151
|
Wang CW, Lee YC, Lin YJ, Firdi NP, Muzakky H, Liu TC, Lai PJ, Wang CH, Wang YC, Yu MH, Wu CH, Chao TK. Deep Learning Can Predict Bevacizumab Therapeutic Effect and Microsatellite Instability Directly from Histology in Epithelial Ovarian Cancer. J Transl Med 2023; 103:100247. [PMID: 37741509 DOI: 10.1016/j.labinv.2023.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
Epithelial ovarian cancer (EOC) remains a significant cause of mortality among gynecologic cancers, with the majority of cases being diagnosed at an advanced stage. Before targeted therapies were available, EOC treatment relied largely on debulking surgery and platinum-based chemotherapy. Vascular endothelial growth factors have been identified as inducing tumor angiogenesis. According to several clinical trials, anti-vascular endothelial growth factor-targeted therapy with bevacizumab was effective in all phases of EOC treatment. However, there are currently no biomarkers accessible for regular therapeutic use despite the importance of patient selection. Microsatellite instability (MSI), caused by a deficiency of the DNA mismatch repair system, is a molecular abnormality observed in EOC associated with Lynch syndrome. Recent evidence suggests that angiogenesis and MSI are interconnected. Developing predictive biomarkers, which enable the selection of patients who might benefit from bevacizumab-targeted therapy or immunotherapy, is critical for realizing personalized precision medicine. In this study, we developed 2 improved deep learning methods that eliminate the need for laborious detailed image-wise annotations by pathologists and compared them with 3 state-of-the-art methods to not only predict the efficacy of bevacizumab in patients with EOC using mismatch repair protein immunostained tissue microarrays but also predict MSI status directly from histopathologic images. In prediction of therapeutic outcomes, the 2 proposed methods achieved excellent performance by obtaining the highest mean sensitivity and specificity score using MSH2 or MSH6 markers and outperformed 3 state-of-the-art deep learning methods. Moreover, both statistical analysis results, using Cox proportional hazards model analysis and Kaplan-Meier progression-free survival analysis, confirm that the 2 proposed methods successfully differentiate patients with positive therapeutic effects and lower cancer recurrence rates from patients experiencing disease progression after treatment (P < .01). In prediction of MSI status directly from histopathology images, our proposed method also achieved a decent performance in terms of mean sensitivity and specificity score even for imbalanced data sets for both internal validation using tissue microarrays from the local hospital and external validation using whole section slides from The Cancer Genome Atlas archive.
Collapse
Affiliation(s)
- Ching-Wei Wang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yu-Ching Lee
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yi-Jia Lin
- Department of Pathology, Tri-Service General Hospital, Taipei, Taiwan; Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan
| | - Nabila Puspita Firdi
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hikam Muzakky
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Tzu-Chien Liu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Po-Jen Lai
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, Taipei, Taiwan; Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chi Wang
- Department of Gynecology and Obstetrics, Tri-Service General Hospital, Taipei, Taiwan; Department of Gynecology and Obstetrics, National Defense Medical Center, Taipei, Taiwan
| | - Mu-Hsien Yu
- Department of Gynecology and Obstetrics, Tri-Service General Hospital, Taipei, Taiwan; Department of Gynecology and Obstetrics, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Hua Wu
- Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, Taipei, Taiwan; Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
152
|
Randall LM, O'Malley DM, Monk BJ, Coleman RL, Gaillard S, Adams S, Duska LR, Dalton H, Holloway RW, Huang M, Chon HS, Cloven NG, ElNaggar AC, O'Cearbhaill RE, Waggoner S, Tarkar A, Striha A, Nelsen LM, Baines A, Samnotra V, Konstantinopoulos PA. Niraparib and dostarlimab for the treatment of recurrent platinum-resistant ovarian cancer: results of a Phase II study (MOONSTONE/GOG-3032). Gynecol Oncol 2023; 178:161-169. [PMID: 37890345 PMCID: PMC11185194 DOI: 10.1016/j.ygyno.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVE This study assessed the efficacy, safety, and health-related quality of life (HRQoL) of the treatment regimen of dostarlimab, a programmed death-1 inhibitor, combined with niraparib, a poly (ADP-ribose) polymerase inhibitor, in patients with BRCA wild type (BRCAwt) recurrent platinum-resistant ovarian cancer (PROC) who had previously received bevacizumab treatment. METHODS This Phase II, open-label, single-arm, multicenter study, conducted in the USA, enrolled patients with recurrent PROC to receive niraparib and dostarlimab until disease progression or unacceptable toxicity (up to 3 years). A preplanned interim futility analysis was performed after the first 41 patients had undergone ≥1 radiographic evaluation (approximately 9 weeks from the first treatment). RESULTS The prespecified interim futility criterion was met and the study was therefore terminated. For the 41 patients assessed, the objective response rate (ORR) was 7.3% (95% confidence interval: 1.5-19.9); no patients achieved a complete response, 3 patients (7.3%) achieved a partial response (duration of response; 3.0, 3.8, and 9.2 months, respectively), and 9 patients (22.0%) had stable disease. In total, 39 patients (95.1%) experienced a treatment-related adverse event, but no new safety issues were observed. HRQoL, assessed using FOSI, or Functional Assessment of Cancer Therapy - Ovarian Symptom Index scores, worsened over time compared with baseline scores. CONCLUSIONS The study was terminated due to the observed ORR at the interim futility analysis. This highlights a need for effective therapies in treating patients with recurrent BRCAwt PROC.
Collapse
Affiliation(s)
- Leslie M Randall
- Virginia Commonwealth University, Massey Cancer Center, Richmond, VA, USA.
| | - David M O'Malley
- The Ohio State University, James Comprehensive Cancer Center, Columbus, OH, USA
| | - Bradley J Monk
- HonorHealth Research Institute, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Robert L Coleman
- Sarah Cannon Research Institute (SCRI) (GOG), Nashville, TN, USA
| | | | - Sarah Adams
- The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | | | | | | | - Marilyn Huang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hye Sook Chon
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | - Roisin E O'Cearbhaill
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Ledermann JA, Shapira-Frommer R, Santin AD, Lisyanskaya AS, Pignata S, Vergote I, Raspagliesi F, Sonke GS, Birrer M, Provencher DM, Sehouli J, Colombo N, González-Martín A, Oaknin A, Ottevanger PB, Rudaitis V, Kobie J, Nebozhyn M, Edmondson M, Sun Y, Cristescu R, Jelinic P, Keefe SM, Matulonis UA. Molecular determinants of clinical outcomes of pembrolizumab in recurrent ovarian cancer: Exploratory analysis of KEYNOTE-100. Gynecol Oncol 2023; 178:119-129. [PMID: 37862791 DOI: 10.1016/j.ygyno.2023.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/22/2023]
Abstract
OBJECTIVE This prespecified exploratory analysis evaluated the association of gene expression signatures, tumor mutational burden (TMB), and multiplex immunohistochemistry (mIHC) tumor microenvironment-associated cell phenotypes with clinical outcomes of pembrolizumab in advanced recurrent ovarian cancer (ROC) from the phase II KEYNOTE-100 study. METHODS Pembrolizumab-treated patients with evaluable RNA-sequencing (n = 317), whole exome sequencing (n = 293), or select mIHC (n = 125) data were evaluated. The association between outcomes (objective response rate [ORR], progression-free survival [PFS], and overall survival [OS]) and gene expression signatures (T-cell-inflamed gene expression profile [TcellinfGEP] and 10 non-TcellinfGEP signatures), TMB, and prespecified mIHC cell phenotype densities as continuous variables was evaluated using logistic (ORR) and Cox proportional hazards regression (PFS; OS). One-sided p-values were calculated at prespecified α = 0.05 for TcellinfGEP, TMB, and mIHC cell phenotypes and at α = 0.10 for non-TcellinfGEP signatures; all but TcellinfGEP and TMB were adjusted for multiplicity. RESULTS No evidence of associations between ORR and key axes of gene expression was observed. Negative associations were observed between outcomes and TcellinfGEP-adjusted glycolysis (PFS, adjusted-p = 0.019; OS, adjusted-p = 0.085) and hypoxia (PFS, adjusted-p = 0.064) signatures. TMB as a continuous variable was not associated with outcomes (p > 0.05). Positive associations were observed between densities of myeloid cell phenotypes CD11c+ and CD11c+/MHCII-/CD163-/CD68- in the tumor compartment and ORR (adjusted-p = 0.025 and 0.013, respectively). CONCLUSIONS This exploratory analysis in advanced ROC did not find evidence for associations between gene expression signatures and outcomes of pembrolizumab. mIHC analysis suggests CD11c+ and CD11c+/MHCII-/CD163-/CD68- phenotypes representing myeloid cell populations may be associated with improved outcomes with pembrolizumab in advanced ROC. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, NCT02674061.
Collapse
Affiliation(s)
- Jonathan A Ledermann
- Department of Oncology, UCL Cancer Institute, University College London, London, United Kingdom.
| | - Ronnie Shapira-Frommer
- The Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center, Tel HaShomer Hospital, Ramat Gan, Israel
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University, New Haven, CT, United States
| | - Alla S Lisyanskaya
- Department of Oncogynecology, St. Petersburg City Clinical Oncology Dispensary, St. Petersburg, Russia
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Ignace Vergote
- Department of Obstetrics and Gynaecology, Division of Gynecologic Oncology, University Hospital Leuven, Leuven, Belgium
| | | | - Gabe S Sonke
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Michael Birrer
- UAMS Winthrop P. Rockefeller Cancer Institute, Little Rock, AR, United States
| | - Diane M Provencher
- Centre Hospitalier de l'Université de Montréal (CHUM), Institut du Cancer de Montréal, Montreal, Canada
| | - Jalid Sehouli
- Gynecology with Center of Oncological Surgery, Charité-Medical University of Berlin, Berlin, Germany
| | - Nicoletta Colombo
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy; European Institute of Oncology, IRCCS, Milan, Italy
| | - Antonio González-Martín
- Department of Medical Oncology and Program in Solid Tumors-Cima, Cancer Center Clínica Universidad de Navarra, Madrid, Spain
| | - Ana Oaknin
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - P B Ottevanger
- Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vilius Rudaitis
- Clinic of Obstetrics and Gynecology, Vilnius University Institute of Clinical Medicine, Vilnius, Lithuania
| | - Julie Kobie
- Merck & Co., Inc., Rahway, NJ, United States
| | | | | | - Yuan Sun
- Merck & Co., Inc., Rahway, NJ, United States
| | | | | | | | - Ursula A Matulonis
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
154
|
Eskander RN, Moore KN, Monk BJ, Herzog TJ, Annunziata CM, O’Malley DM, Coleman RL. Overcoming the challenges of drug development in platinum-resistant ovarian cancer. Front Oncol 2023; 13:1258228. [PMID: 37916177 PMCID: PMC10616588 DOI: 10.3389/fonc.2023.1258228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/11/2023] [Indexed: 11/03/2023] Open
Abstract
The definition of "platinum-resistant ovarian cancer" has evolved; it now also reflects cancers for which platinum treatment is no longer an option. Standard of care for platinum-resistant ovarian cancer is single-agent, non-platinum chemotherapy with or without bevacizumab, which produces modest response rates, with the greatest benefits achieved using weekly paclitaxel. Several recent phase 3 trials of pretreated patients with prior bevacizumab exposure failed to meet their primary efficacy endpoints, highlighting the challenge in improving clinical outcomes among these patients. Combination treatment with antiangiogenics has improved outcomes, whereas combination strategies with immune checkpoint inhibitors have yielded modest results. Despite extensive translational research, there has been a lack of reliable and established biomarkers that predict treatment response in platinum-resistant ovarian cancer. Additionally, in the platinum-resistant setting, implications for the time between the penultimate dose of platinum therapy and platinum retreatment remain an area of debate. Addressing the unmet need for an effective treatment in the platinum-resistant setting requires thoughtful clinical trial design based on a growing understanding of the disease. Recent cancer drug approvals highlight the value of incorporating molecular phenotypes to better define patients who are more likely to respond to novel therapies. Clinical trials designed per the Gynecologic Cancer InterGroup recommendations-which advocate against relying solely upon the platinum-free interval-will help advance our understanding of recurrent ovarian cancer response where platinum rechallenge in the platinum-resistant setting may be considered. The inclusion of biomarkers in clinical trials will improve patient stratification and potentially demonstrate correlations with biomarker expression and duration of response. With the efficacy of antibody-drug conjugates shown for the treatment of some solid and hematologic cancers, current trials are evaluating the use of various novel conjugates in the setting of platinum-resistant ovarian cancer. Emerging novel treatments coupled with combination trials and biomarker explorations offer encouraging results for potential strategies to improve response rates and prolong progression-free survival in this population with high unmet need. This review outlines existing data from contemporary clinical trials of patients with platinum-resistant ovarian cancer and suggests historical synthetic benchmarks for non-randomized trials.
Collapse
Affiliation(s)
- Ramez N. Eskander
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Rebecca and John Moores Cancer Center, University of California San Diego Health, San Diego, CA, United States
| | - Kathleen N. Moore
- Gynecologic Oncology, Stephenson Cancer Center, The University of Oklahoma College of Medicine, Oklahoma, OK, United States
| | - Bradley J. Monk
- Gynecologic Oncology, HonorHealth Research Institute, University of Arizona College of Medicine, Creighton University School of Medicine, Phoenix, AZ, United States
| | - Thomas J. Herzog
- Obstetrics and Gynecology, University of Cincinnati Cancer Center, Cincinnati, OH, United States
| | | | - David M. O’Malley
- Division of Gynecologic Oncology, The Ohio State University and The James Comprehensive Cancer Center, Columbus, OH, United States
| | - Robert L. Coleman
- Gynecologic Oncology, US Oncology Research, Texas Oncology, The Woodlands, TX, United States
| |
Collapse
|
155
|
Luo H, Wang W, Mai J, Yin R, Cai X, Li Q. The nexus of dynamic T cell states and immune checkpoint blockade therapy in the periphery and tumor microenvironment. Front Immunol 2023; 14:1267918. [PMID: 37881432 PMCID: PMC10597640 DOI: 10.3389/fimmu.2023.1267918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapies, that is, using monoclonal antibodies to reinvigorate tumor-reactive, antigen-specific T cells from the inhibitory effects of CTLA-4, PD-1 and PD-L1 immune checkpoints, have revolutionized the therapeutic landscape of modern oncology. However, only a subset of patients can benefit from the ICB therapy. Biomarkers associated with ICB response, resistance and prognosis have been subjected to intensive research in the past decade. Early studies focused on the analysis of tumor specimens and their residing microenvironment. However, biopsies can be challenging to obtain in clinical practice, and do not reflect the dynamic changes of immunological parameters during the ICB therapy. Recent studies have investigated profiles of antigen-specific T cells derived from the peripheral compartment using multi-omics approaches. By tracking the clonotype and diversity of tumor-reactive T cell receptor repertoire, these studies collectively establish that de novo priming of antigen-specific T cells in peripheral blood occurs throughout the course of ICB, whereas preexisting T cells prior to ICB are exhausted to various degrees. Here, we review what is known about ICB-induced T cell phenotypic and functional changes in cancer patients both within the tumor microenvironment and in the peripheral compartment. A better understanding of parameters influencing the response to ICBs will provide rationales for developing novel diagnostics and combinatorial therapeutic strategies to maximize the clinical efficacies of ICB therapies.
Collapse
Affiliation(s)
- Hong Luo
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenxiang Wang
- Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jia Mai
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rutie Yin
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuyu Cai
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qintong Li
- Department of Obstetrics & Gynecology, Laboratory Medicine and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
156
|
Launonen IM, Vähärautio A, Färkkilä A. The Emerging Role of the Single-Cell and Spatial Tumor Microenvironment in High-Grade Serous Ovarian Cancer. Cold Spring Harb Perspect Med 2023; 13:a041314. [PMID: 37553211 PMCID: PMC10547388 DOI: 10.1101/cshperspect.a041314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The development of single-cell and spatial technologies has enabled a more detailed understanding of the tumor microenvironment and its role in therapy response and clinical outcome of high-grade serous ovarian cancer (HGSC). Interestingly, emerging evidence suggests that HGSCs with different genetic drivers harbor distinct tumor-immune microenvironments. Further, spatial cell-cell interactions have been shown to shape the CD8+ T-cell phenotypes and responses to immune checkpoint blockade therapies. The heterogeneous stroma consisting of cancer-associated fibroblast (CAF) subtypes, endothelia, and site-specific stromal types such as mesothelium modulates treatment responses via increasing stiffness and by producing ligands that promote drug resistance, angiogenesis, or immune escape. Chemotherapy itself shifts CAFs toward an inflammatory phenotype that associates with poor survival and immune-suppressive signaling. New emerging immunotherapies include combinational approaches and agents targeting, for example, the tumor-intrinsic endoplasmic reticulum pathway. A more detailed understanding of the spatial interplay of tumor, immune, and stromal cells in the tumor microenvironment is needed to develop more efficient immunotherapeutic strategies for HGSC.
Collapse
Affiliation(s)
- Inga-Maria Launonen
- Research Program in Systems Oncology, University of Helsinki, 00014 Helsinki, Finland
| | - Anna Vähärautio
- Research Program in Systems Oncology, University of Helsinki, 00014 Helsinki, Finland
- Foundation for the Finnish Cancer Institute, 00290 Helsinki, Finland
| | - Anniina Färkkilä
- Research Program in Systems Oncology, University of Helsinki, 00014 Helsinki, Finland
- FIMM and HiLIfe, 00014 Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Hospital, 00290 Helsinki, Finland
| |
Collapse
|
157
|
Zhang C, Cao K, Yang M, Wang Y, He M, Lu J, Huang Y, Zhang G, Liu H. C5aR1 blockade reshapes immunosuppressive tumor microenvironment and synergizes with immune checkpoint blockade therapy in high-grade serous ovarian cancer. Oncoimmunology 2023; 12:2261242. [PMID: 37791232 PMCID: PMC10543342 DOI: 10.1080/2162402x.2023.2261242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
High-grade serous ovarian cancer (HGSC), with a modest response to immune checkpoint blockade (ICB) targeting PD-1/PD-L1 monotherapy, is densely infiltrated by M2-polarized tumor-associated macrophages (TAMs) and regulatory T (Treg) cells. The complement C5a/C5aR1 axis contributes to the programming of the immunosuppressive phenotype of TAMs in solid tumors and represents a promising immunomodulatory target for treating HGSCs. Here, we aimed to identify the relevance of C5aR1 in prognosis, immune microenvironment, and immunotherapy response in HGSCs. The expression and relationship of C5aR1 with tumor-infiltrating immune cells were assessed by immunohistochemistry and flow cytometry in the training cohort (n = 120) and fresh HGSC tissues (n = 36). Transcriptomic analyses of the xenografts delineated the mechanisms driving the immunomodulatory activity of PMX53, an orally bioavailable C5aR1 inhibitor. Therapeutic relevance was confirmed in ex vivo tumor cultures and The Cancer Genome Atlas (TCGA) datasets. C5aR1 expression independently predicted dismal prognosis and was linked to the immunoevasive subtype of HGSC, characterized by increased infiltration of pro-tumor cells (Treg cells, M2-polarized macrophages, and neutrophils) and impaired CD8+T functions. PMX53 antagonized subcutaneous tumor growth, modulated immunosuppressive mechanisms and synergized with aPD-1 in several tumor types. Single-cell RNA-seq analysis revealed predominant C5aR1 expression in TAMs, with an immunosuppressive-related expression signature in C5aR1+TAMs. Furthermore, the combination of C5aR1 and PD-L1 was associated with specific molecular characteristics and matched clinical response annotations. Therefore, the abundance of C5aR1 could predict an inferior prognosis in HGSCs, and incorporating PD-L1 may serve as a novel predictive biomarker to guide therapeutic options.
Collapse
Affiliation(s)
- Chen Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Kankan Cao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Moran Yang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yiying Wang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Mengdi He
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Jiaqi Lu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yan Huang
- Department of Gynecologic Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Guodong Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Haiou Liu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| |
Collapse
|
158
|
Harbin LM, Lin N, Ueland FR, Kolesar JM. SYNE1 Mutation Is Associated with Increased Tumor Mutation Burden and Immune Cell Infiltration in Ovarian Cancer. Int J Mol Sci 2023; 24:14212. [PMID: 37762518 PMCID: PMC10531966 DOI: 10.3390/ijms241814212] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
SYNE1, a nuclear envelope protein critical for cellular structure and signaling, is downregulated in numerous malignancies. SYNE1 alterations are found in 10% of gynecologic malignancies and 5% of epithelial ovarian cancers. Previous studies demonstrated an association between SYNE1 mutation, increased tumor mutation burden (TMB), and immunotherapy response. This study evaluates the SYNE1 mutation frequency, association with TMB, and downstream effects of SYNE1 mutation in ovarian cancer. Genetic information, including whole-exome sequencing, RNA analysis, and somatic tumor testing, was obtained for consenting ovarian cancer patients at an academic medical center. Mutation frequencies were compared between the institutional cohort and The Cancer Genome Atlas (TCGA). Bioinformatics analyses were performed. In our cohort of 50 patients, 16 had a SYNE1 mutation, and 15 had recurrent disease. Median TMB for SYNE1 mutated patients was 25 compared to 7 for SYNE1 wild-type patients (p < 0.0001). Compared to the TCGA cohort, our cohort had higher SYNE1 mutation rates (32% vs. 6%, p < 0.001). Gene expression related to immune cell trafficking, inflammatory response, and immune response (z > 2.0) was significantly increased in SYNE1 mutated patients. SYNE1 mutation is associated with increased TMB and immune cell infiltration in ovarian cancer and may serve as an additional biomarker for immunotherapy response.
Collapse
Affiliation(s)
- Laura M. Harbin
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky Markey Cancer Center, 800 Rose Street, Lexington, KY 20536-0596, USA
| | - Nan Lin
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, 760 Press Avenue, Lexington, KY 40536-0596, USA
| | - Frederick R. Ueland
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky Markey Cancer Center, 800 Rose Street, Lexington, KY 20536-0596, USA
| | - Jill M. Kolesar
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky Markey Cancer Center, 800 Rose Street, Lexington, KY 20536-0596, USA
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, 760 Press Avenue, Lexington, KY 40536-0596, USA
| |
Collapse
|
159
|
Nabbi A, Beck P, Delaidelli A, Oldridge DA, Sudhaman S, Zhu K, Yang SYC, Mulder DT, Bruce JP, Paulson JN, Raman P, Zhu Y, Resnick AC, Sorensen PH, Sill M, Brabetz S, Lambo S, Malkin D, Johann PD, Kool M, Jones DTW, Pfister SM, Jäger N, Pugh TJ. Transcriptional immunogenomic analysis reveals distinct immunological clusters in paediatric nervous system tumours. Genome Med 2023; 15:67. [PMID: 37679810 PMCID: PMC10486055 DOI: 10.1186/s13073-023-01219-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Cancer immunotherapies including immune checkpoint inhibitors and Chimeric Antigen Receptor (CAR) T-cell therapy have shown variable response rates in paediatric patients highlighting the need to establish robust biomarkers for patient selection. While the tumour microenvironment in adults has been widely studied to delineate determinants of immune response, the immune composition of paediatric solid tumours remains relatively uncharacterized calling for investigations to identify potential immune biomarkers. METHODS To inform immunotherapy approaches in paediatric cancers with embryonal origin, we performed an immunogenomic analysis of RNA-seq data from 925 treatment-naïve paediatric nervous system tumours (pedNST) spanning 12 cancer types from three publicly available data sets. RESULTS Within pedNST, we uncovered four broad immune clusters: Paediatric Inflamed (10%), Myeloid Predominant (30%), Immune Neutral (43%) and Immune Desert (17%). We validated these clusters using immunohistochemistry, methylation immune inference and segmentation analysis of tissue images. We report shared biology of these immune clusters within and across cancer types, and characterization of specific immune cell frequencies as well as T- and B-cell repertoires. We found no associations between immune infiltration levels and tumour mutational burden, although molecular cancer entities were enriched within specific immune clusters. CONCLUSIONS Given the heterogeneity of immune infiltration within pedNST, our findings suggest personalized immunogenomic profiling is needed to guide selection of immunotherapeutic strategies.
Collapse
Affiliation(s)
- Arash Nabbi
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - Pengbo Beck
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Derek A Oldridge
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sumedha Sudhaman
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Kelsey Zhu
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - S Y Cindy Yang
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - David T Mulder
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada
| | - Joseph N Paulson
- Department of Biostatistics, Genentech Inc, San Francisco, CA, USA
| | - Pichai Raman
- Division of Neurosurgery, Center for Childhood Cancer Research, Department of Biomedical and Health Informatics and Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yuankun Zhu
- Division of Neurosurgery, Center for Childhood Cancer Research, Department of Biomedical and Health Informatics and Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adam C Resnick
- Division of Neurosurgery, Center for Childhood Cancer Research, Department of Biomedical and Health Informatics and Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Sebastian Brabetz
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Sander Lambo
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - David Malkin
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Pascal D Johann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), B062, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, Room 9-305, MaRS Centre, 101 College Street, Toronto, M5G 1L7, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Ontario Institute for Cancer Research, Toronto, Canada.
| |
Collapse
|
160
|
Kim YN, Park B, Kim JW, Kim BG, Kim SW, Kim HS, Choi CH, Lim MC, Yl Ngoi N, Sp Tan D, Lee JY. Triplet maintenance therapy of olaparib, pembrolizumab and bevacizumab in women with BRCA wild-type, platinum-sensitive recurrent ovarian cancer: the multicenter, single-arm phase II study OPEB-01/APGOT-OV4. Nat Commun 2023; 14:5476. [PMID: 37673858 PMCID: PMC10482952 DOI: 10.1038/s41467-023-40829-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/11/2023] [Indexed: 09/08/2023] Open
Abstract
In this multicenter, open-label, single-arm, Phase II study with Simon two-stage optimum design (NCT04361370), we investigate the efficacy and safety of triplet maintenance (olaparib, pembrolizumab, bevacizumab) in patients with platinum-sensitive recurrent ovarian cancer who are wild-type for BRCA 1/2. A total of 44 patients were enrolled, and the median follow-up duration was 22.9 months (interquartile range: 17.4-24.7). The primary outcome was 6-months progression-free survival (PFS), which was 88.6% (95% confidence interval [CI] 75.4-96.2), meeting the pre-specified primary endpoint. The secondary outcomes reported here include median PFS, 12-months PFS, and overall survival and safety. The median PFS was 22.4 months (20.4-∞), with a 12-months PFS rate of 84.0% (95% CI 69.3-92.0). The median overall survival was 28.6 months (27.3-∞). The combination demonstrated tolerable toxicity with manageable side effects. Other secondary outcomes include time-to-progression, time to subsequent treatment, time to second treatment and PFS2; however, this data is not reported, as treatment is still ongoing in a majority of patients. Exploratory analysis shows that patients who were homologous recombination deficiency-positive or had a programmed death-ligand 1 combined positive score ≥1 showed a favorable response (P = 0.043 and P < 0.001, respectively). Thus, triplet maintenance shows durable efficacy with tolerable safety in patients with platinum-sensitive recurrence.
Collapse
Affiliation(s)
- Yoo-Na Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Boram Park
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Jae Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University, Seoul, Korea
| | - Byoung Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Wun Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University, Seoul, Korea
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myong Cheol Lim
- Gynecologic Cancer Branch & Center for Uterine Cancer, National Cancer Center, Goyang, Korea
| | - Natalie Yl Ngoi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore, Singapore
| | - David Sp Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore, Singapore
- National University of Singapore (NUS) Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
161
|
Holloway RW, Thaker P, Mendivil AA, Ahmad S, Al-Niaimi AN, Barter J, Beck T, Chambers SK, Coleman RL, Crafton SM, Crane E, Ramez E, Ghamande S, Graybill W, Herzog T, Indermaur MD, John VS, Landrum L, Lim PC, Lucci JA, McHale M, Monk BJ, Moore KN, Morris R, O'Malley DM, Reid TJ, Richardson D, Rose PG, Scalici JM, Silasi DA, Tewari K, Wang EW. A phase III, multicenter, randomized study of olvimulogene nanivacirepvec followed by platinum-doublet chemotherapy and bevacizumab compared with platinum-doublet chemotherapy and bevacizumab in women with platinum-resistant/refractory ovarian cancer. Int J Gynecol Cancer 2023; 33:1458-1463. [PMID: 37666539 DOI: 10.1136/ijgc-2023-004812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Treatment options for patients with platinum-resistant/refractory ovarian cancers are limited and only marginally effective. The development of novel, more effective therapies addresses a critical unmet medical need. Olvimulogene nanivacirepvec (Olvi-Vec), with its strong immune modulating effect on the tumor microenvironment, may provide re-sensitization to platinum and clinically reverse platinum resistance or refractoriness in platinum-resistant/refractory ovarian cancer. PRIMARY OBJECTIVE The primary objective is to evaluate the efficacy of intra-peritoneal Olvi-Vec followed by platinum-based chemotherapy and bevacizumab in patients with platinum-resistant/refractory ovarian cancer. STUDY HYPOTHESIS This phase III study investigates Olvi-Vec oncolytic immunotherapy followed by platinum-based chemotherapy and bevacizumab as an immunochemotherapy evaluating the hypothesis that such sequential combination therapy will prolong progression-free survival (PFS) and bring other clinical benefits compared with treatment with platinum-based chemotherapy and bevacizumab. TRIAL DESIGN This is a multicenter, prospective, randomized, and active-controlled phase III trial. Patients will be randomized 2:1 into the experimental arm treated with Olvi-Vec followed by platinum-doublet chemotherapy and bevacizumab or the control arm treated with platinum-doublet chemotherapy and bevacizumab. MAJOR INCLUSION/EXCLUSION CRITERIA Eligible patients must have recurrent, platinum-resistant/refractory, non-resectable high-grade serous, endometrioid, or clear-cell ovarian, fallopian tube, or primary peritoneal cancer. Patients must have had ≥3 lines of prior chemotherapy. PRIMARY ENDPOINT The primary endpoint is PFS in the intention-to-treat population. SAMPLE SIZE Approximately 186 patients (approximately 124 patients randomized to the experimental arm and 62 to the control arm) will be enrolled to capture 127 PFS events. ESTIMATED DATES FOR COMPLETING ACCRUAL AND PRESENTING RESULTS Expected complete accrual in 2024 with presentation of primary endpoint results in 2025. TRIAL REGISTRATION NCT05281471.
Collapse
Affiliation(s)
| | - Premal Thaker
- Obstetrics and Gynecology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | | | - Sarfraz Ahmad
- AdventHealth Cancer Institute, Orlando, Florida, USA
| | | | - James Barter
- Holy Cross Hospital, Silver Spring, Maryland, USA
| | - Tiffany Beck
- Hoag Cancer Center, Newport Beach, California, USA
| | | | | | - Sarah M Crafton
- West Penn Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Erin Crane
- Levine Cancer Institution, Atrium Health, Charlotte, North Carolina, USA
| | - Eskander Ramez
- Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - Sharad Ghamande
- Augusta University Medical College of Georgia, Augusta, Georgia, USA
| | - Whitney Graybill
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Thomas Herzog
- Cancer Center, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Veena S John
- Northwell Health Cancer Institute, Lake Success, New York, USA
| | - Lisa Landrum
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | | | - Joseph A Lucci
- McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Michael McHale
- Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Bradley J Monk
- University of Arizona and Creighton University School of Medicine, HonorHealth Research Institute, Phoenix, Arizona, USA
| | | | | | - David M O'Malley
- James Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | | - Debra Richardson
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Peter G Rose
- Gynecology Oncology Desk A-81, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Jennifer M Scalici
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Dan-Arin Silasi
- Mercy St Louis/Diavid C Pratt Cancer Center, St Louis, Missouri, USA
| | - Krishnansu Tewari
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| | | |
Collapse
|
162
|
Konstantinopoulos PA, Matulonis UA. Clinical and translational advances in ovarian cancer therapy. NATURE CANCER 2023; 4:1239-1257. [PMID: 37653142 DOI: 10.1038/s43018-023-00617-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Ovarian cancer is an aggressive disease that is frequently detected at advanced stages and is initially very responsive to platinum-based chemotherapy. However, the majority of patients relapse following initial surgery and chemotherapy, highlighting the urgent need to develop new therapeutic strategies. In this Review, we outline the main therapeutic principles behind the management of newly diagnosed and recurrent epithelial ovarian cancer and discuss the current landscape of targeted and immune-based approaches.
Collapse
|
163
|
Cai D, Liu T, Fang J, Liu Y. Molecular cluster mining of high-grade serous ovarian cancer via multi-omics data analysis aids precise medicine. J Cancer Res Clin Oncol 2023; 149:9151-9165. [PMID: 37178426 DOI: 10.1007/s00432-023-04831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE HGSOC is a kind of gynecological cancer with high mortality and strong heterogeneity. The study used multi-omics and multiple algorithms to identify novel molecular subtypes, which can help patients obtain more personalized treatments. METHODS Firstly, the consensus clustering result was obtained using a consensus ensemble of ten classical clustering algorithms, based on mRNA, lncRNA, DNA methylation, and mutation data. The difference in signaling pathways was evaluated using the single-sample gene set enrichment analysis (ssGSEA). Meanwhile, the relationship between genetic alteration, response to immunotherapy, drug sensitivity, prognosis, and subtypes was further analyzed. Finally, the reliability of the new subtype was verified in three external datasets. RESULTS Three molecular subtypes were identified. Immune desert subtype (CS1) had little enrichment in the immune microenvironment and metabolic pathways. Immune/non-stromal subtype (CS2) was enriched in the immune microenvironment and metabolism of polyamines. Immune/stromal subtype (CS3) not only enriched anti-tumor immune microenvironment characteristics but also enriched pro-tumor stroma characteristics, glycosaminoglycan metabolism, and sphingolipid metabolism. The CS2 had the best overall survival and the highest response rate to immunotherapy. The CS3 had the worst prognosis and the lowest response rate to immunotherapy but was more sensitive to PARP and VEGFR molecular-targeted therapy. The similar differences among three subtypes were successfully validated in three external cohorts. CONCLUSION We used ten clustering algorithms to comprehensively analyze four types of omics data, identified three biologically significant subtypes of HGSOC patients, and provided personalized treatment recommendations for each subtype. Our findings provided novel views into the HGSOC subtypes and could provide potential clinical treatment strategies.
Collapse
Affiliation(s)
- Daren Cai
- Department of Biostatistics, China Pharmaceutical University, Nanjing, China
| | - Tiantian Liu
- Department of Biostatistics, China Pharmaceutical University, Nanjing, China
| | - Jingya Fang
- Department of Biostatistics, China Pharmaceutical University, Nanjing, China.
| | - Yingbo Liu
- Department of Biostatistics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
164
|
Fu H, Fu Z, Mao M, Si L, Bai J, Wang Q, Guo R. Prevalence and prognostic role of PD-L1 in patients with gynecological cancers: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2023; 189:104084. [PMID: 37536446 DOI: 10.1016/j.critrevonc.2023.104084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVE Our study aims to evaluate programmed cell death ligand-1 (PD-L1) expression and its prognostic significance in cervical cancer (CC), endometrial cancer (EC) and ovarian cancer (OC). METHODS Several electronic databases were searched. Fixed effects models or random effects models were employed to calculate the pooled prevalence of PD-L1 positivity and pooled hazard ratios (HRs) as appropriate. Heterogeneity and publication bias were also assessed. RESULTS The pooled prevalence of PD-L1 positivity was 58.1%, 33.8% and 37.5% for CC, EC and OC patients, respectively. There were significant differences in the pooled estimates after stratification by PD-L1-positive assessment criteria and antibody clones. PD-L1 positivity was associated with worse OS in CC and EC patients and poorer progression-free survival (PFS) in CC patients. CONCLUSIONS The prevalence of PD-L1-positive expression was considerably high in CC and modestly high in EC and OC patients. PD-L1 expression has the potential to be a prognostic biomarker for predicting the clinical outcomes of patients with CC and EC but not OC.
Collapse
Affiliation(s)
- Hanlin Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihui Fu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng Mao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lulu Si
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Bai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
165
|
Taki M. Mini-review: Immunology in ovarian cancer. J Obstet Gynaecol Res 2023; 49:2245-2251. [PMID: 37415252 DOI: 10.1111/jog.15730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
Immunotherapy for ovarian cancer has been studied for many years and programmed cell death protein 1 ligand/programmed cell death protein 1 (PD-L1/PD-1) blockade has been attempted in several clinical trials; however, the expected therapeutic effect has not been achieved. In contrast, the PD-L1/PD-1 blockade has been clinically applied to endometrial and cervical cancers, and a certain therapeutic effect has been observed. In endometrial cancer, promising outcomes have been achieved with a combination of an anti-PD-1 antibody and lenvatinib, regardless of the number of regimens, even in cases of recurrence after platinum administration. Therefore, immunotherapy is expected to have a therapeutic effect on ovarian cancer regardless of platinum resistance. In this review, considering immunotherapy for ovarian cancer, we discuss the immune mechanisms that exist in ovarian cancer and the immunotherapeutic strategies that should be developed.
Collapse
Affiliation(s)
- Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
166
|
Zhao L, Chen X, Wu H, He Q, Ding L, Yang B. Strategies to synergize PD-1/PD-L1 targeted cancer immunotherapies to enhance antitumor responses in ovarian cancer. Biochem Pharmacol 2023; 215:115724. [PMID: 37524205 DOI: 10.1016/j.bcp.2023.115724] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Anti-programmed cell death 1/programmed cell death ligand 1 (anti-PD-1/PD-L1) antibodies have developed rapidly but exhibited modest activity in ovarian cancer (OC), achieving a clinical response rate ranging from 5.9% to 19%. Current evidence indicate that the establishment of an integrated cancer-immunity cycle is a prerequisite for anti-PD-1/PD-L1 antibodies. Any impairment in this cycle, including lack of cancer antigens release, impaired antigen-presenting, decreased T cell priming and activation, less T cells that are trafficked or infiltrated in tumor microenvironment (TME), and low tumor recognition and killings, will lead to decreased infiltrated cytotoxic T cells to tumor bed and treatment failure. Therefore, combinatorial strategies aiming to modify cancer-immunity cycle and reprogram tumor immune microenvironment are of great interest. By far, various strategies have been studied to enhance responsiveness to PD-1/PD-L1 inhibitors in OC. Platinum-based chemotherapy increases neoantigens release; poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) improve the function of antigen-presenting cells and promote the trafficking of T cells into tumors; epigenetic drugs help to complete the immune cycle by affecting multiple steps; immunotherapies like anti-cytotoxic T lymphocyte antigen 4 (CTLA-4) antibodies reactivate T cells, and other treatment strategies like radiotherapy helps to increase the expression of tumor antigens. In this review, we will summarize the preclinical studies by analyzing their contribution in modifying the cancer immunity cycle and remodeling tumor environment, and we will also summarize recent progress in clinical trials and discuss some perspectives to improve these treatment strategies.
Collapse
Affiliation(s)
- Lin Zhao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghai Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Cancer Center of Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
167
|
Brodeur MN, Dopeso H, Zhu Y, Longhini ALF, Gazzo A, Sun S, Koche R, Qu R, Hamard PJ, Bykov Y, Green H, Chiappinelli KB, Ozsoy MA, Basili T, Gardner R, Walderich S, DeStanchina E, Greenbaum B, Gönen M, Weigelt B, Zamarin D. Interferon response and epigenetic modulation by SMARCA4 mutations drive ovarian tumor immunogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552544. [PMID: 37609261 PMCID: PMC10441293 DOI: 10.1101/2023.08.08.552544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cell-intrinsic mechanisms of immunogenicity in ovarian cancer (OC) are not well understood. The presence of damaging mutations in the SWI/SNF chromatin remodeling complex, such as the SMARCA4 (BRG1) catalytic subunit, has been associated with improved response to ICB, however the mechanism by which this occurs is unclear. The aim of this current study was to examine the alterations in tumor cell-intrinsic and extrinsic immune signaling caused by SMARCA4 loss. Using OC models with loss-of-function mutations in SMARCA4 , we found that SMARCA4 loss resulted in increased cancer cell-intrinsic immunogenicity, characterized by upregulation of long-terminal RNA repeats such as endogenous retroviruses, increased expression of interferon-stimulated genes, and upregulation of antigen presentation machinery. Notably, this response was dependent on IRF3 signaling, but was independent of the type I interferon receptor. Mice inoculated with cancer cells bearing SMARCA4 loss demonstrated increased activation of cytotoxic T cells and NK cells in the tumor microenvironment as well as increased infiltration with activated dendritic cells. These results were recapitulated when animals bearing SMARCA4- proficient tumors were treated with a BRG1 inhibitor, suggesting that modulation of chromatin remodeling through targeting SMARCA4 may serve as a strategy to reverse immune evasion in OC.
Collapse
|
168
|
McNamara B, Bellone S, Demirkiran C, Max Philipp Hartwich T, Santin AD. Pembrolizumab and lenvatinib in recurrent ovarian clear cell carcinoma resistant to chemotherapy. Gynecol Oncol Rep 2023; 48:101218. [PMID: 37325296 PMCID: PMC10265468 DOI: 10.1016/j.gore.2023.101218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
Background Treatment of ovarian clear cell carcinoma (CCC) poses many challenges. Effective treatment options for recurrent and metastatic disease remain limited. Case A 70-year-old woman with recurrent metastatic ovarian CCC experienced durable response to the combination of pembrolizumab, a PD-1 targeting monoclonal antibody and lenvatinib, an oral multikinase inhibitor, after failing standard and experimental treatments. She experienced a 40.1% reduction of target lesions over 26 weeks of therapy. CA-125 trends confirmed serial CT scan findings of shrinking disease burden. She experienced overall mild side effects from the drug combination, and lenvatinib dosage was decreased from 20 to 10 mg/day over her 10 cycles. Conclusion The combination of pembrolizumab and lenvatinib may represent a new treatment option for chemotherapy-resistant ovarian CCC.
Collapse
Affiliation(s)
- Blair McNamara
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stefania Bellone
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cem Demirkiran
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tobias Max Philipp Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
169
|
Ito K, Nakagawa M, Shimokawa M, Hori K, Tashima L, Goto M, Yanagida S, Suzuki J, Kaya R, Kawabata A, Yamada K, Park J, Nasu H, Nishio S, Kondo E, Kaneda M, Tsubamoto H, Arakawa A, Nagasawa T, Motohashi T. Phase II study of gemcitabine, cisplatin, and bevacizumab for first recurrent and refractory ovarian clear cell carcinoma Kansai Clinical Oncology Group-G1601. Anticancer Drugs 2023; 34:857-865. [PMID: 36729915 DOI: 10.1097/cad.0000000000001472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Patients with advanced ovarian clear cell carcinoma (CCC) have a poor prognosis in the absence of an effective standard treatment. Combination therapy with gemcitabine, cisplatin, and bevacizumab (GPBev) is promising for ovarian CCC. Thus, we conducted a multi-institutional, phase II trial in Japan to examine the efficacy and safety of GPBev for CCC. This is the first study on the use of GPBev for CCC. Eighteen patients (median age, 56.5 years) with pathologically confirmed first recurrent or refractory CCC and having evaluable regions, as assessed using RECIST, were recruited between January 2017 and May 2019. Gemcitabine (1000 mg/m 2 ), cisplatin (40 mg/m 2 ), and bevacizumab (10 mg/kg) were administered intravenously on days 1 and 15, every 28 days, for 6-10 cycles, until disease progression or intolerable toxicity. The primary endpoint was overall response rate (ORR). The secondary endpoints included disease control rate (DCR) and adverse events (AEs). Fifteen patients (83.3%) completed 6-10 cycles of treatment; three patients (two with AEs and one with progressive disease) did not. The ORR was 61.1% [complete response (CR) 3 and partial response (PR) 8] and DCR was 88.9% (CR 3, PR 8, and stable disease 5). Grade 3 and 4 hematological AEs were observed in 16.7 and 5.6% of the patients, respectively. Nonhematological AEs of grades 3 and 4 were observed in 27.8 and 5.6% of the patients, respectively. GPBev is a promising therapy for CCC owing to the high ORR and acceptable toxicity for the first recurrence and refractory CCC.
Collapse
Affiliation(s)
- Kimihiko Ito
- Department of Obstetrics and Gynecology, Kansai Rosai Hospital, Amagasaki
| | - Mio Nakagawa
- Department of Obstetrics and Gynecology, Kansai Rosai Hospital, Amagasaki
| | - Mototsugu Shimokawa
- Department of Biostatistics, Yamaguchi University Graduate School of Medicine, Yamaguchi
| | - Kensuke Hori
- Department of Obstetrics and Gynecology, Kansai Rosai Hospital, Amagasaki
| | - Lena Tashima
- Department of Obstetrics and Gynecology, Kansai Rosai Hospital, Amagasaki
| | - Mayako Goto
- Department of Obstetrics and Gynecology, Kansai Rosai Hospital, Amagasaki
| | - Satoshi Yanagida
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Minato-ku
| | - Jiro Suzuki
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Minato-ku
| | - Ryusuke Kaya
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Minato-ku
| | - Ayako Kawabata
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Minato-ku
| | - Kyosuke Yamada
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Minato-ku
| | - Jongmyung Park
- Department of Obstetrics and Gynecology, Kurume University School of Medicine, Fukuoka
| | - Hiroki Nasu
- Department of Obstetrics and Gynecology, Kurume University School of Medicine, Fukuoka
| | - Shin Nishio
- Department of Obstetrics and Gynecology, Kurume University School of Medicine, Fukuoka
| | - Eiji Kondo
- Department of Obstetrics and Gynecology, Mie University, Graduate School of Medicine, Tsu
| | - Michiko Kaneda
- Department of Obstetrics and Gynecology, Mie University, Graduate School of Medicine, Tsu
| | - Hiroshi Tsubamoto
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Nishinomiya
| | - Atsushi Arakawa
- Department of Obstetrics and Gynecology, Nagoya City University West Medical Center, Nagoya
| | - Takayuki Nagasawa
- Department of Obstetrics and Gynecology, Iwate Medical University, Shiwa-gun
| | - Takashi Motohashi
- Department of Obstetrics and Gynecology, Tokyo Women's Medical University Hospital, Shinjyuku-ku, Japan
| |
Collapse
|
170
|
Fujiwara S. Clinical perspectives of rare ovarian tumors: clear cell ovarian cancer. Jpn J Clin Oncol 2023; 53:664-672. [PMID: 37288485 DOI: 10.1093/jjco/hyad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 06/09/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is a rare and distinct histological type of epithelial ovarian carcinoma in terms of its histopathological, clinical and genetic features. Patients with OCCC are younger and diagnosed at earlier stages than those with the most common histological type-high-grade serous carcinoma. Endometriosis is considered a direct precursor of OCCC. Based on preclinical data, the most frequent gene alternations in OCCC are mutations of AT-rich interaction domain 1A and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha. The prognosis of patients with early-stage OCCC is favorable, whereas patients at an advanced stage or who have the recurrent disease have a dismal prognosis due to OCCC's resistance to standard platinum-based chemotherapy. Despite a lower rate of response due to its resistance to standard platinum-based chemotherapy, the treatment strategy for OCCC resembles that of high-grade serous carcinoma, which includes aggressive cytoreductive surgery and adjuvant platinum-based chemotherapy. Alternative treatment strategies, including biological agents based on molecular characteristics specific to OCCC, are urgently needed. Furthermore, due to its rarity, well-designed collaborative international clinical trials are needed to improve oncologic outcomes and the quality of life in patients with OCCC.
Collapse
Affiliation(s)
- Satoe Fujiwara
- Department of Obstetrics and Gynecology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
171
|
Margul D, Yu C, AlHilli MM. Tumor Immune Microenvironment in Gynecologic Cancers. Cancers (Basel) 2023; 15:3849. [PMID: 37568665 PMCID: PMC10417375 DOI: 10.3390/cancers15153849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Gynecologic cancers have varying response rates to immunotherapy due to the heterogeneity of each cancer's molecular biology and features of the tumor immune microenvironment (TIME). This article reviews key features of the TIME and its role in the pathophysiology and treatment of ovarian, endometrial, cervical, vulvar, and vaginal cancer. Knowledge of the role of the TIME in gynecologic cancers has been rapidly developing with a large body of preclinical studies demonstrating an intricate yet dichotomous role that the immune system plays in either supporting the growth of cancer or opposing it and facilitating effective treatment. Many targets and therapeutics have been identified including cytokines, antibodies, small molecules, vaccines, adoptive cell therapy, and bacterial-based therapies but most efforts in gynecologic cancers to utilize them have not been effective. However, with the development of immune checkpoint inhibitors, we have started to see the rapid and successful employment of therapeutics in cervical and endometrial cancer. There remain many challenges in utilizing the TIME, particularly in ovarian cancer, and further studies are needed to identify and validate efficacious therapeutics.
Collapse
Affiliation(s)
| | | | - Mariam M. AlHilli
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Cleveland Clinic, Cleveland, OH 44195, USA; (D.M.); (C.Y.)
| |
Collapse
|
172
|
Spagnolo E, Martinez A, Mascarós-Martínez A, Marí-Alexandre J, Carbonell M, González-Cantó E, Pena-Burgos EM, Mc Cormack BA, Tomás-Pérez S, Gilabert-Estellés J, López-Carrasco A, Hidalgo P, Ángeles MA, Redondo A, Gallego A, Hernández A. Evaluation of Immune Infiltrates in Ovarian Endometriosis and Endometriosis-Associated Ovarian Cancer: Relationship with Histological and Clinical Features. Int J Mol Sci 2023; 24:12083. [PMID: 37569458 PMCID: PMC10418839 DOI: 10.3390/ijms241512083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND the association between ovarian endometriosis (OE) and endometriosis-associated ovarian cancer (EAOC) is extensively documented, and misfunction of the immune system might be involved. The primary objective of this study was to identify and compare the spatial distribution of tumour-infiltrating lymphocytes (TILs) and tumour-associated macrophages (TAMs) in OE and EAOC. Secondary objectives included the analysis of the relationship between immunosuppressive populations and T-cell exhaustion markers in both groups. METHODS TILs (CD3, CD4, and CD8) and macrophages (CD163) were assessed by immunochemistry. Exhaustion markers (PD-1, TIM3, CD39, and FOXP3) and their relationship with tumour-associated macrophages (CD163) were assessed by immunofluorescence on paraffin-embedded samples from n = 43 OE and n = 54 EAOC patients. RESULTS we observed a predominantly intraepithelial CD3+ distribution in OE but both an intraepithelial and stromal pattern in EAOC (p < 0.001). TILs were more abundant in OE (p < 0.001), but higher TILs significantly correlated with a longer overall survival and disease-free survival in EAOC (p < 0.05). CD39 and FOXP3 significantly correlated with each other and CD163 (p < 0.05) at the epithelial level in moderate/intense CD4 EAOC, whereas in moderate/intense CD8+, PD-1+ and TIM3+ significantly correlated (p = 0.009). Finally, T-cell exhaustion markers FOXP3-CD39 were decreased and PD-1-TIM3 were significantly increased in EAOC (p < 0.05). CONCLUSIONS the dysregulation of TILs, TAMs, and T-cell exhaustion might play a role in the malignization of OE to EAOC.
Collapse
Affiliation(s)
- Emanuela Spagnolo
- Department of Gynecology, La Paz University Hospital, 28046 Madrid, Spain; (E.S.); (M.C.); (A.L.-C.); (A.H.)
- Research Institute “IdiPaz”, La Paz University Hospital, 28046 Madrid, Spain
| | - Alejandra Martinez
- Department of Surgical Oncology, Institut Claudius Regaud-Institut Universitaire du Cancer du Toulouse (IUCT) Oncopole, 31059 Toulouse, France; (A.M.); (M.A.Á.)
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037 INSERM, 31100 Toulouse, France
| | | | - Josep Marí-Alexandre
- Department of Pathology, General University Hospital of Valencia, 46014 Valencia, Spain;
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation, General University Hospital of Valencia, 46014 Valencia, Spain; (E.G.-C.); (B.A.M.C.); (S.T.-P.); (J.G.-E.)
| | - María Carbonell
- Department of Gynecology, La Paz University Hospital, 28046 Madrid, Spain; (E.S.); (M.C.); (A.L.-C.); (A.H.)
- Research Institute “IdiPaz”, La Paz University Hospital, 28046 Madrid, Spain
| | - Eva González-Cantó
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation, General University Hospital of Valencia, 46014 Valencia, Spain; (E.G.-C.); (B.A.M.C.); (S.T.-P.); (J.G.-E.)
| | | | - Bárbara Andrea Mc Cormack
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation, General University Hospital of Valencia, 46014 Valencia, Spain; (E.G.-C.); (B.A.M.C.); (S.T.-P.); (J.G.-E.)
| | - Sarai Tomás-Pérez
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation, General University Hospital of Valencia, 46014 Valencia, Spain; (E.G.-C.); (B.A.M.C.); (S.T.-P.); (J.G.-E.)
| | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Obstetrics and Gynecology, Research Foundation, General University Hospital of Valencia, 46014 Valencia, Spain; (E.G.-C.); (B.A.M.C.); (S.T.-P.); (J.G.-E.)
- Department of Obstetrics and Gynecology, General University Hospital of Valencia, 46014 Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynaecology, University of Valencia, 46010 Valencia, Spain
| | - Ana López-Carrasco
- Department of Gynecology, La Paz University Hospital, 28046 Madrid, Spain; (E.S.); (M.C.); (A.L.-C.); (A.H.)
- Research Institute “IdiPaz”, La Paz University Hospital, 28046 Madrid, Spain
| | - Paula Hidalgo
- Department of Radiology, La Paz University Hospital, 28046 Madrid, Spain;
| | - Martina Aida Ángeles
- Department of Surgical Oncology, Institut Claudius Regaud-Institut Universitaire du Cancer du Toulouse (IUCT) Oncopole, 31059 Toulouse, France; (A.M.); (M.A.Á.)
| | - Andrés Redondo
- Department of Medical Oncology, La Paz University Hospital, 28046 Madrid, Spain; (A.R.); (A.G.)
| | - Alejandro Gallego
- Department of Medical Oncology, La Paz University Hospital, 28046 Madrid, Spain; (A.R.); (A.G.)
| | - Alicia Hernández
- Department of Gynecology, La Paz University Hospital, 28046 Madrid, Spain; (E.S.); (M.C.); (A.L.-C.); (A.H.)
- Research Institute “IdiPaz”, La Paz University Hospital, 28046 Madrid, Spain
- Department of Obstetrics and Gynaecology, Universidad Autónoma Madrid, 28049 Madrid, Spain
| |
Collapse
|
173
|
Keathley R, Kocherginsky M, Davuluri R, Matei D. Integrated Multi-Omic Analysis Reveals Immunosuppressive Phenotype Associated with Poor Outcomes in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2023; 15:3649. [PMID: 37509311 PMCID: PMC10377286 DOI: 10.3390/cancers15143649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is characterized by a complex genomic landscape, with both genetic and epigenetic diversity contributing to its pathogenesis, disease course, and response to treatment. To better understand the association between genomic features and response to treatment among 370 patients with newly diagnosed HGSOC, we utilized multi-omic data and semi-biased clustering of HGSOC specimens profiled by TCGA. A Cox regression model was deployed to select model input features based on the influence on disease recurrence. Among the features most significantly correlated with recurrence were the promotor-associated probes for the NFRKB and DPT genes and the TREML1 gene. Using 1467 transcriptomic and methylomic features as input to consensus clustering, we identified four distinct tumor clusters-three of which had noteworthy differences in treatment response and time to disease recurrence. Each cluster had unique divergence in differential analyses and distinctly enriched pathways therein. Differences in predicted stromal and immune cell-type composition were also observed, with an immune-suppressive phenotype specific to one cluster, which associated with short time to disease recurrence. Our model features were additionally used as a neural network input layer to validate the previously defined clusters with high prediction accuracy (91.3%). Overall, our approach highlights an integrated data utilization workflow from tumor-derived samples, which can be used to uncover novel drivers of clinical outcomes.
Collapse
Affiliation(s)
- Russell Keathley
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.K.); (M.K.)
- Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Masha Kocherginsky
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.K.); (M.K.)
- Department of Preventive Medicine (Biostatistics), Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
| | - Ramana Davuluri
- Department of Biomedical Informatics, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (R.K.); (M.K.)
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
174
|
Herzog TJ, Hays JL, Barlin JN, Buscema J, Cloven NG, Kong LR, Tyagi NK, Lanneau GS, Long BJ, Marsh RL, Seward SM, Starks DC, Welch S, Moore KN, Konstantinopoulos PA, Gilbert L, Monk BJ, O'Malley DM, Chen X, Dalal R, Coleman RL, Sehouli J. ARTISTRY-7: phase III trial of nemvaleukin alfa plus pembrolizumab vs chemotherapy for platinum-resistant ovarian cancer. Future Oncol 2023; 19:1577-1591. [PMID: 37334673 DOI: 10.2217/fon-2023-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Standard single-agent nonplatinum chemotherapy provides only modest benefit in a small proportion of patients with platinum-resistant/-refractory ovarian cancer, with objective response rates of 6-20% and progression-free survival of ≈3-4 months. Nemvaleukin alfa (nemvaleukin, ALKS 4230) is a novel cytokine designed to capture and expand the therapeutic potential of high-dose interleukin-2 (IL-2) while mitigating its associated toxicity issues. Nemvaleukin preferentially activates cytotoxic CD8+ T cells and natural killer cells with minimal, non-dose-dependent effects on CD4+ regulatory T cells. The global, randomized, open-label, phase III ARTISTRY-7 trial will compare efficacy and safety of nemvaleukin plus pembrolizumab with chemotherapy in patients with platinum-resistant ovarian cancer. The primary end point is investigator-assessed progression-free survival. Clinical Trial Registration: GOG-3063; ENGOT-OV68; NCT05092360 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Thomas J Herzog
- University of Cincinnati Cancer Center, UC College of Medicine, Cincinnati, OH 45267, USA
| | - John L Hays
- Wexner Medical Center & James Cancer Hospital, Ohio State University, Columbus, OH 43210, USA
| | | | | | - Noelle G Cloven
- Texas Oncology - Fort Worth Cancer Center, Fort Worth, TX 76104, USA
| | - Lynn R Kong
- Ventura County Hematology Oncology Specialists, Oxnard, CA 93930, USA
| | | | | | - Beverly J Long
- Sarasota Memorial Healthcare System, Sarasota, FL 34239, USA
| | | | | | | | - Stephen Welch
- London Health Sciences Centre, London, ON, N6A 5A5, Canada
| | - Kathleen N Moore
- College of Medicine, University of Oklahoma, Oklahoma City, OK 73117, USA
| | | | - Lucy Gilbert
- McGill University Health Centre, Women's Health Research Unit, Montréal, QC, H3H 2R9, Canada
| | - Bradley J Monk
- HonorHealth Research Institute, University of Arizona College of Medicine, Creighton University School of Medicine, Phoenix, AZ 85012, USA
| | - David M O'Malley
- Wexner Medical Center & James Cancer Hospital, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | - Jalid Sehouli
- Charité Universitaetsmedizin Berlin Charité Campus Virchow-Klinikum, Berlin, 11017, Germany
| |
Collapse
|
175
|
Porter RL, Matulonis UA. Mirvetuximab soravtansine for platinum-resistant epithelial ovarian cancer. Expert Rev Anticancer Ther 2023; 23:783-796. [PMID: 37458180 DOI: 10.1080/14737140.2023.2236793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION Mirvetuximab soravtansine (mirvetuximab) is an antibody drug conjugate (ADC) comprised of a humanized folate receptor alpha (FRα)-binding monoclonal antibody attached via a cleavable linker to the cytotoxic maytansinoid molecule, DM4. FRα is expressed in several epithelial cancers, including high grade serous ovarian cancer (HGSOC). Mirvetuximab received accelerated approval by the United States Food and Drug Administration (FDA) in November 2022 based on the results of the SORAYA trial, which tested mirvetuximab for the treatment of patients with recurrent platinum resistant HGSOC with high FRα expression and showed an overall response rate (ORR) of 32.4% and a median duration of response of 6.9 months. Mirvetuximab toxicities included low grade ocular and gastrointestinal toxicities. The National Comprehensive Cancer Network (NCCN) ovarian cancer 2023 guidelines adopted mirvetuximab as 2A, and mirvetuximab combined with bevacizumab as 2B, recommendations. AREAS COVERED This manuscript will review the preclinical and clinical development of mirvetuximab, the toxicities associated with mirvetuximab and mitigation strategies, and future applications of mirvetuximab. EXPERT OPINION Mirvetuximab represents the first biomarker-directed therapy with an indication specifically for the treatment of PROC. The efficacy and favorable safety profile support further development of mirvetuximab and mirvetuximab combinations in platinum sensitive and newly diagnosed ovarian cancer.
Collapse
Affiliation(s)
- Rebecca L Porter
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, United States of America
| | - Ursula A Matulonis
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, United States of America
| |
Collapse
|
176
|
Song Q, Xu SX, Wu JZ, Ling L, Wang S, Shu XH, Ying DN, Pei WW, Wu YC, Sun SF, Zhang YN, Zhou SH, Shao ZY. The preoperative platelet to neutrophil ratio and lymphocyte to monocyte ratio are superior prognostic indicators compared with other inflammatory biomarkers in ovarian cancer. Front Immunol 2023; 14:1177403. [PMID: 37457691 PMCID: PMC10347525 DOI: 10.3389/fimmu.2023.1177403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Background Previous studies have suggested that the ratios of immune-inflammatory cells could serve as prognostic indicators in ovarian cancer. However, which of these is the superior prognostic indicator in ovarian cancer remains unknown. In addition, studies on the prognostic value of the platelet to neutrophil ratio (PNR) in ovarian cancer are still limited. Methods A cohort of 991 ovarian cancer patients was analyzed in the present study. Receiver operator characteristic (ROC) curves were utilized to choose the optimal cut-off values of inflammatory biomarkers such as neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR), systemic immune-inflammation index (SII), and PNR. The correlation of inflammatory biomarkers with overall survival (OS) and relapse-free survival (RFS) was investigated by Kaplan-Meier methods and log-rank test, followed by Cox regression analyses. Results Kaplan-Meier curves suggested that LMR<3.39, PLR≥181.46, and PNR≥49.20 had obvious associations with worse RFS (P<0.001, P=0.018, P<0.001). Multivariate analysis suggested that LMR (≥3.39 vs. <3.39) (P=0.042, HR=0.810, 95% CI=0.661-0.992) and PNR (≥49.20 vs. <49.20) (P=0.004, HR=1.351, 95% CI=1.103-1.656) were independent prognostic indicators of poor RFS. In addition, Kaplan-Meier curves indicated that PLR≥182.23 was significantly correlated with worse OS (P=0.039). Conclusion Taken together, PNR and LMR are superior prognostic indicators compared with NLR, PLR, and SII in patients with ovarian cancer.
Collapse
Affiliation(s)
- Qian Song
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Song-Xiao Xu
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jun-Zhou Wu
- Cancer Research Institute, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Lin Ling
- Department of Gynaecology, Haining People’s Hospital, Haining, Zhejiang, China
| | - Sheng Wang
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xin-Hua Shu
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Dan-Ni Ying
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wang-Wei Pei
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yu-Chen Wu
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Su-Fang Sun
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yi-Ning Zhang
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Si-Hang Zhou
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhu-Yan Shao
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
177
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
178
|
Tu M, Xu J. Advances in immunotherapy for gynecological malignancies. Crit Rev Oncol Hematol 2023:104063. [PMID: 37385307 DOI: 10.1016/j.critrevonc.2023.104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/21/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023] Open
Abstract
To date, surgery, chemotherapy and radiotherapy are mainly used to treat or remove gynecological malignancies. However, these approaches have their limitations when facing complicated female diseases such as advanced cervical and endometrial cancer (EC), chemotherapy-resistant gestational trophoblastic neoplasia and platinum-resistant ovarian cancer. Instead, immunotherapy, as an alternative, could significantly improve prognosis of those patients receiving traditional treatments, with better antitumor activities and possibly less cellular toxicities. Its' development is still not fast enough to meet the current clinical needs. More preclinical studies and larger-scale clinical trials are required. This review aims to introduce the landscape and up-to-date status of immunotherapy against gynecological malignancies, with a discussion of the challenges and future direction.
Collapse
Affiliation(s)
- Mengyan Tu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
179
|
Adzibolosu N, Alvero AB, Ali-Fehmi R, Gogoi R, Corey L, Tedja R, Chehade H, Gogoi V, Morris R, Anderson M, Vitko J, Lam C, Craig DB, Draghici S, Rutherford T, Mor G. Immunological modifications following chemotherapy are associated with delayed recurrence of ovarian cancer. Front Immunol 2023; 14:1204148. [PMID: 37435088 PMCID: PMC10331425 DOI: 10.3389/fimmu.2023.1204148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Ovarian cancer recurs in most High Grade Serous Ovarian Cancer (HGSOC) patients, including initial responders, after standard of care. To improve patient survival, we need to identify and understand the factors contributing to early or late recurrence and therapeutically target these mechanisms. We hypothesized that in HGSOC, the response to chemotherapy is associated with a specific gene expression signature determined by the tumor microenvironment. In this study, we sought to determine the differences in gene expression and the tumor immune microenvironment between patients who show early recurrence (within 6 months) compared to those who show late recurrence following chemotherapy. Methods Paired tumor samples were obtained before and after Carboplatin and Taxol chemotherapy from 24 patients with HGSOC. Bioinformatic transcriptomic analysis was performed on the tumor samples to determine the gene expression signature associated with differences in recurrence pattern. Gene Ontology and Pathway analysis was performed using AdvaitaBio's iPathwayGuide software. Tumor immune cell fractions were imputed using CIBERSORTx. Results were compared between late recurrence and early recurrence patients, and between paired pre-chemotherapy and post-chemotherapy samples. Results There was no statistically significant difference between early recurrence or late recurrence ovarian tumors pre-chemotherapy. However, chemotherapy induced significant immunological changes in tumors from late recurrence patients but had no impact on tumors from early recurrence patients. The key immunological change induced by chemotherapy in late recurrence patients was the reversal of pro-tumor immune signature. Discussion We report for the first time, the association between immunological modifications in response to chemotherapy and the time of recurrence. Our findings provide novel opportunities to ultimately improve ovarian cancer patient survival.
Collapse
Affiliation(s)
- Nicholas Adzibolosu
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ayesha B. Alvero
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Rouba Ali-Fehmi
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Radhika Gogoi
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Logan Corey
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Roslyn Tedja
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Hussein Chehade
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Vir Gogoi
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Robert Morris
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| | - Matthew Anderson
- Department of Obstetrics and Gynecology, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Julie Vitko
- Department of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Clarissa Lam
- Department of Gynecologic Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Douglas B. Craig
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Sorin Draghici
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
- Advaita Corporation, Ann Arbor, MI, United States
- Division of Information and Intelligent Systems, Directorate for Computer and Information Science and Engineering, National Science Foundation, Alexandria, VA, United States
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Gil Mor
- C. S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
180
|
Colombo I, Karakasis K, Suku S, Oza AM. Chasing Immune Checkpoint Inhibitors in Ovarian Cancer: Novel Combinations and Biomarker Discovery. Cancers (Basel) 2023; 15:3220. [PMID: 37370830 DOI: 10.3390/cancers15123220] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
A deep understanding of the tumor microenvironment and the recognition of tumor-infiltrating lymphocytes as a prognostic factor have resulted in major milestones in immunotherapy that have led to therapeutic advances in treating many cancers. Yet, the translation of this knowledge to clinical success for ovarian cancer remains a challenge. The efficacy of immune checkpoint inhibitors as single agents or combined with chemotherapy has been unsatisfactory, leading to the exploration of alternative combination strategies with targeted agents (e.g., poly-ADP-ribose inhibitors (PARP)and angiogenesis inhibitors) and novel immunotherapy approaches. Among the different histological subtypes, clear cell ovarian cancer has shown a higher sensitivity to immunotherapy. A deeper understanding of the mechanism of immune resistance within the context of ovarian cancer and the identification of predictive biomarkers remain central discovery benchmarks to be realized. This will be critical to successfully define the precision use of immune checkpoint inhibitors for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ilaria Colombo
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), Via A. Gallino, 6500 Bellinzona, Switzerland
| | - Katherine Karakasis
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Sneha Suku
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| | - Amit M Oza
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
181
|
Rives TA, Pavlik H, Li N, Qasrawi L, Yan D, Pickarski J, Dietrich CS, Miller RW, Ueland FR, Kolesar JM. Implementation of Nurse Navigation Improves Rate of Molecular Tumor Testing for Ovarian Cancer in a Gynecologic Oncology Practice. Cancers (Basel) 2023; 15:3192. [PMID: 37370804 DOI: 10.3390/cancers15123192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
PURPOSE The purpose of this study was to assess the impact of implementing a Nurse Navigator (NN) to improve the rate and timeliness of molecular tumor testing. METHODS This is an evaluation of the impact of education sessions, consensus building, and NN implementation for molecular tumor testing in patients with epithelial ovarian cancer. The NNs' responsibilities included attending tumor boards and ensuring Next Generation Sequencing (NGS) is ordered, reviewed, and coordinated for appropriate patients. RESULTS NNs significantly improved NGS testing rates from 35.29% to 77.27%, p = 0.002. Ordering a targeted panel test (TPT) was the most common reason for not ordering NGS in the pre-NN cohort (13/22, 59%). The total turnaround time for testing was reduced after the introduction of NNs from 145.2 days to 42.8 days, p < 0.0001. The post-NN group had a significantly higher rate of actionable mutations identified for the recurrent setting [67.6% versus 20.8% (p = 0.0005)] and a trend towards a higher rate of actionable mutations identified in the frontline setting [41.2% versus 33.3% (p = 0.41)]. CONCLUSION NNs significantly improved somatic tumor testing rates and timeliness for patients with ovarian cancer. Discontinuing TPT in favor of NGS revealed a higher rate of actionable tumor mutations that would have been missed with TPT alone.
Collapse
Affiliation(s)
- Taylor A Rives
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40536, USA
| | - Heather Pavlik
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Ning Li
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA
| | - Lien Qasrawi
- College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Donglin Yan
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY 40536, USA
| | - Justine Pickarski
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Charles S Dietrich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Rachel W Miller
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Frederick R Ueland
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jill M Kolesar
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
182
|
Yoon WH, DeFazio A, Kasherman L. Immune checkpoint inhibitors in ovarian cancer: where do we go from here? CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:358-377. [PMID: 37457131 PMCID: PMC10344730 DOI: 10.20517/cdr.2023.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy, and despite advancements in therapeutics, most women unfortunately still succumb to their disease. Immunotherapies, in particular immune checkpoint inhibitors (ICI), have been therapeutically transformative in many tumour types, including gynaecological malignancies such as cervical and endometrial cancer. Unfortunately, these therapeutic successes have not been mirrored in ovarian cancer clinical studies. This review provides an overview of the ovarian tumour microenvironment (TME), particularly factors associated with survival, and explores current research into immunotherapeutic strategies in EOC, with an exploratory focus on novel therapeutics in navigating drug resistance.
Collapse
Affiliation(s)
- Won-Hee Yoon
- Department of Medical Oncology, Blacktown Cancer and Haematology Centre, Blacktown Hospital, Blacktown 2148, Australia
- Department of Medical Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead 2145, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
- Department of Gynecological Oncology, Westmead Hospital, Westmead 2145, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council New South Wales, Sydney 2011, Australia
| | - Lawrence Kasherman
- Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
- Department of Medical Oncology, Illawarra Cancer Care Centre, Wollongong 2500, Australia
| |
Collapse
|
183
|
Peng Z, Li M, Li H, Gao Q. PD-1/PD-L1 immune checkpoint blockade in ovarian cancer: dilemmas and opportunities. Drug Discov Today 2023:103666. [PMID: 37302543 DOI: 10.1016/j.drudis.2023.103666] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized treatment in oncology. Antibodies against PD-1/PD-L1 and ICI-based combinations are under clinical investigations in multiple cancers, including ovarian cancer. However, the success of ICIs has not materialized in ovarian cancer, which remains one of the few malignancies where ICIs exhibit modest efficacy as either monotherapy or combination therapy. In this review, we summarize completed and ongoing clinical trials of PD-1/PD-L1 blockade in ovarian cancer, categorize the underlying mechanisms of resistance emergence, and introduce candidate approaches to rewire the tumor microenvironment (TME) to potentiate anti-PD-1/PD-L1 antibodies. Teaser: The intrinsic resistance of ovarian cancer to PD-1/PD-L1 blockade could be overcome by advanced understanding of underlying mechanisms and discoveries of new actionable targets for combinatory treatment.
Collapse
Affiliation(s)
- Zikun Peng
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Li
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Gynaecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Centre for Obstetrics and Gynaecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
184
|
Wang M, Zhang J, Wu Y. Tumor metabolism rewiring in epithelial ovarian cancer. J Ovarian Res 2023; 16:108. [PMID: 37277821 DOI: 10.1186/s13048-023-01196-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/29/2023] [Indexed: 06/07/2023] Open
Abstract
The mortality rate of epithelial ovarian cancer (EOC) remains the first in malignant tumors of the female reproductive system. The characteristics of rapid proliferation, extensive implanted metastasis, and treatment resistance of cancer cells require an extensive metabolism rewiring during the progression of cancer development. EOC cells satisfy their rapid proliferation through the rewiring of perception, uptake, utilization, and regulation of glucose, lipids, and amino acids. Further, complete implanted metastasis by acquiring a superior advantage in microenvironment nutrients competing. Lastly, success evolves under the treatment stress of chemotherapy and targets therapy. Understanding the above metabolic characteristics of EOCs helps to find new methods of its treatment.
Collapse
Affiliation(s)
- Ming Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou St, Dongcheng District, Beijing, 100006, China
| | - Jingjing Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou St, Dongcheng District, Beijing, 100006, China
| | - Yumei Wu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou St, Dongcheng District, Beijing, 100006, China.
| |
Collapse
|
185
|
Duan Y, Zhang P, Zhang T, Zhou L, Yin R. Characterization of global research trends and prospects on platinum-resistant ovarian cancer: a bibliometric analysis. Front Oncol 2023; 13:1151871. [PMID: 37342181 PMCID: PMC10277726 DOI: 10.3389/fonc.2023.1151871] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/22/2023] [Indexed: 06/22/2023] Open
Abstract
Background In the last decades, growing attention has been focused on identifying effective therapeutic strategies in the orphan clinical setting of women with platinum-resistant ovarian cancer (PROC), generating thousands of original articles. However, the literature involving bibliometric analysis of PROC has not been published yet. Objective This study hopes to gain a better understanding of the hot spots and trends in PROC by conducting a bibliometric analysis, as well as identify potential new research directions. Methods We searched the Web of Science Core Collection (WOSCC) for PROC-related articles published between 1990 and 2022. CiteSpace 6.1.R2 and VOS viewer 1.6.18.0 were primarily utilized to evaluate the contribution and co-occurrence relationships of various countries and regions, institutes, and journals and to identify research hotspots and promising future trends in this research field. Results A total of 3,462 Web of Science publications were retrieved that were published in 671 academic journals by 1135 authors from 844 organizations in 75 countries and regions. The United States was the leading contributor in this field, and the University of Texas MD Anderson Cancer Center was the most productive institution. Gynecologic Oncology was the most productive journal, while the Journal of Clinical Oncology was the most cited and influential. Co-citation cluster labels revealed the characteristics of seven major clusters, including synthetic lethality, salvage treatment, human ovarian-carcinoma cell line, PARP inhibitor resistance, antitumor complexes, folate receptor, and targeting platinum-resistant disease. Keywords and references burst detection indicated that biomarkers, genetic and phenotypic changes, immunotherapy, and targeted therapy were the most recent and most significant aspects of PROC research. Conclusion This study conducted a comprehensive review of PROC research using bibliometric and visual techniques. Understanding the immunological landscape of PROC and identifying the population that can benefit from immunotherapy, especially in combination with other therapeutic options (such as chemotherapy and targeted therapy), will continue to be the focal point of research.
Collapse
Affiliation(s)
- Yuanqiong Duan
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Peixuan Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Tianyue Zhang
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Lu Zhou
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Rutie Yin
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
186
|
Yin M, Lu C, Zhou H, Liu Q, Yang J. Differential molecular pathway expression according to chemotherapeutic response in ovarian clear cell carcinoma. BMC Womens Health 2023; 23:298. [PMID: 37270486 DOI: 10.1186/s12905-023-02420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/09/2023] [Indexed: 06/05/2023] Open
Abstract
OBJECTIVE Ovarian clear cell carcinoma (OCCC) is a distinct entity from epithelial ovarian cancer. The prognosis of advanced and recurrent disease is very poor due to resistance to chemotherapeutic agents. Our aim was to explore the molecular alterations among OCCC patients with different chemotherapeutic responses and to obtain insights into potential biomarkers. METHODS Twenty-four OCCC patients were included in this study. The patients were divided into two groups based on the relapse time after the first-line platinum-based chemotherapy: the platinum-sensitive group (PS) and the platinum-resistant group (PR). Gene expression profiling was performed using NanoString nCounter PanCancer Pathways Panel. RESULTS Gene expression analysis comparing PR vs. PS identified 32 differentially expressed genes: 17 upregulated genes and 15 downregulated genes. Most of these genes are involved in the PI3K, MAPK and Cell Cycle-Apoptosis pathways. In particular, eight genes are involved in two or all three pathways. CONCLUSION The dysregulated genes in the PI3K, MAPK, and Cell Cycle-Apoptosis pathways identified and postulated mechanisms could help to probe biomarkers of OCCC platinum sensitivity, providing a research basis for further exploration of targeted therapy.
Collapse
Affiliation(s)
- Min Yin
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunli Lu
- Neurospine Center, Xuanwu Hospital, National Center for Neurological Disorders, China International Neuroscience Institute (CHINA-INI), Capital Medical University, Beijing, China
| | - Huimei Zhou
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qian Liu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
187
|
Anderson KG, Braun DA, Buqué A, Gitto SB, Guerriero JL, Horton B, Keenan BP, Kim TS, Overacre-Delgoffe A, Ruella M, Triplett TA, Veeranki O, Verma V, Zhang F. Leveraging immune resistance archetypes in solid cancer to inform next-generation anticancer therapies. J Immunother Cancer 2023; 11:e006533. [PMID: 37399356 PMCID: PMC10314654 DOI: 10.1136/jitc-2022-006533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/05/2023] Open
Abstract
Anticancer immunotherapies, such as immune checkpoint inhibitors, bispecific antibodies, and chimeric antigen receptor T cells, have improved outcomes for patients with a variety of malignancies. However, most patients either do not initially respond or do not exhibit durable responses due to primary or adaptive/acquired immune resistance mechanisms of the tumor microenvironment. These suppressive programs are myriad, different between patients with ostensibly the same cancer type, and can harness multiple cell types to reinforce their stability. Consequently, the overall benefit of monotherapies remains limited. Cutting-edge technologies now allow for extensive tumor profiling, which can be used to define tumor cell intrinsic and extrinsic pathways of primary and/or acquired immune resistance, herein referred to as features or feature sets of immune resistance to current therapies. We propose that cancers can be characterized by immune resistance archetypes, comprised of five feature sets encompassing known immune resistance mechanisms. Archetypes of resistance may inform new therapeutic strategies that concurrently address multiple cell axes and/or suppressive mechanisms, and clinicians may consequently be able to prioritize targeted therapy combinations for individual patients to improve overall efficacy and outcomes.
Collapse
Affiliation(s)
- Kristin G Anderson
- Department of Microbiology, Immunology and Cancer Biology, Obstetrics and Gynecology, Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| | - David A Braun
- Center of Molecular and Cellular Oncology, Yale University Yale Cancer Center, New Haven, Connecticut, USA
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Sarah B Gitto
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer L Guerriero
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Brendan Horton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Bridget P Keenan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California, USA
| | - Teresa S Kim
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Abigail Overacre-Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Marco Ruella
- Department of Medicine, Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd A Triplett
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | - Omkara Veeranki
- Medical Affairs and Clinical Development, Caris Life Sciences Inc, Irving, Texas, USA
| | - Vivek Verma
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Fan Zhang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
188
|
Disis ML, Adams SF, Bajpai J, Butler MO, Curiel T, Dodt SA, Doherty L, Emens LA, Friedman CF, Gatti-Mays M, Geller MA, Jazaeri A, John VS, Kurnit KC, Liao JB, Mahdi H, Mills A, Zsiros E, Odunsi K. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gynecologic cancer. J Immunother Cancer 2023; 11:e006624. [PMID: 37295818 PMCID: PMC10277149 DOI: 10.1136/jitc-2022-006624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/12/2023] Open
Abstract
Advanced gynecologic cancers have historically lacked effective treatment options. Recently, immune checkpoint inhibitors (ICIs) have been approved by the US Food and Drug Administration for the treatment of cervical cancer and endometrial cancer, offering durable responses for some patients. In addition, many immunotherapy strategies are under investigation for the treatment of earlier stages of disease or in other gynecologic cancers, such as ovarian cancer and rare gynecologic tumors. While the integration of ICIs into the standard of care has improved outcomes for patients, their use requires a nuanced understanding of biomarker testing, treatment selection, patient selection, response evaluation and surveillance, and patient quality of life considerations, among other topics. To address this need for guidance, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel of experts to develop a clinical practice guideline. The Expert Panel drew on the published literature as well as their own clinical experience to develop evidence- and consensus-based recommendations to provide guidance to cancer care professionals treating patients with gynecologic cancer.
Collapse
Affiliation(s)
- Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Sarah F Adams
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Jyoti Bajpai
- Medical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Marcus O Butler
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Tyler Curiel
- Dartmouth-Hitchcock's Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | - Laura Doherty
- Program in Women's Oncology, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA
| | - Leisha A Emens
- Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Claire F Friedman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Margaret Gatti-Mays
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Melissa A Geller
- Department of Obstetrics, Gynecology & Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amir Jazaeri
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Veena S John
- Department of Medical Oncology & Hematology, Northwell Health Cancer Institute, Lake Success, New York, USA
| | - Katherine C Kurnit
- University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| | - John B Liao
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Haider Mahdi
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anne Mills
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Kunle Odunsi
- The University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
189
|
Richardson DL, Eskander RN, O'Malley DM. Advances in Ovarian Cancer Care and Unmet Treatment Needs for Patients With Platinum Resistance: A Narrative Review. JAMA Oncol 2023; 9:851-859. [PMID: 37079311 DOI: 10.1001/jamaoncol.2023.0197] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Importance Platinum-based chemotherapy has been the standard of care for ovarian cancer for the past 3 decades. Although most patients respond to platinum-based treatment, emergence of platinum resistance in recurrent ovarian cancer is inevitable during the disease course. Outcomes for patients with platinum-resistant ovarian cancer are poor, and options remain limited, highlighting a substantial unmet need for new treatment options. Observations This review summarizes the current and evolving treatment landscape for platinum-resistant ovarian cancer with a focus on the development of novel compounds. Biologic and targeted therapies such as bevacizumab and poly (ADP-ribose) polymerase (PARP) inhibitors-originally approved in the platinum-resistant setting but since withdrawn-are now used in the up-front or platinum-sensitive setting, prolonging the duration of platinum sensitivity and delaying the use of nonplatinum options. The greater use of maintenance therapy and the emphasis on using platinum beyond first-line treatment has most likely been associated with a greater number of lines of platinum therapy before a patient is designated as having platinum-resistant ovarian cancer. In this contemporary setting, recent trials in platinum-resistant ovarian cancer have mostly had negative outcomes, with none having a clinically significant effect on progression-free or overall survival since the approval of bevacizumab in combination with chemotherapy. Nonetheless, a multitude of new therapies are under evaluation; preliminary results are encouraging. A focus on biomarker-directed treatment and patient selection may provide greater success in identifying novel therapies for treating platinum-resistant ovarian cancer. Conclusions and Relevance Although many clinical trials in platinum-resistant ovarian cancer have had negative outcomes, these failures provide insights into how clinical trial design, biomarker-directed therapy, and patient selection could facilitate future successes in platinum-resistant ovarian cancer treatment.
Collapse
Affiliation(s)
- Debra L Richardson
- Division of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Ramez N Eskander
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, University of California San Diego Moores Cancer Center, UC San Diego Health, La Jolla
| | - David M O'Malley
- Division of Gynecologic Oncology, The Ohio State University Wexner Medical Center and The James Comprehensive Cancer Center, Columbus
| |
Collapse
|
190
|
Long X, Lu H, Cai MC, Zang J, Zhang Z, Wu J, Liu X, Cheng L, Cheng J, Cheung LWT, Shen Z, Zhou Y, Di W, Zhuang G, Yin X. APOBEC3B stratifies ovarian clear cell carcinoma with distinct immunophenotype and prognosis. Br J Cancer 2023; 128:2054-2062. [PMID: 36997661 PMCID: PMC10206171 DOI: 10.1038/s41416-023-02239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Ovarian clear cell carcinoma (OCCC) is a challenging disease due to its intrinsic chemoresistance. Immunotherapy is an emerging treatment option but currently impeded by insufficient understanding of OCCC immunophenotypes and their molecular determinants. METHODS Whole-genome sequencing on 23 pathologically confirmed patients was employed to depict the genomic profile of primary OCCCs. APOBEC3B expression and digital pathology-based Immunoscore were assessed by performing immunohistochemistry and correlated with clinical outcomes. RESULTS An APOBEC-positive (APOBEC+) subtype was identified based on the characteristic mutational signature and prevalent kataegis events. APOBEC + OCCC displayed favourable prognosis across one internal and two external patient cohorts. The improved outcome was ascribable to increased lymphocytic infiltration. Similar phenomena of APOBEC3B expression and T-cell accumulation were observed in endometriotic tissues, suggesting that APOBEC-induced mutagenesis and immunogenicity could occur early during OCCC pathogenesis. Corroborating these results, a case report was presented for an APOBEC + patient demonstrating inflamed tumour microenvironment and clinical response to immune checkpoint blockade. CONCLUSIONS Our findings implicate APOBEC3B as a novel mechanism of OCCC stratification with prognostic value and as a potential predictive biomarker that may inform immunotherapeutic opportunities.
Collapse
Affiliation(s)
- Xiaoran Long
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaiwu Lu
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mei-Chun Cai
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyu Zang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuqing Zhang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoshi Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Cheng
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiejun Cheng
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lydia W T Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhen Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wen Di
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xia Yin
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
191
|
Kumari R, Hosseini ES, Warrington KE, Milonas T, Payne KK. Butyrophilins: Dynamic Regulators of Protective T Cell Immunity in Cancer. Int J Mol Sci 2023; 24:8722. [PMID: 37240071 PMCID: PMC10218201 DOI: 10.3390/ijms24108722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The efficacy of current immunotherapies remains limited in many solid epithelial malignancies. Recent investigations into the biology of butyrophilin (BTN) and butyrophilin-like (BTNL) molecules, however, suggest these molecules are potent immunosuppressors of antigen-specific protective T cell activity in tumor beds. BTN and BTNL molecules also associate with each other dynamically on cellular surfaces in specific contexts, which modulates their biology. At least in the case of BTN3A1, this dynamism drives the immunosuppression of αβ T cells or the activation of Vγ9Vδ2 T cells. Clearly, there is much to learn regarding the biology of BTN and BTNL molecules in the context of cancer, where they may represent intriguing immunotherapeutic targets that could potentially synergize with the current class of immune modulators in cancer. Here, we discuss our current understanding of BTN and BTNL biology, with a particular focus on BTN3A1, and potential therapeutic implications for cancer.
Collapse
Affiliation(s)
- Rinkee Kumari
- Medical Immunology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Elaheh Sadat Hosseini
- Medical Immunology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Cellular and Molecular Pharmacology, Rutgers School of Graduate Studies, Rutgers, The State University of New Jersey, New Brunswick, NJ 08854, USA
| | - Kristen E. Warrington
- Medical Immunology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Tyler Milonas
- Medical Immunology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Kyle K. Payne
- Medical Immunology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Cellular and Molecular Pharmacology, Rutgers School of Graduate Studies, Rutgers, The State University of New Jersey, New Brunswick, NJ 08854, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
192
|
Li T, Wang X, Qin S, Chen B, Yi M, Zhou J. Targeting PARP for the optimal immunotherapy efficiency in gynecologic malignancies. Biomed Pharmacother 2023; 162:114712. [PMID: 37075667 DOI: 10.1016/j.biopha.2023.114712] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
Gynecologic cancer, which includes ovarian, cervical, endometrial, vulvar, and vaginal cancer, is a major health concern for women all over the world. Despite the availability of various treatment options, many patients eventually progress to advanced stages and face high mortality rates. PARPi (poly (ADP-ribose) polymerase inhibitor) and immune checkpoint inhibitor (ICI) have both shown significant efficacy in the treatment of advanced and metastatic gynecologic cancer. However, both treatments have limitations, including inevitable resistance and a narrow therapeutic window, making PARPi and ICI combination therapy a promising approach to treating gynecologic malignancies. Preclinical and clinical trials have looked into the combination therapy of PARPi and ICI. PARPi improves ICI efficacy by inducing DNA damage and increasing tumor immunogenicity, resulting in a stronger immune response against cancer cells. ICI, conversly, can increase PARPi sensitivity by priming and activating immune cells, consequently prompting immune cytotoxic effect. Several clinical trials in gynecologic cancer patients have investigated the combination therapy of PARPi and ICI. When compared to monotherapy, the combination of PARPi and ICI increased progression-free survival and overall survival in ovarian cancer patients. The combination therapy has also been studied in other types of gynecologic cancer, including endometrial and cervical cancer, with promising results. Finally, the combination therapeutic strategy of PARPi and ICI is a promising approach in the treatment of gynecologic cancer, particularly advanced and metastatic stages. Preclinical studies and clinical trials have demonstrated the safety and efficacy of this combination therapy in improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinrun Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxin Chen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
193
|
Xu X, Yin S, Wang Y, Zhu Q, Zheng G, Lu Y, Li T, Zhu C. LILRB1 + immune cell infiltration identifies immunosuppressive microenvironment and dismal outcomes of patients with ovarian cancer. Int Immunopharmacol 2023; 119:110162. [PMID: 37075669 DOI: 10.1016/j.intimp.2023.110162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE Immune checkpoint inhibitors are commonly used in various types of cancer, but their efficacy in ovarian cancer (OC) is limited. Thus, identifying novel immune-related therapeutic targets is crucial. Leukocyte immunoglobulin-like receptor subfamily B1 (LILRB1), a key receptor of human leukocyte antigen G (HLA-G), is involved in immune tolerance, but its role in tumor immunity remains unclear. METHODS In this study, immunofluorescence was used to identify the location of LILRB1 in OC. The effect of LILRB1 expression on clinical outcomes in 217 patients with OC was analyzed retrospectively. A total of 585 patients with OC from the TCGA database were included to explore the relationship between LILRB1 and tumor microenvironment characteristics. RESULTS LILRB1 was found to be expressed in tumor cells (TCs) and immune cells (ICs). High LILRB1+ ICs, but not LILRB1+ TCs, were associated with advanced FIGO stage, shorter survival outcomes, and worse adjuvant chemotherapy responses in OC patients. LILRB1 expression was also associated with high M2 macrophage infiltration, reduced activation of dendritic cells, and dysfunction of CD8+ T cells, suggesting an immunosuppressive phenotype. The combination of LILRB1+ ICs and CD8+ T cell levels could be used to distinguish patients with different clinical survival results. Moreover, LILRB1+ ICs infiltration with CD8+ T cells absence indicated inferior responsiveness to anti-PD-1/PD-L1 therapy. CONCLUSIONS Tumor-infiltrating LILRB1+ ICs could be applied as an independent clinical prognosticator and a predictive biomarker for therapy responsiveness to OC. Further studies targeting the LILRB1 pathway should be conducted in the future.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Department of Gynecology and Obstetrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China; Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Songcheng Yin
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, Guangdong, China
| | - Yun Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qingqing Zhu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Guoxing Zheng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yingsi Lu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Tian Li
- Department of Gynecology and Obstetrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Chengming Zhu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, Guangdong, China.
| |
Collapse
|
194
|
Wu Q, Tian R, He X, Liu J, Ou C, Li Y, Fu X. Machine learning-based integration develops an immune-related risk model for predicting prognosis of high-grade serous ovarian cancer and providing therapeutic strategies. Front Immunol 2023; 14:1164408. [PMID: 37090728 PMCID: PMC10113544 DOI: 10.3389/fimmu.2023.1164408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) is a highly lethal gynecological cancer that requires accurate prognostic models and personalized treatment strategies. The tumor microenvironment (TME) is crucial for disease progression and treatment. Machine learning-based integration is a powerful tool for identifying predictive biomarkers and developing prognostic models. Hence, an immune-related risk model developed using machine learning-based integration could improve prognostic prediction and guide personalized treatment for HGSOC. METHODS During the bioinformatic study in HGSOC, we performed (i) consensus clustering to identify immune subtypes based on signatures of immune and stromal cells, (ii) differentially expressed genes and univariate Cox regression analysis to derive TME- and prognosis-related genes, (iii) machine learning-based procedures constructed by ten independent machine learning algorithms to screen and construct a TME-related risk score (TMErisk), and (iv) evaluation of the effect of TMErisk on the deconstruction of TME, indication of genomic instability, and guidance of immunotherapy and chemotherapy. RESULTS We identified two different immune microenvironment phenotypes and a robust and clinically practicable prognostic scoring system. TMErisk demonstrated superior performance over most clinical features and other published signatures in predicting HGSOC prognosis across cohorts. The low TMErisk group with a notably favorable prognosis was characterized by BRCA1 mutation, activation of immunity, and a better immune response. Conversely, the high TMErisk group was significantly associated with C-X-C motif chemokine ligands deletion and carcinogenic activation pathways. Additionally, low TMErisk group patients were more responsive to eleven candidate agents. CONCLUSION Our study developed a novel immune-related risk model that predicts the prognosis of ovarian cancer patients using machine learning-based integration. Additionally, the study not only depicts the diversity of cell components in the TME of HGSOC but also guides the development of potential therapeutic techniques for addressing tumor immunosuppression and enhancing the response to cancer therapy.
Collapse
Affiliation(s)
- Qihui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Ruotong Tian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyun He
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Chunlin Ou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yimin Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaodan Fu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
195
|
Andrikopoulou A, Liontos M, Skafida E, Koutsoukos K, Apostolidou K, Kaparelou M, Rouvalis A, Bletsa G, Dimopoulos MA, Zagouri F. Pembrolizumab in combination with bevacizumab and oral cyclophosphamide in heavily pre-treated platinum-resistant ovarian cancer. Int J Gynecol Cancer 2023; 33:571-576. [PMID: 36604119 DOI: 10.1136/ijgc-2022-003941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Immune checkpoint inhibitors have been widely implemented in the treatment of solid tumors. Combinations of immune checkpoint inhibitors with chemotherapy, anti-vascular endothelial growth factor (VEGF) compounds, and poly-adenosine diphosphate-ribose polymerase inhibitors (PARP) are under evaluation in ovarian cancer. We aim to explore the efficacy of pembrolizumab in combination with bevacizumab and oral cyclophosphamide in patients with recurrent epithelial ovarian cancer. METHODS This was a retrospective study of all patients who received pembrolizumab in combination with bevacizumab and oral cyclophosphamide for recurrent platinum-resistant heavily pre-treated ovarian cancer in the Oncology Unit of Alexandra University Hospital from January 2021 to July 2022. RESULTS Median age at diagnosis was 56 years (SD 9.2; range 37-72). All patients were diagnosed with high-grade serous ovarian carcinoma. Initial disease stage was International Federation of Gynecology and Obstetrics (FIGO) IIIC in most cases (11/15, 73%). Patients were heavily pre-treated with a median of six (range 4-9) prior lines of systemic therapy. All patients experienced disease progression on first-line platinum-based chemotherapy, and median progression-free survival on first-line treatment was 22 months (95% CI 10.6 to 33.4). Patients received a median of four cycles of pembrolizumab in combination with cyclophosphamide and bevacizumab (range 3-20). Overall response rate was 13% (2/15) and disease control rate was 33% (5/15) with two patients achieving partial response and three patients achieving stable disease. Median progression-free survival was 3.5 months (95% CI 1.3 to 5.7) and the 6-month progression-free survival rate was 20%. Treatment was well tolerated with no dose-limiting toxicities. CONCLUSION We showed that the combination of pembrolizumab with bevacizumab and oral cyclophosphamide is an effective alternative in heavily pre-treated patients with ovarian cancer who have otherwise limited treatment options.
Collapse
Affiliation(s)
- Angeliki Andrikopoulou
- Oncology Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Michalis Liontos
- Oncology Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthymia Skafida
- Oncology Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Koutsoukos
- Oncology Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Kleoniki Apostolidou
- Oncology Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Kaparelou
- Oncology Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Angeliki Rouvalis
- Oncology Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Flora Zagouri
- Oncology Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
196
|
Marques C, Ferreira da Silva F, Sousa I, Nave M. Chemotherapy-free treatment of recurrent advanced ovarian cancer: myth or reality? Int J Gynecol Cancer 2023; 33:607-618. [PMID: 36446409 PMCID: PMC10086454 DOI: 10.1136/ijgc-2022-003719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
Advanced ovarian cancer remains a leading cause of death from gynecologic malignancy. Surgery and, in most cases, platinum-based chemotherapy with or without maintenance with bevacizumab and/or poly-ADP ribose polymerase inhibitors (PARPi) represent the mainstay of treatment, but the disease typically recurs. The treatment of these patients represents a clinical challenge because sequential chemotherapy regimens are often used, with suboptimal outcomes and cumulative toxicity. Chemotherapy-free regimens, based on combinations of PARPi, vascular endothelial growth factor receptor inhibitors, anti-programmed cell death protein-1/programmed death-ligand 1, and anti-cytotoxic T-lymphocyte-associated protein-4 antibodies, among others, represent a valid option, with manageable toxicity profile and ease of administration. This review addresses this new strategy in the management of recurrent ovarian cancer and discusses its feasibility in the treatment landscape of the disease.
Collapse
Affiliation(s)
- Cristiana Marques
- Centro Hospitalar de Vila Nova de Gaia Espinho EPE, Vila Nova de Gaia, Portugal
| | | | - Isabel Sousa
- Centro Hospitalar Universitário de São João, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Mónica Nave
- Hospital da Luz, Lisboa, Portugal
- Nova Medical School, Lisbon, Portugal
| |
Collapse
|
197
|
Griesinger L, Nyarko-Odoom A, Martinez SA, Shen NW, Ring KL, Gaughan EM, Mills AM. PD-L1 and MHC Class I Expression in High-grade Ovarian Cancers, Including Platinum-resistant Recurrences Treated With Checkpoint Inhibitor Therapy. Appl Immunohistochem Mol Morphol 2023; 31:197-203. [PMID: 36812389 DOI: 10.1097/pai.0000000000001108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/10/2023] [Indexed: 02/24/2023]
Abstract
Immune-modulating therapies targeting the programmed cell death-1/programmed cell death ligand-1 (PD-L1) immunosuppressive system have been used successfully in many solid tumor types. There is evidence that biomarkers such as PD-L1 and major histocompatibility complex (MHC) class I help identify candidates for anti-programmed cell death-1/PD-L1 checkpoint inhibition, though the evidence is limited in ovarian malignancies. PD-L1 and MHC Class I immunostaining was performed on pretreatment whole tissue sections in 30 cases of high-grade ovarian carcinoma. The PD-L1 combined positive score was calculated (a score of ≥1 is considered positive). MHC class I status was categorized as an intact or subclonal loss. In patients who received immunotherapy, drug response was assessed using RECIST criteria. PD-L1 was positive in 26 of 30 cases (87%; combined positive score: 1 to 100). Seven of 30 patients showed subclonal loss of MHC class I (23%), and this occurred in both PD-L1 negative (3/4; 75%) and PD-L1 positive (4/26; 15%) cases. Only 1 of 17 patients who received immunotherapy in the setting of a platinum-resistant recurrence responded to the addition of immunotherapy, and all 17 died of disease. In the setting of recurrent disease, patients did not respond to immunotherapy regardless of PD-L1/MHC class I status, suggesting that these immunostains may not be effective predictive biomarkers in this setting. Subclonal loss of expression of MHC class I occurs in ovarian carcinoma, including in PD-L1 positive cases, suggesting that the 2 pathways of immune evasion may not be mutually exclusive and that it may be important to interrogate MHC class I status in PD-L1 positive tumors to identify additional immune evasion mechanisms in these tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Elizabeth M Gaughan
- Department of Hematology and Oncology, University of Virginia, Charlottesville, VA
| | | |
Collapse
|
198
|
Calo CA, Levine MD, Brown MD, O'Malley DM, Backes FJ. Combination lenvatinib plus pembrolizumab in the treatment of ovarian clear cell carcinoma: A case series. Gynecol Oncol Rep 2023; 46:101171. [PMID: 37065539 PMCID: PMC10090985 DOI: 10.1016/j.gore.2023.101171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Effective second-line treatment options for patients with recurrent ovarian clear cell carcinoma (OCCC) are limited. This case series sought to report tumor characteristics and oncologic outcomes in a small group of patients treated with combination lenvatinib and pembrolizumab. A retrospective analysis of patients with ovarian clear cell carcinoma treated with combination lenvatinib and pembrolizumab at a single institution was performed. Patient and tumor characteristics were collected including demographics and germline/somatic testing. Clinical outcomes were also evaluated and reported. Three patients with recurrent OCCC were included in the study. The median age of patients was 48 years old. All patients had platinum-resistant disease and had received 1-3 prior lines of therapy. The overall response rate was 100% (3/3). Progression-free survival ranged from 10 months to not-yet-reached. One patient remains on treatment, while the other two died of disease with overall survival of 14 and 27 months. Combination lenvatinib-pembrolizumab demonstrated favorable clinical response in these patients with platinum-resistant, recurrent, ovarian clear cell carcinoma.
Collapse
Affiliation(s)
- Corinne A Calo
- Division of Gynecologic Oncology, The Ohio State University, Columbus, OH, United States
| | - Monica D Levine
- Division of Gynecologic Oncology, The Ohio State University, Columbus, OH, United States
| | - Morgan D Brown
- Division of Gynecologic Oncology, The Ohio State University, Columbus, OH, United States
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, United States
| | - David M O'Malley
- Division of Gynecologic Oncology, The Ohio State University, Columbus, OH, United States
| | - Floor J Backes
- Division of Gynecologic Oncology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
199
|
Zou Y, Xu Y, Chen X, Zheng L. Advances in the application of immune checkpoint inhibitors in gynecological tumors. Int Immunopharmacol 2023; 117:109774. [PMID: 37012881 DOI: 10.1016/j.intimp.2023.109774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Immune checkpoints are regulatory molecules that suppress immune effector cells, and are essential for maintaining tolerance, preventing autoimmune reactions, and minimizing tissue damage by controlling the duration and intensity of the immune responses. However, immune checkpoints are frequently upregulated during cancer and dampen the anti-tumor immune responses. Immune checkpoint inhibitors (ICIs) have been effective against multiple tumors, and have improved patients' survival outcomes. Recent clinical trials have also reported promising therapeutic effects of ICIs in some gynecological cancers. AIM To review the current research and future directions in the treatment of gynecological malignancies, including ovarian, cervical and endometrial cancers, using ICIs. CONCLUSION Currently, cervical and ovarian cancers are the only gynecological tumors that are treated by immunotherapeutic approaches. In addition, ICIs, chimeric antigen receptor (CAR)- and T cell receptor (TCR)-engineered T cells targeting endometrial tumors, especially those originating in the vulva and fallopian tubes, are under development. Nevertheless, the molecular mechanism underlying the effects of ICIs, especially in combination with chemotherapy, radiation therapy, anti-angiogenesis drugs and poly ADP ribose polymerase inhibitors (PARPi), needs to be elucidated. Furthermore, novel predictive biomarkers have to be identified in order to increase the therapeutic efficacy of ICIs while reducing adverse reactions.
Collapse
Affiliation(s)
- YingGang Zou
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Ying Xu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - XiaoChen Chen
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Lianwen Zheng
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
200
|
Castaño M, Tomás-Pérez S, González-Cantó E, Aghababyan C, Mascarós-Martínez A, Santonja N, Herreros-Pomares A, Oto J, Medina P, Götte M, Mc Cormack BA, Marí-Alexandre J, Gilabert-Estellés J. Neutrophil Extracellular Traps and Cancer: Trapping Our Attention with Their Involvement in Ovarian Cancer. Int J Mol Sci 2023; 24:ijms24065995. [PMID: 36983067 PMCID: PMC10056926 DOI: 10.3390/ijms24065995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, play a well-known role in defense against pathogens through phagocytosis and degranulation. However, a new mechanism involving the release of neutrophil extracellular traps (NETs) composed of DNA, histones, calprotectin, myeloperoxidase, and elastase, among others, has been described. The so-called NETosis process can occur through three different mechanisms: suicidal, vital, and mitochondrial NETosis. Apart from their role in immune defense, neutrophils and NETs have been involved in physiopathological conditions, highlighting immunothrombosis and cancer. Notably, neutrophils can either promote or inhibit tumor growth in the tumor microenvironment depending on cytokine signaling and epigenetic modifications. Several neutrophils' pro-tumor strategies involving NETs have been documented, including pre-metastatic niche formation, increased survival, inhibition of the immune response, and resistance to oncologic therapies. In this review, we focus on ovarian cancer (OC), which remains the second most incidental but the most lethal gynecologic malignancy, partly due to the presence of metastasis, often omental, at diagnosis and the resistance to treatment. We deepen the state-of-the-art on the participation of NETs in OC metastasis establishment and progression and their involvement in resistance to chemo-, immuno-, and radiotherapies. Finally, we review the current literature on NETs in OC as diagnostic and/or prognostic markers, and their contribution to disease progression at early and advanced stages. The panoramic view provided in this article might pave the way for enhanced diagnostic and therapeutic strategies to improve the prognosis of cancer patients and, specifically, OC patients.
Collapse
Affiliation(s)
- María Castaño
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Sarai Tomás-Pérez
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
| | - Eva González-Cantó
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
| | - Cristina Aghababyan
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
- Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | - Andrea Mascarós-Martínez
- Department of Pathology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | - Nuria Santonja
- Department of Pathology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | | | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, 46026 Valencia, Spain
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany
| | - Bárbara Andrea Mc Cormack
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
| | - Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
- Department of Pathology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
| | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Gynaecology, and Obstetrics, Research Foundation of the General University Hospital of Valencia, 46014 Valencia, Spain
- Department of Obstetrics and Gynecology, General University Hospital of Valencia Consortium, 46014 Valencia, Spain
- Department of Pediatrics, Obstetrics, and Gynaecology, University of Valencia, 46014 Valencia, Spain
| |
Collapse
|