assembled on pre-mRNA. Methods Mol Biol 2014; 1126:257-269. [PMID: 24549670 DOI: 10.1007/978-1-62703-980-2_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
RNA processing by the splicing machinery removes intronic sequences from pre-mRNA to generate mature mRNA transcripts. Many splicing events occur co-transcriptionally when the pre-mRNA is still associated with the transcription machinery. This mechanism raises questions regarding the number of spliceosomes associated with the pre-mRNA at a given time. In this protocol, we present a quantitative FISH approach that measures the ratio of intensities between two different spliceosomal components associated on a nascent mRNA, and compares to the number of introns in the mRNA, thereby calculating the number of spliceosome complexes assembled with each transcript.
Collapse
Affiliation(s)
- Noa Neufeld
- The Mina & Everard Goodman Faculty of Life Sciences & Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | | | | |
Collapse
|
194
|
Quiskamp N, Poeter M, Raabe CA, Hohenester UM, König S, Gerke V, Rescher U. The tumor suppressor annexin A10 is a novel component of nuclear paraspeckles. Cell Mol Life Sci 2014; 71:311-29. [PMID: 23715859 PMCID: PMC11113197 DOI: 10.1007/s00018-013-1375-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 04/17/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
Abstract
Annexin A10 is the latest identified member of the annexin family of Ca(2+)- and phospholipid-binding proteins. In previous studies, downregulation of annexin A10 was correlated with dedifferentiation, invasion, and tumor progression, pointing to a possible tumor suppressor role. However, the biochemical characteristics and functions of annexin A10 remain unknown. We show that annexin A10 displays biochemical characteristics atypical for an annexin, indicating a Ca(2+)- and membrane-binding-independent function. Annexin A10 co-localizes with the mRNA-binding proteins SFPQ and PSPC1 at paraspeckles, an only recently discovered nuclear body, and decreases paraspeckle numbers when overexpressed in HeLa cells. In addition, annexin A10 relocates to dark perinucleolar caps upon transcriptional inhibition of RNA polymerase II. We mapped the cap-binding function of annexin A10 to the proximal part of the core domain, which is missing in the short isoform of annexin A10, and show its independence from the remaining functional type II Ca(2+)-binding site. In contrast to this, paraspeckle recruitment required additional core regions and was negatively affected by the mutation of the last type II Ca(2+)-binding site. Additionally, we show that overexpression of annexin A10 in HeLa cells increases their sensitivity to apoptosis and reduces colony formation. The identification of unique nuclear and biochemical characteristics of annexin A10 points towards its membrane-independent role in paraspeckle-associated mRNA regulation or processing.
Collapse
Affiliation(s)
- Nina Quiskamp
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Münster, 48149 Münster, Germany
| | - Michaela Poeter
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Münster, 48149 Münster, Germany
| | - Carsten Alexander Raabe
- Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Ulli Martin Hohenester
- Integrated Functional Genomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Simone König
- Integrated Functional Genomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Münster, 48149 Münster, Germany
| | - Ursula Rescher
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, and Interdisciplinary Clinical Research Centre, University of Münster, 48149 Münster, Germany
| |
Collapse
|
195
|
Shelkovnikova TA, Robinson HK, Troakes C, Ninkina N, Buchman VL. Compromised paraspeckle formation as a pathogenic factor in FUSopathies. Hum Mol Genet 2013; 23:2298-312. [PMID: 24334610 PMCID: PMC3976330 DOI: 10.1093/hmg/ddt622] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Paraspeckles are nuclear bodies formed by a set of specialized proteins assembled on the long non-coding RNA NEAT1; they have a role in nuclear retention of hyperedited transcripts and are associated with response to cellular stress. Fused in sarcoma (FUS) protein, linked to a number of neurodegenerative disorders, is an essential paraspeckle component. We have shown that its recruitment to these nuclear structures is mediated by the N-terminal region and requires prion-like activity. FUS interacts with p54nrb/NONO, a major constituent of paraspeckles, in an RNA-dependent manner and responds in the same way as other paraspeckle proteins to alterations in cellular homeostasis such as changes in transcription rates or levels of protein methylation. FUS also regulates NEAT1 levels and paraspeckle formation in cultured cells, and FUS deficiency leads to loss of paraspeckles. Pathological gain-of-function FUS mutations might be expected to affect paraspeckle function in human diseases because mislocalized amyotrophic lateral sclerosis (ALS)-linked FUS variants sequester other paraspeckle proteins into aggregates formed in cultured cells and into neuronal inclusions in a transgenic mouse model of FUSopathy. Furthermore, we detected abundant p54nrb/NONO-positive inclusions in motor neurons of patients with familial forms of ALS caused by FUS mutations, but not in other ALS cases. Our results suggest that both loss and gain of FUS function can trigger disruption of paraspeckle assembly, which may impair protective responses in neurons and thereby contribute to the pathogenesis of FUSopathies.
Collapse
|
196
|
Llana-Ruiz-Cabello M, Gutiérrez-Praena D, Pichardo S, Moreno FJ, Bermúdez JM, Aucejo S, Cameán AM. Cytotoxicity and morphological effects induced by carvacrol and thymol on the human cell line Caco-2. Food Chem Toxicol 2013; 64:281-90. [PMID: 24326232 DOI: 10.1016/j.fct.2013.12.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/02/2013] [Accepted: 12/03/2013] [Indexed: 11/28/2022]
Abstract
Essential oils used as additives in the food industry due to its flavour, antimicrobial and antioxidant properties. Therefore, human can be exposed orally to these compounds through the ingestion of foods. In this sense, the present work aims to assess toxicological effects of oregano essential oil on the digestive tract. In concrete, the cytotoxic effects of two components of the oregano essential oils, carvacrol and thymol, and their mixture, on the intestinal cells line Caco-2 after 24 and 48 h of exposure are studied. The basal cytotoxicity endpoints assayed (total protein content, neutral red uptake and the tetrazolium salt reduction) and the annexin/propidium iodide staining indicated that carvacrol and the mixture carvacrol/thymol induced toxic effects. Moreover, a morphological study was performed in order to determine the ultrastructural cellular damages caused by these substances. The main morphological alterations were vacuolated cytoplasm, altered organelles and finally cell death. In addition, although no cytotoxic effects were recorded for thymol at any concentration and time of exposure, ultrastructural changes evidenced cellular damage such as lipid degeneration, mitochondrial damage, nucleolar segregation and apoptosis.
Collapse
Affiliation(s)
- María Llana-Ruiz-Cabello
- Area of Toxicology, Faculty of Pharmacy, University of Seville, Profesor García González No. 2, 41012 Seville, Spain
| | - Daniel Gutiérrez-Praena
- Area of Toxicology, Faculty of Pharmacy, University of Seville, Profesor García González No. 2, 41012 Seville, Spain
| | - Silvia Pichardo
- Area of Toxicology, Faculty of Pharmacy, University of Seville, Profesor García González No. 2, 41012 Seville, Spain.
| | - F Javier Moreno
- Area of Cellular Biology, Faculty of Biology, University of Seville, Avda. Reina Mercedes s/n, 41012 Seville, Spain
| | - José María Bermúdez
- Area of Packaging Materials and Systems, ITENE, C/Albert Einstein 1, 46980 Paterna, Valencia, Spain
| | - Susana Aucejo
- Area of Packaging Materials and Systems, ITENE, C/Albert Einstein 1, 46980 Paterna, Valencia, Spain
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Seville, Profesor García González No. 2, 41012 Seville, Spain
| |
Collapse
|
197
|
Sato M, Araki N, Kumeta M, Takeyasu K, Taguchi Y, Asai T, Furukawa K, Horigome T. Interaction, mobility, and phosphorylation of human orthologues of WD repeat-containing components of the yeast SSU processome t-UTP sub-complex. Biochem Cell Biol 2013; 91:466-75. [DOI: 10.1139/bcb-2013-0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We previously proposed a dynamic scaffold model for inner nuclear structure formation. In this model, structures in inter-chromatin regions are maintained through dynamic interaction of protein complex modules, and WD repeat- and disordered region-rich proteins and others act as scaffolds for these protein complexes. In this study, three WD-repeat proteins, i.e., CIRH1A, UTP15, and WDR43, were found in the nuclear matrix fraction and speculated to be present in the human t-UTP sub-complex of SSU processomes. The results obtained as to their subnuclear localization, binding with each other, mobilities, and phosphorylation were: (i) the majority of these proteins fused with GFP are localized to the fibrillar center region in nucleoli. (ii) these 3 proteins bind directly with each other in vitro. (iii) the movement of these proteins is very slow in living cells and independent of rDNA transcription. (iv) His-CIRH1A is phosphorylated at Thr131 by a mitotic Xenopus egg extract, and binding with GST-UTP15 and GST-WDR43 is suppressed. These findings and others suggest that these 3 WD proteins found in the matrix fraction bind directly with each other, bind tightly to fibrillar center regions, and comprise a part of the nucleolar structure. These results are also consistent with our dynamic scaffold model.
Collapse
Affiliation(s)
- Manae Sato
- Graduate School of Science and Technology, Niigata University, Igarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Nanase Araki
- Graduate School of Science and Technology, Niigata University, Igarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Masahiro Kumeta
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Yoshida-Konoe-cho, Kyoto 606-8501, Japan
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Yoshida-Konoe-cho, Kyoto 606-8501, Japan
| | - Yusuke Taguchi
- Department of Chemistry, Faculty of Science, Niigata University, Igarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Takahiro Asai
- Department of Chemistry, Faculty of Science, Niigata University, Igarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Kazuhiro Furukawa
- Graduate School of Science and Technology, Niigata University, Igarashi-2, Nishi-ku, Niigata 950-2181, Japan
- Department of Chemistry, Faculty of Science, Niigata University, Igarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tsuneyoshi Horigome
- Graduate School of Science and Technology, Niigata University, Igarashi-2, Nishi-ku, Niigata 950-2181, Japan
- Department of Chemistry, Faculty of Science, Niigata University, Igarashi-2, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
198
|
Su H, Kodiha M, Lee S, Stochaj U. Identification of novel markers that demarcate the nucleolus during severe stress and chemotherapeutic treatment. PLoS One 2013; 8:e80237. [PMID: 24223222 PMCID: PMC3819286 DOI: 10.1371/journal.pone.0080237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/01/2013] [Indexed: 01/08/2023] Open
Abstract
The nucleolus, the ribosomal factory of the cell, has emerged as a key player that regulates many aspects of cell biology. Several thousand proteins associate at least transiently with nucleoli, thereby generating a highly dynamic compartment with a protein profile which is sensitive to changes in cell physiology and pharmacological agents. Powerful tools that reliably demarcate the nucleoli are a prerequisite to measure their composition and activities. Previously, we developed quantitative methods to measure fluorescently labeled molecules in nucleoli. While these tools identify nucleoli under control and mild stress conditions, the accurate detection of nucleolar boundaries under harsh experimental conditions is complicated by the lack of appropriate markers for the nucleolar compartment. Using fluorescence microscopy we have now identified new marker proteins to detect nucleoli upon (a) severe stress and (b) drug treatments that trigger a pronounced reorganization of nucleoli. Our results demonstrate that nucleolin is an ideal marker to delimit nucleoli when cells are exposed to heat or oxidative stress. Furthermore, we show for the first time that cellular apoptosis susceptibility protein (CAS) and human antigen R protein (HuR) are excluded from nucleoli and can be employed to delimit these compartments under severe conditions that redistribute major nucleolar proteins. As proof-of-principle, we used these markers to demarcate nucleoli in cells treated with pharmacological compounds that disrupt the nucleolar organization. Furthermore, to gain new insights into the biology of the nucleolus, we applied our protocols and quantified stress- and drug-induced changes in nucleolar organization and function. Finally, we show that CAS, HuR and nucleolin not only identify nucleoli in optical sections, but are also suitable to demarcate the nucleolar border following 3D reconstruction. Taken together, our studies present novel marker proteins that delimit nucleoli with high confidence under a variety of experimental settings.
Collapse
Affiliation(s)
- Haitong Su
- McGill University, Department of Physiology, Montreal, Quebec, Canada
| | - Mohamed Kodiha
- McGill University, Department of Physiology, Montreal, Quebec, Canada
| | - Sunghoon Lee
- McGill University, Department of Physiology, Montreal, Quebec, Canada
| | - Ursula Stochaj
- McGill University, Department of Physiology, Montreal, Quebec, Canada
| |
Collapse
|
199
|
Tsai YC, Greco TM, Cristea IM. Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis. Mol Cell Proteomics 2013; 13:73-83. [PMID: 24113281 DOI: 10.1074/mcp.m113.031377] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been shown that SIRT7 regulates rDNA transcription and that reduced SIRT7 levels inhibit tumor growth. This anti-tumor effect could be due to reduced Pol I activity and perturbed ribosome biogenesis. In this study, using pulse labeling with RNA and amino acid analogs, we found that SIRT7 knockdown efficiently suppressed both RNA and protein synthesis. Surprisingly, SIRT7 knockdown preferentially inhibited protein synthesis over rDNA transcription, whereas the levels of both were reduced to similar extents following Pol I knockdown. Using an affinity purification mass spectrometry approach and functional analyses of the resulting SIRT7 interactome, we identified and validated SIRT7 interactions with proteins involved in ribosomal biogenesis. Indeed, SIRT7 co-fractionated with monoribosomes within a sucrose gradient. Using reciprocal isolations, we determined that SIRT7 interacts specifically with mTOR and GTF3C1, a component of the Pol III transcription factor TFIIIC2 complex. Further studies found that SIRT7 knockdown triggered an increase in the levels of LC3B-II, an autophagosome marker, suggesting a link between SIRT7 and the mTOR pathway. Additionally, we provide several lines of evidence that SIRT7 plays a role in modulating Pol III function. Immunoaffinity purification of SIRT7-GFP from a nuclear fraction demonstrated specific SIRT7 interaction with five out of six components of the TFIIIC2 complex, but not with the TFIIIA or TFIIIB complex, the former of which is required for Pol III-dependent transcription of tRNA genes. ChIP assays showed SIRT7 localization to the Pol III targeting genes, and SIRT7 knockdown triggered a reduction in tRNA levels. Taken together, these data suggest that SIRT7 may regulate Pol III transcription through mTOR and the TFIIIC2 complex. We propose that SIRT7 is involved in multiple pathways involved in ribosome biogenesis, and we hypothesize that its down-regulation may contribute to an antitumor effect, partly through the inhibition of protein synthesis.
Collapse
Affiliation(s)
- Yuan-Chin Tsai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | | | | |
Collapse
|
200
|
Proteome-wide Identification of Poly(ADP-Ribosyl)ation Targets in Different Genotoxic Stress Responses. Mol Cell 2013; 52:272-85. [DOI: 10.1016/j.molcel.2013.08.026] [Citation(s) in RCA: 301] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/28/2013] [Accepted: 08/13/2013] [Indexed: 01/01/2023]
|